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1. DISCRETE PROBABILITY SPACE

“Random experiment” is a non-mathematical term used to describe physical situations with
unpredictable outcomes, for instance, “toss a fair coin and observe which side comes up”. Can we

give a precise mathematical meaning to such a statement? Consider an example.

Example 1

“Draw a random integer from 1 to 100. What is the chance that it is a prime number?”
Mathematically, we just mean the following. Let Q@ = {1,2...,100}, and for each w € ,
we set p, = 155- Subsets A C Q are called “events” and for each subset we define P(A4) =
> wea Po- In particular, if A = {2,3,...,97} is the set of all prime numbers in 2, then we
get P(A) = 1.

Whenever there is a random experiment with finitely many or countably many possible out-
comes, we can do the same. More precisely, we write (2 for the set of all possible outcomes, and
assign the elementary probability p,, for each w € § (in mathematics, we just assume that these
numbers are somehow given. In real life, they will be given by experiments, symmetry consider-

ations etc.). For example,

» Toss a fair coin n times. Here 2 = {0,1}" (with the identification that 1 is head and 0 is
tail)and p, =2 " forallw € Q. f A={w € Q:wi +... + w, = k}, then P(4) = 27"(7}).

» Place r balls in n bins at random. Here (2 is the set of r-tuples with entries from [n] :=
{1,2,...,n} and p,, = - foreachw € Q.

» Shuffle a deck of n cards. Here Q is the set of permutations of [n] and p,, = 2 for each

w € Q.

» Throw a biased die n times. Here Q@ = {w = (i1,i2,...,in) 11 < i < 6fork < n}is
the set of n-tuples with entries from 1,2,...,6. A reasonable assignment of elementary
probabilities is p, = a;, a4, ... o, if w = (i1,...,4,). Here oy, ..., ap are positive numbers

that add up to 1 (and capture the bias in the die).

To conclude, let us make (or recall) a definition.

Definition 1: Discrete probability space

A discrete probability space is a pair (2, p) where 2 is a finite or countable setand p : 2 — Ry
is a function such that ) p, = 1. For a subset A C , define P(A) = " .4 Pw-

The only mathematical sophistication needed to understand this definition is the notion of
countable sums (convergence, divergence, absolute convergence etc). This we have learned in
real analysis class.

Finally, our discussion above may be summarized by saying that the framework of discrete

probability spaces captures mathematically the notion of a random experiment with finitely many
3



or countably many possible outcomes. All that is left for a probabilist to do is to take an “inter-
esting” probability space (€2, p), an “interesting” subset A C (2, and actually calculate (or approxi-
mately calculate) P(A). This does not mean it is easy, as the following examples illustrate.

Example 2: Self-avoiding walk

Fix n > 1 and let Q2 be the set of all self-avoiding paths on length n in Z? starting from (0, 0).
That is,

Q= {(zo,...,2n) : z0 = (0,0), z; — x;—1 € {(£1,0),(0,£1)} for i < n and z; # z; fori # j}.

Let p, = g One interesting event is A = {(x0, ..., 25) : [[wnl| < n®®}. Far from finding

P(A), it has not been proved whether for large n, the value P(A) is close to zero or one! If

you solve this, click here.

Example 3: Random matrix

Let Q = {Aan A= (a@j)lgi’jgn, a;j = 0or 1} with p, = 2" for all w € Q. LetS
be the subset of all singular matrices with zero-one entries. What is P(5)? This is a very
difficult problem in the field of random matrix theory. Partial solutions were achieved by

many leading mathematicians before it was solved in 2018 (not an exact solution, but it was

shown that asymptotically P(A) ~ 27" in an appropriate sense).

-

Example 4: Percolation

Take the same probability space as in the previous example. Define a path to mean a se-
quence of indices (i1, 1), .-, (¢m,jm) (for some m) such that iy = j; = 1, i, = n and
(Ukt1, Jk+1) — (g, Jx) € {(1,0),(—1,0),(0,1),(0,—1)} forall 1 < k < m — 1. Let S be the
subset of A, for which there is some path for which a;, ;, = 1 for all k. Finding the
probability of S as n — oo is an important open problem in a sub-field of probability called
percolation theory (to be precise, what the answer ought to be is known, proving it is the
difficult thing).

\

Section summary: Random experiments with finite or countably many possible outcomes are
adequately modeled mathematically by the notion of a discrete probability space (£2,p). While
calculating probabilities of events may lead to enormous difficulties, the set up itself is mathemat-

ically very simple. In short, we know what we are talking about.

2. UNCOUNTABLE PROBABILITY SPACES?

We want to see how to model random experiments with uncountably many possible outcomes.

Start with an example.


http://www.math.iisc.ernet.in/fac-pos.htm

Example 5: Break a stick at random

If we idealize the stick to a straight line segment, perhaps a way to make mathematical
sense of where it breaks is to pick a point at random from the unit interval. Although it
does not sound all that different from picking a number at random from {1,2,...,100},
making sense of this experiment will lead us into very deep waters!

What is so difficult about this? Let us try to imitate what we did before and set 2 = [0, 1],
the set of all possible outcomes. What about probabilities? For example, if A = [0.1,0.3],
then it is clear that we want to say that the probability P(A) = 0.2. Similarly, if A = {0.3}
or any other singleton, we must assign P(A) = 0.

But then, what is the basis for saying P{[0.1,0.3]} = 0.2? Surely, “P{[0.1,0.3]} =
>_wel0.1,0.3) P makes no sense?! Since singletons have zero probability, how do we add
uncountably many zeros and get a positive number?! Further, what about weird sets, like
the set of rational points, the Cantor set, etc? What are their probabilities? You might say
that P(A) is the length of A for any subset A, but that is not an answer since you have
merely replaced the word “probability” by another word “length” (that is, you still have no

answer to the question of what is the length of the Cantor set or other weird sets).

Let us mention one other experiment that requires uncountable probability spaces.

Example 6: Toss a fair coin infinitely many times

Here the set of possible outcomes is the uncountable set {0, 1} = {0,1} x{0,1} x{0,1} x... ..
Just as in the case of stick-breaking, there are certain events for which we have no doubt
what the probability ought to be. For example, if A is the event that “the first three tosses
are heads and the next two are tails”, then we have no doubt that the probability must be
2%,

But again, is this an assumption or a deducible fact? The problem is that any singleton
in Q2 must have zero probability and summing uncountably many zeros to get 275 sounds
suspicious. Further, there are more complicated events for which it is not clear how to
find the probability. For example, events such as “there are infinitely many heads in the

sequence” or “after any number of tosses, the number of heads is more than the number of

tails” or “for any n, there are at least n heads in the first n? tosses”, etc.

One can give any number of other examples, for example, “throw a dart at a dart-board”. But it
is enough to keep in mind either the stick breaking example or the coin tossing example. Either
of these will turn out to be equivalent. We shall see later that once we understand one of these
examples, we will have understood all uncountable probability spaces! This is true in a precise

mathematical sense.



To give a foretaste of how the issues raised in the above examples will be resolved: We shall
give up the idea that every subset of the sample space can be assigned probability! Secondly,
probabilities of certain (simple) events will be assumed and probabilities of more complicated
events will be computed using them. Before coming to this, let us see why such a drastic change

of our notions is necessary.

An attempt to fix the issue: Let us stick to the example of drawing a number at random from the
interval [0, 1] and explain, in a more mathematical manner, the difficulties we run into. We outline
a possible approach and see where it runs into difficulties.

Let us define the probability of any set A C [0, 1] to be the length of that set. We understand the
length of an interval, but what is the length of the set of rational numbers? irrational numbers?

Cantor set? A seemingly reasonable idea is to define

P.(A) = inf {Z |I| : each Iy is an interval and {I} a countable cover for A} .
k=1

and call it the length of A. Then of course, we shall also say that P.(A) is the probability of A

(in the language of the random experiment, the probability that the chosen random number falls

in A). Then perhaps, P.(A) should be the probability of A for every subset A C [0,1]. This is at

least reasonable in that P, ([a,b]) = b — a for any [a,b] C [0, 1] (Exercise! This needs proof!). One

example of how to compute P, (A).

Let A = QN [0,1]. Then, we can enumerate A as {ry,r2,...}. Fix e > 0 and let I, =
[re — €27% rp + €27%] so that A C Ugly. Further, >« x| = 2e. Since € is arbitrary, this
shows that P, (A) = 0. This is a reasonable answer we might have expected. In fact, for any

countable set A C [0, 1], the same argument shows that P, (A) = 0.

However, we face an unexpected problem. The following fact is not obvious and we do not

give a proof now.

Fact 1: Outer measure is not finitely additive

There exists a subset A C [0, 1] such that P,(A) = 1 and P, (A°) = 1.

This fact implies that P, cannot be accepted as a reasonable definition of probability, since it
violates one of the basic requirements of probability (or of length), that P.(A U A°) be equal to
P.(A) + P.(A°)! This approach appears to be doomed to failure.

You may object that our definition of P, was arbitrary, and that perhaps a different definition
will not run into such absurdities? Before tackling that question, let us be clear about what all

properties we want probabilities to satisfy.



We shall certainly want P(AUB) = P(A)+P(B) if A and B are pairwise disjoint subsets of [0, 1]
(this is called finite additivity). But in fact, we shall demand more, that P(US2, A4,) = > P(A4,) if
A, are pairwise disjoint subsets of [0, 1]. This last requirement is called countable additivity and it
is not clear why we should ask for it. Honestly, I have no justification to give at this point, except
that the accumulated wisdom of mathematicians for about a hundred years has accepted it.

Given these requirements, we run into a serious roadblock.

Result 2

There does not exist” any function f : 2l0.1] [0,1] such that f is countably additive and
f([a,b]) = b —aforall [a,b] C [0,1].

“This result is also not easy to prove. Take it for a fact. For those who are extra curious, here is a bizarre fact:
It is possible to find f : 2% — [0,1] such that f(I) = |I| for any interval I and such that f is finitely additive.
However, there does not exist such a finitely additive f : 2010° , R satisfying f(I1 x I2 x I3) = |I1| - |I2] - |13].
In other words, if you want to be a finitely additive probabilist, you may drop countable additivity and happily
talk about picking a number at random from an interval, or throw a dart at a board, but not pick a point at

random from a cube in three dimensions! Altogether, countable additivity restricts, but leads to a far richer

theory within those restrictions.

-
This means that not only P, but any other way you try to define probabilities of subsets of [0, 1]

(in such a way that f(I) = |I| for intervals), is bound to violate countable additivity and hence, not
acceptable to us. This ends our discussion of why we don’t know what we are talking about when
we said “draw a number at random from [0, 1]”. From the next section, we see how this problem can

be overcome if we give up our desire to assign probabilities to all subsets.

3. SIGMA ALGEBRAS AND THE AXIOMS OF PROBABILITY

Now we define the setting of probability in abstract and then return to the earlier examples and
show how the new framework takes care of the difficulties we discussed.

Definition 2: Probability space

A probability space is a triple (2, 7, P) where

(1) The sample space ) is an arbitrary non-empty set.

(2) The o-field or o-algebra F is a set of subsets of 2 such that (i) 0,Q € F, (ii) if A € F,
then A€ € F, (iii) if A,, € F forn = 1,2..., then UA,, € F. In words, F is closed
under complementation and under countable unions, and contains the empty set.

Elements of F are called measurable sets or events.

(3) A probability measure is any function P : 7 — [0, 1] is such that if 4, € F and
are pairwise disjoint, then P(UA,) = > P(A4,) (countable additivity) and such that
P(Q2) = 1. P(A) is called the probability of A.
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By definition, we talk of probabilities only of measurable sets. It is meaningless to ask for the
probability of a subset of 2 that is not measurable. Typically, the sigma-algebra will be smaller
than the power set of €2, but large enough to include all sets of interest to us. Restricting the class
of sets for which we assign probability is the key idea that will resolve the difficulties we were
having with the examples of stick-breaking or infinitely many coin tosses.

The o-field is closed under many set operations and the usual rules of probability also hold. If
one allows P to take values in [0, c0] and drops the condition P(£2) = 1, then it is just called a
measure. Measures have the same basic properties as probability measures, but probabilistically
crucial concepts of independence and conditional probabilities (to come later) don’t carry over to gen-
eral measures. Those two concepts are mainly what make probability theory much richer than

general measure theory.

Example 8

Let Q2 be any non-empty set. Then F = 29 (collection of all subsets of Q) is a o-algebra. The
smallest o-algebra of subsets of Qis G = {0, Q}.

To give an example of a o-algebra between the two, let 2 = R (ar any uncountable set)
and define 7/ = {A C Q : A or A°is countable}. Check that F is a o-algebra. If we define
P(A) = 0if A is countable and P(A) = 1 if A°is countable, then P defines a probability

measure on (€, ') (check!).

Some examples of probability spaces. Our new framework better include the old one of discrete
probability spaces. Indeed it does, and in that special case, we may also take the sigma-algebra of
all subsets of the sample space. This is explained in the following example.

Example 9

Let 2 be a finite or countable set. Let F be the collection of all subsets of 2. Then F is a
o-field. Given a function p : Q@ — [0,1] such that }° o p, = 1, define P : 7 — [0,1] by
P(A) =", capo- Then, we claim that P is a probability measure.

To show this we need to show countable additivity. Let A, As,... be pairwise disjoint
subsets of (). Countable additivity is the statement that

2.2 pe= ) pe
k wEA wEU Ak
If you remember the definition of countable sums, this is an easy exercise (remember that

each Ay, is countable, possibly finite)”.

Innumerable times, we shall use without mention the following very important fact: If a; ; > 0 for ¢ > 1 and
j>Lthen} ;>  ai; =3, >, ai,; which wesimply denote 3, ; ai ;. Further, for any bijection o : N +— NxN,
wehave 37,/ aij = > as (- It is highly recommended to brush up basic facts about absolute convergence of

series.

-




More generally, we can have a discrete probability measure inside a ‘continuous space’. Such

measures also can be defined on the sigma-algebra of all subsets.
Example 10

Let 2 be any set and let R C 2 be a countable set. Let F be the powerset of 2. Fix non-

negative numbers p,, * € R that add to 1. Then define P(A) = > _p- .. Then, Pisa

probability measure on F (exercise!).

This means that a discrete measure, say Binomial distribution with parameters n and p, may be
considered as a probability measure on {0, 1,2,...,n} or as a probability measure on R with the
power set sigma-algebra. The problem of not being able to define probability for all subsets does

not arise in such cases.

A simﬁle exercise about a-aliebras and irobabiliti measures.

Let (2, 7, P) be a probability space.
(1) Fis closed under finite and countable unions, intersections, differences, symmetric
differences. Also Q2 € F.

(2) If A,, € F, then
limsup A,, := {w : w belongs to infinitely many A,, },
liminf A,, := {w : w belongs to all but finitely many A, }

are also in F. In particular, if A,, increases or decreases to A, then A € F.

(3) P(0) =0,P(Q2) = 1. Forany A, B € F wehave P(AUB) = P(A4)+P(B)-P(ANB).
If A, € F,then P(UA,,) <> P(A,).

(4) If A,, € F and A,, increases (decreases) to A, the P(A,,) increases (decreases) to P(A).

Generated o-algebras: In the most interesting cases, one cannot explicitly say what the elements

of F are, but only require that it is rich enough that it contains sets of interest to us. We make a

simgle observation.

Let 7., a € I be a colllection of o-algebras of subsets of 2 (here [ is an arbitrary index set).
Then let F = (,c; Fa- Show that F is a g-algebra.

In particular, if S'is a collection of subsets of (2, then show that there is a smallest o-algebra F
containing S (this means that F is a o-algebra and any o-algebra containing S also contains
F). We say that F is generated by S and write 7 = o(.5).




Caution: Note that the only definition of ¢(.5) is that it is the smallest sigma algebra containing
S. It is not true that it is the collection of all countable unions (or countable unions of countable
intersections or countable unions of countable intersections of countable unions ...) elements of
S. As an analogy, consider a vector space V' and a subset of vectors S. The subspace generated
by S has two equivalent definitions: (1) It is the smallest subspace of V' that contains S and (2) it
is the set of all finite linear combinations of elements of S. The second definition may be called
internal, while the first is external. For generated sigma algebras, we have no internal definition,

only an external one.

Stick-breaking example: In the new language that we have introduced, let us revisit the question
of making mathematical sense of stick-breaking. Let Q2 = [0, 1] and let S be the collection of all
intervals. To be precise let us take all right-closed, left-open intervals (a,b], with0 < a < b < 1
as well as intervals [0,5], b < 1 (alternate description: take all intervals of the form (u,v] N [0, 1]
where u < v are real numbers). If we are trying to make precise the notion of ‘drawing a number at
random from [0, 1]’, then we would want P(a,b] = b — a and P[0, b] = b. The precise mathematical

questions can now be formulated as follows.

(1) Let G be the o-algebra of all subsets of [0, 1]. Is there a probability measure P on G
such that P(a,b] =b—aand P[0,b] =bforall0 <a <b<1?

(2) Let F = o(S) be the Borel o-algebra of [0,1]. Is a probability measure P on F
satisfying P(a,b] = b —aand P[0,b] = bforall0 <a <b <1?

The answer to the first question is 'No” (this was stated as Result ??), which is why we

need the notion of o-fields, and the answer to the second question is “Yes’, which is why

probabilists still have their jobs. Neither answer is obvious, but we shall answer them in

coming lectures.

-

Coin-tossing example: Let 2 = {0, 1} = {w = (w1, wa,...) : w; € {0,1}}. Let S be the collection
of all subsets of €2 that depend on only finitely many co-ordinates (such sets are called cylinders).
More precisely, a cylinder set is of the form A = {w : wy, = €1,...wy, = €,} for some givenn > 1,
ki <ke<...<kpande; € {0,1} fori <n.

What are we talking about? If we want to make precise the notion of ‘toss a coin infinitely many
times’, then clearly (2 is the sample space to look at. It is also desirable that elements of S be in the
o-field as we should be able to ask questions such as ‘what is the chance that the fifth, seventh and
thirtieth tosses are head, tail and head respectively” which is precisely asking for the probability

of a cylinder set.
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If we are ‘tossing a coin with probability p of turning up Head’, then for a cylinder set A = {w : wg, =

€1,... Wk, = €}, it is clear that we would like to assign P(A) = [[IL, p“¢'~“ where ¢ = 1 — p.
So the mathematical questions are: (i) If we take F to be the o-field of all subsets of €2, does there
exist a probability measure P on F such that for cylinder sets P(A) is as previously specified. (ii)
If the answer to (i) is ‘No’, is there a probability measure P on F such that for a cylinder set A as
above, P(A) =[], pcig'—<?

Again, the answers are ‘No” and “Yes’, respectively.

The o-fields in these two examples can be captured under a common definition.

Definition 3: Borel sigma algebra

Let (X, d) be a metric space. The o-field B generated by all open balls in X is called the

Borel sigma-algebra of X.

First consider [0,1] or R. Let S = {(a,b]} U {[0,b]} and let T" = {(a,b)} U{[0,b)} U {(a, 1]}. We
could also simply write S = {(a,b] N [0,1]:a < b€ R}and T = {(a,b) N [0,1] : a < b € R}. Let
the sigma-fields generated by S and T" be denoted F (see example above) and B (Borel o-field),
respectively. Since (a,b] = Ny(a,b+ 1) and [0,8] = N,[0,b + 1), it follows that S C B and hence
F C B. Similarly, since (a,b) = Uy(a,b — ] and [0,b) = U,[0,b — 1], it follows that T C F and
hence B C F. In conclusion, F = B.

In the countable product space 2 = {0, 1} or more generally Q2 = X%, the topology is the one
generated by all sets of the form Uy x ... x U,, x X x X x ... where U, are open sets in X. Clearly
each of these sets is a cylinder set. Conversely, each cylinder set is an open set. Hence § = B.
More generally, if Q = XY, then cylinders are sets of the form A = {w € Q: wy, € B;,i < n} for
somen > 1 and k; € N and some Borel subsets B; of X. It is easy to see that the o-field generated
by cylinder sets is exactly the Borel o-field.

We shall usually work with Borel o-algebras of various metric spaces, as this o-algebra is rich
enough to contain almost all sets we might be interested in. If you are not convinced, try finding
a subset of [0, 1] that is not a Borel set (it is quite a non-trivial exercise!). Here are some easy

exercises.

Exercise 3

On RY, show that each of the following classes of sets generates the Borel g-algebra of R?

(particularly think about the case n = 1).
(1) The collection of all open balls.

(2) The collection of all closed balls.

(3) The collection of all closed rectangles of the form [a1,b1] X ... X [an, by] for a; < b;.

11



(4) Same as before, but let the rectangles be left-open and right-closed, i.e, sets of the
form (ay,b1] X ... X (an, by] for a; < b;.

4. THE ‘STANDARD TRICK’ OF MEASURE THEORY!

While we care about sigma fields only, there are smaller sub-classes that are useful in elucidating

the proofs. Here we define some of these.

Let S be a collection of subsets of 2. We say that S is a
(1) m-systemif A, BeS = ANBeS.

(2) A-systemif (a)Q2 e S,(b)A,Be SandAC B = B\Ae€ S, (c)A, T Aand A4, € §
= AesS.

(3) Algebraif (a) ),Q € S,(b) Ac S = A€ S,()A,BeS — AUBES.

(4) Monotone class if (a) A, € Sand A, T A = A€ Sand (b) A, € Sand 4,, | A
— A € 5. Recall that A,, T A meansthat A1 C A, C...andU,A, = Aand 4, | A
means that 4; D A D ... and N, A4, = A.

(5) o-algebraif(a)),Q2e S, (b)AcS — A°€ S,(c)A, €S = UA, €5.

-

We have included the last one again for comparision. Clearly a sigma algebra is a 7-system,

a A-system, a monotone class and an algebra. The difference between algebras and o-algebras is
just that the latter is closed under countable unions while the former is closed only under finite
unions. As with o-algebras, arbitrary intersections of algebras/\-systems/m-systems are again
algebras/ A-systems/m-systems and hence one can talk of the algebra generated by a collection of

subsets or a A-system generated by a collection of subsets etc.

Example 11

The table below exhibits some examples.
S (7 — system) A(S) (algebra generated by 5) a(S)
(0, 1] {(a,b] : 0 <a<b<1} {UN_ I}, : I, € S are pairwise disjoint} B(0,1]
[0,1] {(a,b]N[0,1] : @ < b} {UN_ Ry : Ry € S are pairwise disjoint} | B0, 1]
R4 {T1%, (@i, bi] = @i < bi} {UN_ Ry : Ry € S are pairwise disjoint} Bga
{0, 1} | collection of all cylinder sets finite disjoint unions of cylinders B({0,1})

Often, as in these examples, sets in a 7-system and in the algebra generated by the 7-system
can be described explicitly, but not so the sets in the generated o-algebra. This point, that a Borel

set is not easily expressed by a countable number of operations on intervals, is at the heart of the
12



non-triviality of the subject. Now we present two useful lemmas that allow us to say things about
a sigma algebra even when its elements are “out of touch”. The spirit of both lemmas is the same,

and in many occasions they may be used interchangeably.

Lemma 3: Sierpinski-Dynkin 7-)\ theorem

Let Q be a set and let F be a set of subsets of (2.

(1) Fisa o-algebra if and only if it is a m-system as well as a A\-system.

(2) If S is a w-system, then A(S) = o(95).

Lemma 4: Monotone class theorem

Let €2 be a set and let S be a collection of subsets of ). If S is an algebra, then the monotone

class generated by S is a sigma-algeba. That is, M(S) = o(5).

Proof of the -\ theorem. (1) One way is clear. For the other way, suppose F is a w-system as
well as a A-system. Then, Q@ € F and if A € F, then A° = Q\A € F. If A, € F, then
the finite unions B,, := U}_, Ay = (N?_, A%)“ belong to F (for intersections use that F is a
m-system). The countable union UA,, is the increasing limit of B,, and hence belongs to F

by the A-property.

(2) By the first part, it suffices to show that F := A(5) is a m-system, that is, we only need show
thatif A, B € F,then AN B € F. This is the tricky part of the proof!

Fix A € Sandlet F4 := {B € F: BN A € F}. Sisan-system, hence F4 D S. We
claim that F4 is a A-system. Clearly, @ € F4. If B,C € Fqpand B C C, then (C\B) N A =
(CNA)\(BNA) € Fbecause F is a A\-system containing CNA and BNA. Thus (C\B) € Fa.
Lastly, if B,, € F4pand B, T B, then B, N A € F4and B,, N A1 BN A. Thus B € F4. This
means that 74 is a A-system containing S and hence 4 O F. In other words, AN B € F
forallA € Sandall B € F.

Now fix any A € F. And again define 74 := {B € F: BN A € F}. Because of what
we have already shown, 4 D S. Show by the same arguments that 74 is a A-system and
conclude that 74 = F for all A € F. This is another way of saying that 7 is a 7-system. H

Exercise 4: Monotone class theorem

Follow similar steps and prove the monotone class theorem. Note that you only need to

show that M(S) is a sigma algebra.

As an application, we prove a certain uniqueness of extension of measures. The question is this:

if two probability measures on (R, ) agree on all intervals, then are the same? It is tempting to say
13



yes, since intervals generate the Borel sigma-algebra. But this reasoning is false as the following

example shows.

Example 12

Let Q = {1,2,3,4} and let S = {{1,2},{2,3},{3,4}}. Then it is easy to see that o(S) = 2
(the power set). Now define two probability measures 4, v on Q by setting p; = + for all i
while v; = 13 = % while vy = vy = 0. Then p(A4) = % = v(A) for all A € S, although 11 # v
on o(S).

It may be worth recalling here our earlier analogy with vector spaces and generated subspaces.
If two linear transformations agree on a collection of vectors, then they agree on the subspace
generated by those vectors. This is trivial since every vector in the generated subspace is a linear
combination of vectors in the given collection. The example above shows that the lack of an “in-
ternal definition” for the generated sigma algebra is not only an inconvenience, but the analogous
statement is even false!

Here is a positive result in this direction.

Let S be a m-system of subsets of 2 and let 7 = o¢(S5). If P and Q are two probability

measures on F such that P(A) = Q(A) forall A € S, then P(A) = Q(A) forall A € F.

Proof. Let G = {A € F : P(A) = Q(A)}. By the hypothesis G O S. We claim that G is a A-system.
Clearly, @ € G. If A,B € Gand A D B, then P(A\B) = P(4A) - P(B) = Q(4) — Q(B) =
Q(A\B), implying that A\B € §. Lastly, if A,, € G and A,, 1 4, then P(A) = lim,,_,o P(4,)
limy, 00 Q(A,) = Q(A) (this follows from countable additivity of measures). Thus G 2O A(S
which is equal to ¢(S) by the 7-A theorem. Thus P = Q on F.

To emphasize the point again, typically, our o-algebras (eg., the Borel s-algebra) are defined

.\_/

as being generated by a given collection of sets (eg., left-open right-closed intervals). While
the sets in the algebra generated by this collection can often be expressed explicitly in terms
of the sets in the collection (eg., finite unions of pairwise disjoint left-open right-closed
intervals), the sets in the o-algebra are more intangible” (most emphatically Borel sets are
not always countable unions of intervals!). Hence, to show that a property holds for all
elements of the o-algebra, we simply consider the collection of all sets having that property,
and show that the collection is a o-algebra. In doing that, we may find it easier to show
that it is a A-system or that it is a monotone class (containing an appropriate 7-system or an

algebra).

14



There is a way to express them, using transfinite induction. But let us ignore that approach and stick to the

definition which simply says that it is the smallest o-algebra containing...

5. LEBESGUE MEASURE

Theorem 6: Existence and uniqueness of Lebesgue measure

There exists a unique Borel measure A on [0, 1] such that A\(I) = |I| for any interval /.

Note that S = {(a,b] N[0, 1]} is a 7-system that generates 5. Therefore by Lemma 5, uniqueness
follows. Existence is all we need to show.

There are several steps in the proof of existence. We outline the big steps and leave some routine
checks to the reader. In this proof, 2 will denote [0, 1].

Step 1 - Definition of the outer measure \.: Define \,(A) for any subset by
Ai(A) = inf {Z |It| : each Ij is an open interval and {I;} a countable cover for A} .

(In the definition, we could have used closed intervals or left-open right-closed intervals to cover
A. It is easy to see that the value of \,(A) remains unchanged.)

Check that A, has the following properties. (1) 0 < A\, (A) < 1is a well-defined for every subset
ACQ,(2) \(AUB) < A(A) + M\(B) forany A, B C Q, (3) \.(R2) = 1. Two remarks.

(1) For the last property, try the more general Exercise ?? below.

(2) Clearly, from finite subadditivity, we also get countable subadditivity \.(UA,) < >~ A\(4,).
The difference from a measure is that equality might not hold, even if there are finitely

many sets and they are pairwise disjoint.

(3) The three properties above constitute the definition of what is called an outer measure.

Show that A\.(a,b] =b—aif0<a <b<1.

Step-2 - The o-field on which ). will be shown to be a measure: Let A, be an outer measure on

a set Q2. Caratheodary’s brilliant definition is to set
F={ACQ: \(E)=MANE)+ \N(A°NE) forany E}.

Note that subadditivity implies A.(E) < A (AN E) 4+ A\ (A° N E) for any E for any A. The non-
trivial requirement is the inequality in the reverse direction.

F is a sigma algebra and A, restricted to F is a probability measure.

15



Proof. Tt is clear that ), Q2 € F and A € F implies A¢ € F. Next, suppose A, B € F. Then for any
E,
A (E)

M(ENA)+ A (EN A
MENANB)+AM(ENANB®) + A (EN A9
>MENANB)+ AM(EN(ANB)°)
where the last inequality holds by subadditivity of A\, and (ENANB)U(ENA®) = EN(ANB)“.
Hence F is a m-system.

As AUB = (A°N B°)¢, it also follows that F is an algebra. For future use, note that \,(AUB) =
A (A)+ X (B)if A, B are disjoint sets in F. To see this apply the definition of A € F with E' = AUB.

To show that F is a o-algebra, by the 7 — X theorem, it suffices to show that F is a A-system.
Suppose A, B € F and A O B. Then

M(E) = M(ENB°) + M\(ENDB)
=M(ENBNA)+ A M(ENB°N A+ \(ENB)
> M(EN(A\B)) + M\(E N (A\B)°).

Thus A\B € F. It remains to show closure under increasing limits,

Suppose A, € Fand A,, T A. Then A\.(A) > M\(Ap) = D51 M(Ap\Ag_1) by finite additivity of
A«. Hence A\ (A4) > > A\i(Ax\Ak—_1). The other way inequality follows by subadditivity of A, and
we get A\ (A) = > A\(Ar\Ak—1). Then for any E we get

M(E) = (ENA,) + M(EN A

> M(ENA,) 4+ M (BN A

=Y A(EN (A1) + A (BN A°).
k=1

The last equality follows by finite additivity of A, on F (which we showed above). Let n — oo and

use subadditivity to see that
M(E) =D A(EN (Ap\ A1) + A(E N A%)
k=1

> M(ENA)+ A (ENA9.
Thus, A € F and it follows that F is a A\-system too and hence a o-algebra.
Lastly, if A,, € F are pairwise disjoint with union A, then A\, (A) > A\ (UP_; Ax) = D 51 M(Ag) —
> i A« (Aj) while the other way inequality follows by subadditivity of A\, and we see that \,|r is a

measure. [ |

Step-3 - F is large enough: We want to show that F contains all Borel sets. Since F is already
shown to be a o-algebra, and the Borel o-algebra is generated by left-open, right-closed intervals,

the following claim is all we need.
16



Let A = (a,b] C [0,1]. Then A € F.

Proof. For any E C [0,1], let {I,,} be an open cover such that \.(E) + ¢ > > |I,|. Then, note
that {I,, N (a,b)} and {I,, N [a, b]} are open covers for AN E and A° N E, respectively (I, N [a, b
may be a union of two intervals, but that does not change anything essential). It is also clear that
|In| = |In N (a,b)| + I, N (a, b)¢|. Hence we get

M(E)+ €2 > L0 (a,b)] + > 10 (a,0)°] = M(ANE) + A (AN E).

This holds for any € > 0 and hence A\ (E) > \.(AN E) + A\ (A°N E). By subadditivity we always
have M\ (E) < A(ANE) 4+ A\ (A°N E). Thus we see that A € F. [

Conclusion: We have obtained a o-algebra F that is larger than the B and such that . is a proba-
bility measure when restricted to 7. Hence i, is also a probability measure when restricted to B.
The proof of Theorem 6 is complete.

6. FURTHER REMARKS ON THE LEBESGUE MEASURE, ITS CONSTRUCTION AND LIFE IN GENERAL

6.1. Borel and Lebesgue o-algebras. We have B C F C 201 (recall that 2 denotes the powerset
of 2). Are these containments strict? How much smaller is B compared to F?

Elements of F are called Lebesgue measurable sets. Below we show that there is a subset of
[0, 1] that is not Lebesgue-measurable. Now let us consider the relationship between B and F.

This is explained more in to homework problems, but we make short remarks.

(1) The cardinality of B is the same as that of R while the cardinality of F is the same as that

of 2%, Thus, in this sense, F is much larger than 5.

(2) For probability, the difference is less serious. For any set A € F, there are two sets B,C € B
such that B C A C C and such that u(B) = p(C). In other words, the only new sets that
enter into F are those that can be sandwiched between Borel sets of equal measure. The
weird thing about the Borel o-algebra is that evenif A; C Ay, As € Band p(Az) = 0, it may
happen that A, is not in B (and hence we cannot write ;i(A;) = 0). The Lebesgue o-algebra
does not have this issue (it is called the completion of the Borel c-algebra with respect to

Lebesgue measure). Henceforth, if needed, we write B for the Lebesgue o-algebra.

Nevertheless, we shall put all our probability measures on the Borel o-algebra. The reason is that
completion of a o-algebra (see Homework 1), although harmless, depends on the measure with
respect to which we complete. Since we often need to consider many probability measures at the
same time, it is more convenient to work with the Borel sigma algebra.

In the next section we show that F is strictly smaller than the power set, i.e., there exists sets

that are not Lebesgue measurable. Thus, both the containments in B C F C 200.1] are strict.
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6.2. Sigma-algebras are necessary. We have already mentioned that there is no translation invari-
ant probability measure on all subsets of [0, 1] (non-measurable sets are shown in the next section).
Hence, we had to restrict to a smaller o-algebra (B or B). If we do not require translation invariance
for the extended measure, the question becomes more difficult.

Note that there do exist probability measures on the o-algebra of all subsets of [0, 1], so one
cannot say that there are no measures on all subsets. For example, define Q(A) = 1if 0.4 € A
and Q(A) = 0 otherwise. Then Q is a probability measure on the space of all subsets of [0, 1].
Q is a discrete probability measure in hiding! If we exclude such measures, then it is true that
some subsets have to be omitted to define a probability measure You may find the proof for the

following general theorem in Billingsley, p. 46 (uses axiom of choice and continuum hypothesis).

There is no probability measure on the o-algebra of all subsets of [0, 1] that gives zero prob-

ability to singletons.

Say that x is an atom of P if P({x}) > 0 and that P is purely atomic if ) ,toms P({z}) = 1.
The above fact says that if P is defined on the o-algebra of all subsets of [0, 1], then P must be
have atoms. It is not hard to see that in fact P must be purely atomic. To see this let Q(A) =
P(A) — > .c4P({z}). Then Q is a non-negative measure without atoms. If Q is not identically
zero, then with ¢ = Q([0, 1]) 1 weseethatcQisa probability measure without atoms, and defined
on all subsets of [0, 1], contradicting the stated fact. This last manipulation is often useful and
shows that we can write any probability measure as a convex combination of a purely atomic

probability measure and a completely nonatomic probability measure

Remark 2: Importance of sigma algebras

The discussion so far shows that o-algebras cannot be avoided. In measure theory, they are
pretty much a necessary evil. However, in probability theory, o-algebras have much greater
significance as place holders of information. Even if Lebesgue measure were to exist on all
subsets, probabilisits would have had to invent the concept of o-algebras! These cryptic

remarks are not meant to be understood yet, but we shall have occasion to explain it later

in the course.

\_

6.3. Finitely additive measures. If we relax countable additivity, strange things happen. For ex-

ample, there does exist a translation invariant (u(A + z) = p(A) for all A C [0,1], = € [0,1], in
particular, p(I) = |I|) finitely additive (u(A U B) = p(A) + p(B) for all A, B disjoint) probability
measure defined on all subsets of [0,1]! In higher dimensions, even this fails, as shown by the
mind-boggling
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Theorem 10: Banach-Tarski paradox

he unit ball in R3 can be divided into finitely many (five, in fact) disjoint pieces and rear-

ranged (only translating and rotating each piece) into a ball of twice the original radius!!

In some sense, this makes finitely additive measure less attractive to us as a framework for
probability theory. In the finitely additive framework, we can break a stick at random (and ask
for probability that the break-point is any subset of [0, 1]) but we cannot break three sticks and
ask the same question (that the break points belong to an arbitrary subset of [0, 1]3)! The objection
is perhaps not entirely acceptable to everyone. In any case, it is a good policy in life to accept
countably additive measures as the right framework for probability, but keep in mind that life can

change and finitely additive measures may become more important in some future contexts.

6.4. How general is the construction of Lebesgue measure? The construction of Lebesgue mea-
sure can be made into a general procedure for constructing interesting measures, starting from

measures of some rich enough class of sets. The steps are as follows.

(1) Given an algebra A (in this case finite unions of («a, b]), and a countably additive p.m P on A,
define an outer measure P, on all subsets by taking infimum over countable covers by sets

in A.

(2) Then define F exactly as above, and prove that 7 O Ais a o-algebra and P, is a probability

measure on A.

(3) Show that P, = P on A.

Proofs are quite the same. Except, in [0, 1] we started with A defined on a 7-system S rather than
an algebra. But in this case the generated algebra consists precisely of disjoint unions of sets in 5,
and hence we knew how to define A on A(S). When can we start with P defined on a m-system?
The crucial point in [0, 1] was that for any A € S, one can write A€ as a finite union of sets in S. In
such cases (which includes examples from the previous lecture) the generated algebra is precisely
the set of disjoint finite unions of sets in S. If that is the case, we define P on A(S) in the natural
manner and then proceed to step one above.
Following the general procedure outlined above, one can construct the following probability
measures.
(1) A probability measure on ([0, 1]¢, B) such that P([a1,b1] x ... X [ag, b4]) = ngl(bk — ay)
for all cubes contained in [0, 1]%. This is the d-dimensional Lebesgue measure.

(2) A probability measure on {0,1}" such that for any cylinder set A = {w:wy, = ¢, j =
1,...,n} (any n > 1 and k; € N and ¢; € {0,1}) we have (for a fixed p € [0,1] and
q=1-p)



(3) Let F' : R — [0, 1] be a non-decreasing, right-continuous function such that lim,_,., F'(z) =
1 and lim,,_o F'(z) = 0 (such a function is called a cumulative distribution function or
CDF in short). Then, there exists a unique probability measure p on (R, Bg) such that
p(a, bl = F(b) — F(a) forall a < b.

BUT we want to de-emphasize this approach. Instead, we want to emphasize that Lebesgue
measure is the only measure that needs to be constructed. We can take the existence of Lebesgue
measure as a black-box, and use it to construct all other probability measures that we need. This
includes the above three classes of examples and every probability measure of interest to proba-

bilists. That is subject of the next few sections.

7. NON-MEASURABLE SETS

Sigma-algebras would not be necessary in measure theory if all subsets of [0, 1] were Lebesgue
measurable. In this section, we show that non-measurable sets do exist. Let B denote the Lebesgue
o-algebra.

We change the setting a little bit. Let us consider the sample space [0, 1) which is a group under
addition modulo 1. By B and B we mean the Borel and Lebesgue o-agebras of [0, 1) and let A be the
Lebesgue measure on [0, 1). You may either think of repeating the whole procedure of construction
with [0, 1) in place of [0, 1] or more simply, note that Bj ;) = {AN[0,1) : A € By} and similarly
for By 1). Further, X is the restriction to [0, 1). We shall need the following ‘translation invariance

roperty’ of A on B.

Show that for any A € Band x € [0, 1] that A + z € B and that A\(A + z) = A(4).

To clarify the notation, for any A C [0,1] and any z € [0,1], A+ 2 := {y+2 (mod 1) : y € A}.
For example, [0.4,0.9] + 0.2 = [0,0.1] U [0.6,1).

First construction of a non-measurable set: Now we construct a subset A C [0, 1] and countably
(infinitely) many z; € [0, 1] such that the sets A + x, are pairwise disjoint and Uy (A + x) is the
whole of [0, 1]. Then, if A were in B, by the exercise A + x;, would have the same probability as A.
But Y~ A(A4 + x1,) must be equal to ([0, 1]) = 1, which is impossible! Hence A ¢ B.

How to construct such a set A and {z;}? Define an equivalence relation on [0,1] by  ~ y
if 2 — y € Q (check that this is indeed an equivalence relation). Then, [0, 1] splits into pairwise
disjoint equivalence classes whose union is the whole of [0, 1]. Invoke axiom of choice to get a set A
that has exactly one element from each equivalence class. Consider A +r, 7 € QN [0,1). If A +r
and A + s intersect then we get an x € [0, 1] such thatz = y+ 7 = 2z + s (mod 1) for some y, z € A.
This implies that y — z = r — s (mod 1) and hence that y ~ z. So we must have y = z (as A has
only one element from each equivalence class) and that forces » = s (why?). Thus the sets A + r

are pairwise disjoint as r varies over Q N [0, 1). Further given = € [0, 1], there is a y € A belonging
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to the equivalence class of x. Therefore z € A+ r wherer =2z —y (ify < z)orr =2 —y+ 1 (if
x < y). Thus we have constructed the set A whose countably many translates A +r,r € QN 0, 1)
are pairwise disjoint! Thus, A is a subset of [0, 1] that is not Lebesgue measurable.

In mathematical jargon, if G = QN [0, 1) is a subgroup of [0, 1), and A is a set which contains
exactly one representative of each coset of this subgroup. Then, for each z € Athesetz +G

is the coset containing = and hence | | (A +r) = [0,1). As G is countable, by the argument
reG
outlined above, it follows that A cannot be Lebesgue measurable.

A second construction showing that \, is not finitely additive: Now we want to construct B C
[0,1) such that \,(B) = 1 and \.(B¢) = 1. Then of course, B cannot be measurable (why?). But
this example is stronger than the previous one as it shows that on the power-set of [0, 1), the outer
measure fails finite additivity, not just countable additivity.

I would have liked to take R C QN [0,1) and set B = || (A + r) so that B¢ || (A + r) with
reR reRe
A as in the previous construction. We already know that \,(A4) > 0 (any set of outer measure 0

is measurable), so the hope would be that if both R and R are infinite (or suitably large), then
A«(B) = 1 and A\ (B¢) = 1. But I was not able to prove that any subset R works. If you can show
that, I would be very interested to know!

One of the difficulties is that ideally one would like to divide QN [0, 1) into two “equal” subsets
R and R°. For example, if we could find R such that R¢ is a translate of R (i.e., R° = 9 + R), then
B¢ would be a translate of B and hence they would have the same outer measure (that does not
complete the proof, but I am trying to motivate what we do next). But we cannot find such as set
R because Q N [0, 1) does not have subgroups of finite index!

What is the way out? Let consider a different group G = {na : n € Z} (here and below, we are
working within [0, 1), hence na always means nao (mod 1) etc.), where « is an irrational number

in[0,1), eg., 1/V/2.

Show that (1) na: # ma for all m # n, (2) G is a subgroup of [0, 1) that is isomorphic to Z,

(3) G is densein [0,1).

Let H = {2na:n € Z}. Then H is a subgroup of G and it has only two cosets, H and H' :=
H + «. If you have done the previous exercise, you will easily see that H and H’ are both dense in
[0,1).

By the axiom of choice, chose a subset A C [0,1) that has exactly one representative in each
coset of GG (as a subgroup of [0,1)). Define B = A+ H = {a+h:a € A h € H}. Then B® =
A+H =A+H+ .
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We claim that (B — B) N H' = (). Indeed, any element of B — B is of the form a + h —a’ — I’
where a,a’ € Aand h,h' € H. If a = d/, then this element is in H and hence notin H'. If a # d/,
by construction of A we know thata —a’ ¢ G. Buth — h' € G and hencea + h —a — A isnotin G
and hence not in H' either. This proves the claim.

Note that B¢ — B¢ = B — B (an element of B¢ — B¢ is of the form (a + h+ ) — (' + V' + a) =
(a+ h) — (a’ + 1')). Therefore, we also have (B¢ — B) N H' = {).

To proceed, we need the following important fact.

Lemma 11: Steinhaus’ lemma

et A C [0, 1) be a measurable subset of positive Lebesgue measure. Then A — A contains an

interval around 0. More explicitly, there is some ¢ > 0 such that (1 —6,1) U [0,5) C A — A.

Now we claim that \.(B¢) = 1. If not, suppose \.(B¢) < 1 — e. By definition of outer measure,
find intervals I;, such that Ul © B¢ and >, |I|] < 1 — e. Then consider C := NI = (Ul)".
Obviously C is a Lebesgue measurable set, C C B, and \(C) =1 — ANUI) > 1= >, A1) > e
Thus C' — C contains an interval by Steinhaus’ lemma. Since B O C, we also see that B — B
contains an interval. But this contradicts the fact that H' is dense, since we have shown that
(B — B)N H' = (. Thus we must have \,(B¢) = 1. An identical argument (since B¢ — B¢ is also
disjoint from H') shows that \,(B) = 1.

It only remains to prove Steinhaus’ lemma.

Proof of Steinhaus’ lemma. By definition of outer measure, there is a covering of A by countably
many intervals I}, such that A(A) > 0.9, [I|. But A\(A) < >, A(A N I;). Hence, there is at least
one k for which A\(A N I;) > 0.9\(Ix) > 0. For simplicity, write I for this I, and let A’ = AN I.
Fix z € R and note that
MA'NA +2) = A)+MA +2) = NA UA +2))

> 204 = NI U (I +x))

> 18| = (] + [x)
which is positive for |z| < ¢ := 0.8]I|. In particular, for |z| < 6, we have A’ U (4" + x) # 0.
Rephrasing this, we see thatz € A’ — A" C A — A. [ |

Both Steinhaus’ lemma and the following fact (whose proof was implicit in the above proof) are
very useful tools in measure theory.

Let A C R be a measurable subset with A(A) > 0. Then, for any e > 0, there is an interval /

(depending on €) such that A\(AN 1) > (1 —e)A(]).
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Remark 4

There is a theorem of Solovay to the effect that the axiom of choice is necessary to show
the existence of a non-measurable set (as an aside, we should perhaps not have used the
word ‘construct’ given that we invoke the axiom of choice). We see that it was used in both
constructions above. In the problem set, another construction due to Sierpinski is outlined,

and that also uses the axiom of choice.

-

8. RANDOM VARIABLES

Definition 5: Random variables

Let (2, F,P) be a probability space and let (X,G) be a set with a o-algebra. A function
T : Q+ X is called a random variable (or measurable function) if T=1A € F forany A4 € G.
Here T7}(A) :={w e Q: T(w) € A} forany A C X.

Generally, we take X to be a metric space and G = Bx, in which case we say that 7" is an

X-valued random variable.

Important cases: When X = R we just say 7'is a “random variable” and when X = R? we say T
is a “random vector”. When X = (0, 1] with its Borel sigma algebra (under the sup-norm metric
d(f,g) = max{|f(t) — g(t)| : t € [0,1]}), T is called a “stochastic process” or a “random function”.
When X is itself the space of all locally finite countable subsets of R? (with Borel sigma algebra
in an appropriate metric which I do not want to mention now) , we call 7" a “point process”. In
genetics or population biology one looks at genealogies, and then we have tree-valued random
variables, in the study of random networks, we have random variables taking values in the set of

all finite graphs etc, etc.

Some remarks.

(1) Let ©q, Q5 be two non-empty sets and let 7" : 1 — 5 be a function.
(a) Suppose we fix a o-algebra G on Q. Then, the “pull-back” {T-!'A: A € G} is
the smallest o-algebra on €2; w.r.t. which 7" is measurable (if we fix G on Q)
. We write o(T') for this o algebra. In older notation, it is o(S) where S =
{T71A: A€ g}.
(b) Suppose we fix a o-algebra F on €2;. The “push-forward” {A C Qy : T"'A € F}
is the largest o-algebra on €2, w.r.t. which 7" is measurable (if we fix F on ).

That they are o-algebras is a consequence of the fact that T-1(A4)¢ = T-1(A°) and
T71(UA,) = U,T71(A,) (Caution! It is generally false that T'(A¢) = T'(A)°).
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(2) Let F and G be o-algebras on ©; and 9, respectively. If S generates G, i.e., 0(S) =G,
then to check that 7" is measurable, it suffices to check that 7' A € F for any A € S.
In particular, 7 : Q — R is measurable if and only if 77!(—o0,z] € F for any z € R.

(3) It is convenient to allow random variables to take the values +oc. In other words,
when we say random variable, we mean T : Q — R where the set of extended real
numbers R U {+00, —0o} is a metric space with the metric d(z,y) = [tan~!(z) —
tan~!(y)| with tan™' : R — [-%,Z]. The metric is not important (there are many
metrics we can choose from), what matters are the open sets. Open sets in R include
open subsets of R as well as sets of the form (a, +o00] and [—o0, a). Similarly, random

vectors will be allowed to take values in (R).

(4) If A C Q, then the indicator function of A. 14 : Q& — R is defined by 14(w) = 1 if
we Aand 14(w) = 0if w € A°. If F is a o-algebra on (2, observe that 1 4 is a random

variable if and only if A € F.

Consider ([0,1],B). Any continuous function 7" : [0,1] — R is a random variable. This is

because T~ ! (open) = open and open sets generate B(R).

Here is an interesting point (a curiosity since we have said that we shall work with B, not B).

Exercise 8

If we endow R with the Lebesgue sigma algebra B, show that there are continuous functions

from R to itself that are not measurable!

Random variables are closed under many common operations. As an illustration, suppose
X,Y : Q@ — R are random variables and let Z = X + Y. We want to show that Z is a random
variable. Indeed,

Z N —o0,t) = {w: Z(w) < t}
={w: X(w) < sand Y (w) < t — s for some s}
= [ J(X(=00,8)) N (Y (~00,t — 5))
s€Q
which is in the o-algebra, being from by countably many intersections and unions of sets in the
o-algebra. A small point to note is that if we work with Z~!(—o0, ], then the proof will have to
be modified a little (if t = 0, X = —Y = /2, then we cannot find s € Q such that X < s and
Y <t-—ys).
Note the importance of taking s € Q to get countable unions. Similarly or more easily, solve the

exercises below. Remember to allow +oo as possible values.
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Exercise 9

Show that 7' : R — R is measurable if it is any of the following. (1) lower semicontinuous

function, (2) right continuous function, (3) step function, (4) non-decreasing function.

Exercise 10

Let (2, F) be a measurable space.

(1) If Ty, T are random vectors on €2, and a, b € R, then aT7 + bT5 is a random vector.

2 T = (T1,...,Ty) where T; : Q — R, then T is a random vector if and only if each

T; is a random variable.

(3) Supremum (or infimum) of a countable family of random variables is a random

variable.

(4) The limsup (or liminf) of a countable sequence of random variables is a random

variable.

g

Push forward of a measure: If 7' : {21 — (25 is a random variable, and P is a probability measure
on (Q1, F1), then defining Q(A) = P(T1A), we geta p.m Q, on (2, F3). Q, often denoted PT !
is called the push-forward of P under 7.

The reason why Q is a measure is that if A,, are pairwise disjoint, then T-1A, are pairwise
disjoint. However, note that if B,, are pairwise disjoint in 21, then 7'(B,,) are in general not disjoint.
This is why there is no “pull-back measure” in general (unless 7" is one-one, in which case the pull-
back is just the push-forward under 711

When (€2, F2) = (R, B), the push forward (a Borel p.m on R) is called the distribution of the r.v.
T.IfT = (T1,...,Ty) is a random vector, then the pushforward, a Borel probability measure on
R? is called the distribution of T or as the joint distribution of Ty, ..., T,. Note that all probabilistic
questions about a random variable can be answered by knowing its distribution. The original
sample space is irrelevant. If X and Y are random variables having the same distribution, by
definition, P{X € A} = P{Y € A} for any A in the range-space.

Remark 6

Random variables in “real situations”. Consider a real-life random experiment, for exam-
ple, a male-female pair have a child. What is the sample space? For simplicity let us think
of genetics as determining everything. Then, the male and female have their DNAs which
are two strings of four alphabets, i.e., they are of the form (A,7,T,G,C,C,C,...,G) whose
lengths are about 10°. These two strings are given (nothing random about them, let us

assume).




The child to be born can (in principle) have any possible DNA where each element of the
string comes from the father or the mother. This large collection of strings is the sample
space (its cardinality is less than 21%°, but perhaps 2!%° or so). The actual probability distri-
bution on these strings is very complicated and no one can write it down explicitly, but for
simplicity you may think that it is uniform (equal probability for all possible strings).

Even after the child is born, we do not know w, i.e., we do not observe the DNA of the
child. What we observe are various functions of the DNA string, such as “colour of the
eye”, “weight at birth”, etc. These observations/measurements are random variables. We
can also plot the height or weight of the offspring from birth to death - that gives us a
random function.

Similarly, in any realistic random experiment, the outcome we see is not w, but values of a
few random variables X (w), Y (w).... Our questions are also about random variables. For
example, we may ask, “what is the probability that the weight of the child after one month is

less than 3 kg.?”. As remarked earlier, all we need is the distribution of the random variable

X := weight of the child after one month.

9. BOREL PROBABILITY MEASURES ON EUCLIDEAN SPACES

Given a metric space X, let P(X) denote the space of all Borel probability measures on X. We
want to understand P(R?) for d > 1.

So far, the only probability measure that we know is the Lebesgue measure A on [0, 1]. Can we
at least construct a few more examples. Indeed, if T : [0, 1] — R? is any Borel-measurable function,

then \ o T~! gives a Borel probability measure on R?. This gives us a large collection of examples

of probability measures. The surprising result that we shall see is that there are no others!

Let 11 be a Borel probability measure on RY. Then, there exists a Borel functionT': [0, 1] — R?
such that y = Ao 771,

One nice thing about this is that we understand functions better than measures, and the above
theorem says that every Borel probability measure can be got using a Borel function. However, the
map T is not unique. Indeed, consider T, 7" : [0,1] — R defined by T'(z) = z and T'(x) = 1 — .
Then the push-forward of A under both T"and 7" is A itself. It would be nicer to associate to each

probability measure, a unique function. This is done by the useful idea of a distribution function.
Definition 6

Let 1 be a Borel probability measure on R¢. Define its cumulative distribution function (abbre-

viated as CDF, also simply called distribution function) F, : RY — [0,1] by F,(z) = u(R,)
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where R, = (—o0,z1] X ... X (—o00,24] for x = (z1,...,24). In d = 1 in particular,
Fﬂ(t) = ,U,(—OO,t]

Distribution functions have three key properties.

(1) F,is non-decreasing in each co-ordinate.
(2) F, is right continuous in each co-ordinate.

(3) If miin x; — —oo, then F),(z) — 0. If miin x; — +o0o, then Fj,(z) — 1.
The first property is obvious because R, C R, if x; < y; for each i < d. For the second property,
we note that if (") = (x§”>, . ,x&n)) and xz(-n) } yi, then the sets R (. decrease to R,. Hence, by
the properties of measures, p(R, ) | p(Ry) which is precisely the right-continuity of F),. For
the third listed property, we note that if min; x; | —oo (respectively, min; x; 1 +00), then R )
decreases to the empty set (respectively, increases to R%). Again, the behaviour of measures under
increasing and decreasing limits (which is equivalent to countable additivity) implies the stated
properties.
We caution the reader on two common mistakes.
(1) F, is not left-continuous in general. Taking d = 1 for simplicity of notation, note that if
tn 1T t, then (—o0,t,] increases to (—oo,t), not to (—oo, t]. Hence, left-continuity may not

hold (examples below show it too).

(2) F,(z) — 0if just one of the z;s goes to —oo but to have F,(z) — 1, we need (in general) all
x;s to go to +o0. In d = 2, for example, if 1 T 0o and x5 stays fixed, then R, T R X (—o0, 2]
and not to R?.

As we have only a few examples of probability measures so far, we give two examples.

Example 14

Let 1 be the Lebesgue measure on [0, 1]. Then,
0 ift<o,
Ft) =4t if0<t<1,
1 ift>1.

-
Example 15

Let p1 = 0o, which is the probability measure defined by dp(A) = 1if A 5 0 and dp(A) = 0 if
A % 0. Then, we see that

0 ift<o0,
1 ift>0.

F50 (t) =




This is an example where left-continuity fails at one point. More generally, consider a dis-
crete measure p = Y p_; qi0q, for some real numbers a; < ... < a, and for some non-
negative numbers ¢; such that ¢; + ... + ¢, = 1. Its distribution function is given by
0 ift < ai,
) =Sai+...+q ifa; <t<ap,
1 ift > a,.

It fails left-continuity at ai, ..., ay,.

Define the probability measure 6y o) on R?. Write its distribution function. Do the same for
1(6(0,0) + 80,1y + (1,0) + 8(1,1))-

Now we come to the second theorem which shows that distribution functions are in one-one

correspondence with Borel probability measures.
Theorem 14

Suppose F' : R? — [0, 1] is nondecreasing in each co-ordinate, right-continuous in each co-

ordinate, and satisfies lim F'(z) = 0 if min; ; - —oo and lim F(z) = 1 if min; z; — +o0.

Then, there exists a unique Borel probability measure ;2 on R? such that F| w=F.

The uniqueness part is easy. If u and v are two Borel probability measures on R¢ having the
same distribution function, then u(R,) = v(R,) for all z € R% But the collection S := {R, : z €
R%} is a 7-system that generates the Borel o-algebra. Hence y = v.

The difficult part is existence of a mmeasure p. In the next two sections, we prove Theorem 13
and Theorem 14, first for d = 1 and then for general d.

10. THE CASE OF ONE-DIMENSION

For d = 1, we prove Theorem 13 and Theorem 14 simultaneously (I am unable to find such a
proof for higher dimensions’).
Suppose F' : R — [0, 1] satisfying the assumptions of Theorem 14 is given. Define T": (0,1) — R
by
T(u) :=inf{z: F(x) > u}.

IThe fact is nevertheless true. Any Borel probability measure on a complete and separable metric space (eg., R?) is
the push-forward of Lebesgue measure on [0, 1] under some measurable function. For R¢, this can be shown using the

one-dimensional result, but it will need us to develop the notion of conditional probability.
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Since we restrict to (0, 1), it follows that 7" is well-defined (since F'(x) converges to 0 and 1 at —oco
and +o0). Further, T is non-decreasing and left continuous. In particular, it is Borel-measurable.

Hence, p1 := Ao T7!

is a well-defined Borel probability measure on R. We claim that i has
distribution function F.
What is T? When F is strictly increasing and continuous, T’ is just the inverse of F'. In general,

it is a sort of generalized inverse in the sense that 7'(v) < x if and only if F'(z) > u. Hence,
Ao T (—00,2] = Mu € (0,1) : T(u) < z}
=Mue(0,1):u< F(x)}
= F(z).
Thus, ;1 = A o T~! has distribution function F.
This proves Theorem 14 for d = 1. It also proves Theorem 13 for d = 1, since, if we started with

a measure p and F' = F),, then we produced the map T under which Lebesgue measure pushes

forward to p.

11. HIGHER DIMENSIONS
The following (sketch of) proof of Theorem 14 applies to any dimension.

Proof of Theorem 14. We already showed uniqueness.

To show the existence, we may repeat the Caratheodary construction. We just sketch the starting
point. Let Sq := {I1 x ... x I;:I; € Si}, where S; is the collection of left-open, right-closed
intervals in R (including those of the form (—oo, a] and (a,c0)). Then S; is a m-system and the

algebra generated by it can be described explicitly as

Ag = { |_| A :n >0, A, € Sq are pairwise disjoint} .
k=1

Given F : R? — [0, 1] as in the statement of the theorem, we define 11 : Ay — [0, 1] as follows. First
define it on Sy by setting
p((anbr] x ..o x (ag,bal) = Y £F(c1, ..., cq)

ci€{a;,b;}
1<i<d

where the signs must be appropriately chosen. For example, in d = 1, we set p(a, b] = F(b) — F'(a)
while in d = 2, we set p((a1, b1] x (ag, ba]) = F(b1,b2) — F(a1,b2) — F(b1,a2) + F(a1, az). In general,
the sign must be negative if there are an odd number of j for which ¢; # b;.
Then, for A € Ay, write A = A; U...UA, with A; € §; and define p(A) = u(A1) + ...+ p(4p).
The main part of the proof (which we skip) would be to check that x is countably additive on
the algebra A, (it takes a bit of work). Then, invoke the result of Caratheodary to extend p to

B(R?) as a probability measure. By construction, the distribution function of x will be F. |

Next we turn to the proof of Theorem 13. To clarify the main idea, let us indicate how Lebesgue

measure on (0, 1)? can be got from Lebesgue measure on (0, 1).
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Given z € (0,1), let = 0.t1tat3. .. be its binary expansion. Then define y = 0.t;¢3... and
z = 0.tats . ... Thus we get a mapping = — (y, z) which goes from (0, 1) to (0, 1)2. It is not hard to
see that this mapping is Borel measurable and the push-forward of Lebesgue measure on (0, 1) is
the Lebesgue measure on (0, 1)2.

Convention: There are a couple of issues. Binary expansion is not uniquely defined. For example,
0.01011111 ... and 0.01100000 . . . represent the same number. To avoid ambiguities, let us always
take the expansion that has infinitely many ones. Then, for each n € Z, let B, : R — {0,1} be
the function such that B, (z) is the nth digit in the binary expansion so thatz =} _, B, (2)27".
For any z, clearly B, (x) = 0 if n is sufficiently negative, and our convention says that there are
infinitely many n > 1 for which B, (z) = 1.

Observe that each B, is a step-function (where are the jumps and is it left or right continuous

at those points?) and hence Borel measurable.

Proof of Theorem 13. For simplicity of notation, let d = 2 (write for yourself the case of general d).
Define T : R? — R as

22n—1 22n
neZ

In words, T'(z,y) is got by interlacing the binary expansions of z and y. Clearly the sums are
convergent and hence 7' is well-defined and Borel measurable (as it is a limit of finite sums of
Borel measurable functions). Clearly 7' is injective, since we can recover z and y from the binary
expansion of T'(z,y). Let A C R be the range of T so that T : R? — A is bijective.
We claim that A is a Borel set. To see this, first observe that
A = {t € R: Bay,(t) = 1 for finitely many n} U{t € R: By,—1(t) = 1 for finitely many n}.

For any finite subset /' C Z, let

Bp = {t: Bo,(t) =0forn ¢ F and By, (t) = 1 forn € F},

Cp ={t: Boy_1(t) =0forn ¢ F and Ba,(t) =1 forn € F},
so that A¢ = | Bp UCF, a countable union. Thus, it suffices to show that By and C are Borel sets

F
for each F'. That is obvious since

Br = () By {1} () Bz {0},

ner n€Z\F
Cr= () Baa{1} () Ba1{0},
ner neZ\F

and each B,, is Borel measurable. This proves the claim that A is a Borel set.
Lastly if we define S : R — R2by 5(z) = (2,y) where z = 3% Bzno1(®) gy = 570 Ban(a))

n=1 on n=1 27
then it is clear that S is Borel measurable. Further, S | 4 is precisely 7. Since A is Borel, this
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shows that for any C' € B(R?), we get that (T~1)71(C) = S~(C) N A is also a Borel set. Hence
T~ is Borel measurable.

Thus T : R? — A is a bijection and both T and T~! are Borel-measurable. Hence, give a
probability measure y on R?, the push-forward v = p o T~! is a Borel measure on R. We know
that v = \ o h~! for some Borel measurable 4 : (0,1) — R. Thus, u = XA o h~! o T or in words, the

map hoT~1:(0,1) — R? pushes the Lebesgue measure forward to the given measure . |

12. EXAMPLES OF PROBABILITY MEASURES IN EUCLIDEAN SPACE

There are many important probability measures that occur frequently in probability and in the
real world. We give some examples below and expect you to familiarize yourself with each of

them.

Example 16

The examples below have CDFs of the form F(z) = [*_ f(t)dt where f is a non-negative
integrable function with | f = 1. In such cases f is called the density or pdf (probability den-
sity function). Clearly F' is continuous and non-decreasing and tends to 0 and 1 at +oc and
—oo respectively. Hence, there do exist probability measures on R with the corresponding
density.
(1) Normal distribution. For fixed a € R and 0% > 0, N(a,0?) is the probability measure
on R with density —
F(—o0) = 0. That F(+00) = 1 is not so obvious but true!

2 2 . . . .
L_o—(2=a)*/20% gy, F is clearly increasing and continuous and
Vam

(2) Gamma distribution with shape parameter o > —1 and scale parameter A > 0 is the

probability measure with density f(x) = ﬁ/\axo‘_le”“” for x > 0.

(38) Exponential distribution. Exponential(\) is the probability measure with density
f(z) = Ae™* for x > 0 and f(z) = 0 if # < 0. This is a special case of Gamma

distribution, but important enough to have its own name.

(4) Beta distribution. For parameters a > —1, b > —1, the Beta(a, b) distribution is the
probability measure with density B(a,b) 122~ 1(1 — z)~! for € [0, 1]. Here B(a, b)

is the beta function, defined as the constant that makes the integral to be 1. It can be
shown to be equal to %

(5) Uniform distribution on [a,b] is the probability measure with density f(z) = ;-

for z € [a,b]. For example, with @ = 0,b = 1, this is a special case of the Beta

distribution.

(6) Cauchy distribution. This is the probability measure with density m on the whole

line. Unlike all the previous examples, this distribution has “heavy tails”
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You may have seen the following discrete probability measures. They are very important too

and will recur often.

Example 17

The examples below have CDFs of the form F(z) = > _,
countable set, and p(z;) are non-negative numbers that add to one. In such cases p is called

p(z;)dt, where {z;} is a fixed

the pmf (probability mass function). and from what we have shown, there do exist proba-
bility measures on R with the corresponding density or CDF.
(1) Binomial distribution. Binomial(n,p), with n € N and p € [0, 1], has the pmf p(k) =
(M)p*q"Ffork=0,1,...,n.

(2) Bernoulli distribution. p(1) = p and p(0) = 1 — p for some p € [0,1]. Same as
Binomail(1, p).

(3) Poisson()) distribution with parameter A > 0 has probability measuref p(k) = e_’\%

fork=0,1,2,....

(4) Geometric(p) distribution with parameter p € [0, 1] has probability measuref p(k) =
¢*pfork=0,1,2,....

\§

All the measures we mentioned so far are in one dimension. Among multi-variate ones, we

mention one important example.

Example 18: Multivariate normal distribution

Letpy e RYand X bead x d symmetric, positive-definite matrix. Then,

= ! ex —lx— =t x —
o) = s e { <=2 =)}

is a probability density on R?. The probability measure with distribution function given by

T T4
F(xy,...,2q) ::/.../f(tl,...,td)dtl...dtd

is called the multi-variate normal distribution with mean vector i and covariance matrix 3
(we are yet to define what mean and covariance means, but once defined this terminology
will be justified).

In each of the above examples, try to find a transformation 7" : (0,1) — R that pushes

Lebesgue measure forward to the given probability measure. Implement this on a computer
to generate random numbers from these distributions using a random number generator

that outputs uniform random numbers in [0, 1].
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13. A METRIC ON THE SPACE OF PROBABILITY MEASURES ON R?

What kind of space is P(RY), the space of Borel on R9? 1t is clearly a convex set (this is true
for the space of probability measures on any measurable space). We want to measure closeness of

two probability distributions. Two possible definitions come to mind.

(1) For p,v € P(RY), define Dy(p1,v) := sup 4¢p, |11(A) — v(A)]. Since p and v are functions on
the Borel o-algebra, this is just their supremum distance, usually called the total variation
distance. It is easy to see that D; is indeed a metric on P(R%).

One shortcoming of this metric is that if 1 is a discrete measure and v is a measure with
density, then D;(u,v) = 1. But we shall be interested in talking about discrete measures
approximating continuous ones (as in central limits theorem, if you have heard of it). The

metric D is too strong for this purpose.

(2) We can restrict the class of sets over which we take the supremum. For instance, taking all
semi-infinite intervals, we define the Kolmogorov-Smirnov distance
Dy(p,v) = sup |Fj(x) — F,(x)|.
zeRd
If two CDFs are equal, the corresponding measures are equal. Hence D; is also a genuine
metric on P(RY).

Clearly D (u,v) < Dj(u,v), hence Do is weaker than D;. Unlike with Dy, it is possible
to have discrete measures converging in D to a continuous one, see Exercise 13. But it is
still too strong.

For example, if a # b are points in R”, then it is easy to see that D1 (d,, 6p) = D2(d4, 6p) =
1. Thus, even when a,, — a in R?, we do not get convergence of d,, to d, in these metrics.
This is an undesirable feature (Why? Let us just say that we would like the embedding
R — P(R) defined by a — J, to be continuous).

Thus, we would like a weaker metric, where more sequences converge. The problem with the
earlier two definitions is that they compare ;(A) with v(A). The next definition allows the set to

change a little.
For p, v € P(RY), define the Lévy distance between them as (here 1 = (1,1,...,1))
d(p,v) :=inf{u > 0: F,(x +ul) +u > F,(x), F,(z+ul)+u> F,(x) Yz € R.

If d(pn, 1) — 0, we say that p, converges in distribution or converges weakly to ¢ and write

I A p. [...breathe slowly and meditate on this definition for a few minutes...]
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Although we shall not use it, we mention how a distance is defined on P(X) for a metric
space X (it is called Lévy-Prohorov distance). For p,v € P(X)

d(p,v) :=inf{t > 0: p(AD) + ¢ > v(A) and v(A®) +t > u(A) for all closed A C X}.
Here A® is the set of all points in X that are within distance ¢ of A. This makes it clear

that we do not directly compare the measures of a given set, but if d(u, v) < ¢, it means that

whenever p gives a certain measure to a set, then v should give nearly that much (nearly

means, allow ¢t amount less) measure to a t-neighbourhood of A.

As an example, if a,b € RY, then check that d(8,, d) < (max; |b; — a;|) A 1. Hence, if a,, — a, then
d(0g,,,0,) = 0. Recall that §,,, does not converge to J, in Dy or Ds.

Let p, = %2221 Ok/n- Show directly by definition that d(un, ) — 0. Show also that

Dy (ptn, ) — 0 but Dy (un, A) does not go to 0.

The definition is rather unwieldy in checking convergence. The following proposition gives the

criterion for convergence in distribution in terms of distribution functions.

Proposition 15

L, KN p if and only if F}, () — F,(x) for all continuity points = of F),.

Proof. Suppose fip, 4 p1. Let 2 € R? and fix u > 0. Then for large enough n, we have F),(z + ul) +
u > F,,(x), hence limsup F),, () < Fu(x 4+ ul) + u for all w > 0. By right continuity of F,, we
get limsup F,, (x) < F,(x). Further, F,, (v) + u > F,,(x — ul) for large n, hence liminf F}, (z) >
F,(x —u) for all w. If x is a continuity point of F},, we can let u — 0 and get lim inf F}, (z) > F,(x).
Thus F,, (z) = Fj(x).

For the converse, for simplicity let d = 1. Suppose F,, — F at all continuity points of F'. Fix any
u > 0. Find 21 < 22 < ... < @, continuity points of F, such that z;; < z; + v and such that
F(z1) < wand 1 — F(x,,) < u. This can be done because continuity points are dense. Now use
the hypothesis to fix N so that | F},(z;) — F(x;)| < u for each i < m and for n > N. Henceforth, let
n>N.

If z € R, then either x € [z;_1, ;] for some j or else x < x; or x > x;. First suppose = €

[:L'j_l, a;j]. Then

F(x +u) > F(z;) > Fu(zj) —u > Fy(z) —u, Fo(x+u) > Fy(xj) > F(z;) —u> F(z) —u.
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If x < 1, then F(x +u) +u > u > F(x1) > F,(z1) — u. Similarly the other requisite inequalities,

and we finally have
Fo(z+2u) +2u > F(z) and F(z + 2u) + 2u > F,(z).
Thus d(pn, 1) < 2u. Hence d( iy, ) — 0. [

Example 19

Again, let a,, — a inR. Then Fs, (t) = 1ift > a, and 0 otherwise while Fs, (t) = 1ift > a
and 0 otherwise. Thus, Fs, (t) — Fs,(t) for all t # a (just consider the two cases ¢t < a and
t > a). This example also shows the need for excluding discontinuity points of the limiting

distribution function. Indeed, Fj, (a) = 0 (if a,, # a) but F;,(a) = 1.
-

Observe how much easier it is to check the condition in the theorem rather than the original
definition! Many books use the convergence at all continuity points of the limit CDF as the defini-
tion of convergence in distribution. But we defined it via the Lévy metric because we are familiar
with convergence in metric spaces and this definition shows that convergence in distribution in

not anything more exotic (as it might sound from the other definition).

Exercise 14

If a, — 0and b2 — 1, show that N(an,b2) 5 N(0,1) (recall that N(a,b?) is the Normal

distribution with parameters a € R and b2 > 0).

Question: In class, Milind Hegde raised the following question. If we define (write in one dimen-

sion for notational simplicity)
d'(p,v) =inf{t >0: Fy,(z +1t) > F,(z) and F,(z + t) > F,(z) for all z},

how different is the resulting metric from the Lévy metric? In other words, is it necessary to allow
an extra additive ¢ to F,(x +t)?

It does make a difference! Suppose 1, v are two probability measures on R such that ;(Ky) =1
for some compact set Ky and v(K) < 1 for all compact sets K. Then, if z is large enough so that
z > yforally € Ko, then F,(z +t) < 1 = F,(x) for any ¢ > 0. Hence, d'(u1,v) > t for any ¢
implying that d'(p, v) = oo.

Now, it is not a serious problem if a metric takes the value co. We can replace d’ by d"(u,v) =
d'(u,v) N1 or d"(p,v) = d(p,v)/(1 + d(u,v)) which gives metrics that are finite everywhere
but are such that convergent sequences are the same as in d’ (i.e., d'(un, ) — 0 if and only if
d"(in, ) — 0).

But the issue is that measures with compact support can never converge to a measure without
compact support. For example, if X has exponential distribution and X, = X A k, then the
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distribution of X}, does not converge to the distribution of X in the metric d’. However, it is indeed

the case that the convergence happens in the metric d. Thus the two metrics are not equivalent .

14. COMPACT SUBSETS IN THE SPACE OF PROBABILITY MEASURE ON EUCLIDEAN SPACES

Often we face problems like the following. A functional L : P(R?) — R is given, and we would
like to find the probability measure p that minimizes L(x). By definition, we can find nearly
optimal probability measures p, satisfying L(y,) — 2 < inf, L(v). Then we might expect that if
the sequence (i, (or a subsequence of it) converged to a probability measure 4, then ;o might be the
optimal solution we are searching for. This motivates us to characterize compact subsets of P(R?),

so that existence of convergent subsequences can be asserted.
Looking for a convergent subsequence: Let 1, be a sequence in P(R%). We would like to see if a

convergent subsequence can be extracted. Towards this direction, we prove the following lemma.

We emphasize the idea of proof (a diagonal argument) which recurs in many contexts.

[Helly’s selection principle] Let F;, be a sequence distribution functions on R?. Then, there

exists a subsequence {n,} and a non-decreasing, right continuous functon F : R? — [0, 1]

such that F,,,(x) — F(z) if z is a continuity point of F.

Proof. Fix a dense subset S = {z1,2,...} of R%. Then, {F,(x1)} is a sequence in [0, 1]. Hence, we
can find a subsequence {ny x} such that I, , (z1) converges to some number «; € [0, 1]. Then,
extract a further subsequence {ny ; }x C {n1x}x such that F;,, , (v2) — az, another number in [0, 1].

Of course, we also have F,

nax(71) — 1. Continuing this way, we get numbers o; € [0,1] and

subsequences {n1 %} O {n2x} O ...{ngk} ... such that for each /, as k — oo, we have F,,,, (7;) —
a; foreach j < ¢.
The diagonal subsequence {n, ¢} is ultimately the subsequence of each of the above obtained sub-

sequences and therefore, Py, ,(xj) = a5 as £ — oo, for each j. Henceforth, write n, instead of

’I?,g,g.

2In class 1 wrongly claimed that for probability measures on a compact set in place of the whole real line, eg.,
P([-1,1]), convergence in d’ and in d are equivalent. Chirag Igoor showed me the following counter-example. Let
= 61 and for each n define
0 if £ <0,
Fo(z) = z/n if0<z<],
1 ifx > 1.
Then, F,,(xz) — F,(z) for each = and hence the corresponding measures converge to p in Lévy metric. But the conver-

gence fails in d'. To see this, take any z > 0 and observe that if F},(0.5 + t) > F,,, (0.5), then we must have ¢ > 0.5. As

this is true for every n, it follows that p1,, does not converge to pin d'.
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To get a function on the whole line, set F'(z) := inf{«; : j for which z; > z}. F is well defined,
takes values in [0, 1] and is non-decreasing. It is also right-continuous, because if y,, | y, then for
any j for which z; > y, itis also true that x; > y,, for sufficiently large n. Thus lim, o F'(yn) < «;.
Take infimum over all j such that z; > y to get lim,,—,oc F'(y,) < F(y). Of course F(y) < lim F(yy)
as F'is non-decreasing. This shows that lim F'(y,,) = F'(y) and hence F is right continuous.

Lastly, we claim that if y is any continuity point of F, then F},,(y) — F(y) as £ — oc. To see this,
fix § > 0. Find 4, j such that y — § < z; <y < x; <y + 0. Therefore

liminf F,,(y) > lim F),, (z;) = a; > F(y — 0)

limsup Fy, (y) <lim F,,(z;) = oj < F(y +9).
In each line, the first inequalities are by the increasing nature of CDFs, and the second inequalities
are by the definition of F'. Thus

F(y—) <liminf F,,,(y) < limsup Fy,,(y) < F(y)

forall y € R. If F(y—) = F(y), then it follows that lim F},,(y) exists and equals F'(y).

The Lemma does not say that F' is a CDF, because in general it is not!

Example 20

Consider §,,. Clearly F;, (z) — 0 for all z if n — 400 and Fj, (x) — 1 for all z if n — —oc.
Even if we pass to subsequences, the limiting function is identically zero or identically one,
and neither of these is a CDF of a probability measure The problem is that mass escapes to
infinity. To get weak convergence to a probability measure, we need to impose a condition

to avoid this sort of situation.

-

Definition 8

A family of probability measure A C P(R?) is said to be tight if for any e > 0, there is a
compact set K, C R such that pu(K.) > 1 — e forall i € A.

Example 21

Suppose the family has only one probability measure pi. Since [—n,n]¢ increase to R?, given
¢ > 0, for a large enough n, we have ;([—n,n]?) > 1 — . Hence {u} is tight. If the family is
finite, tightness is again clear.

Take d = 1 and let p,, be probability measures with F,,(z) = F(z — n) (where F is a fixed
CDF), then {u,} is not tight. This is because given any [—M, M], if n is large enough,

n([—M, M]) can be made arbitrarily small. Similarly {4, } is not tight.
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We now characterize compact subsets of P(R¢) in the following theorem. As P(R¢) is a metric
space, compactness is equivalent to sequential compactness and we phrase the theorem in terms

of sequential compactness.

Let A C P(R?). Then, the following are equivalent.

(1) Every sequence in A has a convergent subsequence in P(R?).

(2) Ais tight.

Proof. Let us take d = 1 for simplicity of notation.

(1) Assume that A is tight. Then any sequence (i), in A is also tight. By Lemma 16, there
is a subsequence {n,} and a non-decreasing right continuous function F' (taking values in
[0,1]) such that F},,(z) — F(z) for all continuity points x of F.

Fix A > 0 such that yu,,[—A, A] > 1 — € and such that A is a continuity point of F'. Then,
F,,(—A) < eand F,,,(A) > 1 — e for every n and by taking limits we see that F'(—A) < ¢
and F(A) > 1 —e. Thus F(+o00) = 1 and F(—o0) = 0. This shows that F' is a CDF and
hence F = F, for some u € P(R?). By Proposition 15 it also follows that y,,, LA L.

(2) Assume that .Aisnot tight. Then, there exists e > 0 such that for any k, there is some p, € A
such that py([—k, k]) < 1 — 2e. In particular, either F},, (k) <1 —eor/and F,, (—k) > €. We
claim that no subsequence of (14), can have a convergent subsequence.

To avoid complicating the notation, let us show that the whole sequence does not con-
verge and leave you to rewrite the same for any subsequence. There are infinitely many &
for which F),, (—k) > € or there are infinitely many k for which F,, (k) > 1 — €. Suppose
the former is true. Then, for any = € R, since —k < z for large enough k, we see that
F,, () > F,, (—k) > € for large enough k. This means that if F},, converge to some F' (at
continuity points of F’), then F'(z) > e for all z. Thus, F' cannot be a CDF and hence 1,

does not have a limit. [

Adapt this proof for d > 2.

15. EXPECTATION

Let (Q2, F,P) be a probability space. We define Expectation or Lebesgue integral of real-valued

random variables in three steps.

(1) If X can be written as X = E?:] cila, for some A; € F, we say that X is a simple r.v.. We

define its expectation to be E[X] := Y"1 | ¢;P(4;).
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(2) If X > 0isarandom variable, we define E[X| := sup{E[S]: 0 < S < X, Sisasimplerv.},

which is either a non-negative number or +oo.

(3) If X is any real-valued random variable, let X := X1x>¢ and X_ := —X1x¢ so that
X = Xy — X_ (also observe that Xy + X_ = | X|). If both E[X ] and E[X_] are finite, we
say that X is integrable (or that its expectation exists) and define E[X] := E[X ] — E[X_].

Naturally, there are some arguments needed to complete these steps. We elaborate a little. But
full details are left to measure theory class (or consult any measure theory book, eg., Dudley’s Real
analysis and probability).

(1) In the first step, one should check that E[X] is well-defined. This is necessary because a
simple random variable can be represented as ) ;" ; ¢;14, in many ways. Finite additivity
of P is used to show this. It helps to note that there is a unique way to write X in this form

so that the sets A, are pairwise disjoint and numbers c;, are distinct.

(2) In addition, check that the expectation operator defined on simple random variables has
the following properties.
(a) Linearity: If X, Y are simple random variables, then E[aX + Y| = oE[X] + SE[Y] for
all o, 5 € R.

(b) Positivity: If X > 0 (this means that X (w) > 0 for all w € ), then E[X] > 0.

(38) Then go to the second step and define expectation of non-negative random variables.
Again we must check that linearity and positivity are preserved. It is clear that E[aX]| =
aE[X]if X > 0isarvand a is a non-negative real number (why?). One can also easily see
that E[X + Y] > E[X] + E[Y] using the definition. To show that E[X + Y] = E[X] + E[Y],

it is necessary to use countable additivity of P in the following form.

Theorem 18: Monotone convergence theorem - provisional version

If S, are non-negative simple r.v.s that increase to X (i.e., S,(w) T X(w) for each
w € ), then E[S,,] increases to E[X].

IfS, 1t Xand T, 1Y, then S, +7, T X+Y (and S, +1T), is simple if S,, and T}, are), hence
we get the conclusion that E[X + Y| = E[X]|+ E[Y] for non-negative random variables. To
avoid vacuous statements, we note that there do exist simple random variables S,,, T}, that
increase to X, Y. For example, we can take

22n

Su(w) = on LX (@)elk2 (k+1)2-m)-
k=0

(4) It is convenient to allow a non-negative random variable to take the value +o0o but adopt

the convention that 0 - co = 0. That is, infinite value on a set of zero probability does not
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matter in computing expectations. Of course, if a non-negative random variable takes the

value +o0 on set of positive probability, then E[X]| = +oo (follows from the definition).

(5) In step 3, one assumes that both E[X ]| and E[X_] are finite, which is equivalent to as-
suming that E[|X|] < oo (because |X| = X, 4+ X_). Such random variables are said
to be integrable or absolutely integrable. For an integrable random variable X, we define
EX]:=E[X:] -E[X_].

(6) Finally argue that on the collection of all integrable random variables on the given proba-

bility space, the expectation operator is linear and positive.

Convention: Let us say “X = Y a.s” or “X < Y a.s” etc.,, to mean that P(X = Y) = 1 or
P(X < Y) = 1 etc. We may also use a.e. (almost everywhere) or w.p.1 (with probability one)
in place of a.s (almost surely). More generally, if we write [...zyz...], a.s., we mean that whatever

event is describe in [...zyz...] has probability equal to 1. For example, the statement
X, > X a.s.

just means the same as the statement

P{w: lim X, (w) exists and is equal to X (w)} = 1.

n—o0
Just as we ignore events having zero probability, we also do not usually distinguish two random
variables that are equal almost surely. For example, is X =Y, a.s., then their distributions P o X -1
and P o Y ! are the same (why?). Similarly, if X is integrable, then so is Y and E[Y] = E[X]. For
all probability questions of interest, the two random variables give the same answer and so they
are essentially the same.

Summary: Given a probability space (Q, F,P), let L' (2, F,P) be the collection of all integrable
random variables on €. Then, the expectation operator E : L'(Q, F,P) — R has the following
properties.

(1) Linearity: If X,Y are integrable, then for any «, 8 € R, the random variable o X + 8Y is
also integrable and E[aX + Y] = aE[X]| + SE[Y].

(2) Positivity: X > 0 implies E[X] > 0. Further, if X > 0 and P(X = 0) < 1, then E[X] > 0.
A useful corollary of positivity is that whenever X < Y and E[X], E[Y] exist, then
E[X] < E[Y] with equality if and only if X =Y a.s.
(3 [EX]] < E[|X]].

(4) E[14] =P(A) for A € F. In particular, E[1] = 1.
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16. LIMIT THEOREMS FOR EXPECTATION

Theorem 19: Monotone convergence theorem (MCT)

Suppose X,,, X are non-negative r.v.s and X,, T X a.s. Then E[X,] T E[X]. (valid even
when E[X] = +00).

Theorem 20: Fatou’s lemma

Let X,, be non-negative r.v.s. Then E[lim inf X,,] < lim inf E[X,].

Theorem 21: Dominated convergence theorem (DCT)

Let |X,,| < Y where Y is a non-negative r.v. with E[Y] < oco. If X,, — X as., then,
E[|X,, — X|] — 0 and hence we also get E[X,,] — E[X].

Assuming MCT, the other two follow easily. For example, to prove Fatou’s lemma, just de-
fine Y,, = inf, > X,, and observe that Y}s increase to liminf X, a.s and hence by MCT E[Y}] —
E[liminf X,,]. Since X,, > Y, for each n, we get lim inf E[X,,] > lim inf E[Y;] = E[liminf X,].

To prove DCT, first note that | X,,| <Y and |X| <Y a.s. Consider the sequence of non-negative
r.v.s 2Y — | X,, — X]| that converges to 2Y a.s. Then, apply Fatou’s lemma to get

E2Y] = Elliminf(2Y — | X,, — X|)] < liminf E[2Y — |X,, — X|] = E[2Y] — limsup E[| X,, — X]].

Thus limsup E[| X, — X|] = 0. Further, |[E[X,,] — E[X]| < E[|X,, — X]|] — 0.
We omit the proof of MCT. But let us understand the conditions in these statements by giving

examples that violate the conditions and for which the conclusions are false.

Example 22

Consider the probability space ([0, 1], B, A). Let f,(t) = — 2 and let f(t) = 0. Then, f,(t) 1
f(t) for all t # 0. However, E[f,,] = —oo for each n and thus does not converge to E[f] = 0.

Thus, the conclusion of MCT is violated. But the conditions are not satisfied either, since f,,

are not non-negative.

.

This is essentially the only way in which MCT can fail. Indeed, suppose that X, 1 X a.s. but
X, are not necessarily non-negative. Assume that E[(X;)_] < co. Then, define ¥, = X,, — X; and
Y = X — Xj. Clearly, ¥}, > 0 a.s. and Y,, 1 Y. Hence by MCT as stated above, E[Y,,] T E[Y]. But
EY,] = E[X, ] —E[Xi] and E[Y] = E[X] — E[X] (these statements are valid even if E[X,,] or E[X]
is equal to oo, since our assumption implies that —oo < E[X] < +00). Thus, MCT is valid even if
we only assume that X,, T X a.s. and that E[(Xxy)_] < oo for some N. In other words, for MCT to

fail, we must have E[(X},)_] = 400 for each n, as it happened in the above example.
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The above example also shows how Fatou’s lemma may be violated without the condition of
Xn > 0 a.s.. We give another example, as unlike MCT, there are other ways in which Fatou’s

lemma may be violated.

On the probability space ([0,1], B, A), define f,(t) = —n1,.. and f(¢{) = 0. Then f, — f

a.s.but E[f,] = —1 for all n while E[f] = 0. If we reversed the signs, then —f,, > 0 and

Fatou’s lemma is indeed valid.

Clearly, Fatou’s lemma implies that if X,, < 0, then E[limsup X,,] > limsup E[X,,]. A common
mistake is to forget the reversed condition X;,, < 0 which leads to wonderful conclusions like

0 > 1. Lastly, an example where DCT fails.

Example 24

Again on the probability space ([0, 1], B, A), define f,,(t) = n1,.1 and f(t) = 0. Then f,, — f
a.s., but E[f,] = 1 for all n but E[f] = 0. DCT is not contradicted because there is no
integrable random variable that dominates each f,,.

However, note that Fatou’s lemma applies and is valid. Ideally we would like the conclu-
sion of DCT (limit of expectations is equal to the expectation of the limit), but when that is
not available, Fatou’s may apply to give a one way inequality. You may see some similarity

with the proof of Helly’s theorem, where we show that a sequence of measures may lose

some mass in the limit, but can never gain extra mass!

Here is a new way in which a random variable on a probability space gives rise to new proba-

bﬂité measures on the same siace.

Let (2, 7, P) be a probability space and let X > 0 be a random variable with finite expecta-
tion. Define Q : 7 — R4 by Q(A4) = E[ X E[X14]. Show that Qs a probab111ty measure on
F. Further, for any bounded random variable Y, we have Eq[Y]| = [  Ep [XY] (when we
have more than one probability measure, we put a subscript to E to denote which measure
we take expectations with respect to).

17. LEBESGUE INTEGRAL VERSUS RIEMANN INTEGRAL

Consider the probability space ([0, 1], B, \) (note that in this section we consider the Lebesgue
o-algebra, not Borel!) and a function f : [0, 1] — R. Let

Uy = ;kz gg (x), anzzinzkmin f(x)

k
P 7271 k=0 27 ="="27



be the upper and lower Riemann sums. Then, L,, < U,, and U,, decrease with n while L,, increase.
If it happens that lim U,, = lim L,,, we say that f is Riemann integrable and this common limit
is defined to be the Riemann integral of f. The question of which functions are indeed Riemann
integrable is answered precisely by’

Theorem 22: Lebesgue’s theorem on Riemann integrals

A bounded function f : [0, 1] — R is Riemann integrable if and only if the set of discontinu-

ity points of f has zero Lebesgue outer measure.

Next consider the Lebesgue integral E[f]. For this we need f to be Lebesgue measurable in the
first place. Clearly any bounded and measurable function is integrable (why?).

Further, we claim that if f is continuous a.e., then f is measurable. To see this, let E C [0, 1] be
the set of discontinuity points of f. Then by assumption \.(E) = 0. Hence, E' and all its subsets
are Lebesgue measurable and have measure 0. Further, as E contains no interval, we can find a
countable set D C E* that is dense in [0, 1]. Let A, = {x € D : f(z) < s}, a countable set for any

s € R and hence measurable. Thus, for any ¢ € R,

(f<ty={zeB:fl@)<ty{J| ENALL)

n>1
This shows that f < ¢ is measurable.

Putting everything together, we see that Riemann integrable functions are also Lebesgue inte-
grable. Further, if f is Riemann integrable, then its Riemann integral and Lebesgue integral agree.
To see this, define

21 21
gn(z) = kZ:O <;gj;xw f(w)> Licpern,  hn(2) = kZ:O (2,%;31;12# f(x)> 1o cpckn
so that E[g,| = U,, and E[h,| = L,. Further, g,,(x) | f(x) and h,(x) 1T f(x) at all continuity points
of f. By MCT, E[g,,| and E[h,,] converge to E[f], while by the assumed Riemann integrability L,
and U,, converge to the Riemann integral of f. Thus the Lebesgue integral E[f] agrees with the
Riemann integral.

In short, when a function is Riemann integrable, it is also Lebesgue integrable, and the integrals
agree. But there are functions that are measurable but not a.e. continuous, for example, the func-
tion 1gq,1]- Thus, Lebesgue integral is more powerful than Riemann integral. Henceforth in life,
we shall always use the Lebesgue integral.

A natural question is whether there is an even more general way of defining an “integral”? To
answer that, we need to know what we require out of an integral. Let us stick to function on [0, 1]
for definiteness. Then we certainly want continuous functions to be integrable and the integral to

satisfy linearity and positivity. Then, we have the following theorem of F. Riesz.

35ee Theorem 11.33 in Rudin’s Principles of mathematical analysis.
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Theorem 23

Suppose I : C[0,1] — R is a positive linear functional and 7(1) = 1. Thatis, (1) I(af 4+ bg) =
al(f)+0bI(g)foralla,b € Rand f,g € C[0,1],(2) I(f) > 0 whenever f > 0,and (3) I(1) = 1.
Then, there exists a unique Borel probability measure x on [0, 1] such that I(f) = [ fdu for
all f € C[0,1].

.

This shows that all positive linear functionals on C0, 1] are given by Lebesgue integral with
respect to a Borel measure. In other words, no need to go beyond the Lebesgue integral! The same
result is true if we replace [0, 1] by any compact Hausdorff space. It is also true on a locally compact
space (but then the linear functional is defined on the space of compactly supported continuous

functions).

If you accept that positive linear functionals are natural things to consider, then Riesz’s
theorem associates to each of them a unique countably additive Borel probability measure.
In other words, countable additivity is thrust on us, not imposed! In this sense, Riesz’s
representation theorem justifies the assumption of countable additivity in the definition of

measure.

\

18. LEBESGUE SPACES

Fix a probability space (€2, F,P). For p > 0, let V, be the collection of all random variables
X : Q — R for which E[|X|P] < oo. We also define V, as the collection of all bounded random
variables, i.e., all X for which there is a constant M such that | X| < M a.s.

V), is a vector space for any 0 < p < oo. Further, V,, C V, if p < g.

Proof. It is easy to see that V is a vector space. Indeed, if | X| < M a.s.and |Y| < M’ a.s., then
laX + B8Y| < |a|M + |B|M a.s.

If 0 < p < oo, we recall that for any z,y > 0, we have (x + y)? < 2°P"1(2P + ¢P) if p > 1 and
(z +y)P < 2P +yPif 0 < p < 1. Therefore, | X + Y|P < C,(| X[ + |Y|P) where C), = 2P~ ! v 1. Thus,
if X,Y € V,, then X +Y € V. Further, if X € V), then clearly aX € V], since |aX|P < |a|P|X|P.
This completes the proof that V,, is a vector space. This proves the first part of the claim.

Now suppose p < ¢ < co. Then for any X, we have | X P < |X|? + 1 (the extra 1 is needed for
the case when | X| < 1). Using positivity of expectations, we get E[| X |P] < 1 + E[|.X|?]. Hence, if
X €V, then X € V,. When g = o0, this is even more obvious. |

1
Next, we want to define a norm on V. To this end, we define || X||, := E[|X?]? for X €V,

for p < oo and || X||oc = inf{t > 0:|X| < ¢ a.s.}. Then |[tX]|, = t||X]||, for t > 0, showing

homogeneity. But there are issues with triangle inequality and strict positivity.
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(1) Triangle inequality requires || X + Y|, < | X|, + ||Y|, for any X,Y € V},. This is false if
p < 1. Secondly, even for p > 1, this is not obvious to prove! We discuss it below.

(2) Strict positivity requires that || X||, = 0 implies X = 0. But this is not true, as || X||, = 0 if
and only if X =0 a.s.

Let us see how to deal with these issues.

Triangle inequality: As mentioned, triangle inequality fails for p < 1, even in the simplest non-

trivial probability space!

Example 25

Let @ = {0,1} and P{0} = P{1} = {. Define X(0) = a, X(1) =band Y(0) = b, Y(1) = a
where a,b > 0. Then, || X ||, = [|[Y|, = (%)% while | X +Y||, = (a+b). Triangle inequality
would imply that (%F)P < 2“F%. But this is exactly the same as saying that z — 2” is a

convex function, which is true if and only if p > 1.

.

Henceforth, we shall only take p > 1. But how does one prove Minkowski’s inequality? We
consider the important special cases of p = 1,2, oo here. In the next section, we sketch a proof for

general p.

(1) Case p = 1. In this case, since | X + Y| < | X| + |Y|, using positivity of expectation, we get
IX + Y] = E[X + Y]] <E[X[ + Y]] = E[| X[ + E[[Y]] = | X[l + [[Y]]1-
(2) Casep = 0. If | X| < M a.s.and |Y| < M’ a.s., then | X + Y| < M + M’ a.s.Therefore,
X + Yoo < [[XMloo + 1Y [loo-

(3) Case p = 2. The desired inequality is v/E[(X +Y)?] < \/E[X?] + \/E[Y?2]. Squaring and
expanding (X + Y)?, this reduces to E[XY] < /E[X2]\/E[Y2]. This inequality is indeed
true, and is known as the Cauchy-Schwarz inequality.

The standard proof of Cauchy-Schwarz inequality is this: For any ¢ € R, define f(¢) =
E[(X —tY)?]. By positivity of expectations, f(t) > 0, but also f(t) = t?E[Y?] — 2tE[XY] +
E[X?], a quadratic polynomial in ¢ (assuming E[Y?] # 0). For this to be non-negative for
all t, we must have (E[XY])? < E[X?|E[Y?], proving Cauchy-Schwarz inequality and also
showing that equality can hold if and only if X and Y are constant multiples of each other.

Strict positivity: Say that two random variables are equivalent and write X ~ Y if X =Y a.s. If
X =X'asandY =Y a.s, then aX + X' = aY + Y’ a.s.Therefore, on the equivalence classes
we can define addition and scalar multiplication (i.e., o[ X] + [Y] = [aX + Y] is a valid definition).

In particular, if we restrict to V,, for some p > 1, then we get a vector space that we denote L? (or
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LP(Q2, F,P) to describe the full setting). More precisely,
I’ ={[X]: X €V,}.

Then, L? is a vector space, and || - ||, is a genuine norm on L? (triangle inequality because p > 1
and strict positivity because we have quotiented by the equivalence relation).

Although elements of L” spaces are equivalence classes of random variables, it is a standard
abuse of language to speak of a random variable being in L?, always keeping in mind that we

don’t distinguish two random variables that differ on a set of zero probability.

Completeness of LP spaces: For 1 < p < oo, we have seen that LP(Q2, F, P) is a normed vector
space. Automatically that makes it a metric space with distance defined by ||X — Y'||,. The most
important fact about L? spaces (proof is left to measure theory class) is the following theorem of

Riesz.

Theorem 25: Completeness of Lebesgue spaces [F. Riesz]

LP(2, F,P) is a complete metric space. That is, any Cauchy sequence converges.

This theorem is another indication that the Lebesgue integral is the right definition. For exam-
ple, on the space [0, 1], we could have define V; as the space of all Riemann integrable functions
with norm defined by || f|| = fol | f(t)|dt. It would not be complete! An incomplete metric space
may be thought of as missing many points which should have been there. In this sense, the L”
spaces define using Lebesgue integral has no missing points. Another indication that the Lebesgue

integral is the right definition and needs no further improvement!

Remark 9: Banach and Hilbert spaces

A normed vector space that is complete as a metric space is called a Banach space. The space
LP(Q2, F,P) and the space C[0, 1] (with sup-norm) are prime examples of Banach spaces.
The space L? alone is special in that its norm comes from an inner product. If (X,Y) =
E[XY], then by Cauchy-Schwars inequality, this is well defined for X,Y € L? and defines
an inner product on L?. Further, | X|3 = (X, X). A Banach space whose norm comes
from an inner product is called a Hilbert space. The space L?(Q, F,P) is the rime (the only!)
example of a Hilbert spaces. It is natural to ask if some of the other L spaces also have
an inner product. The answer is no, since for any p # 2, the LP-norm does not satisfy the
parallelogram law: | X + Y| + || X — Y||? = 2| X||? + 2|[Y||? (see exercise below).

On a two point probability space, construct random variables to show that parallelogram

law fails for the L” norm for p # 2.
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19. CONVEX FUNCTIONS AND JENSEN’S INEQUALITY

First we recall some basic facts about convex functions* on R.

Definition 9

A function ¢ : R — R U {400} is said to be convex if ¢(z) < +oo for some = and p(ax +
(1 —-a)y) <ap(z)+ (1 —a)p(y) forall z,y € Rand any 0 < a < 1. Equivalently, we may
say that the epigraph E, := {(x,y) € R? : y > ¢(x)} is a convex set (i.e., if two points are in

the set, then the line segment joining them is contained in the set).

Example 26

Linear functions are convex. So is e”. But |z|P is convex if and only if p > 1. If p(z) =

0 X Ljz<1 + 00 X 1551, then ¢ is convex. More generally, a convex function on an interval

(defined exactly the same way as above) remains convex if extended as +oo outside the

interval. Further, if ¢;, i € I, are convex functions, so is sup;c ;.

Verifying that the above functions are indeed convex can be painful. A useful way to check that

¢ is convex is the following.
Exercise 18

If ¢ : R — Ris twice differentiable and ¢” > 0 everywhere, then ¢ is convex.

Let ¢ be convex and fix some zy € R for which ¢(z¢) < co. Define Dy (x,x) = %ﬁm) for

x # xo. This is the slope of the line segment joining (z, ¢(x)) with (xo, ¢(z¢)) and could take the

values foc0.

x — Dy(x,x0) is increasing on R \ {zo}.

Proof of the claim. Let x < y. To show D, (x,x0) < Dy(y,xo), we consider three cases, depending
on which of z,y, z¢ is in the middle. We write out the proof for the case x < y < =z, the other
two being similar. In this case, after a simple rearrangement, D (x,z9) < Dy (y,x0) is seen to be

equivalent to

e)(zo —z) < () (20 — Y) + P(T0) (Y — 2).

This is true by the definition of convexity (since y = ax + (1 — a)zy with a = 22=). [ |

The claim immediately implies the existence and finiteness of the left and right derivatives

¢ (wo+) = lifn Dy(z,z0) and ¢'(zo—) = lim Dy (z,z0)
zlzo

zTxg

4A good resource for a quick introduction to convex functions in one dimension is Rudin’s Real and Complex Analysis

(chapter 3)
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and that ¢'(zo—) < ¢'(z0+). In particular, ¢ is continuous at zy. Further, if we choose m € R
so that ¢/(zg—) < m < ¢(xo+), then Dy (x,x0) < m for z < x¢ and Dy(z,2z9) > m for x > xo.
Rearranging, this just says that ¢(z) > m(z — zo) + ¢(xo) for all zy. This last conclusion is called
the supporting hyperplane theorem (it is valid in higher dimensions too). It can be stated as

“For any u with ¢(u) < oo, there is a line L, in R? that lies below the graph of ¢ and passes
through (u, p(u)). In particular, p(z) = sup L, (z).”

As we saw in the examples above, a supremum of linear functions is convex. What we have
proved here is the converse. See the discussion later for two other ways of arriving at this impor-

tant conclusion. Now we state and prove Jensen’s inequality.

Lemma 27: Jensen’s inequality

Let ¢ : R — R be a convex function. Let X be a r.v on some probability space. Assume that
X and ¢(X) both have expectations. Then, p(EX) < E[p(X)]. The same assertion holds if

© is a convex function on some interval (a,b) and X takes values in (a,b) a.s.

Proof. Let E[X]| = a. Let y = m(x — a) + ¢(a) be the supporting line through (a, ¢(a)). Since the
line lies below the graph of ¢, we have m(X — a) + ¢(a) < ¢(X), a.s. Take expectations to get
p(a) < Blp(X)]. u

Supporting hyperplane theorem via Hahn-Banach theorem. If ¢ is a convex function and ¢(z9) <
oo, consider A = {(z,y) € R? : y > p(z)} and B = {(x0, ¢(70))}. Then A, B are disjoint convex
sets and A is open. Hence there is a linear functional L : R? — R and a number d € R such that
L <donAand L > don B.

On R?, linear functional are of the form L(x,y) = ax + by but in our case we cannot have b = 0.
Hence, writing m = a/b and ¢ = d/b, we see that mz + ¢ < y for (z,y) € A and mzg + ¢ > (x0).

Think for a moment to see that this is a supporting line at (zg, ©(x0)).

Supporting hyperplane via convex duality. For a convex function ¢ : R — R U {400}, define
its Legendre transform as ¢* : R — R U {+o0} as ¢*(t) = sup,(tx — ¢(x)). Then ¢* is called the

Legendre transform or the convex conjugate of ¢. Here are the main facts.

Lemma 28

Let ¢ be a convex function. Then ¢* is a convex function and (¢*)* = ¢.

We skip the proof for now (if I get time later I shall write this). But the point is that p*™* = ¢

means that ¢(z) = sup at — ¢*(t). For each t, the function = — xt — ¢*(t) is linear, hence this gives
t

a representation of ¢ as a supremum of linear functions. That is the import of the supporting

hyperplane theorem.

Proof of Lemma 28. By definition of the conjugate, ¢*(t) > tx — ¢(z) for any z,t. Rewrite this as

p(x) > tr — ¢*(t) and take supremum over ¢ to get p(z) > ¢**(z). [
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Legendre transformation is quite fundamental and appears in many contexts (for example, the
Lagrangian and Hamiltonian in classical mechanics are convex conjugates of each other). Here is

an important example from mathematics.

Example 27
Let 1 < p < oo and let p(x) = %\x!”. To compute ¢*, first take ¢ > 0 and observe that

tx — ¢(z) is negative for < 0, hence the supremum is attained for some positive z. Writing
A7 — Il;xp for z > 0, elementary calculus shows that the maximizer satisfies z*~! = ¢ and the
maximum value is (1— %)tp/ (=1 A similar calculation works for t < 0. Thusif ¢ = p/(p—1),
then ¢*(t) = é]t|q . Observe that this ¢ is the number that satisfies % + %, a relationship

familiar to us in functional analysis. This relationship between conjugate exponents is the

reason why L is the dual of L?, etc.

Exercise 19

What happens when p = 1?

Exercise 20

For a convex function ¢ : R s R U {00}, the Legendre transform is defined as ¢*(t) =
Sup,erd(z,t) — ¢(x). The lemma above remains valid.

If  +— (z) is a norm on RY, show that the dual norm is given by ¢ +— ¢*(¢). In particular,

the /P norm has dual norm #4.

.

20. FURTHER INEQUALITIES FOR EXPECTATION

We gave a proof of Minkowski’s inequality for p = 1,2, 00 in the previous section. Now we

prove it forall p > 1.

Lemma 29: Minkowski’s inequality

For any p > 1, we have | X + Y|, < || X[, + [|Y |-

Proof. The case p = oo was proved earlier, so take 1 < p < oo. Let X’ = X/||X||, and V' =

Y/||Y||p- By convexity of z — aP, we see that [aX' + Y|P < a|X'|P 4 b|Y'|P where a = ||X\|\|f+|\ﬁfup
— vl . / np) — _E[X+Y|7] i
and b = X1 Take expectations and observe that E[|aX’ + bY'|P] = TXFIY L7 while
E[a|X'|P + b|Y'|P] = 1 since E[|X'[P] = E[|Y’|P] = 1. Thus we get
E[|[X + Y] .
UX1p + 1Y)~
which is precisely Minkowski’s inequality. |

Lastly, we prove Holder’s inequality of which the most important special case is the Cauchy-

Schwarz inequality.
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Lemma 30: Cauchy-Schwarz and Hélder inequalities

(1) If X,Y are L? random variables on a probability space, then XY is integrable and
E[XY]? < E[X?]E[Y?].

(2) If X, Y are L? r.v.s on a probability space, then for any p, ¢ > 1 satisfying p~!+¢~! =

1,wehave XY € L' and | XY |1 < [| X ||p[Y]l4-

\

Proof. Cauchy-Schwarz is a special case of Holder with p = ¢ = 2 (we also gave a direct proof

in the previous section). Holder’s inequality follows by applying the inequality a”/p + b7/q > ab
valid for a,b > 0, to a = | X|/|| X ||, and b = |Y|/||Y ||, and taking expectations.

The inequality a?/p + b?/q > ab is evident by noticing that the rectangle [0, a] x [0, b] (with area
ab) is contained in the union of the region{(z,y) : 0 < x < a, 0 <y < 27!} (with area a” /p) and
the region {(z,y) : 0 <y < b, 0 < z < y?~ 1} (with area b9/q). This is because the latter regions are
the regions between the = and y axes (resp.) and curve y = zP~! which is also the curve z = y4~!
since (p—1)(¢—1) = 1. [ ]

To see the role of convexity, here is another way to prove that a?/p + b?/q > ab. Set

ploga and b’ = ¢log b and observe that the desired inequality is equivalent to %e“' + %eb'

L4 Ly i .
er? Tab , which follows from the convexity of z — e*.

In the study of L? spaces, there is a close relationship between L and L? where zlo + % = 1. Inthe
proof of Holder’s inequality, we see one elementary way in which it arises (the inverse of y = 27~}

is 7 = y9~1). Another big-picture description is via the convex duality that we mentioned earlier.

21. CHANGE OF VARIABLES

Let T : (1, F1,P) — (2, F2, Q) be measurable and Q = PT~!. If X is an integrable r.v.
on )y, then X o T'is an integrable r.v. on ; and Ep[X o T] = Eq[X].

Proof. Forasimpler.v., X = > " | ¢;14,, where A4; € Fy,itis easy to see that XoT = >""" | ¢;lp-14,
and by definition Ep[X o T] = > | ¢ P{T14;} = 3", c;Q{A;} which is precisely Eq[X]. Use

MCT to get to positive r.v.s and then to general integrable r.v.s. [ |

Let X;, i« < n, be random variables on a common probability space. Then for any Borel

measurable f : R" — R, the value of E[f(X}, ..., X,,)] (if it exists) depends only on the joint
distribution of X1, ... X,,.
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Proof. Consider T' = (X1,...,X,) : @ — R". Then pu := P o T‘1 is (by definition) the joint
distribution of Xj,..., X,. The Lemma gives Ep|[f(X1,...,X,)] = f]R” t)du(t). Clearly, the
right hand side depends only on the measure . u

Remark 11

The change of variable result shows the irrelevance of the underlying probability space to
much of what we do. In any particular situation, all our questions may be about a finite
or infinite collection of random variables X;. Then, the answers depend only on the joint
distribution of these random variables and not any other details of the underlying proba-
bility space. For instance, we can unambiguously talk of the expected value of an Exp(})
random variable, the value being 1/ regardless of the details of the probability space on
which the random variable is defined. Thus, statements in theorems and problems go like

“Let X1,...,X,, be random variables with a multivariate normal distribution with mean

and variance...” without bothering to say what the probability space is.

Change of variable formula for densities: We discuss densities more in the next section, but
for now consider a Borel probability measure ;1 on R". We say that it has a density function
f:R™ — R, if fisaBorel measurable functionand u(A) = [, f x) where m is the Lebesgue
measure on R". Here, [, f(z)dm(x) is just the notation for fRn )1 A( )dm(x). Strictly speaking,
we have define Lebesgue 1ntegra1 only for probability measures (m is not a probability measure),
but a similar procedure constructs Lebesgue integral with respect to general measures.

Now consider a transformation 7 : R® — R" and let v = p o T—! where y is a probability
measure with density f. In case T is nice enough, the change of variable formula shows that v

also has a density and gives a recipe for finding it in terms of f and 7. We omit the proof.

Proposition 33

Let U,V be open subsets of R™ and let 7" : U — V be a bijective smooth function such that
T-1:V — U is also smooth. Let X be a random vector on some probability space, taking
values in U and assume that its distribution has density f with respect to Lebesgue measure
onU. LetY = T'(X), so that Y takes values in V. Then, Y has density g with respect to
Lebesgue measure on V where g(z) = f(T'xz)| det J[T~1](z)|.

\
21.1. Distribution of the sum, product etc. Whenever Y = T'(X), in principle we can find the

distribution of Y from the distribution of X (just push forward under T'). However, in practise
it may be very hard to actually compute. The usefulness of the change of variable formula for
densities is that, in some situations, the density of Y can be found from the density of X. In
particular, it is important to know how to compute the distribution of the sum or product of two

random variables, given their joint distribution.
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Example 28

Suppose (X1, X») has density f(z,y) = e *¥ on R%. How to find the distribution of X; +
X957

Define T'(z1, z2) = (21 + @2, x2). Then T is a bijection from R% onto V = {(u,v) : u > v > 0}
and T~ !(u,v) = (u — v,v). The Jacobian determinant is found to be 1. Hence, the density
of (Y1,Y2) = T(X1, X2) is given by g(u,v) = f(u — v,0)1lysp>0 = € “1y>y>0. This gives
the joint density of (Y7,Y2). We can get the density of Y; by integrating out v. We get

Jo € “dv = ue". This is the Gamma(2, 1) density.
\_

Actually there are a couple of facts that we have invoked without comment in this example and
in examples to come below. We computed the joint density of (Y1,Y2) to be g(u,v). What this
means is that P{(Y1,Y2) € R )} = fRa L9 (y) where R, ) = (—00,a] x (—00,b]. From this,
we conclude that the density of Y; is h(a ) f fooo g(a,v)dv. In doing this, we are implicitly using
the fact that a multiple integral is the same as an iterated integral. You have probably seen this in
Analysis class for Riemann integral. A much better result for Lebesgue integrals will come in a
later section under the name of Fubini’s theorem.

A few useful transformations are covered below.

Example 29

Suppose (X,Y) has density f(z,y) on R2.
(1) X has density fi(z) = [; f(z,y)dy and Y has density fo(y) = [; f(x,y)dz. This is

because, for any a < b, we have

P(X € o) =P(X.V) €0l xB) = [ flopdedy= [ ( JEE y)dy) .
[a,b] xR [a,b] \R
This shows that the density of X is indeed f.

(2) Density of X% is (f1(v/7) + fi(—+/x)) /2y/x for x > 0. Here we notice that 7T is one-
one on {z > 0} and {z < 0} (and {x = 0} has zero measure under f), so the change

of variable formula is used separately for the two domains and the result is added.

(3) The density of X 4+ Y is g(t) = [ f(t — v,v)dv. To see this, let U = X + Y and
V =Y. Then the transformatlon is T'(z,y) = (z+vy,y). Clearly T~ (u,v) = (u—v,0)
whose Jacobian determinant is 1. Hence by Proposition ??, we see that (U, V') has
the density g(u,v) = f(u —v,v). Now the density of U can be obtained like before
as h(u) = [ g(u,v)dv = [ f(u—v,v)dv.

(4) To get the density of XY, we define (U,V) = (XY,Y) so that for v # 0, we have
T~ (u,v) = (u/v,v) which has Jacobian determinant v~*

-
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(1) Suppose (X,Y) has a continuous density f(z,y). Find the density of X/Y. Apply
to the case when (X,Y) has the standard bivariate normal distribution with density
f(z,y) = (2n)7 ! exp{—#} and show that X/Y has Cauchy distribution.

(2) Find the distribution of X + Y if (X, Y’) has the standard bivariate normal distribu-

tion.

(3) Let U = min{X, Y} and V = max{X, Y}. Find the density of (U, V).

22. ABSOLUTE CONTINUITY AND SINGULARITY

Consider a probability space (2, 7, P). Let X : Q — R be a non-negative random variable with
E[X] = 1. Define Q(A) = E[X14] for A € F. Then, Q is a probability measure on (2, 7). The only
non-trivial thing to check is that if A,, A € F and A,, 1 A then Q(4,,) T Q(A). This follows from
MCT, since X14, T X14. All this clearly remains valid even if P and QQ were infinite measures
and X is a general non-negative measurable function.

If two measures p, v (not necessarily probability measures) on (€2, F) are such that v(A) =
i) 4 fdu for all A € F (where i) 4 fdu is just the notation for the Lebesgue integral of f14 with
respect to u) for some non-negative measurable function f, then we say that v has density f with
respect to p.

Question: Given two measures 4, v on (2, F), does v have a density with respect to p and is it
unique?

The uniqueness part is easy. If a density exists, it is unique (in L'(p)). Indeed, if v(A) =
[ fdp = [, gdp for some f, g, then h := f — g satisfies [, hdy = 0forall A € F. Take A = {h > 0}
to get [ hl,sodp = 0. But hlp~( is a non-negative measurable function, hence it must be that
hlpso = 0 a.s.[p]. This implies that u{h > 0} = 0. Similarly u{h < 0} = 0 and we see that
h = 0 a.s.[n] or equivalently f = g a.s[u]. The density is unique up to sets of y-measure zero.
More than that cannot be asked because, if f is a density and g = f a.s.[u], then it follows that
J49du = [, fdu and hence g is also a density of v with respect to .

Existence of density is a more subtle question. First let us see some examples.

Example 30

On ([0,1],B,) let v be the measure with distribution F,(z) = x2. Then v has density
f(z) = 221,¢)91) with respect to A. Indeed, if we set §(A) = [, fd), then # and v are two
measures on [0, 1] that agree on all intervals, since [, ,; fd\ = b?> — a? for any [a,b] C [0, 1].

By the m — A theorem, 6 = v.
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Note that the same logic works whenever v € P(R) and F, has a continuous (or piecewise
continuous) derivative. If f = F], by the fundamental theorem of Calculus, f[a ] fdx =
F,(b) — F,(a) and hence by the same reasoning as above, v has density f with respect to

Lebesgue measure.

\_
Example 31
Let 2 be some set and let a4, ..., a, be distinct elements in Q. Let v = )}’ pid,, and let

W= r_1 kda, Where p;, ¢; are non-negative numbers such that ) . p; = > . ¢; = 1.
Assume that ¢; > 0 for all ¢ < n. Then define f(z) = % for x = a; and in an arbitrary
fashion for all other x € Q. Then, f is the density of v with respect to ;. The key point is
that [ f1g,,ydp = f(a)p{ai} = pi = v{a}.

On the other hand, if ¢; = 0 < p; for some %, then v cannot have a density with respect to
(why?).

Let us return to the general question of existence of density of a measure v with respect to a
measure ; (both measures are defined on (€2, F)). As in the last example, there is one necessary
condition for the existence of density. If v(A) = f fladp for all A, then if u(A) = 0 we must
have v(A) = 0 (since f14 = 0 a.s[u]). In other words, if there is even one set A € F such that
v(A) > 0 = p(A), then v cannot have a density with respect to p.. Let us make a definition.

Definition 10

Two measures ;¢ and v on the same (£, F) are said to be mutually singular and write p L v if
there is a set A € F such that (A) = 0 and v(A¢) = 0. We say that . is absolutely continuous
to v and write u < v if u(A) = 0 whenever v(A) = 0.

Remark 12

(1) Singularity is a symmetric relation, absolute continuity is not. If 4 < v and v < p, then

we say that 1 and v are mutually absolutely continuous. (2) If 4 L v, then we cannot also
have u < v (unless ;= 0). (3) Given p and v, it is not necessary that they be singular or
absolutely continuous to one another. (4) Singularity is not reflexive but absolute continuity
is. That is, 1 < p but i is never singular to itself (unless y is the zero measure).

Uniform(([0, 1]) and Uniform([1, 2]) are singular. Uniform([1, 3]) is neither absolutely con-

tinuous nor singular to Uniform([2,4]). Uniform([1, 2]) is absolutely continuous with re-

spect to Uniform([0,4]) but not conversely. All these uniforms are absolutely continuous
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to Lebesgue measure. Any measure on the line that has an atom (eg., dy) is not absolutely
continuous to Lebesgue measure. A measure that is purely discrete is singular with re-
spect to Lebesgue measure. A probability measure on the line with density (eg., N(0,1))
is absolutely continuous to A. In fact N(0,1) and A are mutually absolutely continuous.
However, the exponential distribution is absolutely continuous to Lebesgue measure, but

not conversely (since (—o0, 0), has zero probability under the exponential distribution but

has positive Lebesgue measure).

.

Returning to the existence of density, we saw that for v to have a density with respect to , it is
necessary that v < p. This condition is also sufficient!

Theorem 34: Radon Nikodym theorem

Suppose p and v are two finite measures on (2, F). If v < p, then v has a density with
respect to p.

A first attempt at proof: Let H = L?(u) and define L : H — Rby Lf = [ fdv. Suppose we
could show that L is well-defined (then it is clearly linear) and bounded, i.e., |Lf| < C| f||x for
all f € H. Then, by the Riesz representation theorem for linear functionals on a Hilbert space, it
follows that Lf = (f,v) for some ¢) € H. Take f = 14 with A € F to see that v(A) = [, dp.
This is what we want to show.

The problem is that L need not be bounded. Indeed, it it were true, the above argument would
have shown that the Radon -Nikodym derivative of v w.r.t. ;1 is in L?(u), which is false in general!
For example, let v(A) = [, %dA(x), where ) is the Lebesgue measure on [0, 1]. Then the Radon-
Nikodym derivative is 1/1/z, whose square is not integrable w.r.t. ;.. The proof below overcomes
this issue by a small trick.

Proof of the Radon Nikodym theorem. Let = pu + v and let H = L*(Q, F,0). Define L : H — R by
Lf = [ fdv. Since (note that [ gdv < [ gdf for any g > 0)

| [ vl < [1fiav < [ 15100 < m(/\fﬁd@)%,

it follows that L is well-defined and |L f| < C|| f||g with C = 1/0(Q2).Therefore, L is bounded and
Lf = [ fo db for some ¢ € H. Rewrite this as

1) /f(l—gp)dy:/fgod,u forall f € H.

From this identity, it is clear that 0 < ¢ < 1 a.s.[u] (hence also a.s.[v]). Further, setting f = 1,1,
we see that the left hand side is zero while the right hand side is u{¢ = 1}. Thus, ¢ < 1 a.s.[y]

(hence also a.s.[v]).
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Now for any A € Fand § > 0, setting f = ﬁlA 1,<1—5 (Which is bounded above by 1/(1 — 9)
and hence in H), we get that v(AN{p < 1-6}) = [, Y1ly<i_sdp, where ) = ¢/(1—¢). Setd = 1/n
and let n 1 co. We get v(AN{p < 1}) = [¢Y1,c1dp. Since ¢ < 1 almost surely with respect to
both measures, it is redundant to write that, and we get v(A) = [, ¢dp. [

Exercise 22: Lebesgue decomposition

Let u, v be two finite measures on (2, ). Show that we can write v = v + v, where v1, 1o

are measures on F and vy < pand v L p. This decomposition is unique. [Hint: Follow the

steps in the proof of Radon-Nikodym theorem and consider theset {¢ = 1} carefully!]

23. SOME SINGULAR PROBABILITY MEASURES

This section is not directly needed for what comes next in the course. But these are some nat-
ural directions suggested by the previous discussion of absolute continuity and singularity of
measures.

Is there any 1 € P(R) that is singular to Lebesgue measure on R? Of course, any discrete
probability measure is singular, since it gives probability one to a countable set while Lebesgue
measure gives probability zero to that set. The interesting question is whether there is a singular
1 that has no atoms. For this, we must spread our set on some uncountable set of zero Lebesgue
measure. The first example that comes to mind is the standard Cantor set.

Recall that the middle-thirds Cantor set is defined as the decreasing intersection K of K,,s where
Ko =[0,1], K1 = [0,3] U [3,1], K3 = [0, 5] U [2,3] U [, 2] U [3,1], and so on. In general, K, is
a union of 2" intervals each of length 37", and K, is got from K, by deleting the middle third

open subinterval of each of these intervals. An alternate description of the Cantor set is

K= {xe [0, 1] :x:Z?Zforsome%lE{O,Q}}.

n=1
In other words, it consists of those numbers that have a ternary (base-3) expansion without using
the digit 1.

Example 33: Cantor measure

Let K be the middle-thirds Cantor set. Consider the canonical probability space ([0, 1], B, \)

and the random variable X (w) = Y77, 2Bc() \where By (w) is the kth binary digit of w (i.e.,

3k
W= Doy B’;Sj")). Then X is measurable (we saw this before). Let 1 := X o X! be the

pushforward measure.

Then, 1(K) = 1, because X takes values in numbers whose ternary expansion has no ones.
Further, for any t € K, X ~1{t} is a set with atmost two points and hence x{t} = 0. Thus x
has no atoms and must have a continuous CDF. Since u(K) = 1 but A\(K) = 0, we also see
that L A\
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Exercise 23: Alternate construction of Cantor measure

Write K = NK, as in the definition of the Cantor set. Let 4, be the uniform probability
measure on K, i.e., 1, (A) = (3/2)"A(AN K,,) for all A € Bg. Show that F}, s converge uni-
formly to a CDF F and that the measure having this CDF is the Cantor measure constructed

above.

Example 34: Bernoulli convolutions - a fun digression (omit if unclear!)

We generalize the previous example. For any a > 1, define X, : [0,1] - R by X, (w) =
S @ FBy(w). Let o = Ao X5 ! (did you check that X,, is measurable?). These measures
are called Bernoulli convolutions. For a = 3, this is almost the same as 1/3-Cantor measure,
except that we have left out the irrelevant factor of 2 (so u3 is a probability measure on
3K := {z/2: 2 € K}) and hence is singular. For a = 2, the map X, is identity, and hence
p2 is the Lebesgue measure on [0, 1], certainly absolutely continuous to Lebsegue measure.

What about the singularity and absolute continuity of 1, for other values of a?

Exercise 24

For any a > 2, show that i, is singular w.r.t. Lebesgue measure.

Hence, one might expect that 1, is absolutely continuous to Lebesgue measure for 1 < o <

2. This is false! Paul Erd6s showed that 1, is singular to Lebesgue measure whenever a is a

Pisot-Vijayaraghavan number, i.e., if o is an algebraic number all of whose conjugates have

modulus less than one!! It is an open question as to whether these are the only exceptions.

-

23.1. Hausdorff measures. Consider two Cantor type sets: A consisting of those numbers who

decimal expansion does not have the disgit 5 and B consisting of those numbers who decimal
expansion does not have any odd digit. Both have Lebesgue measure zero. Is there another
measure that can measure the sizes of these sets (one might feel that B is somehow smaller than
A, but in what sense?).

Let (X, d) be a compact metric space. Fix o« > 0 and define for any 4 C X,

H}(A) =inf {Z dia(By)“ : By, are open balls whose union covers A} .
n=1

It is easy to check that H}(A) < H}(B)if A C B and H}(U,A,) < >, H:(A,). Thus H} is
an outer measure H, and can be used to construct a measure on (X, Bx) (one must check many
things, for example that the Caratheodary construction gives a sigma algebra containing all Borel
sets). As it happens, for most «, the measure H,, turns out to be trivial. For example, if X = [0, 1],
then for any interval I, one can check that H,(I) = 0if « > 1 and H,(I) = coif &« < 1. For o = 1,

we get the Lebesgue measure.

57



For a general X, again there is always a value « such that for any open ball B we have H,(B) =
0if @ > ap and H,(B) = oo if o < ag. At @ = o, we may or may not get a meaningful measure.
If we do, then H,,, is called the Hausdorff measure on X. Whether H,, is trivial or not, the number
ay is called the Hausdorff dimension of X.

Let X = K, the middle-thirds Cantor set. Then oy = log2/log3 and H,, is precisely the

Cantor measure that we constructed earlier.

24. CONDITIONAL PROBABILITY AND EXPECTATION - A FIRST VIEW

So far (and for a few lectures next), we have seen how a rigorous framework for probability
theory is provided by measure theory. We have not yet touched the two most important concepts
in probability, independence and conditional probability. We shall see independence very shortly
but may not have time to study conditional probability in detail in this course. But one of the
important aspects of Kolmogorov’s axiomatization of probability using measure theory was to
define conditional probability using the Radon-Nikodym theorem. Here is a teaser for that story.

Let (2, 7, P) be a probability space. Let X be a random variable that takes finitely many values
ai,...,an with P{X = a;} > 0 for each k. Then, the law of total probability says that for any
AeF,

P(A) =) P(A| X = ap)P{X = a4}
k=1
where P(A | X =ai) = w. Now suppose X takes uncountably many values, for eg.,
X has density fx. Then, we would like to write

P(A) = /P(A | X =1t)fx(t)dt

where fx is the density of X and perhaps even generalize it to the case when X does not have
density as P(4) = [P(A | X = t)dux(t). The question is, what is P(4 | X = ¢)? The usual
definition makes no sense since P{X =t} = 0.

The way around is this. Fix A € F and set v4(I) = P{AN{X € I}} for I € Bg. Then v
is a Borel probability measure on as a measure on R. If ;i x is the distribution of X, then clearly
va < px (if px(I) = 0 then P{X € I} = 0 which clearly implies that v4(I) = 0). Hence, by the
Radon-Nikodym theorem, v4 has a density f(t) with respect to px. In other words,

P(AN{X € 1}) = /I Fa®)dpx ()

and in particular, P(A) = [; fa(t)dux(t). Then, we may define f4(t) as the conditional probability
of A given X = t! Note that f, is defined only almost everywhere, hence P(A | X =t) should

also be interpreted as being defined for almost every ¢ (w.r.t. px). This way, the intuitive notion
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of conditional probability is brought into the ambit of measure theoretical probability. We now
elaborate on this a bit.

Let P, Q be probability measures on (€2, 7). Assume that Q < P. Then there is a X €
LY(Q, F,P) such that

Q(A):/XdP forall A € F.
A

Now suppose G C F is a sub-sigma algebra. Let P’,Q’ be the restrictions of P,Q to G. It is
trivially the case that Q' <« P’. Hence, again by the Radon-Nikodym theorem, there is some
X' e LY(9,G,P’) such that Q'(A) = [, X'dP’ for all A € G. The last statement can also be written

as
Q(A) = / X'dP forall AcgG.
A

This X’ is not the same as X, because the latter need not be G-measurable.

Now start with any integrable random variable Y on (2, 7, P). Writing as Y. —Y_ and applying
the above steps to find Y, Y” (these are G-measurable and give the same integrals as Y., Y_ over
sets in G). Writing Y’ = Y| — Y/, we have shown that there is a G-measurable random variable Y’
such that

/YdP:/Y’dP forall A € G.
A A

This Y is called the conditional expectation of Y w.r.t. G and denoted E[Y | G].

Example 36

Again consider (€2, F,P) and a measurable partition {A;, ..., Ay} with P(4;) > 0 for all i.
LetG = o{A;,..., A;}. If Y is an integrable random variable (F-measurable), we compute
Y’ = E[Y | G]. Since Y’ is G-measurable, we can write Y' = a114, + ...+ ax14,. Equating
its integral over A; with that of Y, we arrive at ;P (4;) = f A Y dP. Thus,

Y’é(@ [ vee) .

The value of «; is what you would have seen in basic probability class as the expected value

of Y given A; (just restrict the probability measure to A; and renormalize by dividing by

P(A;). Then take expectation of Y w.r.t this new measure).

Example 37

Let X, Y be random variables on (2, 7, P), having a joint density f(z,y) on R. We want to
talk of E[Y | X = z|. For this, we take G = o(X), the sigma-algebra generated by X and
compute E[Y | G]. What are G-measurable random variables? They are precisely those of

the form ¢ (X) for some Borel measurable ¢ : R — R (why?). Let us simply write down the




formula and check that it works: Y’ = (X ) where
TTewd Jrvf (@ y)dy if g f,y)dy >0
0 if [y f(z,y)dy=0.

Clearly Y’ is G-measurable (since it is a function of X). Further, if we take a set of the form
A ={X <t} € G, then to complete

p(z) =

It may be confusing for the first time that what we call conditional expectation is a random
variable and not a number. But that is indeed the point. First we conceptualize an experiment
which tells us for each element of G, whether on

25. MEASURE DETERMINING CLASSES OF RANDOM VARIABLES

As we have emphasized before, events (when identified with their indicator functions) are a
special case of random variables. Thus, often to prove a statement about all integrable random
variables, we prove it first for indicators, then for simple functions, then for positive random
variables and finally for all integrable random variables.

The other direction can also be useful. To prove a statement about probabilities of events, we
generalize the statement to expectations of random variables, prove it for a suitable sub-class of
random variables, extend it to all integrable random variables and then specialize to indicators to
get the statement for probabilities of events! The reason this is useful is that there are sub-classes
of random variables that are sometimes easier than indicators to work with.

For example, if 1 is a Borel probability measure on R", the space of continuous functions on R",

or even smooth functions on R" are nice sub-classes of random variables in the following sense.

Proposition 35

The numbers E[f(X)] as f varies over Cj(R) determine the distribution of X. Equivalently,
if p,v € P(R) and E,[f] = E,[f] for all f € Cy(R), then p = v.

Proof. Given any z € R", we can recover F(z) = E[14,], where A, = (—00,z1] X ... X (—00, z,] as
follows. For any 6 > 0, let f(y) = min{1,6 'd(y, A 5,)}, where d is the L, metric on R". Then,
f € ChR), f(y) = 1ify € Ay, f(y) = 0if y & Appsz and 0 < f < 1. Therefore, F(x) < B[/ o X] <

F(x 4+ 01). Let ¢ | 0, invoke right continuity of F' to recover F(z). [

Much smaller sub-classes of functions are also sufficient to determine the distribution of X.

Suppose p, v are two Borel probability measures on R such that E,[f] = E,[f] for all f €

C*(R). Then p = v. Equivalently, the distribution of a random variable X is determined
by the numbers E[f(X)] as f varies over C2°(R).

60



Proof. Fix a < b. We claim that there exist f, € C°(R) such that f,(z) T 1(43)(z) for all z. In
particular, fo, T 1(4p) a.s.[u] and f,, T 1(q4) a.s.[v] (Caution: If we take the closed interval [a, b],
such f, may not exist). Hence, by MCT, we get E,[f,] T u(a,b) and E,[f,] T v(a,b). By the
hypothesis, E,[f.] = E,[f,] for all n and hence y(a,b) = v(a,b). This is true for all a < b and
therefore, 1 = v.

To show the existence of f,, as above, recall that the function

Ce /=) if |z < 1
g(x) :=

0 if |[z| > 1
defines a smooth function that vanishes outside (—1,1). We fix C so that g(-) is a probability
density and let G be the corresponding distribution function, i.e., G(z) = [*__ g(u)du. Clearly G
is smooth, G(z) = 0 for z < —1 and G(z) = 1 for x > +1. Then, G(n(z — a) — 1) vanishes for
z < a, equals 1 for z > a + 2. Finally, set f,,(z) = G(n(z — a) — 1)G(n(b — z) — 1) and check that
fn satisfies the given properties. n

26. MEAN, VARIANCE, MOMENTS

Expectations of certain functionals of random variables are important enough to have their own

names.

Definition 11

Let X be a r.v. Then, E[X] (if it exists) is called the mean or expected value of X. Var(X) :=
E [(X — EX)?] is called the variance of X, and its square root is called the standard deviation
of X. The standard deviation measures the spread in the values of X or one way of mea-
suring the uncertainty in predicting X. Another such measure, not very convenient to use,
is the mean absolute deviation E[|X — E[X]|]. For any p € N, if it exists, E[X?] is called the
pM-moment of X. The function v defined as 1()\) := E[e*X] is called the moment generating
function of X. Note that the m.g.f of a non-negative r.v. exists for all A\ < 0. It may or may
not exist for some A > 0 also. A similar looking object is the characteristic function of X, de-
fine by ¢(A) := E[e*¥] := E[cos(AX)] +iE[sin(AX)]. This exists for all A € R since bounded
random variables are integrable. All these quantities depend only on the distribution of X
and not on the details of the probability space on which X is defined.

For two random variables X, Y on the same probability space, we define their covariance to
be Cov(X,Y) := E[(X — EX)(Y — EY)] = E[XY] — E[X]E[Y]. The correlation coefficient

is measured by %. The correlation coefficient lies in [—1, 1] and measures the
ar ar

association between X and Y. A correlation of 1 implies X = aY + b a.s. for some a,b € R
with @ > 0 while a correlation of —1 implies X = aY + b a.s. with @ < 0. Like with
expectation and variance, covariance and correlation depend only on the joint distribution
of Xand Y.

-
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(1) Express the mean, variance, moments of X + b in terms of those for X.
(2) Show that Var(X) = E[X?] — E[X]?.

(8) Compute mean, variance and moments of the Normal, exponential and other distri-

butions defined in section 12.

-

Example 38: The exponential distribution

Let X ~ Exp(\). Then, E[X*] = [ 2*du(x) where y is the p.m on R with density Ae=** (for
x > 0). Thus, E[X k] = f ¥ he Mdr = ARk In particular, the mean is A~ L, the variance is
2272 - (A2 =22,

Example 39: Normal distribution

If X ~ N(0,1), check that the even moments are given by E[X?¥] = H§:1(2j —1).

Remark 13: Moment problem

Given a sequence of numbers (aj)r>0 , is there a p.m p on R whose kth moment is a2 If

S0, is it unique?

This is an extremely interesting question and its solution involves a rich interplay of sev-
eral aspects of classical analysis (orthogonal polynomials, tridiagonal matrices, functional
analysis, spectral theory etc). Note that there are are some non-trivial conditions for (ay) to
be the moment sequence of a probability measure p. For example, ag = 1, ag > of etc. In
the homework you were asked to show that ((+;)); j<n should be a positive semidefinite
matrix for every n. The non-trivial answer is that these conditions are also sufficient!

Note that like proposition 35, the uniqueness question is asking whether E[foX], as f varies
over the space of polynomials, is sufficient to determine the distribution of X. However,
uniqueness is not true in general. In other words, one can find two p.m p and v on R which

have the same sequence of moments!

27. PRODUCT MEASURES AND FUBINI’'S THEOREM

Given two probability spaces (€;, 5, P;), i = 1,2, the goal is to define a natural probability
measure on the Cartesian product ; x Q. First we decide a natural o-algebra on the product

space and then the measure.

Product o-algebra: Given two measurable spaces (€2, F1) and (s, F2), there are three natural

definitions of a o-algebra on 2 = Q; x Q.
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(1) The o-algebra R = 0{A x B: A € Fi, B € F,} generated b all “rectangles” (sets of the
form A x B).

(2) The o-algebra G = o{A x Qa, Q1 x B: A € F1, B € F2} generated by all “cylinder sets”
(sets of the form A x Q5 and Q1 x B).

(3) Define the projection maps II; : Q© — Q; by II; (z,y) = z and IIy(z, y) = y. Then define G’ =
o{Il;, 115} to be the smallest o-algebra on (2 for which these projections are measurable.

The first observation is that these definitions give the same c-algebra, which will be called the
product o-algebra. Since HII(A) = A x Qo for A € Fi and H;l(B) = O x Bfor B € F, it
immediately follows that G = G’. Next, as cylinders are rectangles, clearly G C R. But A x B =
(A x Q2) N (21 x B) and hence any rectangle is an intersection of two cylinders. Therefore, R C G
and thus R = G, showing equality of the three sigma algebras. This common sigma algebra is
called the product o-algebra and denoted F; ® F».

For later purpose, we make some observations.

(1) The set of all rectangles A x B with A € F; and B € F; forms a n-system. Indeed,
(Al X Bl) N (AQ X Bg) = (Al N AQ) X (Bl N Bg).

(2) (AxB)¢ = (A°xQ2)U(Ax B°). Hence, if A is the collection of all finite unions of rectangles,
then A is an algebra.

(3) A finite union of rectangles can be written as a finite union of pairwise disjoint rectangles.

Thus, A is also the collection of finite unions of pairwise disjoint rectangles.

For finitely many measurable spaces, (€2, F;), i < n, it is clear how to define the product sigma
algebra on €2 x ... x €,. You may take the definition analogous to any of the three definitions
given above and check that they agree. Alternately, you may also define it inductively (if n = 3,
define the product sigma algebra as (F; ® F2) ® F3) and see that it agrees with the other three
definitions (and hence also deduce the associativity property (F; ® F2) @ F3 = F1 ® (Fa ® F3)).

Product measure: Let (;, i, 1), 1 < i < n, be measure spaces. Let F = F; ® ... ® F,, be the
product sigma algebra on Q := Q; x ... x ,. A measure pon (2, F) such that u(A4; x ... x A,) =
[Ti-, ni(A;) whenever A; € F; is called a product measure and denoted 11 ® ... ® p, (the notation
is justified by the theorem below).

Theorem 37: Product measures

Product measure exists and is unique.

Proof. It suffices to take n = 2.
The uniqueness part is easy. By the discussion earlier, the collection of all cylinder sets (alter-
nately, rectangles) is a 7-system that generates 7 ® F». Since any two product measures agree on

rectangles, it follows that they must agree on F. Thus, product measure, if it exists, is unique.
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The existence of product measures follows along the lines of the Caratheodary construction us-
ing the algebra A defined earlier. If A =€ A, write A = Ry U ... U R,;, where R; = A; x B; are
rectangles and define 1(A) = 377" | p1(A;)p2(Bj). Two thmgs need to be checked. (1) The defini-
tion is valid (since there may be many ways to write A as a union of pairwise disjoint rectangles).
(2) v is countably additive on the algebra A.

We skip the details of checking5. Once that is done, by Caratheodary’s theorem, it follows that
1 extends to the product sigma algebra. |

Example 40

If Q; = Q3 = R with the Borel sigma algebra on them, then for 1, 2 € P(R), the product
measure is simply the measure on R? with CDF F(z,y) = F},, (z)F,,, (y). Indeed, F defined
like this is easily checked to be a valid CDF on R? and hence corresponds to a measure (but
if you see read the proof we gave of that fact, you will see that the proof is almost identical

to what is given here - construct the measure on an algebra and then extend it to the sigma

g algebra - including the details skipped!).

One theorem that we shall state and use is this.

Theorem 38: Fubini’s theorem

Let = p11 ® po be a product measure on Q; x 2 with the product o-algebra. If f : Q@ — R
is either a non-negative random variable or an integrable random variable w.r.t 11, then,
(1) For every x € €y, the function y — f(xz,y) is Fo-measurable and integrable with

respect to po for a.e.[p1] ©

(2) The function z — [ f(z,y)dus(y) is Fi-measurable (on the p;-measure zero set of =
where the integral is not well defined, define the integral to be 0 or in any measurable
way).

Further, in both these cases (f > 0 or f € L'(u1)), we have

/f e /fwyduz dyus ()

The same holds with the two co-ordmates mterchanged (i.e., youmay integrate with respect
to p1 and then with respect to p2).

Proof. Skipped. Attend measure theory class.

Here is a simple indication of how one may use this.

5You may consult Dudley’s book. We skip details because in the cases that we really need, eg., when Q; = R%, we

give a different proof later, even for countable products.
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Example 41

If A € Bge has zero Lebesgue measure in R?, then for a.e. x, the set A, = {y €
R: (z,y) € A} has zero Lebesgue measure in R. To see this, consider 14 and observe
that [, 14(z,y)d\(y) = A(A;). By Fubini’s theorem, [, A(A;)dA(z) = A2(A) = 0. Since
A(Az) > 0, it follows that A(A;) = 0 for a.e. x. That was precisely the claim.

Example 42

If X is a non-negative random variable with distribution function F, then E[X]| = [7°(1 —
F(t))dt. To see this, consider (€2, F,P) (on which X is defined) and take its product
with (R4, B,A). Let f(w,t) = 1x)s; Check that f is measurable in the product
space  x Ry. Observe that [, f(w,t)dP(w) = 1 — F(t) while [p f(w,t)dA(t) = X(w).
Use Fubini’s theorem to equate the two iterated integrals I fR+ f(w, t)d\(t)dP(w) and
fR Jo f(w, t)dP(w)dA(t) to get Ep[X] = [, (1 — F(t))dt.

28. INFINITE PRODUCTS

Now we want to consider a product of infinitely many probability spaces.

Product o-algebra: Let I be an arbitrary index set and let (€;, F;), ¢ € I be measurable spaces. Let

Q = X;er82;. Again, we have three options for a o-algebra on (2.

(1) A rectangle is a set of the form x;c;A; where A; € F; for each i € I. Let R be the o-algebra
generated by all rectangles.

(2) A cylinder set is a set of the form {w € Q:w;, € A;,...,w;, € A,} for some n > 1, some
i1,...,ip € Tand Ay € F;y,..., Ay € Fi,. Let C denote the collection of all cylinder sets
and letG = o(C).

(3) Define the projection maps II; :  — €; by IL;((x;)ier) = x;. Then define ¢’ = o{Il; : i € I}
to be the smallest o-algebra on 2 for which all these projections are measurable.
Again, G = G'. Indeed, the cylinder set {w € Q:w;, € A;,...,w;, € A,} is precisely II (Al)
NI '(A,). This shows that cylinders are in G’ and that II; are measurable with respect to G.
Consequently, G = G’ and we shall refer to it as the product o-algebra (or cylinder o-algebra).
However, G and R are not necessarily the same. If I is countable, then the equality is true but
not in general if I is uncountable. Let us see why. First of all, cylinders are rectangles and hence
G C R. It is the other way inclusion that we should worry about.
Suppose I is countable, without loss of generality I = N. Then any rectangle x; A; can be written
as the countable intersection N, B, where B,, = A; x ... X Ap X Qp41 X Qpqo. .. is a cylinder set.
This shows that x;A4; is in G and hence R C G. Thus, when [ is countable, R = G. To understand

what happens in general, we make the following claim.
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Every set in the cylinder o-algebra is determined by countably many co-ordinates. That is,

if A € G, then there exists a countable set J C I such that A € o{II; : j € J}.

Proof. Let G be the collection of all A € G that are determined by countably many co-ordinates. If
A e o{llj:je J}then A° € o{ll; : j € J}. Further, if A, € o{Il; : j € J,} for some countable
sets J, C I, then U, A,, € o{ll; :j € U,J,}. Lastly, 0 € G. Thus, G is a o-algebra. Obviously G

contains all cylinder sets and therefore it follows that Q = G, proving the claim. [ |

As a corollary, if I is uncountable and A; are proper subsets of €2; (possible if 2; contain at least
two points each!), then the rectangle x;c;A; is not in the cylinder o-algebra. Thus, whenever €;
are not singletons, then the two sigma algebras necessarily differ.

Now that we understand the difference between the two o-algebras, in the uncountable prod-
uct, should we consider R or G? We shall always consider the cylinder o-algebra G which will
henceforth be denoted ®;c7F;. We state two reasons. (1) The o-algebra R turns out to be too big
to support any useful probability measures (just as the power set o-algebra on R is too big). (2) In
the case when (; are metric spaces (or topological spaces) and F; = Bgq,, then G is exactly the Borel
o-algebra on 2 endowed with the product topology. Actually the second reason merely motivates
you to brush up the definition of product topology and then you wonder why the product topol-

ogy was defined that way (why not say that x;A; is open if each A; is open in ;)? The reason is

similar to the first, that is, such a topology is too big to be interesting!

Show the statement claimed above, that the product o-algebra on a product of topologi-
cal spaces is the Borel o-algebra of the product topology. [Note: If you are not familiar
with general topological spaces, do this exercise for countable products of metric spaces.

Uncountable products of metric spaces are usually not metrizable, hence the suggestion to

restrict to countable products.]

Despite all this discussion, we shall consider only countable products in this course. That suf-
tices to cover all cases of interest in probability theory! Recall that in this case, the sigma algebras

R and G coincide.

Product measure: Let (£2;, F;, i1;) be probability spaces indexed by i € I. Let = x;c1€2; endowed
with the product o-algebra F = ®;c;F;. A probability measure ; on F is called a product measure
of p;s if for any cylinder set of the form A = {w € Q:w;, € A;,...,w;, € Ay} we have p(A4) =

fiy (A1)« o i, (An).

n
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Theorem 40: Existence and uniqueness of product measure

For any product of probability spaces, the product measure exists and is unique.

Proof. We can follow the same proof as in the case of finite products. The set of cylinders C is a
m-system and the collection A of finite unions of pairwise disjoint subsets of C is an algebra. On
A define the measure in the only natural way, and check that it is well-defined and countably ad-
ditive (on the algebra). Invoke Caratheodary to conclude that the measure extends to the product
sigma algebra. Uniqueness is trivial by the m — A theorem (since any two product measures agree
on cylinder sets). n

The reason we have skipped details and given a sketchy proof is that shortly we shall give a
different proof in cases of interest. More precisely, we shall take / to be countable, each §; to be R¢
for some d;, the sigma algebras to be Bg, and ; to be Borel probability measures. In this situation,
we shall show that existence of the product measure ®y; by realizing it as the push-forward of

Lebesgue measure under a suitable 7" : [0, 1] — ©Q = x;;. The theorem is as follows.

Theorem 41

Let ©; = R% for i € N and let j; € P(R%) (on the Borel sigma algebra). Then, the product

measure /1 = ®;cn i eXists on Q := x;(); endowed with the product sigma algebra.

Although the situation described in Theorem 41 covers all cases of actual interest to probabilists,
there is some value in the more general theorem Theorem 40. Most importantly, it clarifies that no
special properties of R (either as a topological space or any other structure it has) are necessary
to construct product measures.

29. INDEPENDENCE

Definition 12: Independence

Let (2, 7, P) be a probability space.
» Let Gy, ..., G be sub-sigma algebras of 7. We say that §; are independent if for every
AL €Gy,...,Ar € Gy, wehave P(A; NAan...NAg) =P(A1)...P(Ag).
» Random variables X7, ..., X,, on F are said to be independent if o(X1),...,0(Xy)
are independent.
» An arbitrary collection of o-algebras G;, i € I, (each G; contained in F) are said to be

independent if every finite sub-collection of them is independent. Same applies for

random variables.

-

How does this compare with the definitions we have seen in basic probability class?

e Since 0(X) = {X1(A4): A € Bg} for a real-valued random variable X, the definition

above is equivalent to saying that P (X; € A;i < k) = Hle P(X; € A;) forany A; € B(R).
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The same definition can be made for random variables X; taking values in some metric
space (A;, d;), but then A; must be a Borel subset of A;.

e Events Ay,..., Aj aresaid tobeindependentif 14 ,...,1,, areindependent. This is equiv-
alent to either of the following sets of 2" conditions:
1) P(Aj1 ﬁ...ﬁAjZ) :P(Aj )P(AM) foranyl <hn<p<...<jpu<lk

) P(AFNAFN...nAY) =] P(Af) where we use the notation At = Aand A~ = A°.
k=1
The second is clear, since o(Aj) = {0,9, Ay, A7}. The equivalence of the first and second

is an exercise.
Some remarks are in order.

(1) Independence is defined with respect to a fixed probability measure P.

(2) It would be convenient if we need check the condition in the definition only for a suffi-
ciently large class of sets. However, if G; = 0(5;), and for every A; € Si,..., A; € Sy if we
have P(A1NAsN...NA;) =P(A1)...P(Ag), we cannot conclude that G; are independent!
If S; are m-systems, this is indeed true (see below).

(3) Checking pairwise independence is insufficient to guarantee independence. For example,
suppose X1, Xy, X3 are independent and P(X; = +1) = P(X; = —1) = 1/2. Let Y] =
X0X3,Ys = X1 X3and Y3 = X1 Xs. Then, Y; are pairwise independent but not independent.

et (2, F,P) be a probability space. Assume that G; = o(5;) C F, that S; is a m-system and

that Q € S; foreachi < k. If forevery A; € Si,...,A; € Spif wehave P(A;NAzN...NAL) =
P(A;)...P(Ag), then G; are independent.

Proof. Fix Ay € Sa,..., A € Spandset F; := {B € G, : P(BNAaN...NA;) = P(B)P(Az)...P(4x)}.
Then F; O S by assumption. We claim that 77 is a A-system. Assuming that, by the 7-\ theorem,
it follows that 7; = G; and we get the assumptions of the lemma for G;, Ss, ..., Si. Repeating the
argument for Sy, S5 etc., we get independence of Gy, ..., Gj.

To prove that F; is a A system is straightforward. If B, T B and B,, € Fi, then B € F and
P(B,NAyN...NA4) 1 P(BNAyN...NA4) and P(B,) [Ti_, P(4;) 1 P(B) [T;_, P(4;). Hence
B € F;. Similarly, check that if B; C B and both are in 7, then By \ By € F;. Lastly, Q2 € S C F;
by assumption. Thus, F; is a A-system. [ |

If Ay,..., Ay are events, then G; = {0, 4;, A, Q} is generated by the m-system S; = {4;}.

However, checking the independence condition for the generating set (which is just one
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equation P(4;N...NAg) = H;‘f:l P(A;)) does not imply independence of A, ..., A;. This
shows that the condition that S; should contain €2 is not redundant in the above Lemma!

Corollary 43

(1) Random variables X7, ..., X}, are independent if and only if for every ¢1,...¢, € R
wehave P (X1 <ty,..., X <tp) = [[\_, P(X; < t)).

(2) Suppose G, a € I are independent. Let I, ..., I} be pairwise disjoint subsets of I.
Then, the o-algebras F; = o (Uae 7 ga) are independent.

®) If X; 4,7 < n,j <n, are independent, then for any Borel measurable f; : R" — R,
ther.vs fi(Xi1,...,X;n,) are also independent.

Proof. (1) The sets (—oo, ] form a 7-system that generates B(R) and hence S; := { X, (—o0,t] : t €
R} is a m-system that generates o(Xj;).

(2) For j < k, let S be the collection of finite intersections of sets A;, i € I;. Then §; are

n-systems and o(S;) = F;.

(3) Infer (3) from (2) by considering G; ; := o(X; ;) and observing that f;(X;1,...,X;%) €
U(gi71 U ng,nb) [ |

So far, we stated conditions for independence in terms of probabilities of events. As usual, they

generalize to conditions in terms of expectations of random variables.

(1) Sigma algebras Gy, ..., G are independent if and only if for every G;-measurable,
bounded random variable X;, for 1 < i < k, we have E[X; ... X] = Hle E[X;].

(2) In particular, random variables Zi, ..., Z (Z; is an n; dimensional random vector)
are independent if and only if E[]_[f':1 fi(Zy)] = Hle E[fi(Z;)] for any bounded
Borel measurable functions f; : R™ — R.

\

We say ‘bounded measurable’ just to ensure that expectations exist. The proof goes inductively
by fixing X, ..., X} and then letting X be a simple r.v., a non-negative r.v. and a general bounded

measurable r.v.

Proof. (1) Suppose G; are independent. If X; are G; measurable then it is clear that X; are

independent and hence P(X1,...,X;) ™! = PX;'®...® PX, !. Denote y1; := PX; ! and
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apply Fubini’s theorem (and change of variables) to get

k
E[X; ... Xk ey /Rkaid(/,u®...®Mk)(w1,...,l’k)
=1
k
Féb/R.../R;l:[ll’idul(xl)...duk(wk)
k
-1I [ ity [[exi)

Conversely, if E[X; ... X;] = [["_, E[X;] for all G;-measurable functions X;s, then applying
to indicators of events A; € G; we see the independence of the og-algebras G;.

(2) The second claim follows from the first by setting G; := ¢(Z;) and observing that a random
variable X is o(Z;)-measurable if and only if (see remark following the proof) X = f o Z;
for some Borel measurable f : R™ — R. |

Remark 15

We stated a fact that if X is a real-valued random variable and Y € ¢(X), then Y = f(X)
for some f : R — R that is Borel measurable. Why is that so?

If X(w) = X(«), then it is clear that any set A € o(X) either contains both w,w’ or ex-
cludes both (this was an exercise). Consequently, we must have Y (w) = Y (w’) (otherwise,
if Y(w) < a < Y(w') for some a € R, then the set Y < a could not be in o(X), as it contains
w but not w’). This shows that Y = f(X) for some function f : R — R. But why is f
measurable? Indeed, one should worry a little, because the correct statement is not that f is
measurable, but that f may be chosen to be measurable. For example, if X is the constant 0
and Y is the constant 1, then all we know is f(0) = 1. We shall have Y = f(X) however we
define f on R \ {0} (in particular, we may make f non-measurable!).

One way out is to use the fact that the claim is true for simple random variables and that
every random variable can be written as a pointwise limit of simple random variables (see
exercise below). Consequently, Y = limY,,, where Y, is a o(X )-measurable simple random

variable and hence Y;, = f,,(X) for some Borel measurable f,, : R — R. Let f = limsup f,,

also Borel measurable. ButY = f(X).

Let (2, 7, P) be a probability space. Then every random variable on €2 is a pointwise limit

of simple random variables.
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30. INDEPENDENT SEQUENCES OF RANDOM VARIABLES

First we make the observation that product measures and independence are closely related
concepts. Indeed, if X;,..., X} are random variables on a common probability space, then the

following statements are equivalent.

(1) Xy,...,X, are independent.
2) fX =(X1,...,Xp), thenPo X 1is the product measure PXl_1 Q...® PXk_l.

To see this, use the definition of independence and of product measure. The same holds for infinite
collections of random variables too. That is, if X;, « € I are random variables on a common
probability space, then they are independent if and only if P o X! = ®;c/P o X; !, where X :
Q — R! is defined as [X (w)](i) = X;(w). Of course, the sigma-algebra on R’ is the product of
Borel sigma algebras on the real line.

Theorem 40 asserts the existence of the product probability measure on the product of any given
collection of probability spaces. We sketched the proof, which is via Caratheodary’s method of
constructing a measure on the algebra of cylinder sets and then extending it to the product sigma
algebra. We skipped checking that the measure defined on the algebra was countably additive, a
key point in the construction.

In this section, we restrict to countable products of (R, Bg, 1;) and show the existence of the
product measure in a different way. This proof easily extends to the product of (R%, Bya, , ;)
or even of (9;, F;, j1;) provided each p; is the push-forward of A (Lebesgue measure on [0, 1]).
However, we shall do this in the language of random variables rather than measures, something
one must get used to in probability theory. To do that, we observe that the following questions are

equivalent.

(1) Question 1: Given p; € P(R), i > 1, does there exist a probability space with independent

random variables X; having distributions /;?

(2) Question 2: Given y; € P(R), i > 1, does there exist a p.m p on (R*>, B(R*°)) such that
p(Ar X ... x Ay x Rx R x ...) =[] 1i(A4;)? In other words, does the product measure

exist?

The equivalence is easy to see. Suppose we answer the first question by finding an (€2, 7, P)
with independent random variables X; : Q2 — R such that X; ~ p; for all <. Then, X :  — R*
defined by X (w) = (X1(w), X2(w),...) is measurable w.r.t the relevant o-algebras (why?). Then,
let ;1 := PX ! be the pushforward p.m on R*®. Clearly

WAL X . X A XRXxRx..)=P (X3 € Ay,..., X, € Ap)

=[IP(Xi € A) =[] mi(4).
=1 =1

Thus p is the product measure required by the second question.
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Conversely, if we could construct the product measure on (R*, B(R*°)), then we could take
Q =R>, F = B(R*) and X; = II;, the ;th co-ordinate random variable. Then you may check that
they satisfy the requirements of the first question.

The two questions are thus equivalent, but what is the answer?! It is ‘yes’, of course or we

would not make heavy weather about it.

Proposition 45: [Daniell, Kolmogorov]

Let pu; € P(R), ¢ > 1, be Borel p.m on R. Then, there exist a probability space with indepen-

dent random variables X1, Xo, ... such that X; ~ ;.

Proof. We arrive at the construction in three stages.

(1) Independent Bernoullis: On the probability space ((0, 1), B, A), consider the random vari-
ables X : (0,1) — R, where X (w) is defined to be the i th digit in the binary expansion
of w (see Section 11 for convention regarding binary expansion). Then by an earlier home-
work exercise, X1, X», ... are independent Bernoulli(1/2) random variables.

(2) Independent uniforms: Note that as a consequence®

ii.d. Ber(1/2) variables, then U := )7, 27"Y}, has uniform distribution on [0, 1]. Consider
again the canonical probability space and the r.v. X;, and set Uy := X;/2+ X3/ 224+ X5/23+
ooy Uy = Xo/2+ Xg/22 +...,Us = X4/2+ X12/22 + ... etc. (inshort, let g : N x N — N be
an injection and define Yj, = > 22, Xyk,5)277). Clearly, U; are i.i.d. Unif{0, 1].

, on any probability space, if Y; are

(3) Arbitrary distributions: For a p.m. p, recall the left-continuous inverse G, that had the
property that G, (U) ~ pif U ~ UJ0,1]. Suppose we are given p.m.s fi1, it2,.... On the
canonical probability space, let U; be i.i.d uniforms constructed as before. Define X; :=
G, (U;). Then, X; are independent and X; ~ ;. Thus we have constructed an independent
sequence of random variables having the specified distributions. u

This proof does not work for uncountable products. However, it does work for a countable
product of (€, F;, p;), provided each p; is a pushforward of Lebesgue measure, that is, p; =
Po Tfl for some 7j : [0, 1] — ;. The only change needed is to set X; = T;(U;) (instead of G ,, (U;))
in the last step. As we know, all Borel probability measures on R? are push-forwards of Lebesgue
measure and hence, the above proof works if 2; = R% and pu; € P(Rdi). The following exercise

(not trivial!) shows that it is not possible to get uncountable products in this way.

®Let us be pedantic and show this: Suppose Y; are independent Bernoullis on (2, 7,P) and T' = (Y1,Y2,...) :
Q — {0,1}>°. Then u := P o T~ " is the product Bernoulli measure on {0,1}*°. Let V : {0,1}> — R be defined as
V(z) = 3, #x27" so that (V o T)(w) is precisely 3", Yi(w)2™", the random variable that we want. By the reasoning
in Lemma 31, we see that P o (V o T)~' = po V~'. This shows that the distribution of 3", Y27* does not depend on
the original probability space. But for X}, as before, we get >, X2~ * has uniform([0, 1]) distribution, hence the same
holds on any probability space. Again, we emphasize the unimportance of the original probability space, what matters

is the joint distribution of the random variables that we are interested in.
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Exercise 28

Show that there do not exist uncountably many independent, non-constant random vari-

ables on ([0, 1], B, \). Deduce that the measure ®,cgBer(1/2) on {0, 1}® with the product
sigma-algebra, cannot be realized as the push-forward of Lebesgue measure.

A generalization of the previous theorem that is actually useful is to go beyond independence.
To motivate it, consider the following question. Given three Borel probability measures y;, i <
3, does there exist a probability space and three random variables X; such that X; ~ u;? The
answer is trivially yes, for example we can take three independent random variables having the
distribution yi;. Alternately, we may take one uniform random variable and set X; = G, (U) (then
X; won’t be independent).

Having disposed the easy question, what if we specify three Borel probability measures v; on
R? and want (X1, X3) ~ vy, (X2, X3) ~ vp and (X1, X3) ~ v3? Is it possible to find such random
variables? If the first marginal of vy and the first marginal of 3 do not agree, then it is not possible
(because then we have two distinct specifications for the distribution of X;!). This is because
our specifications were internally inconsistent. The following theorem of Kolmogorov asserts
that this is the only obstacle in constructing random variables with specified finite dimensional

distributions.

Theorem 46: Kolmogorov’s consistency theorem

Foreachn > 1and each 1 <4y < iy < ... < iy, let y;, .. ;, be a Borel p.m on R"™. Then the

following are equivalent.

(1) There exists a unique probability measure z on (RY, B(RY)) such that y o H;l . =

yeeln

iy,...in fOrany i; <is < ... < i, and any n > 1.
(2) The given family of probability measures satisfy the consistency condition

Mi17~-~7in (B X R) = Hilw-ain—l (B)

forany B € B(R" 1) and for any i1 < i < ... <ipand any n > 1.

\_

The importance of this theorem comes from having to construct dependent random variables
such as Markov chains with given transition probabilities. It also serves as a starting point for

even more subtle questions such as constructing stochastic processes such as Brownian motion.
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