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1. DISCRETE PROBABILITY SPACE

“Random experiment” is a non-mathematical term used to describe physical situations with

unpredictable outcomes, for instance, “toss a fair coin and observe which side comes up”. Can we

give a precise mathematical meaning to such a statement? Consider an example.

Example 1

“Draw a random integer from 1 to 100. What is the chance that it is a prime number?”

Mathematically, we just mean the following. Let Ω = {1, 2 . . . , 100}, and for each ω ∈ Ω,

we set pω = 1
100 . Subsets A ⊆ Ω are called “events” and for each subset we define P(A) =∑

ω∈A pω. In particular, if A = {2, 3, . . . , 97} is the set of all prime numbers in Ω, then we

get P(A) = 1
4 .

Whenever there is a random experiment with finitely many or countably many possible out-

comes, we can do the same. More precisely, we write Ω for the set of all possible outcomes, and

assign the elementary probability pω for each ω ∈ Ω (in mathematics, we just assume that these

numbers are somehow given. In real life, they will be given by experiments, symmetry consider-

ations etc.). For example,

I Toss a fair coin n times. Here Ω = {0, 1}n (with the identification that 1 is head and 0 is

tail) and pω = 2−n for all ω ∈ Ω. If A = {ω ∈ Ω : ω1 + . . .+ ωn = k}, then P(A) = 2−n
(
n
k

)
.

I Place r balls in n bins at random. Here Ω is the set of r-tuples with entries from [n] :=

{1, 2, . . . , n} and pω = 1
nr for each ω ∈ Ω.

I Shuffle a deck of n cards. Here Ω is the set of permutations of [n] and pω = 1
n! for each

ω ∈ Ω.

I Throw a biased die n times. Here Ω = {ω = (i1, i2, . . . , in) : 1 ≤ ik ≤ 6 for k ≤ n} is

the set of n-tuples with entries from 1, 2, . . . , 6. A reasonable assignment of elementary

probabilities is pω = αi1αi2 . . . αin if ω = (i1, . . . , in). Here α1, . . . , α6 are positive numbers

that add up to 1 (and capture the bias in the die).

To conclude, let us make (or recall) a definition.

Definition 1: Discrete probability space

A discrete probability space is a pair (Ω, p) where Ω is a finite or countable set and p : Ω→ R+

is a function such that
∑

ω∈Ω pω = 1. For a subset A ⊆ Ω, define P(A) =
∑

ω∈A pω.
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The only mathematical sophistication needed to understand this definition is the notion of

countable sums (convergence, divergence, absolute convergence etc). This we have learned in

real analysis class.

Finally, our discussion above may be summarized by saying that the framework of discrete

probability spaces captures mathematically the notion of a random experiment with finitely many

or countably many possible outcomes. All that is left for a probabilist to do is to take an “inter-

esting” probability space (Ω, p), an “interesting” subset A ⊆ Ω, and actually calculate (or approxi-

mately calculate) P(A). This does not mean it is easy, as the following examples illustrate.

Example 2: Self-avoiding walk

Fix n ≥ 1 and let Ω be the set of all self-avoiding paths on length n in Z2 starting from (0, 0).

That is,

Ω = {(x0, . . . , xn) : x0 = (0, 0), xi − xi−1 ∈ {(±1, 0), (0,±1)} for i ≤ n and xi 6= xj for i 6= j}.

Let pω = 1
#Ω . One interesting event is A = {(x0, . . . , xn) : ‖ωn‖ < n0.6}. Far from finding

P(A), it has not been proved whether for large n, the value P(A) is close to zero or one! If

you solve this, click here.

Example 3: Random matrix

Let Ω = {An×n : A = (ai,j)1≤i,j≤n, ai,j = 0 or 1} with pω = 2−n
2

for all ω ∈ Ω. Let S

be the subset of all singular matrices with zero-one entries. What is P(S)? This is a very

difficult problem in the field of random matrix theory. Partial solutions were achieved by

many leading mathematicians before it was solved in 2018 (not an exact solution, but it was

shown that asymptotically P(A) ≈ 2−n in an appropriate sense).

Example 4: Percolation

Take the same probability space as in the previous example. Define a path to mean a se-

quence of indices (i1, j1), . . . , (im, jm) (for some m) such that i1 = j1 = 1, im = n and

(ik+1, jk+1) − (ik, jk) ∈ {(1, 0), (−1, 0), (0, 1), (0,−1)} for all 1 ≤ k ≤ m − 1. Let S be the

subset of An×n for which there is some path for which aik,jk = 1 for all k. Finding the

probability of S as n→∞ is an important open problem in a sub-field of probability called

percolation theory (to be precise, what the answer ought to be is known, proving it is the

difficult thing).
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Section summary: Random experiments with finite or countably many possible outcomes are

adequately modeled mathematically by the notion of a discrete probability space (Ω, p). While

calculating probabilities of events may lead to enormous difficulties, the set up itself is mathemat-

ically very simple. In short, we know what we are talking about. In the next section we see the

difficulties of dealing with uncountable probability spaces.

A guide for the reader familiar with measure theory: If your measure theory knowledge is good,

many sections that follow may be skipped or skimmed. Read the axioms of probability in Section 3

and then jump to Section 28 on infinite product spaces, which is where probability ceases to be a

branch of general measure theory and becomes a richer subject. There is also material in earlier

sections that are usually not covered in measure theory courses. In particular, weak convergence

of probability measures in sections 13 and 14 (which will be needed soon), conditional probability

in section 24 (which will be needed much later). In addition, to think like a probabilist, one must

learn the language of random variables (section 8) and be familiar with the commonly occurring

probability distributions (section 12) and have facility with manipulating random variables and

their distributions (section 21). Much of the rest is covered in measure theory courses, but it is

worth noting certain special features of finite probability spaces (e.g., L2 ⊆ L1).

2. UNCOUNTABLE PROBABILITY SPACES?

We want to see how to model random experiments with uncountably many possible outcomes.

Start with an example.

Example 5: Break a stick at random

If we idealize the stick to a straight line segment, perhaps a way to make mathematical

sense of where it breaks is to pick a point at random from the unit interval. Although it

does not sound all that different from picking a number at random from {1, 2, . . . , 100},
making sense of this experiment will lead us into very deep waters!

What is so difficult about this? Let us try to imitate what we did before and set Ω = [0, 1],

the set of all possible outcomes. What about probabilities? For example, if A = [0.1, 0.3],

then it is clear that we want to say that the probability P(A) = 0.2. Similarly, if A = {0.3}
or any other singleton, we must assign P(A) = 0.

But then, what is the basis for saying P{[0.1, 0.3]} = 0.2? Surely, “P{[0.1, 0.3]} =∑
ω∈[0.1,0.3] pω” makes no sense?! Since singletons have zero probability, how do we add

uncountably many zeros and get a positive number?! Further, what about weird sets, like

the set of rational points, the Cantor set, etc? What are their probabilities? You might say
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that P(A) is the length of A for any subset A, but that is not an answer since you have

merely replaced the word “probability” by another word “length” (that is, you still have no

answer to the question of what is the length of the Cantor set or other weird sets).

Let us mention one other experiment that requires uncountable probability spaces.

Example 6: Toss a fair coin infinitely many times

Here the set of possible outcomes is the uncountable set {0, 1}N = {0, 1}×{0, 1}×{0, 1}×. . ..
Just as in the case of stick-breaking, there are certain events for which we have no doubt

what the probability ought to be. For example, if A is the event that “the first three tosses

are heads and the next two are tails”, then we have no doubt that the probability must be

2−5.

But again, is this an assumption or a deducible fact? The problem is that any singleton

in Ω must have zero probability and summing uncountably many zeros to get 2−5 sounds

suspicious. Further, there are more complicated events for which it is not clear how to

find the probability. For example, events such as “there are infinitely many heads in the

sequence” or “after any number of tosses, the number of heads is more than the number of

tails” or “for any n, there are at least n heads in the first n2 tosses”, etc.

One can give any number of other examples, for example, “throw a dart at a dart-board”. But it

is enough to keep in mind either the stick breaking example or the coin tossing example. These

will turn out to be equivalent. In fact, we shall see later that once we understand one of these

examples, we will have understood all uncountable probability spaces! This is true in a precise

mathematical sense.

To give a foretaste of how the issues raised in the above examples will be resolved: We shall

give up the idea that every subset of the sample space can be assigned probability! Secondly,

probabilities of certain (simple) events will be assumed and probabilities of more complicated

events will be computed using them. Before coming to this, let us see why such a drastic change

of our notions is necessary.

An attempt to fix the issue: Let us stick to the example of drawing a number at random from the

interval [0, 1] and explain, in a more mathematical manner, the difficulties we run into. We outline

a possible approach and see where it runs into difficulties.

Let us define the probability of any set A ⊆ [0, 1] to be the length of that set. We understand the

length of an interval, but what is the length of the set of rational numbers? irrational numbers?
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Cantor set? A seemingly reasonable idea is to define

P∗(A) = inf

{ ∞∑
k=1

|Ik| : each Ik is an interval and {Ik} a countable cover for A

}
.

and call it the length of A. Then of course, we shall also say that P∗(A) is the probability of A

(in the language of the random experiment, the probability that the chosen random number falls

in A). Then perhaps, P∗(A) should be the probability of A for every subset A ⊆ [0, 1]. This is at

least reasonable in that P∗([a, b]) = b − a for any [a, b] ⊆ [0, 1] (Exercise! This needs proof!). One

example of how to compute P∗(A).

Example 7

Let A = Q ∩ [0, 1]. Then, we can enumerate A as {r1, r2, . . .}. Fix ε > 0 and let Ik =

[rk − ε2−k, rk + ε2−k] so that A ⊆ ∪kIk. Further,
∑

k |Ik| = 2ε. Since ε is arbitrary, this

shows that P∗(A) = 0. This is a reasonable answer we might have expected. In fact, for any

countable set A ⊆ [0, 1], the same argument shows that P∗(A) = 0.

However, we face an unexpected problem. The following fact is not obvious and we do not

give a proof now.

Fact 1: Outer measure is not finitely additive

There exists a subset A ⊆ [0, 1] such that P∗(A) = 1 and P∗(A
c) = 1.

This fact implies that P∗ cannot be accepted as a reasonable definition of probability, since it

violates one of the basic requirements of probability (or of length), that P∗(A ∪ Ac) be equal to

P∗(A) + P∗(A
c)! This approach appears to be doomed to failure.

You may object that our definition of P∗ was arbitrary, and that perhaps a different definition

will not run into such absurdities? Before tackling that question, let us be clear about what all

properties we want probabilities to satisfy.

We shall certainly want P(A∪B) = P(A)+P(B) ifA andB are pairwise disjoint subsets of [0, 1]

(this is called finite additivity). But in fact, we shall demand more, that P(∪∞n=1An) =
∑

nP(An) if

An are pairwise disjoint subsets of [0, 1]. This last requirement is called countable additivity and it

is not clear why we should ask for it. Honestly, I have no justification to give at this point, except

that the accumulated wisdom of mathematicians for about a hundred years has accepted it.

Given these requirements, we run into a serious roadblock.
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Result 2

There does not exista any function f : 2[0,1] → [0, 1] such that f is countably additive and

f([a, b]) = b− a for all [a, b] ⊆ [0, 1].

aThis result is also not easy to prove. Take it for a fact. For those who are extra curious, here is a bizarre fact:

It is possible to find f : 2[0,1] → [0, 1] such that f(I) = |I| for any interval I and such that f is finitely additive.

However, there does not exist such a finitely additive f : 2[0,1]3 → R satisfying f(I1 × I2 × I3) = |I1| · |I2| · |I3|.

In other words, if you want to be a finitely additive probabilist, you may drop countable additivity and happily

talk about picking a number at random from an interval, or throw a dart at a board, but not pick a point at

random from a cube in three dimensions! Altogether, countable additivity restricts, but leads to a far richer

theory within those restrictions.

This means that not only P∗, but any other way you try to define probabilities of subsets of [0, 1]

(in such a way that f(I) = |I| for intervals), is bound to violate countable additivity and hence, not

acceptable to us. This ends our discussion of why we don’t know what we are talking about when

we said “draw a number at random from [0, 1]”. From the next section, we see how this problem can

be overcome if we give up our desire to assign probabilities to all subsets.

Section summary: We outlined the various difficulties encountered in giving a mathematical

framework for uncountable probability spaces, in particular for the random experiment of break-

ing a stick at random.

3. SIGMA ALGEBRAS AND THE AXIOMS OF PROBABILITY

Now we define the setting of probability in abstract and then return to the earlier examples and

show how the new framework takes care of the difficulties we discussed.

Definition 2: Probability space

A probability space is a triple (Ω,F ,P) where

(1) The sample space Ω is an arbitrary non-empty set.

(2) The σ-field or σ-algebra F is a set of subsets of Ω such that (i) ∅,Ω ∈ F , (ii) if A ∈ F ,

then Ac ∈ F , (iii) if An ∈ F for n = 1, 2 . . ., then ∪An ∈ F . In words, F is closed

under complementation and under countable unions, and contains the empty set.

Elements of F are called measurable sets or events.

(3) A probability measure is any function P : F → [0, 1] is such that if An ∈ F and

are pairwise disjoint, then P(∪An) =
∑

P(An) (countable additivity) and such that

P(Ω) = 1. P(A) is called the probability of A.
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By definition, we talk of probabilities only of measurable sets. It is meaningless to ask for the

probability of a subset of Ω that is not measurable. Typically, the sigma-algebra will be smaller

than the power set of Ω, but large enough to include all sets of interest to us. Restricting the class

of sets for which we assign probability is the key idea that will resolve the difficulties we were

having with the examples of stick-breaking or infinitely many coin tosses.

The σ-field is closed under many set operations and the usual rules of probability also hold. If

one allows P to take values in [0,∞] and drops the condition P(Ω) = 1, then it is just called a

measure. Measures have the same basic properties as probability measures, but probabilistically

crucial concepts of independence and conditional probabilities (to come later) don’t carry over to gen-

eral measures. Those two concepts are mainly what make probability theory much richer than

general measure theory.

Example 8

Let Ω be any non-empty set. Then F = 2Ω (collection of all subsets of Ω) is a σ-algebra. The

smallest σ-algebra of subsets of Ω is G = {∅,Ω}.
To give an example of a σ-algebra between the two, let Ω = R (ar any uncountable set)

and define F ′ = {A ⊆ Ω : A or Ac is countable}. Check that F is a σ-algebra. If we define

P(A) = 0 if A is countable and P(A) = 1 if Ac is countable, then P defines a probability

measure on (Ω,F ′) (check!).

Some examples of probability spaces. Our new framework better include the old one of discrete

probability spaces. Indeed it does, and in that special case, we may also take the sigma-algebra of

all subsets of the sample space. This is explained in the following example.

Example 9

Let Ω be a finite or countable set. Let F be the collection of all subsets of Ω. Then F is a

σ-field. Given a function p : Ω → [0, 1] such that
∑

ω∈Ω pω = 1, define P : F → [0, 1] by

P(A) =
∑

ω∈A pω. Then, we claim that P is a probability measure.

To show this we need to show countable additivity. Let A1, A2, . . . be pairwise disjoint

subsets of Ω. Countable additivity is the statement that∑
k

∑
ω∈Ak

pω =
∑

ω∈∪kAk

pω.

If you remember the definition of countable sums, this is an easy exercise (remember that

each Ak is countable, possibly finite)a.

aInnumerable times, we shall use without mention the following very important fact: If ai,j ≥ 0 for i ≥ 1 and

j ≥ 1, then
∑
i

∑
j ai,j =

∑
j

∑
i ai,j which we simply denote

∑
i,j ai,j . Further, for any bijection σ : N 7→ N×N,
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we have
∑
i,j ai,j =

∑
k aσ(k). It is highly recommended to brush up basic facts about absolute convergence of

series.

More generally, we can have a discrete probability measure inside a ‘continuous space’. Such

measures also can be defined on the sigma-algebra of all subsets.

Example 10

Let Ω be any set and let R ⊆ Ω be a countable set. Let F be the powerset of Ω. Fix non-

negative numbers px, x ∈ R that add to 1. Then define P(A) =
∑

x∈R∩A px. Then, P is a

probability measure on F (exercise!).

This means that a discrete measure, say Binomial distribution with parameters n and p, may be

considered as a probability measure on {0, 1, 2, . . . , n} or as a probability measure on R with the

power set sigma-algebra. The problem of not being able to define probability for all subsets does

not arise in such cases.

A simple exercise about σ-algebras and probability measures.
Exercise 1

Let (Ω,F ,P) be a probability space.

(1) F is closed under finite and countable unions, intersections, differences, symmetric

differences. Also Ω ∈ F .

(2) If An ∈ F , then

lim supAn := {ω : ω belongs to infinitely many An},

lim inf An := {ω : ω belongs to all but finitely many An}

are also in F . In particular, if An increases or decreases to A, then A ∈ F .

(3) P(∅) = 0, P(Ω) = 1. For anyA,B ∈ F we have P(A∪B) = P(A)+P(B)−P(A∩B).

If An ∈ F , then P(∪An) ≤
∑

P(An).

(4) IfAn ∈ F andAn increases (decreases) toA, the P(An) increases (decreases) to P(A).

Generated σ-algebras: In the most interesting cases, one cannot explicitly say what the elements

of F are, but only require that it is rich enough that it contains sets of interest to us. We make a

simple observation.
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Exercise 2

Let Fα, α ∈ I be a colllection of σ-algebras of subsets of Ω (here I is an arbitrary index set).

Then let F =
⋂
α∈I Fα. Show that F is a σ-algebra.

In particular, if S is a collection of subsets of Ω, then show that there is a smallest σ-algebraF
containing S (this means that F is a σ-algebra and any σ-algebra containing S also contains

F). We say that F is generated by S and write F = σ(S).

Caution: Note that the only definition of σ(S) is that it is the smallest sigma algebra containing

S. It is not true that it is the collection of all countable unions (or countable unions of countable

intersections or countable unions of countable intersections of countable unions . . . ) elements of

S. As an analogy, consider a vector space V and a subset of vectors S. The subspace generated

by S has two equivalent definitions: (1) It is the smallest subspace of V that contains S and (2) it

is the set of all finite linear combinations of elements of S. The second definition may be called

internal, while the first is external. For generated sigma algebras, we have no internal definition,

only an external one.

Stick-breaking example: In the new language that we have introduced, let us revisit the question

of making mathematical sense of stick-breaking. Let Ω = [0, 1] and let S be the collection of all

intervals. To be precise let us take all right-closed, left-open intervals (a, b], with 0 ≤ a < b ≤ 1

as well as intervals [0, b], b ≤ 1 (alternate description: take all intervals of the form (u, v] ∩ [0, 1]

where u < v are real numbers). If we are trying to make precise the notion of ‘drawing a number at

random from [0, 1]’, then we would want P(a, b] = b − a and P[0, b] = b. The precise mathematical

questions can now be formulated as follows.

Question 1

(1) Let G be the σ-algebra of all subsets of [0, 1]. Is there a probability measure P on G
such that P(a, b] = b− a and P[0, b] = b for all 0 ≤ a < b ≤ 1?

(2) Let F = σ(S) be the Borel σ-algebra of [0, 1]. Is a probability measure P on F
satisfying P(a, b] = b− a and P[0, b] = b for all 0 ≤ a < b ≤ 1?

The answer to the first question is ’No’ (this was stated as Result ??), which is why we

need the notion of σ-fields, and the answer to the second question is ‘Yes’, which is why

probabilists still have their jobs. Neither answer is obvious, but we shall answer them in

coming lectures.
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Coin-tossing example: Let Ω = {0, 1}N = {ω = (ω1, ω2, . . .) : ωi ∈ {0, 1}}. Let S be the collection

of all subsets of Ω that depend on only finitely many co-ordinates (such sets are called cylinders).

More precisely, a cylinder set is of the form A = {ω : ωk1 = ε1, . . . ωkn = εn} for some given n ≥ 1,

k1 < k2 < . . . < kn and εi ∈ {0, 1} for i ≤ n.

What are we talking about? If we want to make precise the notion of ‘toss a coin infinitely many

times’, then clearly Ω is the sample space to look at. It is also desirable that elements of S be in the

σ-field as we should be able to ask questions such as ‘what is the chance that the fifth, seventh and

thirtieth tosses are head, tail and head respectively’ which is precisely asking for the probability

of a cylinder set.

If we are ‘tossing a coin with probability p of turning up Head’, then for a cylinder setA = {ω : ωk1 =

ε1, . . . ωkn = εn}, it is clear that we would like to assign P(A) =
∏n
i=1 p

εiq1−εi where q = 1 − p.

So the mathematical questions are: (i) If we take F to be the σ-field of all subsets of Ω, does there

exist a probability measure P on F such that for cylinder sets P(A) is as previously specified. (ii)

If the answer to (i) is ‘No’, is there a probability measure P on F such that for a cylinder set A as

above, P(A) =
∏n
i=1 p

εiq1−εi?

Again, the answers are ‘No’ and ‘Yes’, respectively.

The σ-fields in these two examples can be captured under a common definition.

Definition 3: Borel sigma algebra

Let (X, d) be a metric space. The σ-field B generated by all open balls in X is called the

Borel sigma-algebra of X .

First consider [0, 1] or R. Let S = {(a, b]} ∪ {[0, b]} and let T = {(a, b)} ∪ {[0, b)} ∪ {(a, 1]}. We

could also simply write S = {(a, b] ∩ [0, 1] : a < b ∈ R} and T = {(a, b) ∩ [0, 1] : a < b ∈ R}. Let

the sigma-fields generated by S and T be denoted F (see example above) and B (Borel σ-field),

respectively. Since (a, b] = ∩n(a, b + 1
n) and [0, b] = ∩n[0, b + 1

n), it follows that S ⊆ B and hence

F ⊆ B. Similarly, since (a, b) = ∪n(a, b − 1
n ] and [0, b) = ∪n[0, b − 1

n ], it follows that T ⊆ F and

hence B ⊆ F . In conclusion, F = B.

In the countable product space Ω = {0, 1}N or more generally Ω = XN, the topology is the one

generated by all sets of the form U1 × . . .×Un ×X ×X × . . . where Ui are open sets in X . Clearly

each of these sets is a cylinder set. Conversely, each cylinder set is an open set. Hence G = B.

More generally, if Ω = XN, then cylinders are sets of the form A = {ω ∈ Ω : ωki ∈ Bi, i ≤ n} for

some n ≥ 1 and ki ∈ N and some Borel subsets Bi of X . It is easy to see that the σ-field generated

by cylinder sets is exactly the Borel σ-field.

We shall usually work with Borel σ-algebras of various metric spaces, as this σ-algebra is rich

enough to contain almost all sets we might be interested in. If you are not convinced, try finding
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a subset of [0, 1] that is not a Borel set (it is quite a non-trivial exercise!). Here are some easy

exercises.

Exercise 3

On Rd, show that each of the following classes of sets generates the Borel σ-algebra of Rd

(particularly think about the case n = 1).

(1) The collection of all open balls.

(2) The collection of all closed balls.

(3) The collection of all closed rectangles of the form [a1, b1]× . . .× [an, bn] for ai < bi.

(4) Same as before, but let the rectangles be left-open and right-closed, i.e, sets of the

form (a1, b1]× . . .× (an, bn] for ai < bi.

4. THE ‘STANDARD TRICK’ OF MEASURE THEORY!

While we care about sigma fields only, there are smaller sub-classes that are useful in elucidating

the proofs. Here we define some of these.

Definition 4

Let S be a collection of subsets of Ω. We say that S is a

(1) π-system if A,B ∈ S =⇒ A ∩B ∈ S.

(2) λ-system if (a) Ω ∈ S, (b) A,B ∈ S and A ⊆ B =⇒ B\A ∈ S, (c) An ↑ A and An ∈ S
=⇒ A ∈ S.

(3) Algebra if (a) ∅,Ω ∈ S, (b) A ∈ S =⇒ Ac ∈ S, (c) A,B ∈ S =⇒ A ∪B ∈ S.

(4) Monotone class if (a) An ∈ S and An ↑ A =⇒ A ∈ S and (b) An ∈ S and An ↓ A
=⇒ A ∈ S. Recall that An ↑ A means that A1 ⊆ A2 ⊆ . . . and ∪nAn = A and An ↓ A
means that A1 ⊇ A2 ⊇ . . . and ∩nAn = A.

(5) σ-algebra if (a) ∅,Ω ∈ S, (b) A ∈ S =⇒ Ac ∈ S, (c) An ∈ S =⇒ ∪An ∈ S.

We have included the last one again for comparision. Clearly a sigma algebra is a π-system,

a λ-system, a monotone class and an algebra. The difference between algebras and σ-algebras is

just that the latter is closed under countable unions while the former is closed only under finite

unions. As with σ-algebras, arbitrary intersections of algebras/λ-systems/π-systems are again

algebras/λ-systems/π-systems and hence one can talk of the algebra generated by a collection of

subsets or a λ-system generated by a collection of subsets etc.
13



Example 11

The table below exhibits some examples.

Ω S (π − system) A(S) (algebra generated by S) σ(S)

(0, 1] {(a, b] : 0 < a ≤ b ≤ 1} {∪Nk=1Ik : Ik ∈ S are pairwise disjoint} B(0, 1]

[0, 1] {(a, b] ∩ [0, 1] : a ≤ b} {∪Nk=1Rk : Rk ∈ S are pairwise disjoint} B[0, 1]

Rd {
∏d
i=1(ai, bi] : ai ≤ bi} {∪Nk=1Rk : Rk ∈ S are pairwise disjoint} BRd

{0, 1}N collection of all cylinder sets finite disjoint unions of cylinders B({0, 1}N)

Often, as in these examples, sets in a π-system and in the algebra generated by the π-system

can be described explicitly, but not so the sets in the generated σ-algebra. This point, that a Borel

set is not easily expressed by a countable number of operations on intervals, is at the heart of the

non-triviality of the subject. Now we present two useful lemmas that allow us to say things about

a sigma algebra even when its elements are “out of touch”. The spirit of both lemmas is the same,

and in many occasions they may be used interchangeably.

Lemma 3: Sierpinski-Dynkin π-λ theorem

Let Ω be a set and let F be a set of subsets of Ω.

(1) F is a σ-algebra if and only if it is a π-system as well as a λ-system.

(2) If S is a π-system, then λ(S) = σ(S).

Lemma 4: Monotone class theorem

Let Ω be a set and let S be a collection of subsets of Ω. If S is an algebra, then the monotone

class generated by S is a sigma-algeba. That is,M(S) = σ(S).

Proof of the π-λ theorem. (1) One way is clear. For the other way, suppose F is a π-system as

well as a λ-system. Then, Ω ∈ F and if A ∈ F , then Ac = Ω\A ∈ F . If An ∈ F , then

the finite unions Bn := ∪nk=1Ak = (∩nk=1A
c
k)
c belong to F (for intersections use that F is a

π-system). The countable union ∪An is the increasing limit of Bn and hence belongs to F
by the λ-property.

(2) By the first part, it suffices to show that F := λ(S) is a π-system, that is, we only need show

that if A,B ∈ F , then A ∩B ∈ F . This is the tricky part of the proof!

Fix A ∈ S and let FA := {B ∈ F : B ∩ A ∈ F}. S is a π-system, hence FA ⊃ S. We

claim that FA is a λ-system. Clearly, Ω ∈ FA. If B,C ∈ FA and B ⊆ C, then (C\B) ∩ A =

(C∩A)\(B∩A) ∈ F becauseF is a λ-system containingC∩A andB∩A. Thus (C\B) ∈ FA.

Lastly, if Bn ∈ FA and Bn ↑ B, then Bn ∩ A ∈ FA and Bn ∩ A ↑ B ∩ A. Thus B ∈ FA. This
14



means that FA is a λ-system containing S and hence FA ⊃ F . In other words, A ∩ B ∈ F
for all A ∈ S and all B ∈ F .

Now fix any A ∈ F . And again define FA := {B ∈ F : B ∩ A ∈ F}. Because of what

we have already shown, FA ⊃ S. Show by the same arguments that FA is a λ-system and

conclude that FA = F for all A ∈ F . This is another way of saying that F is a π-system. �

Exercise 4: Monotone class theorem

Follow similar steps and prove the monotone class theorem. Note that you only need to

show thatM(S) is a sigma algebra.

As an application, we prove a certain uniqueness of extension of measures. The question is this:

if two probability measures on (R,B) agree on all intervals, then are the same? It is tempting to say

yes, since intervals generate the Borel sigma-algebra. But this reasoning is false as the following

example shows.

Example 12

Let Ω = {1, 2, 3, 4} and let S = {{1, 2}, {2, 3}, {3, 4}}. Then it is easy to see that σ(S) = 2Ω

(the power set). Now define two probability measures µ, ν on Ω by setting µi = 1
4 for all i

while ν1 = ν3 = 1
2 while ν2 = ν4 = 0. Then µ(A) = 1

2 = ν(A) for all A ∈ S, although µ 6= ν

on σ(S).

It may be worth recalling here our earlier analogy with vector spaces and generated subspaces.

If two linear transformations agree on a collection of vectors, then they agree on the subspace

generated by those vectors. This is trivial since every vector in the generated subspace is a linear

combination of vectors in the given collection. The example above shows that the lack of an “in-

ternal definition” for the generated sigma algebra is not only an inconvenience, but the analogous

statement is even false!

Here is a positive result in this direction.

Lemma 5

Let S be a π-system of subsets of Ω and let F = σ(S). If P and Q are two probability

measures on F such that P(A) = Q(A) for all A ∈ S, then P(A) = Q(A) for all A ∈ F .

Proof. Let G = {A ∈ F : P(A) = Q(A)}. By the hypothesis G ⊇ S. We claim that G is a λ-system.

Clearly, Ω ∈ G. If A,B ∈ G and A ⊇ B, then P(A\B) = P(A) − P(B) = Q(A) − Q(B) =

Q(A\B), implying that A\B ∈ G. Lastly, if An ∈ G and An ↑ A, then P(A) = limn→∞P(An) =
15



limn→∞Q(An) = Q(A) (this follows from countable additivity of measures). Thus G ⊇ λ(S)

which is equal to σ(S) by the π-λ theorem. Thus P = Q on F . �

Remark 1

To emphasize the point again, typically, our σ-algebras (eg., the Borel σ-algebra) are defined

as being generated by a given collection of sets (eg., left-open right-closed intervals). While

the sets in the algebra generated by this collection can often be expressed explicitly in terms

of the sets in the collection (eg., finite unions of pairwise disjoint left-open right-closed

intervals), the sets in the σ-algebra are more intangiblea (most emphatically Borel sets are

not always countable unions of intervals!). Hence, to show that a property holds for all

elements of the σ-algebra, we simply consider the collection of all sets having that property,

and show that the collection is a σ-algebra. In doing that, we may find it easier to show

that it is a λ-system or that it is a monotone class (containing an appropriate π-system or an

algebra).

aThere is a way to express them, using transfinite induction. But let us ignore that approach and stick to the

definition which simply says that it is the smallest σ-algebra containing...

5. LEBESGUE MEASURE

Theorem 6: Existence and uniqueness of Lebesgue measure

There exists a unique Borel measure λ on [0, 1] such that λ(I) = |I| for any interval I .

Note that S = {(a, b]∩ [0, 1]} is a π-system that generates B. Therefore by Lemma 5, uniqueness

follows. Existence is all we need to show.

There are several steps in the proof of existence. We outline the big steps and leave some routine

checks to the reader. In this proof, Ω will denote [0, 1].

Step 1 - Definition of the outer measure λ∗: Define λ∗(A) for any subset by

λ∗(A) = inf
{∑

|Ik| : each Ik is an open interval and {Ik} a countable cover for A
}
.

(In the definition, we could have used closed intervals or left-open right-closed intervals to cover

A. It is easy to see that the value of λ∗(A) remains unchanged.)

Check that λ∗ has the following properties. (1) 0 ≤ λ∗(A) ≤ 1 is a well-defined for every subset

A ⊆ Ω, (2) λ∗(A ∪B) ≤ λ∗(A) + λ∗(B) for any A,B ⊆ Ω, (3) λ∗(Ω) = 1. Two remarks.

(1) For the last property, try the more general Exercise ?? below.
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(2) Clearly, from finite subadditivity, we also get countable subadditivity λ∗(∪An) ≤
∑
λ∗(An).

The difference from a measure is that equality might not hold, even if there are finitely

many sets and they are pairwise disjoint.

(3) The three properties above constitute the definition of what is called an outer measure.

Exercise 5

Show that λ∗(a, b] = b− a if 0 < a ≤ b ≤ 1.

Step-2 - The σ-field on which λ∗ will be shown to be a measure: Let λ∗ be an outer measure on

a set Ω. Caratheodary’s brilliant definition is to set

F := {A ⊆ Ω : λ∗(E) = λ∗(A ∩ E) + λ∗(A
c ∩ E) for any E} .

Note that subadditivity implies λ∗(E) ≤ λ∗(A ∩ E) + λ∗(A
c ∩ E) for any E for any A. The non-

trivial requirement is the inequality in the reverse direction.

Claim 7

F is a sigma algebra and λ∗ restricted to F is a probability measure.

Proof. It is clear that ∅,Ω ∈ F and A ∈ F implies Ac ∈ F . Next, suppose A,B ∈ F . Then for any

E,

λ∗(E) = λ∗(E ∩A) + λ∗(E ∩Ac)

= λ∗(E ∩A ∩B) + λ∗(E ∩A ∩Bc) + λ∗(E ∩Ac)

≥ λ∗(E ∩A ∩B) + λ∗(E ∩ (A ∩B)c)

where the last inequality holds by subadditivity of λ∗ and (E ∩A∩Bc)∪ (E ∩Ac) = E ∩ (A∩B)c.

Hence F is a π-system.

As A∪B = (Ac∩Bc)c, it also follows that F is an algebra. For future use, note that λ∗(A∪B) =

λ∗(A)+λ∗(B) ifA,B are disjoint sets inF . To see this apply the definition ofA ∈ F withE = A∪B.

To show that F is a σ-algebra, by the π − λ theorem, it suffices to show that F is a λ-system.

Suppose A,B ∈ F and A ⊇ B. Then

λ∗(E) = λ∗(E ∩Bc) + λ∗(E ∩B)

= λ∗(E ∩Bc ∩A) + λ∗(E ∩Bc ∩Ac) + λ∗(E ∩B)

≥ λ∗(E ∩ (A\B)) + λ∗(E ∩ (A\B)c).

Thus A\B ∈ F . It remains to show closure under increasing limits,

Suppose An ∈ F and An ↑ A. Then λ∗(A) ≥ λ∗(An) =
∑n

k=1 λ∗(Ak\Ak−1) by finite additivity of

λ∗. Hence λ∗(A) ≥
∑
λ∗(Ak\Ak−1). The other way inequality follows by subadditivity of λ∗ and
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we get λ∗(A) =
∑
λ∗(Ak\Ak−1). Then for any E we get

λ∗(E) = λ∗(E ∩An) + λ∗(E ∩Acn)

≥ λ∗(E ∩An) + λ∗(E ∩Ac)

=
n∑
k=1

λ∗(E ∩ (Ak\Ak−1)) + λ∗(E ∩Ac).

The last equality follows by finite additivity of λ∗ on F (which we showed above). Let n→∞ and

use subadditivity to see that

λ∗(E) ≥
∞∑
k=1

λ∗(E ∩ (Ak\Ak−1)) + λ∗(E ∩Ac)

≥ λ∗(E ∩A) + λ∗(E ∩Ac).

Thus, A ∈ F and it follows that F is a λ-system too and hence a σ-algebra.

Lastly, ifAn ∈ F are pairwise disjoint with unionA, then λ∗(A) ≥ λ∗(∪nk=1Ak) =
∑n

k=1 λ∗(Ak)→∑
k λ∗(Ak) while the other way inequality follows by subadditivity of λ∗ and we see that λ∗|F is a

measure. �

Step-3 - F is large enough: We want to show that F contains all Borel sets. Since F is already

shown to be a σ-algebra, and the Borel σ-algebra is generated by left-open, right-closed intervals,

the following claim is all we need.

Claim 8

Let A = (a, b] ⊆ [0, 1]. Then A ∈ F .

Proof. For any E ⊆ [0, 1], let {In} be an open cover such that λ∗(E) + ε ≥
∑
|In|. Then, note

that {In ∩ (a, b)} and {In ∩ [a, b]c} are open covers for A ∩ E and Ac ∩ E, respectively (In ∩ [a, b]c

may be a union of two intervals, but that does not change anything essential). It is also clear that

|In| = |In ∩ (a, b)|+ |In ∩ (a, b)c|. Hence we get

λ∗(E) + ε ≥
∑
|In ∩ (a, b)|+

∑
|In ∩ (a, b)c| ≥ λ∗(A ∩ E) + λ∗(A

c ∩ E).

This holds for any ε > 0 and hence λ∗(E) ≥ λ∗(A ∩ E) + λ∗(A
c ∩ E). By subadditivity we always

have λ∗(E) ≤ λ∗(A ∩ E) + λ∗(A
c ∩ E). Thus we see that A ∈ F . �

Conclusion: We have obtained a σ-algebra F that is larger than the B and such that µ∗ is a proba-

bility measure when restricted to F . Hence µ∗ is also a probability measure when restricted to B.

The proof of Theorem 6 is complete.
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6. FURTHER REMARKS ON THE LEBESGUE MEASURE, ITS CONSTRUCTION AND LIFE IN GENERAL

6.1. Borel and Lebesgue σ-algebras. We have B ⊆ F ⊆ 2[0,1] (recall that 2Ω denotes the powerset

of Ω). Are these containments strict? How much smaller is B compared to F?

Elements of F are called Lebesgue measurable sets. Below we show that there is a subset of

[0, 1] that is not Lebesgue-measurable. Now let us consider the relationship between B and F .

This is explained more in to homework problems, but we make short remarks.

(1) The cardinality of B is the same as that of R while the cardinality of F is the same as that

of 2R. Thus, in this sense, F is much larger than B.

(2) For probability, the difference is less serious. For any setA ∈ F , there are two setsB,C ∈ B
such that B ⊆ A ⊆ C and such that µ(B) = µ(C). In other words, the only new sets that

enter into F are those that can be sandwiched between Borel sets of equal measure. The

weird thing about the Borel σ-algebra is that even ifA1 ⊆ A2,A2 ∈ B and µ(A2) = 0, it may

happen thatA1 is not in B (and hence we cannot write µ(A1) = 0). The Lebesgue σ-algebra

does not have this issue (it is called the completion of the Borel σ-algebra with respect to

Lebesgue measure). Henceforth, if needed, we write B̄ for the Lebesgue σ-algebra.

Nevertheless, we shall put all our probability measures on the Borel σ-algebra. The reason is that

completion of a σ-algebra (see Homework 1), although harmless, depends on the measure with

respect to which we complete. Since we often need to consider many probability measures at the

same time, it is more convenient to work with the Borel sigma algebra.

In the next section we show that F is strictly smaller than the power set, i.e., there exists sets

that are not Lebesgue measurable. Thus, both the containments in B ⊆ F ⊆ 2[0,1] are strict.

6.2. Sigma-algebras are necessary. We have already mentioned that there is no translation invari-

ant probability measure on all subsets of [0, 1] (non-measurable sets are shown in the next section).

Hence, we had to restrict to a smaller σ-algebra (B or B̄). If we do not require translation invariance

for the extended measure, the question becomes more difficult.

Note that there do exist probability measures on the σ-algebra of all subsets of [0, 1], so one

cannot say that there are no measures on all subsets. For example, define Q(A) = 1 if 0.4 ∈ A

and Q(A) = 0 otherwise. Then Q is a probability measure on the space of all subsets of [0, 1].

Q is a discrete probability measure in hiding! If we exclude such measures, then it is true that

some subsets have to be omitted to define a probability measure You may find the proof for the

following general theorem in Billingsley, p. 46 (uses axiom of choice and continuum hypothesis).
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Fact 9

There is no probability measure on the σ-algebra of all subsets of [0, 1] that gives zero prob-

ability to singletons.

Say that x is an atom of P if P({x}) > 0 and that P is purely atomic if
∑

atoms P({x}) = 1.

The above fact says that if P is defined on the σ-algebra of all subsets of [0, 1], then P must be

have atoms. It is not hard to see that in fact P must be purely atomic. To see this let Q(A) =

P(A) −
∑

x∈AP({x}). Then Q is a non-negative measure without atoms. If Q is not identically

zero, then with c = Q([0, 1])−1, we see that cQ is a probability measure without atoms, and defined

on all subsets of [0, 1], contradicting the stated fact. This last manipulation is often useful and

shows that we can write any probability measure as a convex combination of a purely atomic

probability measure and a completely nonatomic probability measure

Remark 2: Importance of sigma algebras

The discussion so far shows that σ-algebras cannot be avoided. In measure theory, they are

pretty much a necessary evil. However, in probability theory, σ-algebras have much greater

significance as place holders of information. Even if Lebesgue measure were to exist on all

subsets, probabilisits would have had to invent the concept of σ-algebras! These cryptic

remarks are not meant to be understood yet, but we shall have occasion to explain it later

in the course.

6.3. Finitely additive measures. If we relax countable additivity, strange things happen. For ex-

ample, there does exist a translation invariant (µ(A + x) = µ(A) for all A ⊆ [0, 1], x ∈ [0, 1], in

particular, µ(I) = |I|) finitely additive (µ(A ∪ B) = µ(A) + µ(B) for all A,B disjoint) probability

measure defined on all subsets of [0, 1]! In higher dimensions, even this fails, as shown by the

mind-boggling

Theorem 10: Banach-Tarski paradox

he unit ball in R3 can be divided into finitely many (five, in fact) disjoint pieces and rear-

ranged (only translating and rotating each piece) into a ball of twice the original radius!!

In some sense, this makes finitely additive measure less attractive to us as a framework for

probability theory. In the finitely additive framework, we can break a stick at random (and ask

for probability that the break-point is any subset of [0, 1]) but we cannot break three sticks and

ask the same question (that the break points belong to an arbitrary subset of [0, 1]3)! The objection

is perhaps not entirely acceptable to everyone. In any case, it is a good policy in life to accept
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countably additive measures as the right framework for probability, but keep in mind that life can

change and finitely additive measures may become more important in some future contexts.

6.4. How general is the construction of Lebesgue measure? The construction of Lebesgue mea-

sure can be made into a general procedure for constructing interesting measures, starting from

measures of some rich enough class of sets. The steps are as follows.

(1) Given an algebra A (in this case finite unions of (a, b]), and a countably additive p.m P on A,

define an outer measure P∗ on all subsets by taking infimum over countable covers by sets

in A.

(2) Then defineF exactly as above, and prove thatF ⊃ A is a σ-algebra and P∗ is a probability

measure on A.

(3) Show that P∗ = P on A.

Proofs are quite the same. Except, in [0, 1] we started with λ defined on a π-system S rather than

an algebra. But in this case the generated algebra consists precisely of disjoint unions of sets in S,

and hence we knew how to define λ on A(S). When can we start with P defined on a π-system?

The crucial point in [0, 1] was that for any A ∈ S, one can write Ac as a finite union of sets in S. In

such cases (which includes examples from the previous lecture) the generated algebra is precisely

the set of disjoint finite unions of sets in S. If that is the case, we define P on A(S) in the natural

manner and then proceed to step one above.

Following the general procedure outlined above, one can construct the following probability

measures.

(1) A probability measure on ([0, 1]d,B) such that P([a1, b1] × . . . × [ad, bd]) =
∏d
k=1(bk − ak)

for all cubes contained in [0, 1]d. This is the d-dimensional Lebesgue measure.

(2) A probability measure on {0, 1}N such that for any cylinder set A = {ω : ωkj = εj , j =

1, . . . , n} (any n ≥ 1 and kj ∈ N and εj ∈ {0, 1}) we have (for a fixed p ∈ [0, 1] and

q = 1− p)

P(A) =
n∏
j=1

pεjq1−εj .

(3) Let F : R→ [0, 1] be a non-decreasing, right-continuous function such that limx→∞ F (x) =

1 and limx→−∞ F (x) = 0 (such a function is called a cumulative distribution function or

CDF in short). Then, there exists a unique probability measure µ on (R,BR) such that

µ(a, b] = F (b)− F (a) for all a < b.

BUT we want to de-emphasize this approach. Instead, we want to emphasize that Lebesgue

measure is the only measure that needs to be constructed. We can take the existence of Lebesgue
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measure as a black-box, and use it to construct all other probability measures that we need. This

includes the above three classes of examples and every probability measure of interest to proba-

bilists. That is subject of the next few sections.

7. NON-MEASURABLE SETS

Sigma-algebras would not be necessary in measure theory if all subsets of [0, 1] were Lebesgue

measurable. In this section, we show that non-measurable sets do exist. Let B̄ denote the Lebesgue

σ-algebra.

We change the setting a little bit. Let us consider the sample space [0, 1) which is a group under

addition modulo 1. By B and B̄we mean the Borel and Lebesgue σ-agebras of [0, 1) and let λ be the

Lebesgue measure on [0, 1). You may either think of repeating the whole procedure of construction

with [0, 1) in place of [0, 1] or more simply, note that B[0,1) = {A ∩ [0, 1) : A ∈ B[0,1]} and similarly

for B̄[0,1). Further, λ is the restriction to [0, 1). We shall need the following ‘translation invariance

property’ of λ on B̄.
Exercise 6

Show that for any A ∈ B̄ and x ∈ [0, 1] that A+ x ∈ B̄ and that λ(A+ x) = λ(A).

To clarify the notation, for any A ⊆ [0, 1] and any x ∈ [0, 1], A + x := {y + x (mod 1) : y ∈ A}.
For example, [0.4, 0.9] + 0.2 = [0, 0.1] ∪ [0.6, 1).

First construction of a non-measurable set: Now we construct a subset A ⊆ [0, 1] and countably

(infinitely) many xk ∈ [0, 1] such that the sets A + xk are pairwise disjoint and ∪k(A + xk) is the

whole of [0, 1]. Then, if A were in B̄, by the exercise A+ xk would have the same probability as A.

But
∑
λ(A+ xk) must be equal to λ([0, 1]) = 1, which is impossible! Hence A /∈ B̄.

How to construct such a set A and {xk}? Define an equivalence relation on [0, 1] by x ∼ y

if x − y ∈ Q (check that this is indeed an equivalence relation). Then, [0, 1] splits into pairwise

disjoint equivalence classes whose union is the whole of [0, 1]. Invoke axiom of choice to get a set A

that has exactly one element from each equivalence class. Consider A + r, r ∈ Q ∩ [0, 1). If A + r

and A+ s intersect then we get an x ∈ [0, 1] such that x = y+ r = z + s (mod 1) for some y, z ∈ A.

This implies that y − z = r − s (mod 1) and hence that y ∼ z. So we must have y = z (as A has

only one element from each equivalence class) and that forces r = s (why?). Thus the sets A + r

are pairwise disjoint as r varies over Q ∩ [0, 1). Further given x ∈ [0, 1], there is a y ∈ A belonging

to the equivalence class of x. Therefore x ∈ A + r where r = x − y (if y ≤ x) or r = x − y + 1 (if

x < y). Thus we have constructed the set A whose countably many translates A+ r, r ∈ Q ∩ [0, 1)

are pairwise disjoint! Thus, A is a subset of [0, 1] that is not Lebesgue measurable.
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Remark 3

In mathematical jargon, ifG = Q∩ [0, 1) is a subgroup of [0, 1), andA is a set which contains

exactly one representative of each coset of this subgroup. Then, for each x ∈ A the set x+G

is the coset containing x and hence
⊔
r∈G

(A+ r) = [0, 1). As G is countable, by the argument

outlined above, it follows that A cannot be Lebesgue measurable.

A second construction showing that λ∗ is not finitely additive: Now we want to construct B ⊆
[0, 1) such that λ∗(B) = 1 and λ∗(B

c) = 1. Then of course, B cannot be measurable (why?). But

this example is stronger than the previous one as it shows that on the power-set of [0, 1), the outer

measure fails finite additivity, not just countable additivity.

I would have liked to take R ⊆ Q ∩ [0, 1) and set B =
⊔
r∈R

(A + r) so that Bc
⊔
r∈Rc

(A + r) with

A as in the previous construction. We already know that λ∗(A) > 0 (any set of outer measure 0

is measurable), so the hope would be that if both R and Rc are infinite (or suitably large), then

λ∗(B) = 1 and λ∗(B
c) = 1. But I was not able to prove that any subset R works. If you can show

that, I would be very interested to know!

One of the difficulties is that ideally one would like to divide Q∩ [0, 1) into two “equal” subsets

R and Rc. For example, if we could find R such that Rc is a translate of R (i.e., Rc = r0 +R), then

Bc would be a translate of B and hence they would have the same outer measure (that does not

complete the proof, but I am trying to motivate what we do next). But we cannot find such as set

R because Q ∩ [0, 1) does not have subgroups of finite index!

What is the way out? Let consider a different group G = {nα : n ∈ Z} (here and below, we are

working within [0, 1), hence nα always means nα (mod 1) etc.), where α is an irrational number

in [0, 1), eg., 1/
√

2.
Exercise 7

Show that (1) nα 6= mα for all m 6= n, (2) G is a subgroup of [0, 1) that is isomorphic to Z,

(3) G is dense in [0, 1).

Let H = {2nα : n ∈ Z}. Then H is a subgroup of G and it has only two cosets, H and H ′ :=

H +α. If you have done the previous exercise, you will easily see that H and H ′ are both dense in

[0, 1).

By the axiom of choice, chose a subset A ⊆ [0, 1) that has exactly one representative in each

coset of G (as a subgroup of [0, 1)). Define B = A + H = {a + h : a ∈ A, h ∈ H}. Then Bc =

A+H ′ = A+H + α.
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We claim that (B − B) ∩ H ′ = ∅. Indeed, any element of B − B is of the form a + h − a′ − h′

where a, a′ ∈ A and h, h′ ∈ H . If a = a′, then this element is in H and hence not in H ′. If a 6= a′,

by construction of A we know that a− a′ 6∈ G. But h− h′ ∈ G and hence a+ h− a− h′ is not in G

and hence not in H ′ either. This proves the claim.

Note that Bc −Bc = B −B (an element of Bc −Bc is of the form (a+ h+ α)− (a′ + h′ + α) =

(a+ h)− (a′ + h′)). Therefore, we also have (Bc −Bc) ∩H ′ = ∅.
To proceed, we need the following important fact.

Lemma 11: Steinhaus’ lemma

et A ⊆ [0, 1) be a measurable subset of positive Lebesgue measure. Then A−A contains an

interval around 0. More explicitly, there is some δ > 0 such that (1− δ, 1) ∪ [0, δ) ⊆ A−A.

Now we claim that λ∗(Bc) = 1. If not, suppose λ∗(Bc) < 1− ε. By definition of outer measure,

find intervals Ik such that ∪Ik ⊇ Bc and
∑

k |Ik| < 1 − ε. Then consider C := ∩Ick = (∪Ik)c.
Obviously C is a Lebesgue measurable set, C ⊆ B, and λ(C) = 1 − λ(∪Ik) ≥ 1 −

∑
k λ(Ik) > ε.

Thus C − C contains an interval by Steinhaus’ lemma. Since B ⊇ C, we also see that B − B

contains an interval. But this contradicts the fact that H ′ is dense, since we have shown that

(B − B) ∩H ′ = ∅. Thus we must have λ∗(Bc) = 1. An identical argument (since Bc − Bc is also

disjoint from H ′) shows that λ∗(B) = 1.

It only remains to prove Steinhaus’ lemma.

Proof of Steinhaus’ lemma. By definition of outer measure, there is a covering of A by countably

many intervals Ik such that λ(A) ≥ 0.9
∑

k |Ik|. But λ(A) ≤
∑

k λ(A ∩ Ik). Hence, there is at least

one k for which λ(A ∩ Ik) ≥ 0.9λ(Ik) > 0. For simplicity, write I for this Ik and let A′ = A ∩ I .

Fix x ∈ R and note that

λ(A′ ∩ (A′ + x)) = λ(A′) + λ(A′ + x)− λ(A′ ∪ (A′ + x))

≥ 2λ(A′)− λ(I ∪ (I + x))

≥ 1.8|I| − (|I|+ |x|)

which is positive for |x| < δ := 0.8|I|. In particular, for |x| < δ, we have A′ ∪ (A′ + x) 6= ∅.
Rephrasing this, we see that x ∈ A′ −A′ ⊆ A−A. �

Both Steinhaus’ lemma and the following fact (whose proof was implicit in the above proof) are

very useful tools in measure theory.

Fact 12

Let A ⊆ R be a measurable subset with λ(A) > 0. Then, for any ε > 0, there is an interval I

(depending on ε) such that λ(A ∩ I) ≥ (1− ε)λ(I).
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Remark 4

There is a theorem of Solovay to the effect that the axiom of choice is necessary to show

the existence of a non-measurable set (as an aside, we should perhaps not have used the

word ‘construct’ given that we invoke the axiom of choice). We see that it was used in both

constructions above. In the problem set, another construction due to Sierpinski is outlined,

and that also uses the axiom of choice.

8. RANDOM VARIABLES

Definition 5: Random variables

Let (Ω,F ,P) be a probability space and let (X,G) be a set with a σ-algebra. A function

T : Ω 7→ X is called a random variable (or measurable function) if T−1A ∈ F for any A ∈ G.

Here T−1(A) := {ω ∈ Ω : T (ω) ∈ A} for any A ⊆ X .

Generally, we take X to be a metric space and G = BX , in which case we say that T is an

X-valued random variable.

Important cases: WhenX = R we just say T is a “random variable” and whenX = Rd we say T

is a “random vector”. When X = C[0, 1] with its Borel sigma algebra (under the sup-norm metric

d(f, g) = max{|f(t)− g(t)| : t ∈ [0, 1]}), T is called a “stochastic process” or a “random function”.

When X is itself the space of all locally finite countable subsets of Rd (with Borel sigma algebra

in an appropriate metric which I do not want to mention now) , we call T a “point process”. In

genetics or population biology one looks at genealogies, and then we have tree-valued random

variables, in the study of random networks, we have random variables taking values in the set of

all finite graphs etc, etc.

Remark 5

Some remarks.

(1) Let Ω1,Ω2 be two non-empty sets and let T : Ω1 → Ω2 be a function.

(a) Suppose we fix a σ-algebra G on Ω2. Then, the “pull-back” {T−1A : A ∈ G} is

the smallest σ-algebra on Ω1 w.r.t. which T is measurable (if we fix G on Ω2)

. We write σ(T ) for this σ algebra. In older notation, it is σ(S) where S =

{T−1A : A ∈ G}.

(b) Suppose we fix a σ-algebraF on Ω1. The “push-forward” {A ⊆ Ω2 : T−1A ∈ F}
is the largest σ-algebra on Ω2 w.r.t. which T is measurable (if we fix F on Ω1).

That they are σ-algebras is a consequence of the fact that T−1(A)c = T−1(Ac) and

T−1(∪An) = ∪nT−1(An) (Caution! It is generally false that T (Ac) = T (A)c).
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(2) LetF and G be σ-algebras on Ω1 and Ω2, respectively. If S generates G, i.e., σ(S) = G,

then to check that T is measurable, it suffices to check that T−1A ∈ F for any A ∈ S.

In particular, T : Ω→ R is measurable if and only if T−1(−∞, x] ∈ F for any x ∈ R.

(3) It is convenient to allow random variables to take the values ±∞. In other words,

when we say random variable, we mean T : Ω → R̄ where the set of extended real

numbers R ∪ {+∞,−∞} is a metric space with the metric d(x, y) = | tan−1(x) −
tan−1(y)| with tan−1 : R̄ 7→ [−π

2 ,
π
2 ]. The metric is not important (there are many

metrics we can choose from), what matters are the open sets. Open sets in R̄ include

open subsets of R as well as sets of the form (a,+∞] and [−∞, a). Similarly, random

vectors will be allowed to take values in (R̄)d.

(4) If A ⊆ Ω, then the indicator function of A. 1A : Ω → R is defined by 1A(ω) = 1 if

ω ∈ A and 1A(ω) = 0 if ω ∈ Ac. If F is a σ-algebra on Ω, observe that 1A is a random

variable if and only if A ∈ F .

Example 13

Consider ([0, 1],B). Any continuous function T : [0, 1] → R is a random variable. This is

because T−1(open) = open and open sets generate B(R).

Here is an interesting point (a curiosity since we have said that we shall work with B, not B).

Exercise 8

If we endow R with the Lebesgue sigma algebra B, show that there are continuous functions

from R to itself that are not measurable!

Random variables are closed under many common operations. As an illustration, suppose

X,Y : Ω → R are random variables and let Z = X + Y . We want to show that Z is a random

variable. Indeed,

Z−1(−∞, t) = {ω : Z(ω) < t}

= {ω : X(ω) < s and Y (ω) < t− s for some s}

=
⋃
s∈Q

(X−1(−∞, s)) ∩ (Y −1(−∞, t− s))

which is in the σ-algebra, being from by countably many intersections and unions of sets in the

σ-algebra. A small point to note is that if we work with Z−1(−∞, t], then the proof will have to
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be modified a little (if t = 0, X = −Y =
√

2, then we cannot find s ∈ Q such that X ≤ s and

Y ≤ t− s).
Note the importance of taking s ∈ Q to get countable unions. Similarly or more easily, solve the

exercises below. Remember to allow ±∞ as possible values.
Exercise 9

Show that T : R → R is measurable if it is any of the following. (1) lower semicontinuous

function, (2) right continuous function, (3) step function, (4) non-decreasing function.

Exercise 10

Let (Ω,F) be a measurable space.

(1) If T1, T2 are random vectors on Ω, and a, b ∈ R, then aT1 + bT2 is a random vector.

(2) If T = (T1, . . . , Td) where Ti : Ω → R̄, then T is a random vector if and only if each

Ti is a random variable.

(3) Supremum (or infimum) of a countable family of random variables is a random

variable.

(4) The lim sup (or lim inf) of a countable sequence of random variables is a random

variable.

Push forward of a measure: If T : Ω1 → Ω2 is a random variable, and P is a probability measure

on (Ω1,F1), then defining Q(A) = P(T−1A), we get a p.m Q, on (Ω2,F2). Q, often denoted PT−1

is called the push-forward of P under T .

The reason why Q is a measure is that if An are pairwise disjoint, then T−1An are pairwise

disjoint. However, note that ifBn are pairwise disjoint in Ω1, then T (Bn) are in general not disjoint.

This is why there is no “pull-back measure” in general (unless T is one-one, in which case the pull-

back is just the push-forward under T−1!)

When (Ω2,F2) = (R,B), the push forward (a Borel p.m on R) is called the distribution of the r.v.

T . If T = (T1, . . . , Td) is a random vector, then the pushforward, a Borel probability measure on

Rd is called the distribution of T or as the joint distribution of T1, . . . , Td. Note that all probabilistic

questions about a random variable can be answered by knowing its distribution. The original

sample space is irrelevant. If X and Y are random variables having the same distribution, by

definition, P{X ∈ A} = P{Y ∈ A} for any A in the range-space.
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Remark 6

Random variables in “real situations”. Consider a real-life random experiment, for exam-

ple, a male-female pair have a child. What is the sample space? For simplicity let us think

of genetics as determining everything. Then, the male and female have their DNAs which

are two strings of four alphabets, i.e., they are of the form (A, T, T,G,C,C,C, . . . , G) whose

lengths are about 109. These two strings are given (nothing random about them, let us

assume).

The child to be born can (in principle) have any possible DNA where each element of the

string comes from the father or the mother. This large collection of strings is the sample

space (its cardinality is less than 2109 , but perhaps 2108 or so). The actual probability distri-

bution on these strings is very complicated and no one can write it down explicitly, but for

simplicity you may think that it is uniform (equal probability for all possible strings).

Even after the child is born, we do not know ω, i.e., we do not observe the DNA of the

child. What we observe are various functions of the DNA string, such as “colour of the

eye”, “weight at birth”, etc. These observations/measurements are random variables. We

can also plot the height or weight of the offspring from birth to death - that gives us a

random function.

Similarly, in any realistic random experiment, the outcome we see is not ω, but values of a

few random variables X(ω), Y (ω) . . .. Our questions are also about random variables. For

example, we may ask, “what is the probability that the weight of the child after one month is

less than 3 kg.?”. As remarked earlier, all we need is the distribution of the random variable

X := weight of the child after one month.

9. BOREL PROBABILITY MEASURES ON EUCLIDEAN SPACES

Given a metric space X , let P(X) denote the space of all Borel probability measures on X . We

want to understand P(Rd) for d ≥ 1.

So far, the only probability measure that we know is the Lebesgue measure λ on [0, 1]. Can we

at least construct a few more examples. Indeed, if T : [0, 1]→ Rd is any Borel-measurable function,

then λ ◦ T−1 gives a Borel probability measure on Rd. This gives us a large collection of examples

of probability measures. The surprising result that we shall see is that there are no others!

Theorem 13

Let µ be a Borel probability measure on Rd. Then, there exists a Borel function T : [0, 1]→ Rd

such that µ = λ ◦ T−1.
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One nice thing about this is that we understand functions better than measures, and the above

theorem says that every Borel probability measure can be got using a Borel function. However, the

map T is not unique. Indeed, consider T, T ′ : [0, 1] → R defined by T (x) = x and T ′(x) = 1 − x.

Then the push-forward of λ under both T and T ′ is λ itself. It would be nicer to associate to each

probability measure, a unique function. This is done by the useful idea of a distribution function.

Definition 6

Let µ be a Borel probability measure on Rd. Define its cumulative distribution function (abbre-

viated as CDF, also simply called distribution function) Fµ : Rd → [0, 1] by Fµ(x) = µ(Rx)

where Rx := (−∞, x1] × . . . × (−∞, xd] for x = (x1, . . . , xd). In d = 1 in particular,

Fµ(t) = µ(−∞, t].

Distribution functions have three key properties.

(1) Fµ is non-decreasing in each co-ordinate.

(2) Fµ is right continuous in each co-ordinate.

(3) If min
i
xi → −∞, then Fµ(x)→ 0. If min

i
xi → +∞, then Fµ(x)→ 1 .

The first property is obvious because Rx ⊆ Ry if xi ≤ yi for each i ≤ d. For the second property,

we note that if x(n) = (x
(n)
1 , . . . , x

(n)
d ) and x

(n)
i ↓ yi, then the sets Rx(n) decrease to Ry. Hence, by

the properties of measures, µ(Rx(n)) ↓ µ(Ry) which is precisely the right-continuity of Fµ. For

the third listed property, we note that if mini xi ↓ −∞ (respectively, mini xi ↑ +∞), then Rx(n)

decreases to the empty set (respectively, increases to Rd). Again, the behaviour of measures under

increasing and decreasing limits (which is equivalent to countable additivity) implies the stated

properties.

We caution the reader on two common mistakes.

(1) Fµ is not left-continuous in general. Taking d = 1 for simplicity of notation, note that if

tn ↑ t, then (−∞, tn] increases to (−∞, t), not to (−∞, t]. Hence, left-continuity may not

hold (examples below show it too).

(2) Fµ(x)→ 0 if just one of the xis goes to −∞ but to have Fµ(x)→ 1, we need (in general) all

xis to go to +∞. In d = 2, for example, if x1 ↑ ∞ and x2 stays fixed, then Rx ↑ R× (−∞, x2]

and not to R2.

As we have only a few examples of probability measures so far, we give two examples.
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Example 14

Let µ be the Lebesgue measure on [0, 1]. Then,

Fµ(t) =


0 if t ≤ 0,

t if 0 ≤ t ≤ 1,

1 if t ≥ 1.

Example 15

Let µ = δ0, which is the probability measure defined by δ0(A) = 1 if A 3 0 and δ0(A) = 0 if

A 63 0. Then, we see that

Fδ0(t) =

0 if t < 0,

1 if t ≥ 0.

This is an example where left-continuity fails at one point. More generally, consider a dis-

crete measure µ =
∑n

k=1 qkδak for some real numbers a1 < . . . < an and for some non-

negative numbers qi such that q1 + . . .+ qn = 1. Its distribution function is given by

Fµ(t) =


0 if t < a1,

q1 + . . .+ qi if ai ≤ t < ai+1,

1 if t ≥ an.

It fails left-continuity at a1, . . . , an.

Exercise 11

Define the probability measure δ(0,0) on R2. Write its distribution function. Do the same for
1
4(δ(0,0) + δ(0,1) + δ(1,0) + δ(1,1)).

Now we come to the second theorem which shows that distribution functions are in one-one

correspondence with Borel probability measures.

Theorem 14

Suppose F : Rd → [0, 1] is nondecreasing in each co-ordinate, right-continuous in each co-

ordinate, and satisfies limF (x) = 0 if mini xi → −∞ and limF (x) = 1 if mini xi → +∞.

Then, there exists a unique Borel probability measure µ on Rd such that Fµ = F .
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The uniqueness part is easy. If µ and ν are two Borel probability measures on Rd having the

same distribution function, then µ(Rx) = ν(Rx) for all x ∈ Rd. But the collection S := {Rx : x ∈
Rd} is a π-system that generates the Borel σ-algebra. Hence µ = ν.

The difficult part is existence of a mmeasure µ. In the next two sections, we prove Theorem 13

and Theorem 14, first for d = 1 and then for general d.

10. THE CASE OF ONE-DIMENSION

For d = 1, we prove Theorem 13 and Theorem 14 simultaneously (I am unable to find such a

proof for higher dimensions1).

Suppose F : R→ [0, 1] satisfying the assumptions of Theorem 14 is given. Define T : (0, 1)→ R
by

T (u) := inf{x : F (x) ≥ u}.

Since we restrict to (0, 1), it follows that T is well-defined (since F (x) converges to 0 and 1 at −∞
and +∞). Further, T is non-decreasing and left continuous. In particular, it is Borel-measurable.

Hence, µ := λ ◦ T−1 is a well-defined Borel probability measure on R. We claim that µ has

distribution function F .

What is T ? When F is strictly increasing and continuous, T is just the inverse of F . In general,

it is a sort of generalized inverse in the sense that T (u) ≤ x if and only if F (x) ≥ u. Hence,

λ ◦ T−1(−∞, x] = λ{u ∈ (0, 1) : T (u) ≤ x}

= λ{u ∈ (0, 1) : u ≤ F (x)}

= F (x).

Thus, µ = λ ◦ T−1 has distribution function F .

This proves Theorem 14 for d = 1. It also proves Theorem 13 for d = 1, since, if we started with

a measure µ and F = Fµ, then we produced the map T under which Lebesgue measure pushes

forward to µ.

11. HIGHER DIMENSIONS

The following (sketch of) proof of Theorem 14 applies to any dimension.

Proof of Theorem 14. We already showed uniqueness.

To show the existence, we may repeat the Caratheodary construction. We just sketch the starting

point. Let Sd := {I1 × . . . × Id : Ij ∈ S1}, where S1 is the collection of left-open, right-closed

1The fact is nevertheless true. Any Borel probability measure on a complete and separable metric space (eg., Rd) is

the push-forward of Lebesgue measure on [0, 1] under some measurable function. For Rd, this can be shown using the

one-dimensional result, but it will need us to develop the notion of conditional probability.
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intervals in R (including those of the form (−∞, a] and (a,∞)). Then Sd is a π-system and the

algebra generated by it can be described explicitly as

Ad :=

{
n⊔
k=1

Ak : n ≥ 0, Ak ∈ Sd are pairwise disjoint

}
.

Given F : Rd → [0, 1] as in the statement of the theorem, we define µ : Ad → [0, 1] as follows. First

define it on Sd by setting

µ ((a1, b1]× . . .× (ad, bd]) =
∑

ci∈{ai,bi}
1≤i≤d

±F (c1, . . . , cd)

where the signs must be appropriately chosen. For example, in d = 1, we set µ(a, b] = F (b)−F (a)

while in d = 2, we set µ((a1, b1]× (a2, b2]) = F (b1, b2)−F (a1, b2)−F (b1, a2)+F (a1, a2). In general,

the sign must be negative if there are an odd number of j for which cj 6= bj .

Then, for A ∈ Ad, write A = A1 t . . .tAn with Ai ∈ Sd and define µ(A) = µ(A1) + . . .+ µ(An).

The main part of the proof (which we skip) would be to check that µ is countably additive on

the algebra Ad (it takes a bit of work). Then, invoke the result of Caratheodary to extend µ to

B(Rd) as a probability measure. By construction, the distribution function of µ will be F . �

Next we turn to the proof of Theorem 13. To clarify the main idea, let us indicate how Lebesgue

measure on (0, 1)2 can be got from Lebesgue measure on (0, 1).

Given x ∈ (0, 1), let x = 0.t1t2t3 . . . be its binary expansion. Then define y = 0.t1t3 . . . and

z = 0.t2t4 . . .. Thus we get a mapping x 7→ (y, z) which goes from (0, 1) to (0, 1)2. It is not hard to

see that this mapping is Borel measurable and the push-forward of Lebesgue measure on (0, 1) is

the Lebesgue measure on (0, 1)2.

Convention: There are a couple of issues. Binary expansion is not uniquely defined. For example,

0.01011111 . . . and 0.01100000 . . . represent the same number. To avoid ambiguities, let us always

take the expansion that has infinitely many ones. Then, for each n ∈ Z, let Bn : R → {0, 1} be

the function such that Bn(x) is the nth digit in the binary expansion so that x =
∑

n∈ZBn(x)2−n.

For any x, clearly Bn(x) = 0 if n is sufficiently negative, and our convention says that there are

infinitely many n ≥ 1 for which Bn(x) = 1.

Observe that each Bn is a step-function (where are the jumps and is it left or right continuous

at those points?) and hence Borel measurable.

Proof of Theorem 13. For simplicity of notation, let d = 2 (write for yourself the case of general d).

Define T : R2 → R as

T (x, y) =
∑
n∈Z

Bn(x)

22n−1
+
Bn(y)

22n
.
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In words, T (x, y) is got by interlacing the binary expansions of x and y. Clearly the sums are

convergent and hence T is well-defined and Borel measurable (as it is a limit of finite sums of

Borel measurable functions). Clearly T is injective, since we can recover x and y from the binary

expansion of T (x, y). Let A ⊆ R be the range of T so that T : R2 7→ A is bijective.

We claim that A is a Borel set. To see this, first observe that

Ac = {t ∈ R : B2n(t) = 1 for finitely many n}
⋃
{t ∈ R : B2n−1(t) = 1 for finitely many n}.

For any finite subset F ⊆ Z, let

BF = {t : B2n(t) = 0 for n 6∈ F and B2n(t) = 1 for n ∈ F},

CF = {t : B2n−1(t) = 0 for n 6∈ F and B2n(t) = 1 for n ∈ F},

so that Ac =
⋃
F

BF ∪CF , a countable union. Thus, it suffices to show that BF and CF are Borel sets

for each F . That is obvious since

BF =
⋂
n∈F

B−1
2n {1}

⋂
n∈Z\F

B−1
2n {0},

CF =
⋂
n∈F

B−1
2n−1{1}

⋂
n∈Z\F

B−1
2n−1{0},

and each Bn is Borel measurable. This proves the claim that A is a Borel set.

Lastly if we define S : R→ R2 by S(z) = (x, y) where x =
∑∞

n=1
B2n−1(z)

2n and y =
∑∞

n=1
B2n(z)

2n ,

then it is clear that S is Borel measurable. Further, S
∣∣∣∣∣∣
A is precisely T−1. Since A is Borel, this

shows that for any C ∈ B(R2), we get that (T−1)−1(C) = S−1(C) ∩ A is also a Borel set. Hence

T−1 is Borel measurable.

Thus T : R2 → A is a bijection and both T and T−1 are Borel-measurable. Hence, give a

probability measure µ on R2, the push-forward ν = µ ◦ T−1 is a Borel measure on R. We know

that ν = λ ◦ h−1 for some Borel measurable h : (0, 1) → R. Thus, µ = λ ◦ h−1 ◦ T or in words, the

map h ◦ T−1 : (0, 1)→ R2 pushes the Lebesgue measure forward to the given measure µ. �

12. EXAMPLES OF PROBABILITY MEASURES IN EUCLIDEAN SPACE

There are many important probability measures that occur frequently in probability and in the

real world. We give some examples below and expect you to familiarize yourself with each of

them.

Example 16

The examples below have CDFs of the form F (x) =
∫ x
−∞ f(t)dt where f is a non-negative

integrable function with
∫
f = 1. In such cases f is called the density or pdf (probability den-

sity function). Clearly F is continuous and non-decreasing and tends to 0 and 1 at +∞ and
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−∞ respectively. Hence, there do exist probability measures on R with the corresponding

density.

(1) Normal distribution. For fixed a ∈ R and σ2 > 0, N(a, σ2) is the probability measure

on R with density 1
σ
√

2π
e−(x−a)2/2σ2

du. F is clearly increasing and continuous and

F (−∞) = 0. That F (+∞) = 1 is not so obvious but true!

(2) Gamma distribution with shape parameter α > −1 and scale parameter λ > 0 is the

probability measure with density f(x) = 1
Γ(α)λ

αxα−1e−λx for x > 0.

(3) Exponential distribution. Exponential(λ) is the probability measure with density

f(x) = λe−λx for x ≥ 0 and f(x) = 0 if x < 0. This is a special case of Gamma

distribution, but important enough to have its own name.

(4) Beta distribution. For parameters a > −1, b > −1, the Beta(a, b) distribution is the

probability measure with density B(a, b)−1xa−1(1− x)b−1 for x ∈ [0, 1]. Here B(a, b)

is the beta function, defined as the constant that makes the integral to be 1. It can be

shown to be equal to Γ(a)Γ(b)
Γ(a+b) .

(5) Uniform distribution on [a, b] is the probability measure with density f(x) = 1
b−a

for x ∈ [a, b]. For example, with a = 0, b = 1, this is a special case of the Beta

distribution.

(6) Cauchy distribution. This is the probability measure with density 1
π(1+x2)

on the whole

line. Unlike all the previous examples, this distribution has “heavy tails”

You may have seen the following discrete probability measures. They are very important too

and will recur often.

Example 17

The examples below have CDFs of the form F (x) =
∑

ui≤x p(xi)dt, where {xi} is a fixed

countable set, and p(xi) are non-negative numbers that add to one. In such cases p is called

the pmf (probability mass function). and from what we have shown, there do exist proba-

bility measures on R with the corresponding density or CDF.

(1) Binomial distribution. Binomial(n, p), with n ∈ N and p ∈ [0, 1], has the pmf p(k) =(
n
k

)
pkqn−k for k = 0, 1, . . . , n.

(2) Bernoulli distribution. p(1) = p and p(0) = 1 − p for some p ∈ [0, 1]. Same as

Binomail(1, p).
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(3) Poisson(λ) distribution with parameter λ ≥ 0 has probability measuref p(k) = e−λ λ
k

k!

for k = 0, 1, 2, . . ..

(4) Geometric(p) distribution with parameter p ∈ [0, 1] has probability measuref p(k) =

qkp for k = 0, 1, 2, . . ..

All the measures we mentioned so far are in one dimension. Among multi-variate ones, we

mention one important example.

Example 18: Multivariate normal distribution

Let µ ∈ Rd and Σ be a d× d symmetric, positive-definite matrix. Then,

f(x) :=
1

(2π)d/2
√

det(Σ)
exp

{
−1

2
(x− µ)tΣ−1(x− µ)

}
is a probability density on Rd. The probability measure with distribution function given by

F (x1, . . . , xd) :=

x1∫
−∞

. . .

xd∫
−∞

f(t1, . . . , td)dt1 . . . dtd

is called the multi-variate normal distribution with mean vector µ and covariance matrix Σ

(we are yet to define what mean and covariance means, but once defined this terminology

will be justified).

Exercise 12

In each of the above examples, try to find a transformation T : (0, 1) → R that pushes

Lebesgue measure forward to the given probability measure. Implement this on a computer

to generate random numbers from these distributions using a random number generator

that outputs uniform random numbers in [0, 1].

13. A METRIC ON THE SPACE OF PROBABILITY MEASURES ON Rd

What kind of space is P(Rd), the space of Borel on Rd? It is clearly a convex set (this is true

for the space of probability measures on any measurable space). We want to measure closeness of

two probability distributions. Two possible definitions come to mind.

(1) For µ, ν ∈ P(Rd), define D1(µ, ν) := supA∈Bd |µ(A)− ν(A)|. Since µ and ν are functions on

the Borel σ-algebra, this is just their supremum distance, usually called the total variation

distance. It is easy to see that D1 is indeed a metric on P(Rd).

One shortcoming of this metric is that if µ is a discrete measure and ν is a measure with

density, then D1(µ, ν) = 1. But we shall be interested in talking about discrete measures
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approximating continuous ones (as in central limits theorem, if you have heard of it). The

metric D1 is too strong for this purpose.

(2) We can restrict the class of sets over which we take the supremum. For instance, taking all

semi-infinite intervals, we define the Kolmogorov-Smirnov distance

D2(µ, ν) = sup
x∈Rd

|Fµ(x)− Fν(x)|.

If two CDFs are equal, the corresponding measures are equal. Hence D2 is also a genuine

metric on P(Rd).

Clearly D2(µ, ν) ≤ D1(µ, ν), hence D2 is weaker than D1. Unlike with D1, it is possible

to have discrete measures converging in D2 to a continuous one, see Exercise 13. But it is

still too strong.

For example, if a 6= b are points in Rn, then it is easy to see that D1(δa, δb) = D2(δa, δb) =

1. Thus, even when an → a in Rd, we do not get convergence of δan to δa in these metrics.

This is an undesirable feature (why? Let us just say that we would like the embedding

R 7→ P(R) defined by a 7→ δa to be continuous).

Thus, we would like a weaker metric, where more sequences converge. The problem with the

earlier two definitions is that they compare µ(A) with ν(A). The next definition allows the set to

change a little.

Definition 7

For µ, ν ∈ P(Rd), define the Lévy distance between them as (here 1 = (1, 1, . . . , 1))

d(µ, ν) := inf{u > 0 : Fµ(x+ u1) + u ≥ Fν(x), Fν(x+ u1) + u ≥ Fµ(x) ∀x ∈ Rd}.

If d(µn, µ)→ 0, we say that µn converges in distribution or converges weakly to µ and write

µn
d→ µ. [...breathe slowly and meditate on this definition for a few minutes...]

Remark 7

Although we shall not use it, we mention how a distance is defined on P(X) for a metric

space X (it is called Lévy-Prohorov distance). For µ, ν ∈ P(X)

d(µ, ν) := inf{t > 0 : µ(A(t)) + t ≥ ν(A) and ν(A(t)) + t ≥ µ(A) for all closed A ⊆ X}.

Here A(t) is the set of all points in X that are within distance t of A. This makes it clear

that we do not directly compare the measures of a given set, but if d(µ, ν) < t, it means that

whenever µ gives a certain measure to a set, then ν should give nearly that much (nearly

means, allow t amount less) measure to a t-neighbourhood of A.
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As an example, if a, b ∈ Rd, then check that d(δa, δb) ≤ (maxi |bi−ai|)∧1. Hence, if an → a, then

d(δan , δa)→ 0. Recall that δan does not converge to δa in D1 or D2.
Exercise 13

Let µn = 1
n

∑n
k=1 δk/n. Show directly by definition that d(µn, λ) → 0. Show also that

D2(µn, λ)→ 0 but D1(µn, λ) does not go to 0.

The definition is rather unwieldy in checking convergence. The following proposition gives the

criterion for convergence in distribution in terms of distribution functions.

Proposition 15

µn
d→ µ if and only if Fµn(x)→ Fµ(x) for all continuity points x of Fµ.

Proof. Suppose µn
d→ µ. Let x ∈ Rd and fix u > 0. Then for large enough n, we have Fµ(x+ u1) +

u ≥ Fµn(x), hence lim supFµn(x) ≤ Fµ(x + u1) + u for all u > 0. By right continuity of Fµ, we

get lim supFµn(x) ≤ Fµ(x). Further, Fµn(x) + u ≥ Fµ(x − u1) for large n, hence lim inf Fµn(x) ≥
Fµ(x−u) for all u. If x is a continuity point of Fµ, we can let u→ 0 and get lim inf Fµn(x) ≥ Fµ(x).

Thus Fµn(x)→ Fµ(x).

For the converse, for simplicity let d = 1. Suppose Fn → F at all continuity points of F . Fix any

u > 0. Find x1 < x2 < . . . < xm, continuity points of F , such that xi+1 ≤ xi + u and such that

F (x1) < u and 1 − F (xm) < u. This can be done because continuity points are dense. Now use

the hypothesis to fix N so that |Fn(xi)− F (xi)| < u for each i ≤ m and for n ≥ N . Henceforth, let

n ≥ N .

If x ∈ R, then either x ∈ [xj−1, xj ] for some j or else x < x1 or x > x1. First suppose x ∈
[xj−1, xj ]. Then

F (x+ u) ≥ F (xj) ≥ Fn(xj)− u ≥ Fn(x)− u, Fn(x+ u) ≥ Fn(xj) ≥ F (xj)− u ≥ F (x)− u.

If x < x1, then F (x+ u) + u ≥ u ≥ F (x1) ≥ Fn(x1)− u. Similarly the other requisite inequalities,

and we finally have

Fn(x+ 2u) + 2u ≥ F (x) and F (x+ 2u) + 2u ≥ Fn(x).

Thus d(µn, µ) ≤ 2u. Hence d(µn, µ)→ 0. �

Example 19

Again, let an → a in R. Then Fδan (t) = 1 if t ≥ an and 0 otherwise while Fδa(t) = 1 if t ≥ a

and 0 otherwise. Thus, Fδan (t) → Fδa(t) for all t 6= a (just consider the two cases t < a and
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t > a). This example also shows the need for excluding discontinuity points of the limiting

distribution function. Indeed, Fδan (a) = 0 (if an 6= a) but Fδa(a) = 1.

Observe how much easier it is to check the condition in the theorem rather than the original

definition! Many books use the convergence at all continuity points of the limit CDF as the defini-

tion of convergence in distribution. But we defined it via the Lévy metric because we are familiar

with convergence in metric spaces and this definition shows that convergence in distribution in

not anything more exotic (as it might sound from the other definition).
Exercise 14

If an → 0 and b2n → 1, show that N(an, b
2
n)

d→ N(0, 1) (recall that N(a, b2) is the Normal

distribution with parameters a ∈ R and b2 > 0).

Question: In class, Milind Hegde raised the following question. If we define (write in one dimen-

sion for notational simplicity)

d′(µ, ν) = inf{t > 0 : Fµ(x+ t) ≥ Fν(x) and Fν(x+ t) ≥ Fµ(x) for all x},

how different is the resulting metric from the Lévy metric? In other words, is it necessary to allow

an extra additive t to Fµ(x+ t)?

It does make a difference! Suppose µ, ν are two probability measures on R such that µ(K0) = 1

for some compact set K0 and ν(K) < 1 for all compact sets K. Then, if x is large enough so that

x > y for all y ∈ K0, then Fν(x + t) < 1 = Fµ(x) for any t > 0. Hence, d′(µ, ν) > t for any t

implying that d′(µ, ν) =∞.

Now, it is not a serious problem if a metric takes the value∞. We can replace d′ by d′′(µ, ν) =

d′(µ, ν) ∧ 1 or d′′′(µ, ν) = d(µ, ν)/(1 + d(µ, ν)) which gives metrics that are finite everywhere

but are such that convergent sequences are the same as in d′ (i.e., d′(µn, µ) → 0 if and only if

d′′(µn, µ)→ 0).

But the issue is that measures with compact support can never converge to a measure without

compact support. For example, if X has exponential distribution and Xk = X ∧ k, then the

distribution ofXk does not converge to the distribution ofX in the metric d′. However, it is indeed

the case that the convergence happens in the metric d. Thus the two metrics are not equivalent 2.

2In class I wrongly claimed that for probability measures on a compact set in place of the whole real line, eg.,

P([−1, 1]), convergence in d′ and in d are equivalent. Chirag Igoor showed me the following counter-example. Let
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14. COMPACT SUBSETS IN THE SPACE OF PROBABILITY MEASURE ON EUCLIDEAN SPACES

Often we face problems like the following. A functional L : P(Rd)→ R is given, and we would

like to find the probability measure µ that minimizes L(µ). By definition, we can find nearly

optimal probability measures µn satisfying L(µn) − 1
n ≤ infν L(ν). Then we might expect that if

the sequence µn (or a subsequence of it) converged to a probability measure µ, then µmight be the

optimal solution we are searching for. This motivates us to characterize compact subsets of P(Rd),

so that existence of convergent subsequences can be asserted.

Looking for a convergent subsequence: Let µn be a sequence in P(Rd). We would like to see if a

convergent subsequence can be extracted. Towards this direction, we prove the following lemma.

We emphasize the idea of proof (a diagonal argument) which recurs in many contexts.

Lemma 16

[Helly’s selection principle] Let Fn be a sequence distribution functions on Rd. Then, there

exists a subsequence {n`} and a non-decreasing, right continuous functon F : Rd → [0, 1]

such that Fn`(x)→ F (x) if x is a continuity point of F .

Proof. Fix a dense subset S = {x1, x2, . . .} of Rd. Then, {Fn(x1)} is a sequence in [0, 1]. Hence, we

can find a subsequence {n1,k}k such that Fn1,k
(x1) converges to some number α1 ∈ [0, 1]. Then,

extract a further subsequence {n2,k}k ⊆ {n1,k}k such that Fn2,k
(x2)→ α2, another number in [0, 1].

Of course, we also have Fn2,k
(x1) → α1. Continuing this way, we get numbers αj ∈ [0, 1] and

subsequences {n1,k} ⊃ {n2,k} ⊃ . . . {n`,k} . . . such that for each `, as k →∞, we have Fn`,k(xj)→
αj for each j ≤ `.

The diagonal subsequence {n`,`} is ultimately the subsequence of each of the above obtained sub-

sequences and therefore, Fn`,`(xj) → αj as ` → ∞, for each j. Henceforth, write n` instead of

n`,`.

To get a function on the whole line, set F (x) := inf{αj : j for which xj > x}. F is well defined,

takes values in [0, 1] and is non-decreasing. It is also right-continuous, because if yn ↓ y, then for

any j for which xj > y, it is also true that xj > yn for sufficiently large n. Thus limn→∞ F (yn) ≤ αj .

µ = δ1 and for each n define

Fn(x) =


0 if x < 0,

x/n if 0 ≤ x < 1,

1 if x ≥ 1.

Then, Fn(x) → Fµ(x) for each x and hence the corresponding measures converge to µ in Lévy metric. But the conver-

gence fails in d′. To see this, take any x > 0 and observe that if Fµ(0.5 + t) ≥ Fµn(0.5), then we must have t ≥ 0.5. As

this is true for every n, it follows that µn does not converge to µ in d′.
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Take infimum over all j such that xj > y to get limn→∞ F (yn) ≤ F (y). Of course F (y) ≤ limF (yn)

as F is non-decreasing. This shows that limF (yn) = F (y) and hence F is right continuous.

Lastly, we claim that if y is any continuity point of F , then Fn`(y)→ F (y) as `→∞. To see this,

fix δ > 0. Find i, j such that y − δ < xi < y < xj < y + δ. Therefore

lim inf Fn`(y) ≥ limFn`(xi) = αi ≥ F (y − δ)

lim supFn`(y) ≤ limFn`(xj) = αj ≤ F (y + δ).

In each line, the first inequalities are by the increasing nature of CDFs, and the second inequalities

are by the definition of F . Thus

F (y−) ≤ lim inf Fn`(y) ≤ lim supFn`(y) ≤ F (y)

for all y ∈ R. If F (y−) = F (y), then it follows that limFn`(y) exists and equals F (y). �

The Lemma does not say that F is a CDF, because in general it is not!

Example 20

Consider δn. Clearly Fδn(x) → 0 for all x if n → +∞ and Fδn(x) → 1 for all x if n → −∞.

Even if we pass to subsequences, the limiting function is identically zero or identically one,

and neither of these is a CDF of a probability measure The problem is that mass escapes to

infinity. To get weak convergence to a probability measure, we need to impose a condition

to avoid this sort of situation.

Definition 8

A family of probability measure A ⊆ P(Rd) is said to be tight if for any ε > 0, there is a

compact set Kε ⊆ Rd such that µ(Kε) ≥ 1− ε for all µ ∈ A.

Example 21

Suppose the family has only one probability measure µ. Since [−n, n]d increase to Rd, given

ε > 0, for a large enough n, we have µ([−n, n]d) ≥ 1− ε. Hence {µ} is tight. If the family is

finite, tightness is again clear.

Take d = 1 and let µn be probability measures with Fn(x) = F (x − n) (where F is a fixed

CDF), then {µn} is not tight. This is because given any [−M,M ], if n is large enough,

µn([−M,M ]) can be made arbitrarily small. Similarly {δn} is not tight.

We now characterize compact subsets of P(Rd) in the following theorem. As P(Rd) is a metric

space, compactness is equivalent to sequential compactness and we phrase the theorem in terms

of sequential compactness.
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Theorem 17

Let A ⊆ P(Rd). Then, the following are equivalent.

(1) Every sequence in A has a convergent subsequence in P(Rd).

(2) A is tight.

Proof. Let us take d = 1 for simplicity of notation.

(1) Assume that A is tight. Then any sequence (µn)n in A is also tight. By Lemma 16, there

is a subsequence {n`} and a non-decreasing right continuous function F (taking values in

[0, 1]) such that Fn`(x)→ F (x) for all continuity points x of F .

Fix A > 0 such that µn` [−A,A] ≥ 1− ε and such that A is a continuity point of F . Then,

Fn`(−A) ≤ ε and Fn`(A) ≥ 1 − ε for every n and by taking limits we see that F (−A) ≤ ε

and F (A) ≥ 1 − ε. Thus F (+∞) = 1 and F (−∞) = 0. This shows that F is a CDF and

hence F = Fµ for some µ ∈ P(Rd). By Proposition 15 it also follows that µn`
d→ µ.

(2) Assume thatA is not tight. Then, there exists ε > 0 such that for any k, there is some µk ∈ A
such that µk([−k, k]) < 1− 2ε. In particular, either Fµk(k) ≤ 1− ε or/and Fµk(−k) ≥ ε. We

claim that no subsequence of (µk)k can have a convergent subsequence.

To avoid complicating the notation, let us show that the whole sequence does not con-

verge and leave you to rewrite the same for any subsequence. There are infinitely many k

for which Fµk(−k) ≥ ε or there are infinitely many k for which Fµk(k) ≥ 1 − ε. Suppose

the former is true. Then, for any x ∈ R, since −k < x for large enough k, we see that

Fµk(x) ≥ Fµk(−k) ≥ ε for large enough k. This means that if Fµk converge to some F (at

continuity points of F ), then F (x) ≥ ε for all x. Thus, F cannot be a CDF and hence µk
does not have a limit. �

Exercise 15

Adapt this proof for d ≥ 2.

15. EXPECTATION

Let (Ω,F ,P) be a probability space. We define Expectation or Lebesgue integral of real-valued

random variables in three steps.

(1) If X can be written as X =
∑n

i=1 ci1Ai for some Ai ∈ F , we say that X is a simple r.v.. We

define its expectation to be E[X] :=
∑n

i=1 ciP(Ai).

(2) IfX ≥ 0 is a random variable, we define E[X] := sup{E[S] : 0 ≤ S ≤ X, S is a simple r.v.},
which is either a non-negative number or +∞.
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(3) If X is any real-valued random variable, let X+ := X1X≥0 and X− := −X1X<0 so that

X = X+ −X− (also observe that X+ +X− = |X|). If both E[X+] and E[X−] are finite, we

say that X is integrable (or that its expectation exists) and define E[X] := E[X+]−E[X−].

Naturally, there are some arguments needed to complete these steps. We elaborate a little. But

full details are left to measure theory class (or consult any measure theory book, eg., Dudley’s Real

analysis and probability).

(1) In the first step, one should check that E[X] is well-defined. This is necessary because a

simple random variable can be represented as
∑n

i=1 ci1Ai in many ways. Finite additivity

of P is used to show this. It helps to note that there is a unique way to write X in this form

so that the sets Ak are pairwise disjoint and numbers ck are distinct.

(2) In addition, check that the expectation operator defined on simple random variables has

the following properties.

(a) Linearity: If X,Y are simple random variables, then E[αX +βY ] = αE[X] +βE[Y ] for

all α, β ∈ R.

(b) Positivity: If X ≥ 0 (this means that X(ω) ≥ 0 for all ω ∈ Ω), then E[X] ≥ 0.

(3) Then go to the second step and define expectation of non-negative random variables.

Again we must check that linearity and positivity are preserved. It is clear that E[αX] =

αE[X] if X ≥ 0 is a r.v and α is a non-negative real number (why?). One can also easily see

that E[X + Y ] ≥ E[X] + E[Y ] using the definition. To show that E[X + Y ] = E[X] + E[Y ],

it is necessary to use countable additivity of P in the following form.

Theorem 18: Monotone convergence theorem - provisional version

If Sn are non-negative simple r.v.s that increase to X (i.e., Sn(ω) ↑ X(ω) for each

ω ∈ Ω), then E[Sn] increases to E[X].

If Sn ↑ X and Tn ↑ Y , then Sn+Tn ↑ X+Y (and Sn+Tn is simple if Sn and Tn are), hence

we get the conclusion that E[X+Y ] = E[X] +E[Y ] for non-negative random variables. To

avoid vacuous statements, we note that there do exist simple random variables Sn, Tn that

increase to X,Y . For example, we can take

Sn(ω) =
22n∑
k=0

k

2n
1X(ω)∈[k2−n,(k+1)2−n).

(4) It is convenient to allow a non-negative random variable to take the value +∞ but adopt

the convention that 0 · ∞ = 0. That is, infinite value on a set of zero probability does not
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matter in computing expectations. Of course, if a non-negative random variable takes the

value +∞ on set of positive probability, then E[X] = +∞ (follows from the definition).

(5) In step 3, one assumes that both E[X+] and E[X−] are finite, which is equivalent to as-

suming that E[|X|] < ∞ (because |X| = X+ + X−). Such random variables are said

to be integrable or absolutely integrable. For an integrable random variable X , we define

E[X] := E[X+]−E[X−].

(6) Finally argue that on the collection of all integrable random variables on the given proba-

bility space, the expectation operator is linear and positive.

Convention: Let us say “X = Y a.s” or “X < Y a.s” etc., to mean that P(X = Y ) = 1 or

P(X < Y ) = 1 etc. We may also use a.e. (almost everywhere) or w.p.1 (with probability one)

in place of a.s (almost surely). More generally, if we write [...xyz...], a.s., we mean that whatever

event is describe in [...xyz...] has probability equal to 1. For example, the statement

Xn → X a.s.

just means the same as the statement

P{ω : lim
n→∞

Xn(ω) exists and is equal to X(ω)} = 1.

Just as we ignore events having zero probability, we also do not usually distinguish two random

variables that are equal almost surely. For example, isX = Y , a.s., then their distributions P◦X−1

and P ◦ Y −1 are the same (why?). Similarly, if X is integrable, then so is Y and E[Y ] = E[X]. For

all probability questions of interest, the two random variables give the same answer and so they

are essentially the same.

Summary: Given a probability space (Ω,F ,P), let L1(Ω,F ,P) be the collection of all integrable

random variables on Ω. Then, the expectation operator E : L1(Ω,F ,P) → R has the following

properties.

(1) Linearity: If X,Y are integrable, then for any α, β ∈ R, the random variable αX + βY is

also integrable and E[αX + βY ] = αE[X] + βE[Y ].

(2) Positivity: X ≥ 0 implies E[X] ≥ 0. Further, if X ≥ 0 and P(X = 0) < 1, then E[X] > 0.

A useful corollary of positivity is that whenever X ≤ Y and E[X],E[Y ] exist, then

E[X] ≤ E[Y ] with equality if and only if X = Y a.s.

(3) |E[X]| ≤ E[|X|].

(4) E[1A] = P(A) for A ∈ F . In particular, E[1] = 1.
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16. LIMIT THEOREMS FOR EXPECTATION

Theorem 19: Monotone convergence theorem (MCT)

Suppose Xn, X are non-negative r.v.s and Xn ↑ X a.s. Then E[Xn] ↑ E[X]. (valid even

when E[X] = +∞).

Theorem 20: Fatou’s lemma

Let Xn be non-negative r.v.s. Then E[lim inf Xn] ≤ lim inf E[Xn].

Theorem 21: Dominated convergence theorem (DCT)

Let |Xn| ≤ Y where Y is a non-negative r.v. with E[Y ] < ∞. If Xn → X a.s., then,

E[|Xn −X|]→ 0 and hence we also get E[Xn]→ E[X].

Assuming MCT, the other two follow easily. For example, to prove Fatou’s lemma, just de-

fine Yn = infn≥kXn and observe that Yks increase to lim inf Xn a.s and hence by MCT E[Yk] →
E[lim inf Xn]. Since Xn ≥ Yn for each n, we get lim inf E[Xn] ≥ lim inf E[Yn] = E[lim inf Xn].

To prove DCT, first note that |Xn| ≤ Y and |X| ≤ Y a.s. Consider the sequence of non-negative

r.v.s 2Y − |Xn −X| that converges to 2Y a.s. Then, apply Fatou’s lemma to get

E[2Y ] = E[lim inf(2Y − |Xn −X|)] ≤ lim inf E[2Y − |Xn −X|] = E[2Y ]− lim supE[|Xn −X|].

Thus lim supE[|Xn −X|] = 0. Further, |E[Xn]−E[X]| ≤ E[|Xn −X|]→ 0.

We omit the proof of MCT. But let us understand the conditions in these statements by giving

examples that violate the conditions and for which the conclusions are false.

Example 22

Consider the probability space ([0, 1],B, λ). Let fn(t) = − 1
nt and let f(t) = 0. Then, fn(t) ↑

f(t) for all t 6= 0. However, E[fn] = −∞ for each n and thus does not converge to E[f ] = 0.

Thus, the conclusion of MCT is violated. But the conditions are not satisfied either, since fn
are not non-negative.

This is essentially the only way in which MCT can fail. Indeed, suppose that Xn ↑ X a.s. but

Xn are not necessarily non-negative. Assume that E[(X1)−] <∞. Then, define Yn = Xn−X1 and

Y = X −X1. Clearly, Yn ≥ 0 a.s. and Yn ↑ Y . Hence by MCT as stated above, E[Yn] ↑ E[Y ]. But

E[Yn] = E[Xn]−E[X1] and E[Y ] = E[X]−E[X1] (these statements are valid even if E[Xn] or E[X]

is equal to∞, since our assumption implies that −∞ < E[X1] ≤ +∞). Thus, MCT is valid even if

we only assume that Xn ↑ X a.s. and that E[(XN )−] <∞ for some N . In other words, for MCT to

fail, we must have E[(Xn)−] = +∞ for each n, as it happened in the above example.
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The above example also shows how Fatou’s lemma may be violated without the condition of

Xn ≥ 0 a.s.. We give another example, as unlike MCT, there are other ways in which Fatou’s

lemma may be violated.

Example 23

On the probability space ([0, 1],B, λ), define fn(t) = −n1t≤ 1
n

and f(t) = 0. Then fn → f

a.s.but E[fn] = −1 for all n while E[f ] = 0. If we reversed the signs, then −fn ≥ 0 and

Fatou’s lemma is indeed valid.

Clearly, Fatou’s lemma implies that if Xn ≤ 0, then E[lim supXn] ≥ lim supE[Xn]. A common

mistake is to forget the reversed condition Xn ≤ 0 which leads to wonderful conclusions like

0 > 1. Lastly, an example where DCT fails.

Example 24

Again on the probability space ([0, 1],B, λ), define fn(t) = n1t≤ 1
n

and f(t) = 0. Then fn → f

a.s., but E[fn] = 1 for all n but E[f ] = 0. DCT is not contradicted because there is no

integrable random variable that dominates each fn.

However, note that Fatou’s lemma applies and is valid. Ideally we would like the conclu-

sion of DCT (limit of expectations is equal to the expectation of the limit), but when that is

not available, Fatou’s may apply to give a one way inequality. You may see some similarity

with the proof of Helly’s theorem, where we show that a sequence of measures may lose

some mass in the limit, but can never gain extra mass!

Here is a new way in which a random variable on a probability space gives rise to new proba-

bility measures on the same space.
Exercise 16

Let (Ω,F ,P) be a probability space and let X ≥ 0 be a random variable with finite expecta-

tion. Define Q : F → R+ by Q(A) = 1
E[X]E[X1A]. Show that Q is a probability measure on

F . Further, for any bounded random variable Y , we have EQ[Y ] = 1
EP[X]EP[XY ] (when we

have more than one probability measure, we put a subscript to E to denote which measure

we take expectations with respect to).

17. LEBESGUE INTEGRAL VERSUS RIEMANN INTEGRAL

Consider the probability space ([0, 1], B̄, λ) (note that in this section we consider the Lebesgue

σ-algebra, not Borel!) and a function f : [0, 1]→ R. Let

Un :=
1

2n

2n−1∑
k=0

max
k
2n
≤x≤ k+1

2n

f(x), Ln :=
1

2n

2n−1∑
k=0

min
k
2n
≤x≤ k+1

2n

f(x)
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be the upper and lower Riemann sums. Then, Ln ≤ Un and Un decrease with n while Ln increase.

If it happens that limUn = limLn, we say that f is Riemann integrable and this common limit

is defined to be the Riemann integral of f . The question of which functions are indeed Riemann

integrable is answered precisely by3

Theorem 22: Lebesgue’s theorem on Riemann integrals

A bounded function f : [0, 1]→ R is Riemann integrable if and only if the set of discontinu-

ity points of f has zero Lebesgue outer measure.

Next consider the Lebesgue integral E[f ]. For this we need f to be Lebesgue measurable in the

first place. Clearly any bounded and measurable function is integrable (why?).

Further, we claim that if f is continuous a.e., then f is measurable. To see this, let E ⊆ [0, 1] be

the set of discontinuity points of f . Then by assumption λ∗(E) = 0. Hence, E and all its subsets

are Lebesgue measurable and have measure 0. Further, as E contains no interval, we can find a

countable set D ⊆ Ec that is dense in [0, 1]. Let As = {x ∈ D : f(x) < s}, a countable set for any

s ∈ R and hence measurable. Thus, for any t ∈ R,

{f ≤ t} = {x ∈ E : f(x) ≤ t}
⋃⋂

n≥1

(Ec ∩At+ 1
n

)

 .

This shows that f < t is measurable.

Putting everything together, we see that Riemann integrable functions are also Lebesgue inte-

grable. Further, if f is Riemann integrable, then its Riemann integral and Lebesgue integral agree.

To see this, define

gn(x) :=

2n−1∑
k=0

(
max

k
2n
≤x≤ k+1

2n

f(x)

)
1 k

2n
≤x≤ k+1

2n
, hn(x) :=

2n−1∑
k=0

(
min

k
2n
≤x≤ k+1

2n

f(x)

)
1 k

2n
≤x≤ k+1

2n

so that E[gn] = Un and E[hn] = Ln. Further, gn(x) ↓ f(x) and hn(x) ↑ f(x) at all continuity points

of f . By MCT, E[gn] and E[hn] converge to E[f ], while by the assumed Riemann integrability Ln
and Un converge to the Riemann integral of f . Thus the Lebesgue integral E[f ] agrees with the

Riemann integral.

In short, when a function is Riemann integrable, it is also Lebesgue integrable, and the integrals

agree. But there are functions that are measurable but not a.e. continuous, for example, the func-

tion 1Q∩[0,1]. Thus, Lebesgue integral is more powerful than Riemann integral. Henceforth in life,

we shall always use the Lebesgue integral.

A natural question is whether there is an even more general way of defining an “integral”? To

answer that, we need to know what we require out of an integral. Let us stick to function on [0, 1]

3See Theorem 11.33 in Rudin’s Principles of mathematical analysis.
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for definiteness. Then we certainly want continuous functions to be integrable and the integral to

satisfy linearity and positivity. Then, we have the following theorem of F. Riesz.

Theorem 23

Suppose I : C[0, 1]→ R is a positive linear functional and I(1) = 1. That is, (1) I(af + bg) =

aI(f)+bI(g) for all a, b ∈ R and f, g ∈ C[0, 1], (2) I(f) ≥ 0 whenever f ≥ 0, and (3) I(1) = 1.

Then, there exists a unique Borel probability measure µ on [0, 1] such that I(f) =
∫
fdµ for

all f ∈ C[0, 1].

This shows that all positive linear functionals on C[0, 1] are given by Lebesgue integral with

respect to a Borel measure. In other words, no need to go beyond the Lebesgue integral! The same

result is true if we replace [0, 1] by any compact Hausdorff space. It is also true on a locally compact

space (but then the linear functional is defined on the space of compactly supported continuous

functions).

Remark 8

If you accept that positive linear functionals are natural things to consider, then Riesz’s

theorem associates to each of them a unique countably additive Borel probability measure.

In other words, countable additivity is thrust on us, not imposed! In this sense, Riesz’s

representation theorem justifies the assumption of countable additivity in the definition of

measure.

18. LEBESGUE SPACES

Fix a probability space (Ω,F ,P). For p > 0, let Vp be the collection of all random variables

X : Ω → R for which E[|X|p] < ∞. We also define V∞ as the collection of all bounded random

variables, i.e., all X for which there is a constant M such that |X| ≤M a.s.

Claim 24

Vp is a vector space for any 0 < p ≤ ∞. Further, Vp ⊇ Vq if p ≤ q.

Proof. It is easy to see that V∞ is a vector space. Indeed, if |X| ≤ M a.s.and |Y | ≤ M ′ a.s., then

|αX + βY | ≤ |α|M + |β|M ′ a.s.
If 0 < p < ∞, we recall that for any x, y > 0, we have (x + y)p ≤ 2p−1(xp + yp) if p ≥ 1 and

(x+ y)p ≤ xp + yp if 0 < p ≤ 1. Therefore, |X + Y |p ≤ Cp(|X|p + |Y |p) where Cp = 2p−1 ∨ 1. Thus,

if X,Y ∈ Vp then X + Y ∈ Vp. Further, if X ∈ Vp, then clearly αX ∈ Vp since |αX|p ≤ |α|p|X|p.
This completes the proof that Vp is a vector space. This proves the first part of the claim.
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Now suppose p ≤ q < ∞. Then for any X , we have |X|p ≤ |X|q + 1 (the extra 1 is needed for

the case when |X| < 1). Using positivity of expectations, we get E[|X|p] ≤ 1 + E[|X|q]. Hence, if

X ∈ Vq then X ∈ Vp. When q =∞, this is even more obvious. �

Next, we want to define a norm on Vp. To this end, we define ‖X‖p := E[|X|p]
1
p for X ∈ Vp

for p < ∞ and ‖X‖∞ := inf{t > 0 : |X| ≤ t a.s.}. Then ‖tX‖p = t‖X‖p for t > 0, showing

homogeneity. But there are issues with triangle inequality and strict positivity.

(1) Triangle inequality requires ‖X + Y ‖p ≤ ‖X‖p + ‖Y ‖p for any X,Y ∈ Vp. This is false if

p < 1. Secondly, even for p ≥ 1, this is not obvious to prove! We discuss it below.

(2) Strict positivity requires that ‖X‖p = 0 implies X = 0. But this is not true, as ‖X‖p = 0 if

and only if X = 0 a.s.

Let us see how to deal with these issues.

Triangle inequality: As mentioned, triangle inequality fails for p < 1, even in the simplest non-

trivial probability space!

Example 25

Let Ω = {0, 1} and P{0} = P{1} = 1
2 . Define X(0) = a, X(1) = b and Y (0) = b, Y (1) = a

where a, b > 0. Then, ‖X‖p = ‖Y ‖p = (a
p+bp

2 )
1
p while ‖X+Y ‖p = (a+b). Triangle inequality

would imply that (a+b
2 )p ≤ ap+bp

2 . But this is exactly the same as saying that x → xp is a

convex function, which is true if and only if p ≥ 1.

Henceforth, we shall only take p ≥ 1. But how does one prove Minkowski’s inequality? We

consider the important special cases of p = 1, 2,∞ here. In the next section, we sketch a proof for

general p.

(1) Case p = 1. In this case, since |X + Y | ≤ |X|+ |Y |, using positivity of expectation, we get

‖X + Y ‖1 = E[|X + Y |] ≤ E[|X|+ |Y |] = E[|X|] + E[|Y |] = ‖X‖1 + ‖Y ‖1.

(2) Case p = ∞. If |X| ≤ M a.s.and |Y | ≤ M ′ a.s., then |X + Y | ≤ M + M ′ a.s.Therefore,

‖X + Y ‖∞ ≤ ‖X‖∞ + ‖Y ‖∞.

(3) Case p = 2. The desired inequality is
√

E[(X + Y )2] ≤
√
E[X2] +

√
E[Y 2]. Squaring and

expanding (X + Y )2, this reduces to E[XY ] ≤
√
E[X2]

√
E[Y 2]. This inequality is indeed

true, and is known as the Cauchy-Schwarz inequality.

The standard proof of Cauchy-Schwarz inequality is this: For any t ∈ R, define f(t) =

E[(X − tY )2]. By positivity of expectations, f(t) ≥ 0, but also f(t) = t2E[Y 2]− 2tE[XY ] +

E[X2], a quadratic polynomial in t (assuming E[Y 2] 6= 0). For this to be non-negative for
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all t, we must have (E[XY ])2 ≤ E[X2]E[Y 2], proving Cauchy-Schwarz inequality and also

showing that equality can hold if and only if X and Y are constant multiples of each other.

Strict positivity: Say that two random variables are equivalent and write X ∼ Y if X = Y a.s. If

X = X ′ a.s.and Y = Y ′ a.s., then αX + βX ′ = αY + βY ′ a.s.Therefore, on the equivalence classes

we can define addition and scalar multiplication (i.e., α[X] + [Y ] = [αX + Y ] is a valid definition).

In particular, if we restrict to Vp for some p ≥ 1, then we get a vector space that we denote Lp (or

Lp(Ω,F ,P) to describe the full setting). More precisely,

Lp = {[X] : X ∈ Vp}.

Then, Lp is a vector space, and ‖ · ‖p is a genuine norm on Lp (triangle inequality because p ≥ 1

and strict positivity because we have quotiented by the equivalence relation).

Although elements of Lp spaces are equivalence classes of random variables, it is a standard

abuse of language to speak of a random variable being in Lp, always keeping in mind that we

don’t distinguish two random variables that differ on a set of zero probability.

Completeness of Lp spaces: For 1 ≤ p ≤ ∞, we have seen that Lp(Ω,F ,P) is a normed vector

space. Automatically that makes it a metric space with distance defined by ‖X − Y ‖p. The most

important fact about Lp spaces (proof is left to measure theory class) is the following theorem of

Riesz.

Theorem 25: Completeness of Lebesgue spaces [F. Riesz]

Lp(Ω,F ,P) is a complete metric space. That is, any Cauchy sequence converges.

This theorem is another indication that the Lebesgue integral is the right definition. For exam-

ple, on the space [0, 1], we could have define V1 as the space of all Riemann integrable functions

with norm defined by ‖f‖ =
∫ 1

0 |f(t)|dt. It would not be complete! An incomplete metric space

may be thought of as missing many points which should have been there. In this sense, the Lp

spaces define using Lebesgue integral has no missing points. Another indication that the Lebesgue

integral is the right definition and needs no further improvement!

Remark 9: Banach and Hilbert spaces

A normed vector space that is complete as a metric space is called a Banach space. The space

Lp(Ω,F ,P) and the space C[0, 1] (with sup-norm) are prime examples of Banach spaces.

The space L2 alone is special in that its norm comes from an inner product. If 〈X,Y 〉 =

E[XY ], then by Cauchy-Schwars inequality, this is well defined for X,Y ∈ L2 and defines
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an inner product on L2. Further, ‖X‖22 = 〈X,X〉. A Banach space whose norm comes

from an inner product is called a Hilbert space. The space L2(Ω,F ,P) is the rime (the only!)

example of a Hilbert spaces. It is natural to ask if some of the other Lp spaces also have

an inner product. The answer is no, since for any p 6= 2, the Lp-norm does not satisfy the

parallelogram law: ‖X + Y ‖2 + ‖X − Y ‖2 = 2‖X‖2 + 2‖Y ‖2 (see exercise below).

Exercise 17

On a two point probability space, construct random variables to show that parallelogram

law fails for the Lp norm for p 6= 2.

19. CONVEX FUNCTIONS AND JENSEN’S INEQUALITY

First we recall some basic facts about convex functions4 on R.

Definition 9

A function ϕ : R 7→ R ∪ {+∞} is said to be convex if ϕ(x) < +∞ for some x and ϕ(αx +

(1 − α)y) ≤ αϕ(x) + (1 − α)ϕ(y) for all x, y ∈ R and any 0 ≤ α ≤ 1. Equivalently, we may

say that the epigraph Eϕ := {(x, y) ∈ R2 : y > ϕ(x)} is a convex set (i.e., if two points are in

the set, then the line segment joining them is contained in the set).

Example 26

Linear functions are convex. So is ex. But |x|p is convex if and only if p ≥ 1. If ϕ(x) =

0 × 1|x|≤1 +∞× 1|x|>1, then ϕ is convex. More generally, a convex function on an interval

(defined exactly the same way as above) remains convex if extended as +∞ outside the

interval. Further, if ϕi, i ∈ I , are convex functions, so is supi∈I ϕi.

Verifying that the above functions are indeed convex can be painful. A useful way to check that

ϕ is convex is the following.
Exercise 18

If ϕ : R 7→ R is twice differentiable and ϕ′′ ≥ 0 everywhere, then ϕ is convex.

Let ϕ be convex and fix some x0 ∈ R for which ϕ(x0) < ∞. Define Dϕ(x, x0) = ϕ(x)−ϕ(x0)
x−x0 for

x 6= x0. This is the slope of the line segment joining (x, ϕ(x)) with (x0, ϕ(x0)) and could take the

values ±∞.

4A good resource for a quick introduction to convex functions in one dimension is Rudin’s Real and Complex Analysis

(chapter 3)
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Claim 26

x 7→ Dϕ(x, x0) is increasing on R \ {x0}.

Proof of the claim. Let x < y. To show Dϕ(x, x0) ≤ Dϕ(y, x0), we consider three cases, depending

on which of x, y, x0 is in the middle. We write out the proof for the case x < y < x0, the other

two being similar. In this case, after a simple rearrangement, Dϕ(x, x0) ≤ Dϕ(y, x0) is seen to be

equivalent to

ϕ(y)(x0 − x) ≤ ϕ(x)(x0 − y) + ϕ(x0)(y − x).

This is true by the definition of convexity (since y = αx+ (1− α)x0 with α = x0−y
x0−x ). �

The claim immediately implies the existence and finiteness of the left and right derivatives

ϕ′(x0+) = lim
x↓x0

Dϕ(x, x0) and ϕ′(x0−) = lim
x↑x0

Dϕ(x, x0)

and that ϕ′(x0−) ≤ ϕ′(x0+). In particular, ϕ is continuous at x0. Further, if we choose m ∈ R
so that ϕ′(x0−) ≤ m ≤ ϕ′(x0+), then Dϕ(x, x0) ≤ m for x < x0 and Dϕ(x, x0) ≥ m for x ≥ x0.

Rearranging, this just says that ϕ(x) ≥ m(x − x0) + ϕ(x0) for all x0. This last conclusion is called

the supporting hyperplane theorem (it is valid in higher dimensions too). It can be stated as

“For any u with ϕ(u) < ∞, there is a line Lu in R2 that lies below the graph of ϕ and passes

through (u, ϕ(u)). In particular, ϕ(x) = sup
u
Lu(x).”

As we saw in the examples above, a supremum of linear functions is convex. What we have

proved here is the converse. See the discussion later for two other ways of arriving at this impor-

tant conclusion. Now we state and prove Jensen’s inequality.

Lemma 27: Jensen’s inequality

Let ϕ : R→ R be a convex function. Let X be a r.v on some probability space. Assume that

X and ϕ(X) both have expectations. Then, ϕ(EX) ≤ E[ϕ(X)]. The same assertion holds if

ϕ is a convex function on some interval (a, b) and X takes values in (a, b) a.s.

Proof. Let E[X] = a. Let y = m(x − a) + ϕ(a) be the supporting line through (a, ϕ(a)). Since the

line lies below the graph of ϕ, we have m(X − a) + ϕ(a) ≤ ϕ(X), a.s. Take expectations to get

ϕ(a) ≤ E[ϕ(X)]. �

Supporting hyperplane theorem via Hahn-Banach theorem. Ifϕ is a convex function andϕ(x0) <

∞, consider A = {(x, y) ∈ R2 : y > ϕ(x)} and B = {(x0, ϕ(x0))}. Then A,B are disjoint convex

sets and A is open. Hence there is a linear functional L : R2 7→ R and a number d ∈ R such that

L < d on A and L ≥ d on B.
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On R2, linear functional are of the form L(x, y) = ax+ by but in our case we cannot have b = 0.

Hence, writing m = a/b and c = d/b, we see that mx + c < y for (x, y) ∈ A and mx0 + c ≥ ϕ(x0).

Think for a moment to see that this is a supporting line at (x0, ϕ(x0)).

Supporting hyperplane via convex duality. For a convex function ϕ : R 7→ R ∪ {+∞}, define

its Legendre transform as ϕ∗ : R 7→ R ∪ {+∞} as ϕ∗(t) = supx(tx − ϕ(x)). Then ϕ∗ is called the

Legendre transform or the convex conjugate of ϕ. Here are the main facts.

Lemma 28

Let ϕ be a convex function. Then ϕ∗ is a convex function and (ϕ∗)∗ = ϕ.

We skip the proof for now (if I get time later I shall write this). But the point is that ϕ∗∗ = ϕ

means that ϕ(x) = sup
t
xt−ϕ∗(t). For each t, the function x 7→ xt−ϕ∗(t) is linear, hence this gives

a representation of ϕ as a supremum of linear functions. That is the import of the supporting

hyperplane theorem.

Proof of Lemma 28. By definition of the conjugate, ϕ∗(t) ≥ tx − ϕ(x) for any x, t. Rewrite this as

ϕ(x) ≥ tx− ϕ∗(t) and take supremum over t to get ϕ(x) ≥ ϕ∗∗(x). �

Legendre transformation is quite fundamental and appears in many contexts (for example, the

Lagrangian and Hamiltonian in classical mechanics are convex conjugates of each other). Here is

an important example from mathematics.

Example 27

Let 1 < p < ∞ and let ϕ(x) = 1
p |x|

p. To compute ϕ∗, first take t > 0 and observe that

tx−ϕ(x) is negative for x < 0, hence the supremum is attained for some positive x. Writing

tx− 1
px

p for x > 0, elementary calculus shows that the maximizer satisfies xp−1 = t and the

maximum value is (1− 1
p)tp/(p−1). A similar calculation works for t < 0. Thus if q = p/(p−1),

then ϕ∗(t) = 1
q |t|

q. Observe that this q is the number that satisfies 1
p + 1

q , a relationship

familiar to us in functional analysis. This relationship between conjugate exponents is the

reason why Lq is the dual of Lp, etc.

Exercise 19

What happens when p = 1?
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Exercise 20

For a convex function ϕ : Rd 7→ R ∪ {∞}, the Legendre transform is defined as ϕ∗(t) =

supx∈Rd〈x, t〉 − ϕ(x). The lemma above remains valid.

If x 7→ ϕ(x) is a norm on Rd, show that the dual norm is given by t 7→ ϕ∗(t). In particular,

the `p norm has dual norm `q.

20. FURTHER INEQUALITIES FOR EXPECTATION

We gave a proof of Minkowski’s inequality for p = 1, 2,∞ in the previous section. Now we

prove it for all p ≥ 1.

Lemma 29: Minkowski’s inequality

For any p ≥ 1, we have ‖X + Y ‖p ≤ ‖X‖p + ‖Y ‖p.

Proof. The case p = ∞ was proved earlier, so take 1 ≤ p < ∞. Let X ′ = X/‖X‖p and Y ′ =

Y/‖Y ‖p. By convexity of x→ xp, we see that |aX ′ + bY ′|p ≤ a|X ′|p + b|Y ′|p where a =
‖X‖p

‖X‖p+‖Y ‖p

and b =
‖Y ‖p

‖X‖p+‖Y ‖p . Take expectations and observe that E[|aX ′ + bY ′|p] = E[|X+Y |p]
(‖X‖p+‖Y ‖p)p while

E[a|X ′|p + b|Y ′|p] = 1 since E[|X ′|p] = E[|Y ′|p] = 1. Thus we get

E[|X + Y |p]
(‖X‖p + ‖Y ‖p)p

≤ 1,

which is precisely Minkowski’s inequality. �

Lastly, we prove Hölder’s inequality of which the most important special case is the Cauchy-

Schwarz inequality.

Lemma 30: Cauchy-Schwarz and Hölder inequalities

(1) If X,Y are L2 random variables on a probability space, then XY is integrable and

E[XY ]2 ≤ E[X2]E[Y 2].

(2) IfX,Y are Lp r.v.s on a probability space, then for any p, q ≥ 1 satisfying p−1 +q−1 =

1, we have XY ∈ L1 and ‖XY ‖1 ≤ ‖X‖p‖Y ‖q.

Proof. Cauchy-Schwarz is a special case of Hölder with p = q = 2 (we also gave a direct proof

in the previous section). Hölder’s inequality follows by applying the inequality ap/p + bq/q ≥ ab

valid for a, b ≥ 0, to a = |X|/‖X‖p and b = |Y |/‖Y ‖q and taking expectations.

The inequality ap/p+ bq/q ≥ ab is evident by noticing that the rectangle [0, a]× [0, b] (with area

ab) is contained in the union of the region{(x, y) : 0 ≤ x ≤ a, 0 ≤ y ≤ xp−1} (with area ap/p) and

the region {(x, y) : 0 ≤ y ≤ b, 0 ≤ x ≤ yq−1} (with area bq/q). This is because the latter regions are
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the regions between the x and y axes (resp.) and curve y = xp−1 which is also the curve x = yq−1

since (p− 1)(q − 1) = 1. �

Remark 10

To see the role of convexity, here is another way to prove that ap/p + bq/q ≥ ab. Set a′ =

p log a and b′ = q log b and observe that the desired inequality is equivalent to 1
pe
a′ + 1

q e
b′ ≥

e
1
p
a′+ 1

q
b′ , which follows from the convexity of x→ ex.

In the study of Lp spaces, there is a close relationship between Lp and Lq where 1
p + 1

q = 1. In the

proof of Hölder’s inequality, we see one elementary way in which it arises (the inverse of y = xp−1

is x = yq−1). Another big-picture description is via the convex duality that we mentioned earlier.

21. CHANGE OF VARIABLES

Lemma 31

Let T : (Ω1,F1,P) → (Ω2,F2,Q) be measurable and Q = PT−1. If X is an integrable r.v.

on Ω2, then X ◦ T is an integrable r.v. on Ω1 and EP[X ◦ T ] = EQ[X].

Proof. For a simple r.v.,X =
∑n

i=1 ci1Ai , whereAi ∈ F2, it is easy to see thatX ◦T =
∑n

i=1 ci1T−1Ai

and by definition EP[X ◦ T ] =
∑n

i=1 ciP{T−1Ai} =
∑n

i=1 ciQ{Ai} which is precisely EQ[X]. Use

MCT to get to positive r.v.s and then to general integrable r.v.s. �

Corollary 32

Let Xi, i ≤ n, be random variables on a common probability space. Then for any Borel

measurable f : Rn → R, the value of E[f(X1, . . . , Xn)] (if it exists) depends only on the joint

distribution of X1, . . . Xn.

Proof. Consider T = (X1, . . . , Xn) : Ω → Rn. Then µ := P ◦ T−1 is (by definition) the joint

distribution of X1, . . . , Xn. The Lemma gives EP[f(X1, . . . , Xn)] =
∫
Rn f(t)dµ(t). Clearly, the

right hand side depends only on the measure µ. �

Remark 11

The change of variable result shows the irrelevance of the underlying probability space to

much of what we do. In any particular situation, all our questions may be about a finite

or infinite collection of random variables Xi. Then, the answers depend only on the joint

distribution of these random variables and not any other details of the underlying proba-

bility space. For instance, we can unambiguously talk of the expected value of an Exp(λ)

random variable, the value being 1/λ regardless of the details of the probability space on
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which the random variable is defined. Thus, statements in theorems and problems go like

“Let X1, . . . , Xn be random variables with a multivariate normal distribution with mean

and variance...” without bothering to say what the probability space is.

Change of variable formula for densities: We discuss densities more in the next section, but

for now consider a Borel probability measure µ on Rn. We say that it has a density function

f : Rn → R+ if f is a Borel measurable function and µ(A) =
∫
A f(x)dm(x) wherem is the Lebesgue

measure on Rn. Here,
∫
A f(x)dm(x) is just the notation for

∫
Rn f(x)1A(x)dm(x). Strictly speaking,

we have define Lebesgue integral only for probability measures (m is not a probability measure),

but a similar procedure constructs Lebesgue integral with respect to general measures.

Now consider a transformation T : Rn → Rn and let ν = µ ◦ T−1 where µ is a probability

measure with density f . In case T is nice enough, the change of variable formula shows that ν

also has a density and gives a recipe for finding it in terms of f and T . We omit the proof.

Proposition 33

Let U, V be open subsets of Rn and let T : U → V be a bijective smooth function such that

T−1 : V → U is also smooth. Let X be a random vector on some probability space, taking

values in U and assume that its distribution has density f with respect to Lebesgue measure

on U . Let Y = T (X), so that Y takes values in V . Then, Y has density g with respect to

Lebesgue measure on V where g(x) = f(T−1x)|det J [T−1](x)|.

21.1. Distribution of the sum, product etc. Whenever Y = T (X), in principle we can find the

distribution of Y from the distribution of X (just push forward under T ). However, in practise

it may be very hard to actually compute. The usefulness of the change of variable formula for

densities is that, in some situations, the density of Y can be found from the density of X . In

particular, it is important to know how to compute the distribution of the sum or product of two

random variables, given their joint distribution.

Example 28

Suppose (X1, X2) has density f(x, y) = e−x−y on R2
+. How to find the distribution of X1 +

X2?

Define T (x1, x2) = (x1 +x2, x2). Then T is a bijection from R2
+ onto V = {(u, v) : u > v > 0}

and T−1(u, v) = (u − v, v). The Jacobian determinant is found to be 1. Hence, the density

of (Y1, Y2) = T (X1, X2) is given by g(u, v) = f(u − v, v)1u>v>0 = e−u1u>v>0. This gives
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the joint density of (Y1, Y2). We can get the density of Y1 by integrating out v. We get∫ u
0 e
−udv = ue−u. This is the Gamma(2, 1) density.

Actually there are a couple of facts that we have invoked without comment in this example and

in examples to come below. We computed the joint density of (Y1, Y2) to be g(u, v). What this

means is that P{(Y1, Y2) ∈ R(a,b)} =
∫
Ra,b

g(y)dm(y) where R(a,b) = (−∞, a]× (−∞, b]. From this,

we conclude that the density of Y1 is h(a) =
∫∞
−∞ g(a, v)dv. In doing this, we are implicitly using

the fact that a multiple integral is the same as an iterated integral. You have probably seen this in

Analysis class for Riemann integral. A much better result for Lebesgue integrals will come in a

later section under the name of Fubini’s theorem.

A few useful transformations are covered below.

Example 29

Suppose (X,Y ) has density f(x, y) on R2.

(1) X has density f1(x) =
∫
R f(x, y)dy and Y has density f2(y) =

∫
R f(x, y)dx. This is

because, for any a < b, we have

P(X ∈ [a, b]) = P((X,Y ) ∈ [a, b]× R) =

∫
[a,b]×R

f(x, y)dxdy =

∫
[a,b]

∫
R

f(x, y)dy

 dx.

This shows that the density of X is indeed f1.

(2) Density of X2 is (f1(
√
x) + f1(−

√
x)) /2

√
x for x > 0. Here we notice that T is one-

one on {x > 0} and {x < 0} (and {x = 0} has zero measure under f ), so the change

of variable formula is used separately for the two domains and the result is added.

(3) The density of X + Y is g(t) =
∫
R f(t − v, v)dv. To see this, let U = X + Y and

V = Y . Then the transformation is T (x, y) = (x+y, y). Clearly T−1(u, v) = (u−v, v)

whose Jacobian determinant is 1. Hence by Proposition ??, we see that (U, V ) has

the density g(u, v) = f(u − v, v). Now the density of U can be obtained like before

as h(u) =
∫
g(u, v)dv =

∫
f(u− v, v)dv.

(4) To get the density of XY , we define (U, V ) = (XY, Y ) so that for v 6= 0, we have

T−1(u, v) = (u/v, v) which has Jacobian determinant v−1.
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Exercise 21

(1) Suppose (X,Y ) has a continuous density f(x, y). Find the density of X/Y . Apply

to the case when (X,Y ) has the standard bivariate normal distribution with density

f(x, y) = (2π)−1 exp{−x2+y2

2 } and show that X/Y has Cauchy distribution.

(2) Find the distribution of X + Y if (X,Y ) has the standard bivariate normal distribu-

tion.

(3) Let U = min{X,Y } and V = max{X,Y }. Find the density of (U, V ).

22. ABSOLUTE CONTINUITY AND SINGULARITY

Consider a probability space (Ω,F ,P). Let X : Ω→ R be a non-negative random variable with

E[X] = 1. Define Q(A) = E[X1A] forA ∈ F . Then, Q is a probability measure on (Ω,F). The only

non-trivial thing to check is that if An, A ∈ F and An ↑ A then Q(An) ↑ Q(A). This follows from

MCT, since X1An ↑ X1A. All this clearly remains valid even if P and Q were infinite measures

and X is a general non-negative measurable function.

If two measures µ, ν (not necessarily probability measures) on (Ω,F) are such that ν(A) =∫
A fdµ for all A ∈ F (where

∫
A fdµ is just the notation for the Lebesgue integral of f1A with

respect to µ) for some non-negative measurable function f , then we say that ν has density f with

respect to µ.

Question: Given two measures µ, ν on (Ω,F), does ν have a density with respect to µ and is it

unique?

The uniqueness part is easy. If a density exists, it is unique (in L1(µ)). Indeed, if ν(A) =∫
A fdµ =

∫
A gdµ for some f, g, then h := f −g satisfies

∫
A hdµ = 0 for all A ∈ F . Take A = {h > 0}

to get
∫
h1h>0dµ = 0. But h1h>0 is a non-negative measurable function, hence it must be that

h1h>0 = 0 a.s.[µ]. This implies that µ{h > 0} = 0. Similarly µ{h < 0} = 0 and we see that

h = 0 a.s.[µ] or equivalently f = g a.s[µ]. The density is unique up to sets of µ-measure zero.

More than that cannot be asked because, if f is a density and g = f a.s.[µ], then it follows that∫
A gdµ =

∫
A fdµ and hence g is also a density of ν with respect to µ.

Existence of density is a more subtle question. First let us see some examples.

Example 30

On ([0, 1],B, λ) let ν be the measure with distribution Fν(x) = x2. Then ν has density

f(x) = 2x1x∈[0,1] with respect to λ. Indeed, if we set θ(A) =
∫
A fdλ, then θ and ν are two
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measures on [0, 1] that agree on all intervals, since
∫

[a,b] fdλ = b2 − a2 for any [a, b] ⊆ [0, 1].

By the π − λ theorem, θ = ν.

Note that the same logic works whenever ν ∈ P(R) and Fν has a continuous (or piecewise

continuous) derivative. If f = F ′ν , by the fundamental theorem of Calculus,
∫

[a,b] fdλ =

Fν(b) − Fν(a) and hence by the same reasoning as above, ν has density f with respect to

Lebesgue measure.

Example 31

Let Ω be some set and let a1, . . . , an be distinct elements in Ω. Let ν =
∑n

k=1 pkδak and let

µ =
∑

k=1 qkδak where pi, qi are non-negative numbers such that
∑

i pi =
∑

i qi = 1.

Assume that qi > 0 for all i ≤ n. Then define f(x) = pi
qi

for x = ai and in an arbitrary

fashion for all other x ∈ Ω. Then, f is the density of ν with respect to µ. The key point is

that
∫
f1{ai}dµ = f(ai)µ{ai} = pi = ν{ai}.

On the other hand, if qi = 0 < pi for some i, then ν cannot have a density with respect to µ

(why?).

Let us return to the general question of existence of density of a measure ν with respect to a

measure µ (both measures are defined on (Ω,F)). As in the last example, there is one necessary

condition for the existence of density. If ν(A) =
∫
f1Adµ for all A, then if µ(A) = 0 we must

have ν(A) = 0 (since f1A = 0 a.s[µ]). In other words, if there is even one set A ∈ F such that

ν(A) > 0 = µ(A), then ν cannot have a density with respect to µ. Let us make a definition.

Definition 10

Two measures µ and ν on the same (Ω,F) are said to be mutually singular and write µ ⊥ ν if

there is a set A ∈ F such that µ(A) = 0 and ν(Ac) = 0. We say that µ is absolutely continuous

to ν and write µ� ν if µ(A) = 0 whenever ν(A) = 0.

Remark 12

(1) Singularity is a symmetric relation, absolute continuity is not. If µ� ν and ν � µ, then

we say that µ and ν are mutually absolutely continuous. (2) If µ ⊥ ν, then we cannot also

have µ � ν (unless µ = 0). (3) Given µ and ν, it is not necessary that they be singular or

absolutely continuous to one another. (4) Singularity is not reflexive but absolute continuity

is. That is, µ� µ but µ is never singular to itself (unless µ is the zero measure).
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Example 32

Uniform([0, 1]) and Uniform([1, 2]) are singular. Uniform([1, 3]) is neither absolutely con-

tinuous nor singular to Uniform([2, 4]). Uniform([1, 2]) is absolutely continuous with re-

spect to Uniform([0, 4]) but not conversely. All these uniforms are absolutely continuous

to Lebesgue measure. Any measure on the line that has an atom (eg., δ0) is not absolutely

continuous to Lebesgue measure. A measure that is purely discrete is singular with re-

spect to Lebesgue measure. A probability measure on the line with density (eg., N(0, 1))

is absolutely continuous to λ. In fact N(0, 1) and λ are mutually absolutely continuous.

However, the exponential distribution is absolutely continuous to Lebesgue measure, but

not conversely (since (−∞, 0), has zero probability under the exponential distribution but

has positive Lebesgue measure).

Returning to the existence of density, we saw that for ν to have a density with respect to µ, it is

necessary that ν � µ. This condition is also sufficient!

Theorem 34: Radon Nikodym theorem

Suppose µ and ν are two finite measures on (Ω,F). If ν � µ, then ν has a density with

respect to µ.

A first attempt at proof: Let H = L2(µ) and define L : H 7→ R by Lf =
∫
fdν. Suppose we

could show that L is well-defined (then it is clearly linear) and bounded, i.e., |Lf | ≤ C‖f‖H for

all f ∈ H . Then, by the Riesz representation theorem for linear functionals on a Hilbert space, it

follows that Lf = 〈f, ψ〉 for some ψ ∈ H . Take f = 1A with A ∈ F to see that ν(A) =
∫
A ψ dµ.

This is what we want to show.

The problem is that L need not be bounded. Indeed, it it were true, the above argument would

have shown that the Radon -Nikodym derivative of ν w.r.t. µ is in L2(µ), which is false in general!

For example, let ν(A) =
∫
A

1√
x
dλ(x), where λ is the Lebesgue measure on [0, 1]. Then the Radon-

Nikodym derivative is 1/
√
x, whose square is not integrable w.r.t. µ. The proof below overcomes

this issue by a small trick.

Proof of the Radon Nikodym theorem. Let θ = µ + ν and let H = L2(Ω,F , θ). Define L : H 7→ R by

Lf =
∫
fdν. Since (note that

∫
gdν ≤

∫
gdθ for any g ≥ 0)∣∣ ∫ fdν

∣∣ ≤ ∫ |f |dν ≤ ∫ |f |dθ ≤√θ(Ω)

(∫
|f |2dθ

) 1
2

,
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it follows that L is well-defined and |Lf | ≤ C‖f‖H with C =
√
θ(Ω).Therefore, L is bounded and

Lf =
∫
fϕ dθ for some ϕ ∈ H . Rewrite this as∫

f(1− ϕ)dν =

∫
fϕdµ for all f ∈ H.(1)

From this identity, it is clear that 0 ≤ ϕ ≤ 1 a.s.[µ] (hence also a.s.[ν]). Further, setting f = 1ϕ=1,

we see that the left hand side is zero while the right hand side is µ{ϕ = 1}. Thus, ϕ < 1 a.s.[µ]

(hence also a.s.[ν]).

Now for any A ∈ F and δ > 0, setting f = 1
1−ϕ1A1ϕ≤1−δ (which is bounded above by 1/(1− δ)

and hence inH), we get that ν(A∩{ϕ ≤ 1−δ}) =
∫
A ψ1ϕ≤1−δdµ, where ψ = ϕ/(1−ϕ). Set δ = 1/n

and let n ↑ ∞. We get ν(A ∩ {ϕ < 1}) =
∫
ψ1ϕ<1dµ. Since ϕ < 1 almost surely with respect to

both measures, it is redundant to write that, and we get ν(A) =
∫
A ψdµ. �

Exercise 22: Lebesgue decomposition

Let µ, ν be two finite measures on (Ω,F). Show that we can write ν = ν1 + ν2, where ν1, ν2

are measures on F and ν1 � µ and ν2 ⊥ µ. This decomposition is unique. [Hint: Follow the

steps in the proof of Radon-Nikodym theorem and consider theset {ϕ = 1} carefully!]

23. SOME SINGULAR PROBABILITY MEASURES

This section is not directly needed for what comes next in the course. But these are some nat-

ural directions suggested by the previous discussion of absolute continuity and singularity of

measures.

Is there any µ ∈ P(R) that is singular to Lebesgue measure on R? Of course, any discrete

probability measure is singular, since it gives probability one to a countable set while Lebesgue

measure gives probability zero to that set. The interesting question is whether there is a singular

µ that has no atoms. For this, we must spread our set on some uncountable set of zero Lebesgue

measure. The first example that comes to mind is the standard Cantor set.

Recall that the middle-thirds Cantor set is defined as the decreasing intersectionK ofKns where

K0 = [0, 1], K1 = [0, 1
3 ] ∪ [2

3 , 1], K3 = [0, 1
9 ] ∪ [2

9 ,
3
9 ] ∪ [6

9 ,
7
9 ] ∪ [8

9 , 1], and so on. In general, Kn is

a union of 2n intervals each of length 3−n, and Kn+1 is got from Kn by deleting the middle third

open subinterval of each of these intervals. An alternate description of the Cantor set is

K =

{
x ∈ [0, 1] : x =

∞∑
n=1

xn
3n

for some xn ∈ {0, 2}

}
.

In other words, it consists of those numbers that have a ternary (base-3) expansion without using

the digit 1.
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Example 33: Cantor measure

LetK be the middle-thirds Cantor set. Consider the canonical probability space ([0, 1],B, λ)

and the random variable X(ω) =
∑∞

k=1
2Bk(ω)

3k
, where Bk(ω) is the kth binary digit of ω (i.e.,

ω =
∑∞

k=1
Bk(ω)

2k
). Then X is measurable (we saw this before). Let µ := λ ◦ X−1 be the

pushforward measure.

Then, µ(K) = 1, because X takes values in numbers whose ternary expansion has no ones.

Further, for any t ∈ K, X−1{t} is a set with atmost two points and hence µ{t} = 0. Thus µ

has no atoms and must have a continuous CDF. Since µ(K) = 1 but λ(K) = 0, we also see

that µ ⊥ λ.

Exercise 23: Alternate construction of Cantor measure

Write K = ∩Kn as in the definition of the Cantor set. Let µn be the uniform probability

measure on Kn, i.e., µn(A) = (3/2)nλ(A∩Kn) for all A ∈ BR. Show that Fµns converge uni-

formly to a CDF F and that the measure having this CDF is the Cantor measure constructed

above.

Example 34: Bernoulli convolutions - a fun digression (omit if unclear!)

We generalize the previous example. For any α > 1, define Xα : [0, 1] → R by Xα(ω) =∑∞
k=1 α

−kBk(ω). Let µα = λ ◦X−1
λ (did you check that Xα is measurable?). These measures

are called Bernoulli convolutions. For α = 3, this is almost the same as 1/3-Cantor measure,

except that we have left out the irrelevant factor of 2 (so µ3 is a probability measure on
1
2K := {x/2 : x ∈ K}) and hence is singular. For α = 2, the map Xα is identity, and hence

µ2 is the Lebesgue measure on [0, 1], certainly absolutely continuous to Lebsegue measure.

What about the singularity and absolute continuity of µα for other values of α?
Exercise 24

For any α > 2, show that µα is singular w.r.t. Lebesgue measure.

Hence, one might expect that µα is absolutely continuous to Lebesgue measure for 1 < α <

2. This is false! Paul Erdős showed that µα is singular to Lebesgue measure whenever α is a

Pisot-Vijayaraghavan number, i.e., if α is an algebraic number all of whose conjugates have

modulus less than one!! It is an open question as to whether these are the only exceptions.

23.1. Hausdorff measures. Consider two Cantor type sets: A consisting of those numbers who

decimal expansion does not have the disgit 5 and B consisting of those numbers who decimal

expansion does not have any odd digit. Both have Lebesgue measure zero. Is there another
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measure that can measure the sizes of these sets (one might feel that B is somehow smaller than

A, but in what sense?).

Let (X, d) be a compact metric space. Fix α > 0 and define for any A ⊆ X ,

H∗α(A) = inf

{ ∞∑
n=1

dia(Bn)α : Bn are open balls whose union covers A

}
.

It is easy to check that H∗α(A) ≤ H∗α(B) if A ⊆ B and H∗α(∪nAn) ≤
∑

nH
∗
α(An). Thus H∗α is

an outer measure Hα and can be used to construct a measure on (X,BX) (one must check many

things, for example that the Caratheodary construction gives a sigma algebra containing all Borel

sets). As it happens, for most α, the measure Hα turns out to be trivial. For example, if X = [0, 1],

then for any interval I , one can check that Hα(I) = 0 if α > 1 and Hα(I) =∞ if α < 1. For α = 1,

we get the Lebesgue measure.

For a generalX , again there is always a value α0 such that for any open ballB we haveHα(B) =

0 if α > α0 and Hα(B) = ∞ if α < α0. At α = α0, we may or may not get a meaningful measure.

If we do, then Hα0 is called the Hausdorff measure on X . Whether Hα0 is trivial or not, the number

α0 is called the Hausdorff dimension of X .

Example 35

Let X = K, the middle-thirds Cantor set. Then α0 = log 2/ log 3 and Hα0 is precisely the

Cantor measure that we constructed earlier.

24. CONDITIONAL PROBABILITY AND EXPECTATION - A FIRST VIEW

So far (and for a few lectures next), we have seen how a rigorous framework for probability

theory is provided by measure theory. We have not yet touched the two most important concepts

in probability, independence and conditional probability. We shall see independence very shortly

but may not have time to study conditional probability in detail in this course. But one of the

important aspects of Kolmogorov’s axiomatization of probability using measure theory was to

define conditional probability using the Radon-Nikodym theorem. Here is a teaser for that story.

Let (Ω,F ,P) be a probability space. Let X be a random variable that takes finitely many values

a1, . . . , an with P{X = ak} > 0 for each k. Then, the law of total probability says that for any

A ∈ F ,

P(A) =
n∑
k=1

P(A
∣∣∣∣∣∣ X = ak)P{X = ak}

where P(A
∣∣∣∣∣∣ X = ak) = P{A∩{X=ak}}

P{X=k} . Now suppose X takes uncountably many values, for eg.,

X has density fX . Then, we would like to write

P(A) =

∫
P(A

∣∣∣∣∣∣ X = t)fX(t)dt
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where fX is the density of X and perhaps even generalize it to the case when X does not have

density as P(A) =
∫
P(A

∣∣∣∣∣∣ X = t)dµX(t). The question is, what is P(A
∣∣∣∣∣∣ X = t)? The usual

definition makes no sense since P{X = t} = 0.

The way around is this. Fix A ∈ F and set νA(I) = P{A ∩ {X ∈ I}} for I ∈ BR. Then ν

is a Borel probability measure on as a measure on R. If µX is the distribution of X , then clearly

νA � µX (if µX(I) = 0 then P{X ∈ I} = 0 which clearly implies that νA(I) = 0). Hence, by the

Radon-Nikodym theorem, νA has a density fA(t) with respect to µX . In other words,

P(A ∩ {X ∈ I}) =

∫
I
fA(t)dµX(t)

and in particular, P(A) =
∫
R fA(t)dµX(t). Then, we may define fA(t) as the conditional probability

of A given X = t! Note that fA is defined only almost everywhere, hence P(A
∣∣∣∣∣∣ X = t) should

also be interpreted as being defined for almost every t (w.r.t. µX ). This way, the intuitive notion

of conditional probability is brought into the ambit of measure theoretical probability. We now

elaborate on this a bit.

Let P,Q be probability measures on (Ω,F). Assume that Q � P. Then there is a X ∈
L1(Ω,F ,P) such that

Q(A) =

∫
A
XdP for all A ∈ F .

Now suppose G ⊆ F is a sub-sigma algebra. Let P′,Q′ be the restrictions of P,Q to G. It is

trivially the case that Q′ � P′. Hence, again by the Radon-Nikodym theorem, there is some

X ′ ∈ L1(Ω,G,P′) such that Q′(A) =
∫
AX

′dP′ for all A ∈ G. The last statement can also be written

as

Q(A) =

∫
A
X ′dP for all A ∈ G.

This X ′ is not the same as X , because the latter need not be G-measurable.

Now start with any integrable random variable Y on (Ω,F ,P). Writing as Y+−Y− and applying

the above steps to find Y ′+, Y ′− (these are G-measurable and give the same integrals as Y+, Y− over

sets in G). Writing Y ′ = Y ′+− Y ′−, we have shown that there is a G-measurable random variable Y ′

such that ∫
A
Y dP =

∫
A
Y ′ dP for all A ∈ G.

This Y ′ is called the conditional expectation of Y w.r.t. G and denoted E[Y | G].

Example 36

Again consider (Ω,F ,P) and a measurable partition {A1, . . . , Ak} with P(Ai) > 0 for all i.

Let G = σ{A1, . . . , Ak}. If Y is an integrable random variable (F-measurable), we compute
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Y ′ = E[Y | G]. Since Y ′ is G-measurable, we can write Y ′ = α11A1 + . . .+ αk1Ak . Equating

its integral over Ai with that of Y , we arrive at αiP(Ai) =
∫
Ai
Y dP. Thus,

Y ′ =
k∑
i=1

(
1

P(Ai)

∫
Ai

Y dP

)
1Ai .

The value of αi is what you would have seen in basic probability class as the expected value

of Y given Ai (just restrict the probability measure to Ai and renormalize by dividing by

P(Ai). Then take expectation of Y w.r.t this new measure).

Example 37

Let X,Y be random variables on (Ω,F ,P), having a joint density f(x, y) on R. We want to

talk of E[Y | X = x]. For this, we take G = σ(X), the sigma-algebra generated by X and

compute E[Y | G]. What are G-measurable random variables? They are precisely those of

the form ϕ(X) for some Borel measurable ϕ : R 7→ R (why?). Let us simply write down the

formula and check that it works: Y ′ = ϕ(X) where

ϕ(x) :=


1∫

R f(x,y)dy

∫
R yf(x, y)dy if

∫
R f(x, y)dy > 0

0 if
∫
R f(x, y)dy = 0.

Clearly Y ′ is G-measurable (since it is a function of X). Check that E[Y ′1A] = E[Y 1A] if

A = {Z ∈ B} for some B ∈ BR. That shows that Y ′ = E[Y | G].

It may be confusing for the first time that what we call conditional expectation is a random vari-

able and not a number. But that is indeed the point. First we conceptualize an experiment which

tells us for each element of G, whether or not it has occurred. Then depending on the outcome

of the experiment, we update our probabilities of event or expectations of random variables. In

other words, the update is a function of the outcome of the experiment, hence a random variable.

25. MEASURE DETERMINING CLASSES OF RANDOM VARIABLES

As we have emphasized before, events (when identified with their indicator functions) are a

special case of random variables. Thus, often to prove a statement about all integrable random

variables, we prove it first for indicators, then for simple functions, then for positive random

variables and finally for all integrable random variables.

The other direction can also be useful. To prove a statement about probabilities of events, we

generalize the statement to expectations of random variables, prove it for a suitable sub-class of

random variables, extend it to all integrable random variables and then specialize to indicators to
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get the statement for probabilities of events! The reason this is useful is that there are sub-classes

of random variables that are sometimes easier than indicators to work with.

For example, if µ is a Borel probability measure on Rn, the space of continuous functions on Rn,

or even smooth functions on Rn are nice sub-classes of random variables in the following sense.

Proposition 35

The numbers E[f(X)] as f varies over Cb(R) determine the distribution of X . Equivalently,

if µ, ν ∈ P(R) and Eµ[f ] = Eν [f ] for all f ∈ Cb(R), then µ = ν.

Proof. Given any x ∈ Rn, we can recover F (x) = E[1Ax ], where Ax = (−∞, x1]× . . .× (−∞, xn] as

follows. For any δ > 0, let f(y) = min{1, δ−1d(y,Acx+δ1)}, where d is the L∞ metric on Rn. Then,

f ∈ Cb(R), f(y) = 1 if y ∈ Ax, f(y) = 0 if y 6∈ Ax+δ1 and 0 ≤ f ≤ 1. Therefore, F (x) ≤ E[f ◦X] ≤
F (x+ δ1). Let δ ↓ 0, invoke right continuity of F to recover F (x). �

Much smaller sub-classes of functions are also sufficient to determine the distribution of X .

Lemma 36

Suppose µ, ν are two Borel probability measures on R such that Eµ[f ] = Eν [f ] for all f ∈
C∞c (R). Then µ = ν. Equivalently, the distribution of a random variable X is determined

by the numbers E[f(X)] as f varies over C∞c (R).

Proof. Fix a < b. We claim that there exist fn ∈ C∞c (R) such that fn(x) ↑ 1(a,b)(x) for all x. In

particular, fn ↑ 1(a,b) a.s.[µ] and fn ↑ 1(a,b) a.s.[ν] (Caution: If we take the closed interval [a, b],

such fn may not exist). Hence, by MCT, we get Eµ[fn] ↑ µ(a, b) and Eν [fn] ↑ ν(a, b). By the

hypothesis, Eµ[fn] = Eν [fn] for all n and hence µ(a, b) = ν(a, b). This is true for all a < b and

therefore, µ = ν.

To show the existence of fn as above, recall that the function

g(x) :=

Ce−1/(1−|x|2) if |x| ≤ 1

0 if |x| > 1

defines a smooth function that vanishes outside (−1, 1). We fix C so that g(·) is a probability

density and let G be the corresponding distribution function, i.e., G(x) =
∫ x
−∞ g(u)du. Clearly G

is smooth, G(x) = 0 for x < −1 and G(x) = 1 for x > +1. Then, G(n(x − a) − 1) vanishes for

x < a, equals 1 for x > a + 2
n . Finally, set fn(x) = G(n(x − a) − 1)G(n(b − x) − 1) and check that

fn satisfies the given properties. �
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26. MEAN, VARIANCE, MOMENTS

Expectations of certain functionals of random variables are important enough to have their own

names.

Definition 11

Let X be a r.v. Then, E[X] (if it exists) is called the mean or expected value of X . Var(X) :=

E
[
(X −EX)2

]
is called the variance of X , and its square root is called the standard deviation

of X . The standard deviation measures the spread in the values of X or one way of mea-

suring the uncertainty in predicting X . Another such measure, not very convenient to use,

is the mean absolute deviation E[|X − E[X]|]. For any p ∈ N, if it exists, E[Xp] is called the

pth-moment of X . The function ψ defined as ψ(λ) := E[eλX ] is called the moment generating

function of X . Note that the m.g.f of a non-negative r.v. exists for all λ < 0. It may or may

not exist for some λ > 0 also. A similar looking object is the characteristic function of X , de-

fine by ϕ(λ) := E[eiλX ] := E[cos(λX)]+iE[sin(λX)]. This exists for all λ ∈ R since bounded

random variables are integrable. All these quantities depend only on the distribution of X

and not on the details of the probability space on which X is defined.

For two random variables X,Y on the same probability space, we define their covariance to

be Cov(X,Y ) := E[(X − EX)(Y − EY )] = E[XY ] − E[X]E[Y ]. The correlation coefficient

is measured by Cov(X,Y)√
Var(X)Var(Y)

. The correlation coefficient lies in [−1, 1] and measures the

association between X and Y . A correlation of 1 implies X = aY + b a.s. for some a, b ∈ R
with a > 0 while a correlation of −1 implies X = aY + b a.s. with a < 0. Like with

expectation and variance, covariance and correlation depend only on the joint distribution

of X and Y .

Exercise 25

(1) Express the mean, variance, moments of aX + b in terms of those for X .

(2) Show that Var(X) = E[X2]−E[X]2.

(3) Compute mean, variance and moments of the Normal, exponential and other distri-

butions defined in section 12.

Example 38: The exponential distribution

Let X ∼ Exp(λ). Then, E[Xk] =
∫
xkdµ(x) where µ is the p.m on R with density λe−λx (for

x > 0). Thus, E[Xk] =
∫
xkλe−λxdx = λ−kk!. In particular, the mean is λ−1, the variance is

2λ−2 − (λ−1)2 = λ−2.
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Example 39: Normal distribution

If X ∼ N(0, 1), check that the even moments are given by E[X2k] =
∏k
j=1(2j − 1).

Remark 13: Moment problem

Given a sequence of numbers (αk)k≥0 , is there a p.m µ on R whose kth moment is αk? If

so, is it unique?

This is an extremely interesting question and its solution involves a rich interplay of sev-

eral aspects of classical analysis (orthogonal polynomials, tridiagonal matrices, functional

analysis, spectral theory etc). Note that there are are some non-trivial conditions for (αk) to

be the moment sequence of a probability measure µ. For example, α0 = 1, α2 ≥ α2
1 etc. In

the homework you were asked to show that ((αi+j))i,j≤n should be a positive semidefinite

matrix for every n. The non-trivial answer is that these conditions are also sufficient!

Note that like proposition 35, the uniqueness question is asking whether E[f◦X], as f varies

over the space of polynomials, is sufficient to determine the distribution of X . However,

uniqueness is not true in general. In other words, one can find two p.m µ and ν on R which

have the same sequence of moments!

27. PRODUCT MEASURES AND FUBINI’S THEOREM

Given two probability spaces (Ωi,Fi,Pi), i = 1, 2, the goal is to define a natural probability

measure on the Cartesian product Ω1 × Ω2. First we decide a natural σ-algebra on the product

space and then the measure.

Product σ-algebra: Given two measurable spaces (Ω1,F1) and (Ω2,F2), there are three natural

definitions of a σ-algebra on Ω = Ω1 × Ω2.

(1) The σ-algebra R = σ{A × B : A ∈ F1, B ∈ F2} generated b all “rectangles” (sets of the

form A×B).

(2) The σ-algebra G = σ{A × Ω2, Ω1 × B : A ∈ F1, B ∈ F2} generated by all “cylinder sets”

(sets of the form A× Ω2 and Ω1 ×B).

(3) Define the projection maps Πi : Ω→ Ωi by Π1(x, y) = x and Π2(x, y) = y. Then define G′ =
σ{Π1,Π2} to be the smallest σ-algebra on Ω for which these projections are measurable.

The first observation is that these definitions give the same σ-algebra, which will be called the

product σ-algebra. Since Π−1
1 (A) = A × Ω2 for A ∈ F1 and Π−1

2 (B) = Ω1 × B for B ∈ F2, it

immediately follows that G = G′. Next, as cylinders are rectangles, clearly G ⊆ R. But A × B =
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(A×Ω2)∩ (Ω1 ×B) and hence any rectangle is an intersection of two cylinders. Therefore,R ⊆ G
and thus R = G, showing equality of the three sigma algebras. This common sigma algebra is

called the product σ-algebra and denoted F1 ⊗F2.

For later purpose, we make some observations.

(1) The set of all rectangles A × B with A ∈ F1 and B ∈ F2 forms a π-system. Indeed,

(A1 ×B1) ∩ (A2 ×B2) = (A1 ∩A2)× (B1 ∩B2).

(2) (A×B)c = (Ac×Ω2)t(A×Bc). Hence, ifA is the collection of all finite unions of rectangles,

then A is an algebra.

(3) A finite union of rectangles can be written as a finite union of pairwise disjoint rectangles.

Thus, A is also the collection of finite unions of pairwise disjoint rectangles.

For finitely many measurable spaces, (Ωi,Fi), i ≤ n, it is clear how to define the product sigma

algebra on Ω1 × . . . × Ωn. You may take the definition analogous to any of the three definitions

given above and check that they agree. Alternately, you may also define it inductively (if n = 3,

define the product sigma algebra as (F1 ⊗ F2) ⊗ F3) and see that it agrees with the other three

definitions (and hence also deduce the associativity property (F1 ⊗F2)⊗F3 = F1 ⊗ (F2 ⊗F3)).

Product measure: Let (Ωi,Fi, µi), 1 ≤ i ≤ n, be measure spaces. Let F = F1 ⊗ . . . ⊗ Fn be the

product sigma algebra on Ω := Ω1× . . .×Ωn. A measure µ on (Ω,F) such that µ(A1× . . .×An) =∏n
i=1 µi(Ai) whenever Ai ∈ Fi is called a product measure and denoted µ1 ⊗ . . .⊗ µn (the notation

is justified by the theorem below).

Theorem 37: Product measures

Product measure exists and is unique.

Proof. It suffices to take n = 2.

The uniqueness part is easy. By the discussion earlier, the collection of all cylinder sets (alter-

nately, rectangles) is a π-system that generates F1 ⊗F2. Since any two product measures agree on

rectangles, it follows that they must agree on F . Thus, product measure, if it exists, is unique.

The existence of product measures follows along the lines of the Caratheodary construction us-

ing the algebra A defined earlier. If A =∈ A, write A = R1 t . . . t Rm where Rj = Aj × Bj are

rectangles and define µ(A) =
∑m

j=1 µ1(Aj)µ2(Bj). Two things need to be checked. (1) The defini-

tion is valid (since there may be many ways to write A as a union of pairwise disjoint rectangles).

(2) µ is countably additive on the algebra A.
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We skip the details of checking5. Once that is done, by Caratheodary’s theorem, it follows that

µ extends to the product sigma algebra. �

Example 40

If Ω1 = Ω2 = R with the Borel sigma algebra on them, then for µ1, µ2 ∈ P(R), the product

measure is simply the measure on R2 with CDF F (x, y) = Fµ1(x)Fµ2(y). Indeed, F defined

like this is easily checked to be a valid CDF on R2 and hence corresponds to a measure (but

if you see read the proof we gave of that fact, you will see that the proof is almost identical

to what is given here - construct the measure on an algebra and then extend it to the sigma

algebra - including the details skipped!).

One theorem that we shall state and use is this.

Theorem 38: Fubini’s theorem

Let µ = µ1⊗µ2 be a product measure on Ω1×Ω2 with the product σ-algebra. If f : Ω→ R+

is either a non-negative random variable or an integrable random variable w.r.t µ, then,

(1) For every x ∈ Ω1, the function y → f(x, y) is F2-measurable and integrable with

respect to µ2 for a.e.[µ1] x.

(2) The function x→
∫
f(x, y)dµ2(y) is F1-measurable (on the µ1-measure zero set of x

where the integral is not well defined, define the integral to be 0 or in any measurable

way).

Further, in both these cases (f ≥ 0 or f ∈ L1(µ)), we have∫
Ω

f(z)dµ(z) =

∫
Ω1

∫
Ω2

f(x, y)dµ2(y)

 dµ1(x)

The same holds with the two co-ordinates interchanged (i.e., you may integrate with respect

to µ1 and then with respect to µ2).

Proof. Skipped. Attend measure theory class. �

Here is a simple indication of how one may use this.

Example 41

If A ∈ BR2 has zero Lebesgue measure in R2, then for a.e. x, the set Ax = {y ∈
R : (x, y) ∈ A} has zero Lebesgue measure in R. To see this, consider 1A and observe

5You may consult Dudley’s book. We skip details because in the cases that we really need, eg., when Ωi = Rdi , we

give a different proof later, even for countable products.
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that
∫
R 1A(x, y)dλ(y) = λ(Ax). By Fubini’s theorem,

∫
R λ(Ax)dλ(x) = λ2(A) = 0. Since

λ(Ax) ≥ 0, it follows that λ(Ax) = 0 for a.e. x. That was precisely the claim.

Example 42

If X is a non-negative random variable with distribution function F , then E[X] =
∫∞

0 (1 −
F (t))dt. To see this, consider (Ω,F ,P) (on which X is defined) and take its product

with (R+,B, λ). Let f(ω, t) = 1X(ω)>t. Check that f is measurable in the product

space Ω × R+. Observe that
∫

Ω f(ω, t)dP(ω) = 1 − F (t) while
∫
R+
f(ω, t)dλ(t) = X(ω).

Use Fubini’s theorem to equate the two iterated integrals
∫

Ω

∫
R+
f(ω, t)dλ(t)dP(ω) and∫

R+

∫
Ω f(ω, t)dP(ω)dλ(t) to get EP[X] =

∫
R+

(1− F (t))dt.

28. INFINITE PRODUCTS

Now we want to consider a product of infinitely many probability spaces.

Product σ-algebra: Let I be an arbitrary index set and let (Ωi,Fi), i ∈ I be measurable spaces. Let

Ω = ×i∈IΩi. Again, we have three options for a σ-algebra on Ω.

(1) A rectangle is a set of the form ×i∈IAi where Ai ∈ Fi for each i ∈ I . LetR be the σ-algebra

generated by all rectangles.

(2) A cylinder set is a set of the form {ω ∈ Ω : ωi1 ∈ A1, . . . , ωin ∈ An} for some n ≥ 1, some

i1, . . . , in ∈ I and A1 ∈ Fi1 , . . . , An ∈ Fin . Let C denote the collection of all cylinder sets

and let G = σ(C).

(3) Define the projection maps Πi : Ω→ Ωi by Πi((xi)i∈I) = xi. Then define G′ = σ{Πi : i ∈ I}
to be the smallest σ-algebra on Ω for which all these projections are measurable.

Again, G = G′. Indeed, the cylinder set {ω ∈ Ω : ωi1 ∈ A1, . . . , ωin ∈ An} is precisely Π−1
i1

(A1) ∩
. . . ∩ Π−1

in
(An). This shows that cylinders are in G′ and that Πi are measurable with respect to G.

Consequently, G = G′ and we shall refer to it as the product σ-algebra (or cylinder σ-algebra).

However, G and R are not necessarily the same. If I is countable, then the equality is true but

not in general if I is uncountable. Let us see why. First of all, cylinders are rectangles and hence

G ⊆ R. It is the other way inclusion that we should worry about.

Suppose I is countable, without loss of generality I = N. Then any rectangle×iAi can be written

as the countable intersection ∩nBn where Bn = A1 × . . .× An × Ωn+1 × Ωn+2 . . . is a cylinder set.

This shows that ×iAi is in G and hence R ⊆ G. Thus, when I is countable, R = G. To understand

what happens in general, we make the following claim.
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Claim 39

Every set in the cylinder σ-algebra is determined by countably many co-ordinates. That is,

if A ∈ G, then there exists a countable set J ⊆ I such that A ∈ σ{Πj : j ∈ J}.

Proof. Let Ĝ be the collection of all A ∈ G that are determined by countably many co-ordinates. If

A ∈ σ{Πj : j ∈ J} then Ac ∈ σ{Πj : j ∈ J}. Further, if An ∈ σ{Πj : j ∈ Jn} for some countable

sets Jn ⊆ I , then ∪nAn ∈ σ{Πj : j ∈ ∪nJn}. Lastly, ∅ ∈ Ĝ. Thus, Ĝ is a σ-algebra. Obviously Ĝ
contains all cylinder sets and therefore it follows that Ĝ = G, proving the claim. �

As a corollary, if I is uncountable and Ai are proper subsets of Ωi (possible if Ωi contain at least

two points each!), then the rectangle ×i∈IAi is not in the cylinder σ-algebra. Thus, whenever Ωi

are not singletons, then the two sigma algebras necessarily differ.

Now that we understand the difference between the two σ-algebras, in the uncountable prod-

uct, should we consider R or G? We shall always consider the cylinder σ-algebra G which will

henceforth be denoted ⊗i∈IFi. We state two reasons. (1) The σ-algebra R turns out to be too big

to support any useful probability measures (just as the power set σ-algebra on R is too big). (2) In

the case when Ωi are metric spaces (or topological spaces) and Fi = BΩi , then G is exactly the Borel

σ-algebra on Ω endowed with the product topology. Actually the second reason merely motivates

you to brush up the definition of product topology and then you wonder why the product topol-

ogy was defined that way (why not say that ×iAi is open if each Ai is open in Ωi)? The reason is

similar to the first, that is, such a topology is too big to be interesting!
Exercise 26

Show the statement claimed above, that the product σ-algebra on a product of topologi-

cal spaces is the Borel σ-algebra of the product topology. [Note: If you are not familiar

with general topological spaces, do this exercise for countable products of metric spaces.

Uncountable products of metric spaces are usually not metrizable, hence the suggestion to

restrict to countable products.]

Despite all this discussion, we shall consider only countable products in this course. That suf-

fices to cover all cases of interest in probability theory! Recall that in this case, the sigma algebras

R and G coincide.

Product measure: Let (Ωi,Fi, µi) be probability spaces indexed by i ∈ I . Let Ω = ×i∈IΩi endowed

with the product σ-algebraF = ⊗i∈IFi. A probability measure µ onF is called a product measure

of µis if for any cylinder set of the form A = {ω ∈ Ω : ωi1 ∈ A1, . . . , ωin ∈ An} we have µ(A) =

µi1(A1) . . . µin(An).
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Theorem 40: Existence and uniqueness of product measure

For any product of probability spaces, the product measure exists and is unique.

Proof. We can follow the same proof as in the case of finite products. The set of cylinders C is a

π-system and the collection A of finite unions of pairwise disjoint subsets of C is an algebra. On

A define the measure in the only natural way, and check that it is well-defined and countably ad-

ditive (on the algebra). Invoke Caratheodary to conclude that the measure extends to the product

sigma algebra. Uniqueness is trivial by the π − λ theorem (since any two product measures agree

on cylinder sets). �

The reason we have skipped details and given a sketchy proof is that shortly we shall give a

different proof in cases of interest. More precisely, we shall take I to be countable, each Ωi to be Rdi

for some di, the sigma algebras to be BΩi and µi to be Borel probability measures. In this situation,

we shall show that existence of the product measure ⊗µi by realizing it as the push-forward of

Lebesgue measure under a suitable T : [0, 1]→ Ω = ×iΩi. The theorem is as follows.

Theorem 41

Let Ωi = Rdi for i ∈ N and let µi ∈ P(Rdi) (on the Borel sigma algebra). Then, the product

measure µ = ⊗i∈Nµi exists on Ω := ×iΩi endowed with the product sigma algebra.

Although the situation described in Theorem 41 covers all cases of actual interest to probabilists,

there is some value in the more general theorem Theorem 40. Most importantly, it clarifies that no

special properties of Rd (either as a topological space or any other structure it has) are necessary

to construct product measures.

29. INDEPENDENCE

Definition 12: Independence

Let (Ω,F ,P) be a probability space.

I Let G1, . . . ,Gk be sub-sigma algebras of F . We say that Gi are independent if for every

A1 ∈ G1, . . . , Ak ∈ Gk, we have P(A1 ∩A2 ∩ . . . ∩Ak) = P(A1) . . .P(Ak).

I Random variables X1, . . . , Xn on F are said to be independent if σ(X1), . . . , σ(Xn)

are independent.

I An arbitrary collection of σ-algebras Gi, i ∈ I , (each Gi contained in F) are said to be

independent if every finite sub-collection of them is independent. Same applies for

random variables.

How does this compare with the definitions we have seen in basic probability class?
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• Since σ(X) = {X−1(A) : A ∈ BR} for a real-valued random variable X , the definition

above is equivalent to saying that P (Xi ∈ Ai i ≤ k) =
∏k
i=1 P(Xi ∈ Ai) for any Ai ∈ B(R).

The same definition can be made for random variables Xi taking values in some metric

space (Λi, di), but then Ai must be a Borel subset of Λi.

• EventsA1, . . . , Ak are said to be independent if 1A1 , . . . ,1Ak are independent. This is equiv-

alent to either of the following sets of 2n conditions:

(1) P(Aj1 ∩ . . . ∩Aj`) = P(Aj1) . . .P(Aj`) for any 1 ≤ j1 < j2 < . . . < j` ≤ k.

(2) P(A±1 ∩A
±
2 ∩ . . .∩A±n ) =

n∏
k=1

P(A±k ) where we use the notation A+ = A and A− = Ac.

The second is clear, since σ(Ak) = {∅,Ω, Ak, Ack}. The equivalence of the first and second

is an exercise.

Some remarks are in order.

(1) Independence is defined with respect to a fixed probability measure P.

(2) It would be convenient if we need check the condition in the definition only for a suffi-

ciently large class of sets. However, if Gi = σ(Si), and for every A1 ∈ S1, . . . , Ak ∈ Sk if we

have P(A1∩A2∩ . . .∩Ak) = P(A1) . . .P(Ak), we cannot conclude that Gi are independent!

If Si are π-systems, this is indeed true (see below).

(3) Checking pairwise independence is insufficient to guarantee independence. For example,

suppose X1, X2, X3 are independent and P(Xi = +1) = P(Xi = −1) = 1/2. Let Y1 =

X2X3, Y2 = X1X3 and Y3 = X1X2. Then, Yi are pairwise independent but not independent.

Lemma 42

Let (Ω,F ,P) be a probability space. Assume that Gi = σ(Si) ⊆ F , that Si is a π-system and

that Ω ∈ Si for each i ≤ k. If for everyA1 ∈ S1, . . . , Ak ∈ Sk if we have P(A1∩A2∩. . .∩Ak) =

P(A1) . . .P(Ak), then Gi are independent.

Proof. FixA2 ∈ S2, . . . , Ak ∈ Sk and setF1 := {B ∈ G1 : P(B∩A2∩. . .∩Ak) = P(B)P(A2) . . .P(Ak)}.
Then F1 ⊇ S1 by assumption. We claim that F1 is a λ-system. Assuming that, by the π-λ theorem,

it follows that F1 = G1 and we get the assumptions of the lemma for G1, S2, . . . , Sk. Repeating the

argument for S2, S3 etc., we get independence of G1, . . . ,Gk.

To prove that F1 is a λ system is straightforward. If Bn ↑ B and Bn ∈ F1, then B ∈ F and

P(Bn ∩ A2 ∩ . . . ∩ Ak) ↑ P(B ∩ A2 ∩ . . . ∩ Ak) and P(Bn)
∏k
j=2 P(Aj) ↑ P(B)

∏k
j=2 P(Aj). Hence

B ∈ F1. Similarly, check that ifB1 ⊆ B2 and both are in F1, then B2 \B1 ∈ F1. Lastly, Ω ∈ S1 ⊆ F1

by assumption. Thus, F1 is a λ-system. �
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Remark 14

If A1, . . . , Ak are events, then Gi = {∅, Ai, Aci ,Ω} is generated by the π-system Si = {Ai}.
However, checking the independence condition for the generating set (which is just one

equation P(A1 ∩ . . .∩Ak) =
∏k
j=1 P(Aj)) does not imply independence of A1, . . . , Ak. This

shows that the condition that Si should contain Ω is not redundant in the above Lemma!

Corollary 43

(1) Random variables X1, . . . , Xk are independent if and only if for every t1, . . . tk ∈ R
we have P (X1 ≤ t1, . . . , Xk ≤ tk) =

∏k
j=1 P(Xj ≤ tj).

(2) Suppose Gα, α ∈ I are independent. Let I1, . . . , Ik be pairwise disjoint subsets of I .

Then, the σ-algebras Fj = σ
(
∪α∈IjGα

)
are independent.

(3) If Xi,j , i ≤ n, j ≤ ni, are independent, then for any Borel measurable fi : Rni → R,

the r.v.s fi(Xi,1, . . . , Xi,ni) are also independent.

Proof. (1) The sets (−∞, t] form a π-system that generatesB(R) and hence Si := {X−1
i (−∞, t] : t ∈

R} is a π-system that generates σ(Xi).

(2) For j ≤ k, let Sj be the collection of finite intersections of sets Ai, i ∈ Ij . Then Sj are

π-systems and σ(Sj) = Fj .

(3) Infer (3) from (2) by considering Gi,j := σ(Xi,j) and observing that fi(Xi,1, . . . , Xi,k) ∈
σ(Gi,1 ∪ . . . ∪ Gi,ni). �

So far, we stated conditions for independence in terms of probabilities of events. As usual, they

generalize to conditions in terms of expectations of random variables.

Lemma 44

(1) Sigma algebras G1, . . . ,Gk are independent if and only if for every Gi-measurable,

bounded random variable Xi, for 1 ≤ i ≤ k, we have E[X1 . . . Xk] =
∏k
i=1 E[Xi].

(2) In particular, random variables Z1, . . . , Zk (Zi is an ni dimensional random vector)

are independent if and only if E[
∏k
i=1 fi(Zi)] =

∏k
i=1 E[fi(Zi)] for any bounded

Borel measurable functions fi : Rni → R.

We say ‘bounded measurable’ just to ensure that expectations exist. The proof goes inductively

by fixingX2, . . . , Xk and then lettingX1 be a simple r.v., a non-negative r.v. and a general bounded

measurable r.v.
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Proof. (1) Suppose Gi are independent. If Xi are Gi measurable then it is clear that Xi are

independent and hence P(X1, . . . , Xk)
−1 = PX−1

1 ⊗ . . .⊗PX−1
k . Denote µi := PX−1

i and

apply Fubini’s theorem (and change of variables) to get

E[X1 . . . Xk]
c.o.v
=

∫
Rk

k∏
i=1

xid(µ1 ⊗ . . .⊗ µk)(x1, . . . , xk)

Fub
=

∫
R
. . .

∫
R

k∏
i=1

xidµ1(x1) . . . dµk(xk)

=
k∏
i=1

∫
R
udµi(u)

c.o.v
=

k∏
i=1

E[Xi].

Conversely, if E[X1 . . . Xk] =
∏k
i=1 E[Xi] for all Gi-measurable functionsXis, then applying

to indicators of events Ai ∈ Gi we see the independence of the σ-algebras Gi.

(2) The second claim follows from the first by setting Gi := σ(Zi) and observing that a random

variable Xi is σ(Zi)-measurable if and only if (see remark following the proof) X = f ◦ Zi
for some Borel measurable f : Rni → R. �

Remark 15

We stated a fact that if X is a real-valued random variable and Y ∈ σ(X), then Y = f(X)

for some f : R→ R that is Borel measurable. Why is that so?

If X(ω) = X(ω′), then it is clear that any set A ∈ σ(X) either contains both ω, ω′ or ex-

cludes both (this was an exercise). Consequently, we must have Y (ω) = Y (ω′) (otherwise,

if Y (ω) < a < Y (ω′) for some a ∈ R, then the set Y < a could not be in σ(X), as it contains

ω but not ω′). This shows that Y = f(X) for some function f : R → R. But why is f

measurable? Indeed, one should worry a little, because the correct statement is not that f is

measurable, but that f may be chosen to be measurable. For example, if X is the constant 0

and Y is the constant 1, then all we know is f(0) = 1. We shall have Y = f(X) however we

define f on R \ {0} (in particular, we may make f non-measurable!).

One way out is to use the fact that the claim is true for simple random variables and that

every random variable can be written as a pointwise limit of simple random variables (see

exercise below). Consequently, Y = limYn, where Yn is a σ(X)-measurable simple random

variable and hence Yn = fn(X) for some Borel measurable fn : R → R. Let f = lim sup fn,

also Borel measurable. But Y = f(X).
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Exercise 27

Let (Ω,F ,P) be a probability space. Then every random variable on Ω is a pointwise limit

of simple random variables.

30. INDEPENDENT SEQUENCES OF RANDOM VARIABLES

First we make the observation that product measures and independence are closely related

concepts. Indeed, if X1, . . . , Xk are random variables on a common probability space, then the

following statements are equivalent.

(1) X1, . . . , Xn are independent.

(2) If X = (X1, . . . , Xn), then P ◦X−1 is the product measure PX−1
1 ⊗ . . .⊗PX−1

k .

To see this, use the definition of independence and of product measure. The same holds for infinite

collections of random variables too. That is, if Xi, i ∈ I are random variables on a common

probability space, then they are independent if and only if P ◦ X−1 = ⊗i∈IP ◦ X−1
i , where X :

Ω → RI is defined as [X(ω)](i) = Xi(ω). Of course, the sigma-algebra on RI is the product of

Borel sigma algebras on the real line.

Theorem 40 asserts the existence of the product probability measure on the product of any given

collection of probability spaces. We sketched the proof, which is via Caratheodary’s method of

constructing a measure on the algebra of cylinder sets and then extending it to the product sigma

algebra. We skipped checking that the measure defined on the algebra was countably additive, a

key point in the construction.

In this section, we restrict to countable products of (R,BR, µi) and show the existence of the

product measure in a different way. This proof easily extends to the product of (Rdi ,BRdi , µi)
or even of (Ωi,Fi, µi) provided each µi is the push-forward of λ (Lebesgue measure on [0, 1]).

However, we shall do this in the language of random variables rather than measures, something

one must get used to in probability theory. To do that, we observe that the following questions are

equivalent.

(1) Question 1: Given µi ∈ P(R), i ≥ 1, does there exist a probability space with independent

random variables Xi having distributions µi?

(2) Question 2: Given µi ∈ P(R), i ≥ 1, does there exist a p.m µ on (R∞,B(R∞)) such that

µ(A1 × . . .× An × R× R× . . .) =
∏n
i=1 µi(Ai)? In other words, does the product measure

exist?

The equivalence is easy to see. Suppose we answer the first question by finding an (Ω,F ,P)

with independent random variables Xi : Ω → R such that Xi ∼ µi for all i. Then, X : Ω → R∞

defined by X(ω) = (X1(ω), X2(ω), . . .) is measurable w.r.t the relevant σ-algebras (why?). Then,
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let µ := PX−1 be the pushforward p.m on R∞. Clearly

µ(A1 × . . .×An × R× R× . . .) = P (X1 ∈ A1, . . . , Xn ∈ An)

=
n∏
i=1

P(Xi ∈ Ai) =
n∏
i=1

µi(Ai).

Thus µ is the product measure required by the second question.

Conversely, if we could construct the product measure on (R∞,B(R∞)), then we could take

Ω = R∞, F = B(R∞) and Xi = Πi, the ith co-ordinate random variable. Then you may check that

they satisfy the requirements of the first question.

The two questions are thus equivalent, but what is the answer?! It is ‘yes’, of course or we

would not make heavy weather about it.

Proposition 45: [Daniell, Kolmogorov]

Let µi ∈ P(R), i ≥ 1, be Borel p.m on R. Then, there exist a probability space with indepen-

dent random variables X1, X2, . . . such that Xi ∼ µi.

Proof. We arrive at the construction in three stages.

(1) Independent Bernoullis: On the probability space ((0, 1),B, λ), consider the random vari-

ables Xk : (0, 1) → R, where Xk(ω) is defined to be the kth digit in the binary expansion

of ω (see Section 11 for convention regarding binary expansion). Then by an earlier home-

work exercise, X1, X2, . . . are independent Bernoulli(1/2) random variables.

(2) Independent uniforms: Note that as a consequence6, on any probability space, if Yi are

i.i.d. Ber(1/2) variables, thenU :=
∑∞

n=1 2−nYn has uniform distribution on [0, 1]. Consider

again the canonical probability space and the r.v. Xi, and set U1 := X1/2+X3/2
2 +X5/2

3 +

. . ., U2 := X2/2 +X6/2
2 + . . ., U3 = X4/2 +X12/2

2 + . . . etc. (in short, let g : N×N→ N be

an injection and define Yk =
∑∞

j=1Xg(k,j)2
−j). Clearly, Ui are i.i.d. Unif[0, 1].

(3) Arbitrary distributions: For a p.m. µ, recall the left-continuous inverse Gµ that had the

property that Gµ(U) ∼ µ if U ∼ U [0, 1]. Suppose we are given p.m.s µ1, µ2, . . .. On the

canonical probability space, let Ui be i.i.d uniforms constructed as before. Define Xi :=

6Let us be pedantic and show this: Suppose Yi are independent Bernoullis on (Ω,F ,P) and T = (Y1, Y2, . . .) :

Ω → {0, 1}∞. Then µ := P ◦ T−1 is the product Bernoulli measure on {0, 1}∞. Let V : {0, 1}∞ → R be defined as

V (x) =
∑
k xk2−k so that (V ◦ T )(ω) is precisely

∑
k Yk(ω)2−k, the random variable that we want. By the reasoning

in Lemma 31, we see that P ◦ (V ◦ T )−1 = µ ◦ V −1. This shows that the distribution of
∑
k Yk2−k does not depend on

the original probability space. But for Xk as before, we get
∑
kXk2−k has uniform([0, 1]) distribution, hence the same

holds on any probability space. Again, we emphasize the unimportance of the original probability space, what matters

is the joint distribution of the random variables that we are interested in.
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Gµi(Ui). Then,Xi are independent andXi ∼ µi. Thus we have constructed an independent

sequence of random variables having the specified distributions. �

This proof does not work for uncountable products. However, it does work for a countable

product of (Ωi,Fi, µi), provided each µi is a pushforward of Lebesgue measure, that is, µi =

P◦T−1
i for some Ti : [0, 1]→ Ωi. The only change needed is to set Xi = Ti(Ui) (instead of Gµi(Ui))

in the last step. As we know, all Borel probability measures on Rd are push-forwards of Lebesgue

measure and hence, the above proof works if Ωi = Rdi and µi ∈ P(Rdi). The following exercise

(not trivial!) shows that it is not possible to get uncountable products in this way.
Exercise 28

Show that there do not exist uncountably many independent, non-constant random vari-

ables on ([0, 1],B, λ). Deduce that the measure ⊗x∈RBer(1/2) on {0, 1}R with the product

sigma-algebra, cannot be realized as the push-forward of Lebesgue measure.

31. KOLMOGOROV’S CONSISTENCY THEOREM

A generalization of the theorem on the existence of product measures is to go beyond indepen-

dence. To motivate it, consider the following question. Given three Borel probability measures µi,

i ≤ 3, does there exist a probability space and three random variables Xi such that Xi ∼ µi? The

answer is trivially yes, for example we can take three independent random variables having the

distribution µi. Alternately, we may take one uniform random variable and set Xi = Gµi(U) (then

Xi won’t be independent).

Having disposed the easy question, what if we specify three Borel probability measures νi on

R2 and want (X1, X2) ∼ ν1, (X2, X3) ∼ ν2 and (X1, X3) ∼ ν3? Is it possible to find such random

variables? If the first marginal of ν1 and the first marginal of ν3 do not agree, then it is not possible

(because then we have two distinct specifications for the distribution of X1!). This is because

our specifications were internally inconsistent. The following theorem of Kolmogorov asserts

that this is the only obstacle in constructing random variables with specified finite dimensional

distributions.

Theorem 46: Kolmogorov’s consistency theorem

Let Ωi = Rdi for some di ≥ 1. For each n ≥ 1 and each 1 ≤ i1 < i2 < . . . < in, let µi1,...,in be

a Borel p.m on Ωi1 × . . .× Ωin . Then the following are equivalent.

(1) There exists a unique Borel probability measure µ on ×iΩi such that µ ◦ Π−1
i1,...,in

=

µi1,...,in for any i1 < i2 < . . . < in and any n ≥ 1.
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(2) The given family of probability measures satisfy the consistency condition

µi1,...,in(B × Ωin) = µi1,...,in−1(B)

for any B ∈ B(Ωi1 × . . .× Ωin−1) and for any n ≥ 1 and any i1 < i2 < . . . < in.

We have stated the consistency theorem for Ωi that are Euclidean spaces. It can be generalized,

but some metric structure on Ωis is needed. This is in contrast to the situation of product measures,

which exist even if Ωi have no structure.

Alternate form of the consistency condition: Suppose for each n ≥ 1, we have a probability

measure νn on Ω1 × . . . × Ωn. Assume that νn+1(A1 × . . . × An × Ωn+1) = νn(A1 × . . . × An) for

all n ≥ 1 and all Ai ∈ Fi. Then, for any 1 ≤ i1 < . . . < ik and any n ≥ ik, the probability measure

νn ◦Π−1
i1,...,ik

on Ωi1 × . . .× Ωik is the same. If we define this to be µi1,...,ik , then we get a consistent

family of probability measures as required in the theorem.

The importance of the consistency theorem comes from having to construct dependent random

variables such as Markov chains with given transition probabilities. It also serves as a starting

point for even more subtle questions such as constructing stochastic processes such as Brownian

motion.

Proof of the consistency theorem. The necessity of the consistency conditions is clear. It is the other

way implication that needs proof. �

32. APPLICATIONS OF THE CONSISTENCY THEOREM

32.1. Markov chains. Consider (Rd,B(Rd)) and let µ0 ∈ P(Rd) and let κ : Rd × B(Rd) 7→ R+ be

a transition kernel. This means that y 7→ κ(x, ·) is a Borel probability measure function for each

x ∈ Rd and x 7→ κ(x,A) is Borel measurable for each A ∈ B(Rd). Then, define for each n ≥ 1, a

probability measure on (Rd)n by

νn(A0 ×A1 × . . .×An−1) =

∫
A0

∫
A1

. . .

∫
An−1

κ(xn−2, dxn−1)κ(xn−3, dxn−2) . . . κ(x0, dx1)dµ(x0).

for any Ai ∈ B(Rd). It may be easier to parse this expression if we assume that all the measures µ0

and κ(x, ·) are absolutely continuous to one measure θ. In this case, write dµ0(x) = ρ(x)dθ(x) and

κ(x, dy) = p(x, y)dθ(y) and then

νn(A0 ×A1 × . . .×An−1)

=

∫
A0

∫
A1

. . .

∫
An−1

p(xn−2, xn−1)p(xn−3, xn−2) . . . p(x0, x1)ρ(x0) dθ(xn−1) . . . dθ(x0).
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That is, νn has density ρ(x0)p(x0, x1) . . . p(xn−2, xn−1) with respect to θ⊗n.

It is easy to check that νn defines a probability measure on (Rd)n and also that νn+1(A0 × . . . ×
An−1 × Rd) = νn(A0 × . . . × An−1). Consequently, by the alternate form of the consistency con-

dition stated above, we see that there is a probability measure µ on (Rd)N (endowed with the

Borel/cylinder sigma algebra) such that µ ◦ Π−1
0,1,...,n−1 = νn. This measure µ on RN is what is

called a Markov chain with state space Rd, transition kernel p and initial distribution µ0.

32.2. Gaussian processes. Supposem : Z→ R and σ : Z×Z→ R. A Gaussian process with mean

µ(·) and covariance σ = (σi,j)i,j∈Z is a collection of jointly Gaussian random variables (Xn)n∈Z

such that E[Xn] = µ(n) and Cov(Xn, Xm) = σ(m,n).

Question: Does it exist?

First let us note some necessary conditions. If we could construct a Gaussian process Y with

mean 0 and we set X = m + Y (i.e., Xn = m(n) + Yn) has mean m(·) and the same covariance as

Y . Hence the mean poses no challenge and we assume that it is zero henceforth.

The covariance is more subtle. For example, σ(n, n) = E[X2
n] cannot be negative. More gener-

ally, for any n ≥ 0 and i1 < . . . < in and any c1, . . . , cn ∈ R, we must have

0 ≤ E[(c1Xi1 + . . .+ cnXin)2] =

n∑
p,q=1

cpcqE[XipXiq ] =

n∑
p,q=1

cpcqσ(ip, iq).

Thus, every principal finite sub-matrix of σ must be positive semi-definite. We now claim that this

is also sufficient.

Assume that σ is positive definite in the above sense. Then for any n ≥ 1 and any i1 < . . . < in,

the measure µi1,...,in = Nn(0, (σ(ip, iq))p,q,≤n) is well-defined. This is because positive definiteness

allows us to write

(σ(ip, iq))p,q≤n = BBt

for a n × n matrix B. Taking Z1, . . . , Zn i.i.d. N(0, 1), the distribution of the random vector BZ,

where Z = (Z1, . . . , Zn)t is the desired Gaussian distribution.

From basic properties of Gaussian distributions (marginals of Gaussians are Gaussian) it follows

that the family of distributions {µi1,...,in} is consistent. Hence by the consistency theorem, the

Gaussian process with covariance σ exists.

32.3. Did we really need the consistency theorem? Actually no! We could have constructed

Markov chains and Gaussian processes from the simpler fact that i.i.d. uniform random variables

V0, V1, V2, . . . exist. For Markov chains, to take the kth step, we can use Vk to generate a random

variable from the required step distribution (depending on the current location). For Gaussian
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process, one can first convert Vk to Zk ∼ N(0, 1). Then the Gaussian process can be generated in

the form X = BZ, where Z = (Z1, Z2, . . .)
t and B is an infinite matrix such that BBt = σ (here

the indexing set is N instead of Z which of course makes no difference, and B can even be taken

to be lower triangular, which avoids infinite sums in computing BBt).

In fact, every situation of interest to probabilists can be generated from a sequence of inde-

pendent random variables, and hence on the probability space ([0, 1],B, λ). The idea is that we

construct Xn+1 = fn(U,X1, . . . , Xn) where fn is the inverse of the cumulative distribution func-

tion of the conditional distribution of Xn+1 given σ{X1, . . . , Xn}. We have not yet defined what

conditional distribution means, but in the situations where you know what it means, it should be

clear that the above procedure works.
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