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CHAPTER 1

Introduction

1. What is random matrix theory?

A random matrix is a matrix whose entries are random variables. The eigenvalues and eigen-
vectors are then random too, and the main objective of the subject is to understand their distri-
butions. This statement omits many other interesting aspects of random matrices, but is opera-
tionally useful to keep in mind. We start with examples.

(1) Let Xy,...X, beiid p x I random vectors having N,(0,X) distribution. Assume that X is
unknown. Based on the data a natural estimate for X is the sample covariance matrix

1 n

Spi=—= Y XiX[.

=1

Historically, this was the first random matrix to be studied,and goes by the name of

Wishart matrix.
(2) Let X = (X,'J)
X;j=X;;. Then X is a Hermitian random matrix and hence has real eigenvalues. If we

i j<n where X; ;, i < j are i.i.d real or complex valued random variables and
assume that X; ; have finite second moment, this matrix is called Wigner matrix.

Its origin lies in the study of heavy nucleii in Physics. Essentially, the behaviour
of a nucleus is determined by a Hermitian operator (the Hamiltonian that appears in
Schrodinger’s equation). This opearator is a second order differential operator in about
as many variables as the number of protons and neutrons and hence is beyond exact de-
termination except in the simplest atoms. Eugene Wigner approached this problem by
assuming that the exact details did not matter and replaced the Hermitian operator by
a random Hermitian matrix of high dimensions. The eigenvalues of the original operator
denote the energy levels and are of physical interest. By considering the eigenvalues of
the random matrix, Wigner observed that statistically speaking, the

(3) Consider the matrix A = (a; ;)
this model but probabilistically appears even simpler than the previous model as there is

i j<n With i.i.d entries. There is less physical motivation for
more independence. This is a false appearance, but we will come to that later!

(4) Patterned random matrices have come into fashion lately. For example, let X; be ii.d
random variables and define the random Toeplitz matrix T = (X, j‘)t}j ~,» One can also
consider the asymmetric Toeplitz matrix. Many questions about the eigenvalues of these
matrices are still open.

(5) Random unitary matrices.



(6) Random Schrodinger operators or random tridiagonal matrices.

2. Principal component analysis - a case for studying eigenvalues

We saw some situations in which random matrices arise naturally. But why study their eigen-
values. For Wigner matrices, we made the case that eigenvalues of the Hamiltonian are important
in physics, and hence one must study eigenvalues of Wigner matrices which are supposed to
model the Hamiltonian.

Here we make a case for studying the spectrum of the Wishart matrix which is more easy
to understand for those of us physicsly challenged. Suppose Xj,...,X, are p x 1 vectors. For
example, they could be vectors obtained by digitizing the photographs of employees in an office,
in which case n = 100 and p = 10000 are not unreasonable values. Now presented with another
vector Y which is one of the employees, we want a procedure to determine which of the X;s it is
(for example, there is a door to a secure room where a photo is taken of anyone who enters the
room, and the person is identified automatically). The obvious way to do it is to find the L2 norm
|Y — Xi||2 for all i < n and pick the value of i which minimizes the distance. As p is large, this
involves a substantial amount of computation. Is there a more efficient way to do it?

There are many redundancies in the photograph. For example, if all employees have black
hair, some of the co-ordinates have the same value in each of the X;s and hence is not helpful
in distinguishing between individuals. Further, there are correlations. That is, if a few pixels
(indicating the skin colour) are seen to be white, there is no need to check several other pixels
which will probably be the same. How to use this redundancy in a systematic way to reduce
computations?

We look for the unit vector o € R” such that o'Xj,...,o'X, have maximum variability. For
simplicity assume that X; + ...+ X, = 0. Then, the variance of the set o' X; is

n n
Y (a'X)* =of (Z&Xf) o=a'S,a
Jj=1

J=1

S| =

where S, is the sample covariance matrix of X;s. But we know from linear algebra that the maxi-
mum of o’ S, o is the maximum eigenvalue of S, and the maximizing o is the corresponding eigen-
vector. Thus we are led to eigenvalues and eigenvectors of S,. In this problem, X; are random, but
it may be reasonable to suppose that X;s themselves (the employees) are samples from a larger
population, say N,(0,X). If we knew X, we could use the first eigenvector of ¥, but if we do not
know X, we would have to use the first eigenvector of S,. The leads to the question of whether
the first eigenvalue of S, and of X are close to each other? If p is not small compared to n, one
cannot expect such luck. More generally, by taking the top d eigenvectors, o, i < d, we reduce the
dimension of vectors from p to d by replacing X; by the vector ¥; := (o} X;,..., o X;).

In any case, for now, this was just a motivation for looking into eigenvalues and eigenvec-
tors of random matrices. In the remaining part of this chapter we introduce the language and
terminology needed and also give some of the background knowledge needed later.
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3. Gaussian random variables

A standard normal random variable X is one that has density (2n)~!/2exp{—x?/2}. We write
X ~N(0,1). If X,Y are i.i.d N(0,1), then the complex random variable a := (X +iY¥)/+/2 is said to
have standard complex Gaussian distribution. We write a ~ CN(0, 1). a has density ©~!exp{—|z|*}
on the complex plane.

We assume that you know all about multivariate normal distributions. Here is a quick recap of
some facts, but stated for complex Gaussians which may be a tad unfamiliar. Let a = (ay,...,a,)"
where g, are i.i.d CN(0,1). If Q,,«, is a complex matrix and u,»; a complex vector, we say that
b = u+ Qa has CN,,(u,X) distribution, where £ = QQ*.

Exercise 1. Let a,b be as above.

(1) Show that that distribution of » depends only on v and £ = QQ*.

(2) Show that E[bk] = U and E[(bk — uk)(bg — ug)] = (0 while E[(bk — Mk)m] = Zk/.

(3) If Q is nonsingular, show that b has density m exp{—(z—u)*2"(z—u)} on C".

(4) If b ~ CN,y(u,X), find the distribution of ¢ := w+ Rb where w1 and R, .

(5) The characteristic function of a C™-valued random vector ¢ is the function ¢ : C" — C
defined as ¢(w) := E[exp{i3{w*c}}|. Show that if u = 0, then the characteristic function of
bis 0(w) = exp{—w*Zw}.

(6) If byx1 and c,x are such that (b',¢") has CN(u,X) we say that (b,c) has joint complex
Gaussian distribution. Write

1) u:[ul], o
uz

where the dimensions of u; and A,B,C are self-evident. Then, show that b ~ CN,,(u;,A)
and the conditional distribution of ¢ given b is CN(uz — B*A~'(b—u;),C — B*A™'B).
(7) Suppose X,,x1 and Y, are real Gaussian vectors. Under what conditions is X +iY have a

A B
B* C

complex Gaussian distribution?

Wick formula/Feynman diagram formula: Since the distribution of a real or complex Gaussian
vector depends only on the mean vector and and covariance matrix, answers to all questions about
the distribution must be presentable as a function of these parameters. Of course, in practice this
may be impossible. One instance is the expectation of a product of Gaussians, and we show now
that it can be written as a weighted sum over certain combinatorial objects. We first define two
multilinear functions on matrices (the functions are linear in each column or each row). Let §,
denote the symmetric group on n letters. A matching of the set [n] is a partition of [n] into disjoint
subsets of size two each. Let M, denote the set of matchings of the set [n] (it is nonempty if and
only if n is even).

Definition 2. Let A be an n x n matrix. The permanent of A is defined as per(A) := Y s [T dix-
If A is symmetric, the hafnian of A is defined as haf(A) := ¥ /4, [1ai ;- Here for each matching M,
we take the product over all pairs in M, and each pair is taken only once.

11



Lemma 3. Let (b',c")" be a complex Gaussian vector as in (1). Then

kot
E [HbiHCg] = per(B).
=1 =l
In particular, if b ~ CN(0,X) then E[|b1 ... |bu|*] = per(X).

PROOF. It suffices to prove the second statement (why?). Thus, let b ~ CN,,(0,X). Then, by
exercise[llwe have its characteristic function

1 1 1
E [exp { iw*b - zb*w}] = exp {4W*Zw} .

Differentiate once with respect to wy,...,w,, and once with respect wy,...,w, and then set w = 0.
(71‘)"11."1

Differentiating under the expectation, on the left side we get “—5z—E[[b; ... b¢|*]. On the right side,

expanding the exponential in series we get ¥ (k!) 14 ¥(w*Zw)k. Terms with k < m vanish upon
differentiation, while those with k > m vanish when we set w = 0 (since at least one w; factor
remains after differentiating). Thus we only need to differentiate

,,,,,

Jseeosdim
Only those summands in which {ii,...,in} and {ji,...,jn} are both permutations of {I,...,m}
survive the differentiation, and such a term contributes []; 6;, ;.- Thus, the right hand side finally
reduces to
14— i _ i _
(m)~'4 Y J]ona=m4" Y [l0tw1a =4 "per(X)
TIES, k=1 T,TES, k=1

since each permutation in ,, occurs m! times as tn~!. n

On similar lines (or can you think of another way without using characteristic functions?),
prove the following Feynman diagram formula for real Gaussians.

Exercise 4. (1) Let X ~ N, (0,X). Then E[X;X,...X,,| =haf(X). In particular, the expectation is
zero if m is odd.
(2) For X ~ N(0,1), we have E[X*"] = (2m—1)(2m —3)...(3)(1), the number of matchings of
the set [2m].

The semicircle law: A probability distribution that arises frequently in random matrix theory
and related subjects, but was never seen elsewhere in probability theory (as far as I know) is the
semicircular distribution p, . with density ﬁ 4—x%?on[-2,2].

Exercise 5. Show that the odd moments of u; . are zero and that the even moments are given by

() /xzn.us.c(dx) = njL 1 <2nn) :

2n
n

Catalan numbers: The number C, = ﬁ(

natorial interpretations and arises frequently in mathematics. Here are some basic properties of

) is called the n™ Catalan number. It has many combi-

Catalan numbers.
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Exercise 6. (1) Show the recursion C, 41 =Y/ Ci—1C,—; where the convention is that Cp = 1.
(2) Show that the generating function of the Catalan numbers, C(t) := Y_,C,t" is satisfies
tC(t)? = C(t) + 1. Conclude that C(t) = 5 (1++/1—4r). [Note: By Stirling’s formula, es-
timate C, and thus observe that C(7) is indeed convergent on some neighbourhood of 0.
This justifies all the manipulations in this exercise].

We show that Catalan numbers count various interesting sets of objects. The first is the set of
Dyck paths.

Definition 7. If X;,...,X, € {+1,—1},let Sy =X; +...+Xx. The sequence of lattice points (0,0), (1,51),(2,S2),...,(n,

is called a “simple random walk path”. A simple random walk path of length 2# is called a bridge
if $», = 0. A simple random walk bridge is called a Dyck path of length 2n if S, > 0 for all k < 2n.

Lemma 8. The number of Dyck paths of length 2n is C,ﬂ

PROOF. Let A, be the set of all sequences X € {+1,—1}?"! such that };X; = —1 and such that
Xo4+1 = —1. Let B, be the set of sequences X in A, for which §; > —1 for all j <24. Obviously, A, is
in one-to one correspondence with simple random walk bridges of length 2¢ (just pad a —1 at the
end) and hence |4, = (zqq). Further, B, is in bijection with the set of Dyck paths of length 24.

If X,Y € A,, define X ~ Y if (Xj,...,X>,) can be got by a cyclic permutation of (¥1,...,Y,). This
is an equivalence relationship and the equivalence classes all have size g+ 1 (since there are g+ 1
negative signs, and any of them can occur as the last one). We claim that exactly one path in each
equivalence class belongs to B,.

Indeed, fix X € A;, and consider the first index J such that S; = min{Sy,...,S»,}. Obviously we
must have X; = —1. Consider the cyclic permute ¥ = (X;;1,...,X;). We leave it as an exercise to
check that Y € B, and that Y’ ¢ B, for any other cyclic shift of X. This shows that exactly one path
in each equivalence class belongs to B, and hence |B,| = (¢+1)"!|A,| = C,. [

Exercise 9. In each of the following cases, show that the desired number is C, by setting up a bi-
jection with the set of Dyck paths. This is a small sample from Stanley’s Enumerative combinatorics,
where he gives sixty six such instances!

(1) The number of ways of writing n left braces “(” and n right braces “)” legitimately (so
that when read from the left, the number of right braces never exceeds the number of left
braces).

(2) A matching of the set [2n] is a partition of this set into n pairwise disjoint two-element
subsets. A matching is said to be non-crossing if there do not exist indices i < j <k < ¢
such that i is paired with k and j is paired with /. The number of non-crossing matchings
of [2n] is C,,.

IThe beautiful proof given here is due to Takacs. An easy generalization is that if X; > —1 are integers such that

Sn = —k, then there are exactly k cyclic shifts of X for which min,,;<, S, > —k. An interesting consequence is Kemperman'’s

formula: If X; > —1 are i.i.d integer valued random variables, then P(t1_; =n) = kP(Sn = —k). Here t_y is the first hitting

n

time of —k.

13
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(3) ai,ay,...,a, are elements in a group and they have no relationships among them. Con-
sider all words of length 2n that use each a; and a; ' exactly once (there are (21)! such
words). The number of these words that reduce to identity is C,,.

Combine part (2) of exercise with part (3) of exercise E] to see that the 2n moment of the semi-
circle equals the number of non-crossing matchings of [2n]. Except for the phrase “non-crossing”,
this is identical to the combinatorial interpretation of Gaussian moments as given in part (2) of
exercised} This analogy between the semicircle and Gaussian goes very deep as we shall see later.

4. The space of probability measures
Let P(IR) denote the space of Borel probability measures on R. On P(R), define he Lévy metric
D(u,v) =inf{a >0 : Fy(t —a)—a < F(t) < F,(t+a)+aVt € R}.

P(R) becomes a complete seperable metric space with the metric . An important but easy fact is
that D(u,,u) — 0if and only if u, — u in the sense of distribution (its importance is in that it shows
weak convergence to be metrizable). Recall that convergence in distribution or convergence weakly
means that in terms of distribution functions, F,, (x) — F,(x) for all x that are continuity points of
Fp.

The following exercise shows how to bound Lévy ditance for measures with densities.

Exercise 10. If u and v are probability measures with densities f and g respectively, show that for
any A < <><E|
A
(3) D(uv) < [ 1)~ (0ldx + u((-AA) + V([-A,AL).
“A

5. Empirical spectral distributions

Consider an n x n Hermitian matrix X with eigenvalues Ai,...,A,. The empirical spectral dis-
tribution (ESD) of X is the random measure Ly :=Y}_,§),. If X is random, let Ly = E[L,] be the
expected ESD of X. This means that L{a,b] = E[L[a,b]] = 1E[#{k : A € [a,]}].

For a fixed matrix X, Ly is an element of P(R). If X is random, Ly is an element of P(R), while
Ly is a random variable taking values in P(R) (that is, a measurable function with respect to the
Borel sigma algebra on P(R)).

Why do we talk about the empirical measures instead of eigenvalues directly? There are two
advantages. Firstly, the eigenvalues of a matrix come without any special order, and Ly equally
disregards the order and merely considers eigenvalues as a set (with appropriate multiplicities).
Secondly, most often we study asymptotics of eigenvalues of a sequence of matrices X, as the
dimension n increases. If we think of eigenvalues as a vector (A1,...,A,), say by writing them in
ascending order, then the space in which the vector takes values is R” which changes with n. To

2the case A = oo gives the total variation distance ||u—V||rv = [|f —gl.

14



talk of the limit of the vector becomes meaningless. But if we encode the eigenvalues by the ESD
Lx,, then they all take values in one space P(R) and we can talk about taking limits.

Exercise 11. Make sure you understand what the following statements mean.
(1) Ly, — u where X, is a sequence of non-random matrices and u € P(R).
(2) Ly, K por Ly 5 u where X, is a sequence of random matrices and u € P(R). Does this
make sense if u is itself a random probability measure?
For instance, is the first statement equivalent to saying D(Lx, ,u) L, 0 in the usual sense for real-
valued random variables? Is it equivalent to saying that | fdLx, L [ fdu for all bounded continu-
ous f?

15






CHAPTER 2

Wigner’s semicircle law

1. Wigner matrices

Definition 12. A Wigner matrix is a random matrix X = (X; ;) where

i,j<n
(1) X; j, i < jarei.i.d (real or complex valued).

(2) X;;, i <nareii.d real random variables (possibly a different distribution)
(3) X,}j = YJ'J for all l,]

(4) E[Xl"z] =0, E[|X112’2] =1. E[Xl’l] =0, E[X]%]] < oo,

Definition 13. Let A have i.i.d CN(0,1) entries and let H have i.i.d N(0,1) entries. Set X = A\J;%‘*

andY =12 J&g*. X is called the GUE matrix and Y is called the GOE matrix. Equivalently, we could

have defined X (or Y) as a Wigner matrix with X; , ~ CN(0,1) (resp. Y12 ~N(0,1)) and X; ; ~N(0,2)
(resp. Y11 ~N(0,2)). GUE and GOE stand for Gaussian unitary ensemble and Gaussian orthogonal

ensemble, respectively.

The significance of GUE and GOE matrices is that their eigenvalue distributions can be com-
puted exactly! We shall see that later in the course. However, for the current purpose of getting
limits of ESDs, they offer dispensable, but helpful, simplifications in calculations. The following

exercise explains the reson for the choice of names.

Exercise 14. Let X be a GOE (or GUE) matrix. Let P be a non-random orthognal (respectively,
unitary) n x n matrix. Then P*XP <4p.

Let X be a Wigner matrix and let Ai,..., A, denote the eigenvalues of X (real numbers, since
X is Hermitian). Observe that Y A2 = tr(X?) = }; 11X j|*. By the law of large numbers, the latter
converges in probability if we divide by n? and let n — . Hence, if we let Ay = A/+/n be the
eigenvalues of X//n, then n™!Y}_, A? converges in probability to a constant. This indicates that
we should scale X down by \/;ﬂ Let L, and L, denote the ESD and the expected ESD of X//n
respectively. Note that we used the finiteness of variance of entries of X in arguing for the 1/y/n
scaling. For heavy tailed entries, the scaling will be different.

Theorem 15. Let X, be an n x n Wigner random matrix. Then L, — ug . and L, L Us.c
In this chapter we shall see three approaches to proving this theorem.

IRecall that for a sequence of probability measures to converge, it must be tight. Often the simplest way to check

tightness is to check that the variances or second moments are bounded. This is what we did here.

17



(a) The method of moments.
(b) The method of Stieltjes” transforms
(c) The method of invariance principle.

Roughly, these methods can be classified as combinatorial, analytic and probabilistic, respectively.
The first two methods are capable of proving Theorem (15 fully. The last method is a general
probabilistic technique which does not directly prove the theorem, but easily shows that the limit
must be the same for all Wigner matrices.

Since part of the goal is to introduce these techniques themselves, we shall not carry out each
proof to the end, particularly as the finer details get more technical than illuminating. For ex-
ample, with the method of moments we show that expected ESD of GOE matrices converges
to semi-circular law and only make broad remarks about general Wigner matrices. Similarly, in
the Stieltjes transform proof, we shall assume the existence of fourth moments of X; ;. However,
putting everthing together, we shall havea complete proof of Theorem |15, These techniques can
be applied with minimal modifications to several other models of random matrices, but these will
be mostly left as exercises.

2. The method of moments for expected ESD of GOE and GUE matrix

The idea behind the method of moments is to show that u, — y, whene p,, 1 € P(R) by showing
that the moments [x”u,(dx) — [xPu(dx) for all non-negative integer p. Of course this does not
always work. In fact one can find two probability measures y and v with the same moments of all
orders. Taking u, = v gives a counterexample.

Result 16. Let u,,u € P(R) and ssume that [xPu,(dx) — [xPu(dx) for all p > 1. If u is determined
by its moments, then u, — u.

Checking if a probability measure is determined by its moments is not easy. An often used suf-
ficient condition is summability of ([ x*”u(dx))~'/?P, called Carlemann’s condition. An even easier
version which suffices for our purposes (for example when the limit is the semicircle distribution)
is in the following exercise.

Exercise 17. Let u,,u € P(R). Suppose u is compactly supported. If [x’u,(dx) — [xu(dx) for all
p > 1, then u, — u.

The first technique we shall use to show Wigner’s semicircle law is the method of moments as
applied to L,. Since u; . is compactly supported, exercise|17|shows that it is sufficient to prove that
JxPL,(dx) — [ xPus.(dx) for all p. The key observation is the formula

1

Z Xll i lp7ll

l| ip=1

) /xPL ,112 _ ftr (X//n)? =

I\)

18



which links spectral quantities to sums over entries of the matrix X. By taking expectations, we
also get

) /xpL %i :*trX/\[) Z E[X .. Xi, 0]

N

which will help in showing that L, — p,.. We first carry out the method of moments for the
expected ESD of a GOE matrix, and later go on to the more involved statement about the ESD of
a general Wigner matrix. The first goal is to see how the semicircle distribution arises.

The idea is to use the formula (5) and evaluate the expectation on the right hand side with the
help of the Wick formula of exercise[2] The rest of the work is in keeping track of the combinatorics
to see how the semicircle moments emerge. To get the idea, we first do it by hand for a few small
values of ¢ in (5). We work with the GOE matrix X. Remember that X;; ~ N(0,2) and X; ; ~ N(0, 1)
fori < j.

(i) Case, g=1. E[X; ;X;;] = 1 for j #iand 2 for j = i. Hence E[tr(X?)] =2n+2(}) = n*+n and

— 1
/ 2 L(dx) = B[] = 1.
(ii) Case ¢ = 2. From the Wick formula for real Gaussians, E[X; ;X « Xk (X ;] becomes

= E[X; ;X;|EXrXe ] +EXi jXi)E[X; 1 X0i) + E[Xi i X0 i) E[X; kX 0]
= (Sik+0ijk)+ (8ix0jr+8;¢0k)(8ik8; ¢+ i jOkr)+ (8jr+0i¢)(8jr+8jre)

corresponding to the three matchings {{1,2},{3,4}}, {{1,3},{2,4}}, {{1,4},{2,3}} respec-
tively. Observe that the diagonal entries are also taken care of, since their variance is 2. This
looks messy, but look at the first few terms. When we sum over all i, j, k, ¢, we get

Y Si=r’, Y S=nt Y (Budi)t=nt

i7j7k7g i7j7k7€ iﬂj7k7€
It is clear that what matters is how many of the indices i, j,k,¢ are forced to be equal by
the delta functions. The more the constraints, the smaller the contribution upon summing.
Going back, we can see that only two terms (5, in the first summand and 6, term in the

2

third summand) contribute n*, while the other give n? or n only.

[ Tutax) = %E[trX“] _ n% Y (G t8,0) + %O(nz) —240m™),
ikt
Observe that the two non-crossing matchings {{1,2},{3,4}} and {{1,4},{2,3}} contributed 1
each, while the crossing-matching {{1,3},{2,4}} contributed zero in the limit. Thus, recalling
exercise[2) we find that [ x* L,(dx) — [x* . (dx)
(iii) Case g = 3. We need to evaluate E[Xj, ;,X, ; ... Xj,.i,|. By the wick formula, we get a sum over
matching of [6]. Consider two of these matchings.
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(@) {1,4},{2,3},{5,6}: This is a non-crossing matching. We get
E[X;, i, Xi,,is B[Xi, 13 Xis iy | E[Xis ig Xig i) ]
= (8i1,i400y,is + 8iyis0iy iy ) (80 iy + 8iyis.iy) (Bis. iy + Bis. iy ig)
iy isOn iy [+ ]-

When we sum over iy, .. ., ig, the first summand gives n* while all the other terms (pushed

i1,is5

under |...]) give O(n?). Thus the contribution from this matching is n* + O(n?).
(b) {1,5},{2,6},{3,4}: A crossing matching. We get which is equal to

E[Xil7i2Xi5,i6]E[Xi27i3Ximi1 ]E[Xi37i4Xi47i5]
= (841.i59iy.i5 1 8iy.igOin.is ) (Bin.ig Ois iy + Oy i3 i) (i is + Bis i is)

It is easy to see that all terms are O(n*). Thus the total contribution from this matching is
o(n?).
We leave it as an exercise to check that all crossing matchings of [6] give O(n®) contribution

while the non-crossing ones give n* 4+ O(n?). Thus,
— 1 1
/ 0 Ly(dx) = —E[rX®) = — (Con' +0(n°)) — Co = / Ot o ().
3. Expected ESD of GOE or GUE matrix goes to semicircle

Proposition 18. Let X = (X; j)i j<a be the GOE matrix and let L, be the ESD of X,,/+/n. Then L, — ..

To carry out the convergence of moments [ x*/L,(dx) — [x*/u(dx) for general g, we need some

preparation in combinatorics.

Definition 19. Let P be a polygon with 2g vertices labeled 1,2,...,2q. A gluing of P is a matching

of the edges into pairs along with an assignment of sign {+, —} to each matched pair of edges. Let
+ . . .

M,, denote the set of all gluings of P. Thus, there are 27(2g — 1)!! gluings of a polygon with 2¢

sides.

Further, let us call a gluing M € %Z to be good if the underlying matching of edges is non-
crossing and the orientations are such that matched edges are oriented in opposite directions.
That is, [r,r+ 1] can be matched by [s + 1,s] but not with [s,s+ 1]. The number of good matchings
is C,, by part (3) of exercise [}

Example 20. Let P be a quadrilateral with vertices 1,2,3,4. Consider the gluing M = {{[1,2],[4,3]},{[2,3],[1.4]} }.
It means that the edge [1,2] is identified with [4,3] and the edge [2,3] is identified with [1,4]. If
we actually glue the edges of the polygon according to these rules, we get a toruﬁ The gluing

2Informally, gluing means just that. Formally, gluing means that we fix homeomorphism f : [1,2] — [3,4] such that
f(1) =3 and f(2) = 4 and a homeomorphism g : [2,3] — [1,4] such that g(2) = I and g(3) = 4. Then define the equiva-
lences x ~ f(x),y ~ g(y). The resulting quotient space is what we refer to as the glued surface. It is locally homeomorphic
to R? which justifies the word “surface”. The quotient space does not depend on the choice of homeomorphisms f and

g. In particular, if we reverse the orientations of all the edges, we get the same quotient space.

20



M = {{[1,2],(3,4]},{[2,3],[1,4]}} is different from M. What does the gluing give us? We identify
the edges [2,3] and [1,4] as before, getting a cylinder. Then we glue the two circular ends in reverse
orientation. Hence the resulting surface is Klein's bottle.

For a polygon P and a gluing M, let V), denote the number of distinct vertices in P after gluing
by M. In other words, the gluing M gives an equivalence relationship on the vertices of P, and Vi,
is the number of equivalence classes.

Lemma 21. Let P be a polygon with 2q edges and let M & EMZ; Then Vi < q+ 1 with equality if and only
if M is good.
Assuming the lemma we prove the convergence of L, to semicircle.

PROOF OF PROPOSITION [T8l

E[Xi17i2 = 'Xiquil] = Z H E[XirairJrlXisvierl]
MeMoy {r,syeM

= Y I ii8ii) +8rs18r11)

MeMy {rsteM

(6) - Z H Sievif’

meny {e.freM

Here for two edges e, f, if e = [, r+1] and s = [s,s + 1] (or f = [s+1,5]), then §; ;, is just §;, ;&
(respectively §;, ;.0

Ur 150541

ir.1,i;)- Also observe that diagonal entries are automatically taken care of since
they have have variance 2 (as opposed to variance 1 for off-diagonal entries).

Sum (6) over iy, ..., i, and compare with Recall (5) to get

— 1 1
2q - L= Vi
@) [PL = ¥ X ] b=y LA™
MeM;, 11izg {e.fYeM Medty,
We explain the last equality. Fix M, and suppose some two vertices r,s are identified by M. If we
choose indices i, ...,iy, so that some i, # i, then the 5-functions force the term to vanish. Thus,

we can only choose one index for each equivalence class of vertices. This can be done in n'#

ways.
Invoke Lemma[21} and let n — o in (7). Good matchings contribute 1 and others contribute zero
in the limit. Hence, lim,—... [ x*¢L,(dx) = C,. The odd moments of L, as well as y, . are obviously

zero. By exercise |5, and employing exercise we conclude that L, — u.. [

It remains to prove Lemma 21| If one knows a little algebraic topology, this is clear. First we
describe this “high level picture”. For the benefit of those not unfamiliar with Euler characteristic
and genus of a surface, we give a self-contained proof latelﬂ

3However, the connection given here is at the edge of something deep. Note the exact formula for GOE
[129dL, (1) = ZZ:O n~8A, ¢, where A, is the number of gluings of P, that lead to a surface with Euler characteristic
2 —2g. The number g is called the genus. The right hand side can be thought of as a generating function for the number
Ay in the variable n~!. This, and other related formulas express generating functions for maps drawn on surfaces of

varying genus in terms of Gaussian integrals over hermitian matrices, which is what the left side is. In particular, such
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A detour into algebraic topology: Recall that a surface is a topological space in which each point
has a neighbourhood that is homeomorphic to the open disk in the plane. For example, a polygon
(where we mean the interior of the polygon as well as its boundary) is not a surface, since points on
the boundary do not have disk-like neighbourhoods. A sphere, torus, Klein bottle, projective plane
are all surfaces. In fact, these can be obtained from the square P4 by the gluing edges appropriately.

(1) Let P=Pyyand M € 9\/[22 After gluing P according to M, we get a surface (means a topo-
logical space that is locally homeomorphic to an open disk in the plane) which we denote
P/M. See examples 20|

(2) If we project the edges of P via the quotient map to P/M, we get a graph Gy drawn (or
“embedded”) on the surface P/M. A graph is a combinatorial object, defined by a set of
vertices V and a set of edges E. An embedding of a graph on a surface is a collection of
function f:V — S and f, : [0,1] — S for each e € E such that f is one-one, for e = (u,v)
the function f, is a homeomorphism such that f,(0) = f(«) and f.(1) = f(v), and such
that f,((0,1)) are pairwise disjoint. For an embedding, each connected component of
S\ Uecefe[0,1] is called a face. A map is an embedding of the graph such hat each face is
homeomorphic to a disk.

(3) For any surface, there is a number y, called the Euler characteristic of the surface, such that
for any map drawn on the surface, V — E + F =, where V is the number of vertices, E is
the number of edges and F' is the number of faces of the graph. For example, the sphere
has x =2 and the torus has y = 0. The Klein bottle also has x, = 0. The genus of the surface
is related to the Euler characteristic by y =2 —2g.

(4) A general factis thaty <2 for any surface, with equality if and only if the surface is simply
connected (in which case it is homeomorphic to the sphere).

(5) The graph Gy has F =1 face (the interior of the polygon is the one face, as it is home-
omorphically mapped under the quotient map), E = g edges (since we have merged 2g
edges in pairs) and V = V), vertices. Thus, Viy = x(Gu) — 1 +¢. By the previous remark,
we get Vi < g+ 1 with equality if and only if P/M is simply connected.

(6) Only good gluings lead to simply connected P/M.

From these statements, it is clear that Lemma [21| follows. However, for someone unfamiliar with
algebraic topology, it may seem that we have restated the problem without solving it. Therefore
we give a self-contained proof of the lemma now.

PROOF OF LEMMA 2] After gluing by M, certain vertices of P are identified. If Vj; > g, there
must be at least one vertex, say r, of P that was not identified with any other vertex. Clearly, then
M must glue [r— 1,r] with [r,r+ 1]. Glue these two edges, and we are left with a polygon Q with
2q — 2 sides with an edge sticking out. For r to remain isolated, it must not enter the gluing at any

formulas have been used to study “random quadrangulations of the sphere”, and other similar objects, using random
matrix theory. Random planar maps are a fascinating and active research are in probability, motivated by the notion of

“quantum gravity” in physics.
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future stage. This means, the gluing will continue within the polygon Q. Inductively, we conclude
that Q must be glued by a good gluing. Retracing this to P, we see that M must be a good gluing
of P. Conversely, if M is a good gluing, it is easy to see that Viyy = g+ lﬁ |

Exercise 22. Show that the expected ESD of the GUE matrix also converges to ;...

4. Wishart matrices

The methods that we are going to present, including the moment method, are applicable be-
yond the simplest model of Wigner matrices. Here we remark on what we get for Wishart matri-
ces. Most of the steps are left as exercises.

Definition 23. Let m < n and let X,,., be a random matrix whose entries are i.i.d. If E[X; ;] = 0 and
E[|X; ;|*] = 1, we say that the m x m matrix A = XX* is a Wishart matrix. If in addition, X; ; are i.i.d
N(0,1) (or CN(0,1)), then A is called a real (or complex, respectively) Gaussian Wishart matrix.

Note that X is not hermitian, but A is. The positive square roots of the eigenvalues of A are
called the singular values of X. Then the following is true.

Theorem 24. Let X,, , be a real or complex Gaussian Wishart matrix. Suppose m and n go to infinity in
such a way that m/n — c for a finite positive constant c. Let L, be the ESD of A, /n. Then, the expected ESD
L, — u, , which is the Marcenko-Pastur distribution, defined as the probability measure with density
dug, (¢ 1 b—1)(t—
W) _ L VO=OE=) (14 op a=(1- yeP, fort € [ab]

dt 21c t

Exercise 25. Prove Theorem 24
Hint: The following trick is not necessary, but often convenient. Given an m x n matrix X, define
the (m+n) x (m+n) matrix

0m><m Xm><n

t
anm On><n

B—

Assume m < n. By exercise 26| below, to study the ESD of A = XX*, one might as well study the
ESD of B.

Exercise 26. For A and B as in the hint for the previous exercise, suppose m < n. If s%, k < m are the
eigenvalues of A, then the eigenvalues of B are £s;, k < m together with n —m zero eigenvalues.

“Thanks to R. Deepak for this neat proof. Another way to state it is as follows. Consider the polygon P (now a
topological space homeomorphic to the closed disk). Glue it by M to get a quotient space P/M. Consider the graph G
formed by the edges of P (so G is a cycle). Project to G to P/M. The resulting graph Gy is connected (since G was),
and has g edges. Hence it can have at most ¢+ 1 vertices, and it has g+ 1 vertices if and only if the Gy is a tree. Work
backwards to see that M must be good. The induction step is implicit in proving that a graph has V < E + 1 with equality
for and only for trees.
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5. Continuity of eigenvalues

Suppose we drop the mean zero condition in the definition of a Wigner matrix. Does the ESD
converge to semicircle law again? Such questions can be addressed by changing the matrix so that
it becomes a standard Wigner matrix (for example, subtract cJ, where J, is the matrix of all ones).
The relevant question is how the ESD changes under such perturbations of the matrix. We prove
some results that will be used many times later. We start with an example.

Example 27. Let A be an n x n matrix with g; ;41 =1 foralli <n—1, and g; j = 0 for all other i, j. Let
€ > 0 and define A; = A +€e,e). In other words, we get A¢ from A by adding € to the (n,1) entry.
The eigenvalues of A are all zero while the eigenvalues of A¢ are +/ee?™k/n 0 <k <n—1 (the sign
depends on the parity of n). For fixed n, as € — 0, the eigenvalues of A; converge to those of A.
However, the continuity is hardly uniform in n. Indeed, if we let n — o first, Ly — 8y while for any
€ positive, L4, converges to the uniform distribution on the unit circle in the complex plane. Thus,
the LSD (limiting spectral distribution) is not continuous in the perturbation &.

For Hermitian matrices (or for normal matrices), the eigenvalues are much better tied up with
the entries of the matrix. The following lemma gives several statements to that effect.

Lemma 28. Let A and B be n x n Hermitian matrices. Let Fy and Fg denote the distribution functions of

the ESDs of A and B respectively.

(a) Rank inequality: Suppose rank(A — B) = 1. Then sup, g |Fa(x) — Fp(x)]

(b) Hoffman-Wielandt inequality: Let A > Ao > ... > A, and py > pp > ..
and B respectively. Then, Y{_, |\ — w|* < tr(A— B)>.

(c) Bound on Lévy distance: D(Ls,Lp) < {/1tr(A—B)2.

<1
—n .
. > Uy be the eigenvalues of A

If we change a matrix by making the means to be non-zero but the same for all entries, then
the overall change could be big, but is of rank one. In such situations, part (a) is useful. If we make
a truncation of entries at some threshold, then the magnitudes of changes may be small, but the
perturbation is generally of large rank. In such part (c) is useful.

PROOF. (a) Let Ej' denote the eigenspace of A corresponding to the eigenvalue A. As A is
Hermitian, by the spectral theorem Ej are orthogonal to one another and ©E; = C". Fix any
x € R and define the subspaces
v=E, Ww=PE;.
A<x A>x

If the smallest eigenvalue of B greater than x is x+ 9§, then for any u € VNW we have ((B —
A)u,u) > 8|ul|>. As rank(B — A) = 1, this shows that dim(V NW) < 1. From the formula
dim(V) +dim(W) — dim(V N W) = n we see therefore get dim(V) — (n —dim(W)) < 1. Observe
that nFy(x) = dim(V) and n — nFp(x) = dim(W) and hence the previous inequality becomes
Fa(x) — Fp(x) <n~!. Interchanging the roles of A and B we get the first statement of the lemma.
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(b) Expanding both sides and using trA? = Y A? and trB? = ¥ u?, the inequality we need is equiv-
alent to tr(AB) < Y, My;. By the spectral theorem, write A = UDU* and B = VCV* where
D = diag(\4,...,A,) and C = diag(u, .. .,u,) and U,V are unitary matrices. Let Q = U*V. Then,

tr(AB) = tr(UDU*VCV*) = tr(DQCQ*) = ¥ Ai;| Qi I
ij

The claim is that the choice of Q0 which maximizes this expression is the identity matrix in
which case we get Y, Ajy; as required. It remains to show the claim. xxx

(c) If D(Fy, Fp) > §, then by definition of Lévy distance, there is some x € R such that Fg(x+8) +06 <
F4(x) (or perhaps the same inequality with A and B reversed). Order the eigenvalues of A and
B as in part (ii). Then there is some & such that

Mep1 > x> Mg, Hi—ns > X+ 0.

But then ¥ (A; —u;)? > Zl;’:kfnﬁ()\’j —u;)? > nd. Thus, by part (ii) of the lemma, we see that
tr(A — B)? > nd. [ |

These inequalities will be used many times later.

6. WSL for Wigner matrices by method of moments

In this section we make brief remarks on how the method of moments can give a full proof of
Theorem [15] The method of moments will be based on equation (4).We shall need to address the
following questions.

(1) To study the expected ESD, we shall have to look at (5). However, if X; ; do not have

higher moments, exprssions such as E[X;, ;, .. -Xizq,il] may not exist. For instance, if i, are
all equal, this becomes E[X;4].

(2) Secondly, the evaluation of E[X;, ;... X, ;] used Wick formulas, which apply to joint
Gaussians only.

(3) Lastly, we must prove the result for the ESD itself, not just the expected ESD.
We now indicate how these problems are to be addressed.

(a) The main idea is truncation. But to prevent the complication that diagonal entries are al-
lowed to be different, let us assume that X;;, i < j are all i.i.d. from Fix any 6 > 0 and find
A > 0 large enough so that E[|X1,2]21|X|72‘>A] <9d. Let oy := E[X1_21|X|72‘§A] = —E[Xi21}x,,>4] and
Ba = Var(|X1 2|* 1}y, ,j<a)- By choice of A we get

o | < \/E[|X1,2|21\X1,z|>A] <3
Ba = E[|X1 2 1jx, <4l —05f € [1—25,1]
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Define,

Yij=Xijlx, |<a- |Y; j| < A. Perhaps not centered or scaled right.

Zij=Y;j—0y. |Z; j| <2A. Centered, but entries have variance 4, not 1.

Let L¥ be the ESD of X, /\/n and similarly for Y and Z. we want to show that D(LX, ;..) L£.0. We
go from LY to y, . in steps.

(A) By part (c) of Lemma

n o »—n no—'n

3 1 3
D(L¥ 1Y) < ?izj|xi,j|21‘x,_j|>A andhence  E [@(LX L) } <.

(B) Since Z =Y — auJ,, by part (a) of Lemma 28 we see that
Z Y 1
D(Ly,Ly) <supl|Fpy(x) — Frz(x)[ < —.

xER n n n

(C) Z is a (scaled) Wigner matrix with entries having variance B4 and such that the entries are
bounded random variables. For Z, the moment method can be tried, and in step (b) we show
how this is done. Thus assume that we are able to show that

Ly—pf,  and  LZ5 4P
(D) Lastly, we leave it as an exercise to show that €(8) := D yEf; Use) —0asd— 0.
Y
Combining (A)-(D), we get

DL use) < DX L)+ DY, LY) + DL uPr) + Db, )

n’’—n ny»—n

1
3

1 1
< <nz ; |Xi,121Xf,,->A> +o+ DL 1) +€(3)

The first term goes in probability to (E[|X1 2[* 1}, |~ 4))'/3 < V/8. The second and third terms are not
random and go to zero as n — . Hence

P (@(Lff s > 2€/S+2e(6)) -0

as n — oo, This implies that D(LX , u; ) L.0. This is precisely the same as saying LX Lt

(b) Let us assume that X; jpounded random variables. Then we again come to the equation
for the moments of L,. We do not have Wick formula to evaluate the expectation, but because of
independence of X; ; for i < j, the expectation factors easily. For simplicity let us assume that the
entries are real valued
Njx(i
®) E X Xi,] = [TE 14"
i<k

where N; (i) =#{r < p : (ir,ir+1) = (j,k) or (k, j)}.
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As always, when we fix p, i, is just i;. As X; ; all have mean zero, each N; (i) and N;(i) should
be either zero or at least two (to get a non-zero expectation). Hence, the number of distinct indices
that occur in i can be atmost g.

From a vector of indices i, we make a graph G as follows. Scan i from the left, and for each
new index that occurs in i, introduce a new vertex named vy, vs,.... Say that r < p is associated to
vk if i, is equal to the ith new index that appeared as we scanned i from the left. For each r < p,
find v;, v, that are associated to r and r+ 1 respectively, and draw an edge from v, to v. Denote the
resulting (undirected) multi-graph by G(i) (multi-graph means loops are allowed as well as more
than one edge between the same pair of vertices).

Example 29. Let p=7andi= (3,8,1,8,3,3,1). Then G(i) has vertices v|.v2,v3,v4 and edges [vi,2],
[v2,v3], [v3,v2], [v2,v1], [vi,v1], [vi,v3] and [v3,v1]. We can also write G(i) as a graph (loops allowed)
with edges [vi,v1], [vi,v2], [v2,v3], [v1,v3] with weights (multiplicities) 1,2,2,2 respectively.

Observe that if there is a permutation 7 € S, such that j = n(i) (thatis j, = iy (), then G(i) = G(j).
Conversely, if G(i) = G(j), then there is such a permutation 7.

Example 30. Leti=(1,2,1,3,4,3) and j = (1,2,3,2,1,4). Then G(i) and G(j) are both trees with
four vertices, vi,v2,v3,v4. However, in G(i), the vertex v, is aleaf while in G(j) v, is not. In our
interpretation, these two trees are not isomorphic, although combinatorially these two trees are
isomorphic. In other words, our graphs are labelled by v;,vs, ..., and an isomorphism is supposed
to preserve the vertex labels also.

The weight of the graph, w[G] := [];<«E [Xf\z*(i)} can be read off from G. Let N,[G] denote the
number of i € [n]? such that G(i) = G.

Observe that N,[G] = 0 unless G is connected and the number of edges (counted with multiplic-
ities) in G is equal to p. Further, w|G] = 0 if some edge has multiplicity 1. We exclude such graphs
in the discussion below. If the number of vertices of G is k, then N,[G] =n(n—1)...(n—k+1).

There are atmost | p/2] distinct (counting without multiplicities) edges in G since each must
be repeated at least twice. Hence, the number of vertices in G is atmost | p/2] + 1. If p is even this
is attained if and only if G is a tree and i is a depth-first search of G (hence each edge is traversed
twice, once in each direction). If p is odd and there are |p/2] + 1 vertices, then some edge will
have to be traversed three times exactly, and that is not possible if G is a tree (since i starts and
ends at the same vertex). Note that because of the way our isomorphism works, isomorphism of
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trees is really isomorphism of plane treesﬂ

/ WLy(dx) = n]lﬂZw[G(l)l
= n]ié’;N”[G]WG

—  #{of plane trees with vertices vi,...,v, /2 }
= Gp

where C,,, is defined to be zero if p is odd.

(c) Fix p and consider M, = [xdL,(x). We know that E[M,] — C,» (defined to be zero if p is odd).
It will follow that M,, L C, ), if we can show that Var(M,,) — 0. Now,

Var(M,) = E[M2] [,
p

- n2+p{ Z E H irir g ]r]r+1 Z E H iryrg1 ijr»jr-#l }
ijen]r ijen r=1

which can again be analyzed by some combinatorics. Basically, in the second summand, the lead-
ing order terms come from cases when both G(i) and G(j) are trees. But these two trees com-
bined together will occur as G(i,j) in the first summand. Thus all leading order terms cancel, and
what are left are of a lower power of n then in the denominator. The calculations will lead to
Var(M,) < C(p)n—? for some constant C(p). Hence M, converges in probability. For more details
we refer to the book ?.

We have shown that [x”L,(dx) converges in probability to [x”du,.(x). Does that imply that
J fdL, converges in probability to | fdu,.? Does it imply that D(L,,u,.) converges in probability
to 0?7

7. Stieltjes’ transform of a probability measure

Definition 31. For u € P(R), its Stieltjes’ transform is defined as G,(z) = [ Z%X,u(dx). It is well-
defined on C\support(u), in particular for z € H:= {u+iv : v > 0}, the upper half-plane. If X ~ p,

we can write G,,(z) = E[ 5]

Some simple observations on Stieltjes” transforms.

(a) Forany pe P(R), |Gu(z)| < Siz for z € H.

(b) G, is analytic in C\support(u), as can be seen by integrating over any contour (that does not
enclose the support) and interchanging integrals (integrating 1/(z —x) gives zero by Cauchy’s
theorem).

A plane tree is a tree with a marked root vertex, and such that the offsprings of every individual are ordered. A
good way to think of them is as genealogical trees, where in each family the offsprings are distinguished by order of
birth.
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(c) Suppose u is supported on a compact interval [—a, a]. Then, its moments my := [ x*u(dx) satisfy

Imy| < a* and hence Y. myz*~! converges for |z| > a and uniformly for |z| > a+ 38 for any & > 0.
Hence,
©) £ 7kt k;) 7 [Z X] u(2)

where the first equality follows by DCT. One can legitimately define G, () = 0 and then (9) just
gives the power series expansion of w — G,(1/w) around 0. Since the power series coefficients
are determined by the analytic function in any neighbourhood of 0, we see that if G, (z) = Gy(z)
for all z in some open subset of H, then u=v.
(d) For compactly supported mu, G,(z) ~ % as z — oo. If u is not cmpactly supported, the same is
true forz=iyasy T oo.
Equation (9) also shows that the Stieltjes transform is some variant of the moment generating
function or the Fourier transform. Its usefulness in random matrix theory is analogous to the use
of characteristic functions in proving central limit theorems. The following lemma gives analogues

of Fourier inversion and Lévy’s continuity theorems.

Lemma 32. Let u, v be probability measures on R.

(1) Foranya <b
lim ’ —lS{G,,(x—i- iy) }dx = u(a,b) + l,u{a} + l,u{b}.
y10 Ja T 2 2
(2) If Gu(z) = Gy(z) for all z in an open subset of H, then u=v.
(3) If uy — y, then G, — G, pointwise on H.
(4) If G, — G pointwise on H for some G : HL — C, then G is the Stieltjes’ transform of a possibly
defective measure. If further, iyG(iy) — 1 as 'y | oo, then, G = G, for a probability measure u and

Hp — H.
Exercise 33. If 4 has a continuous density f, then show that f(x) = —11im, o y3{G,(x+iy)}.

PROOF. (1) Observe that

-1 N 1 oy
RSG#()H—zy)—n/ﬂ{S{W}y(dt)—/Rnwwy(dt).

The last quantity is the density of u*C,, where C, is the Cauchy distribution with scale
parameter y.

On some probability space, let X and Z be independent random variables such that
X ~pand Z ~ C;. Then by the above observation, we get

b
/ —%S{Gu(xﬂLi)’)}dx =P (X +yZ € [a,b]) = B [Ixyze(ap)] -

Observe that 1y 7c(a ] — Ixe(ap) T Ix=az>0 + 1x=pz<0 as y | 0. Take expectations, apply
DCT, and use independence of X and Z to get u(a,b) + tu{a} + u{b}.
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(2) Follows immediately from the first part.

(3) If uy, — y, then [ fdu, — [ fdu for all bounded continuous functions f. For fixed z € H, the
function x — -1 is bounded and continuous on R and hence G,,, (z) — G,(2).

(4) Conversely suppose that G, — G pointwise for some function G. By Helly’s selection
principle, some subsequence u,, converges vaguely to a possibly defective measure u. As
(z—x)~! is continuous and vanishes at infinity, Gu, (z) = Gu(z) for all z € H.

Hence G, = G which shows that all subsequential limits have the same Stieltjes trans-
form G. Further iyG(iy) — 1 which shows that u is a probability measure. By uniqueness
of Stieltjes transforms, all subsequential limits are the same and hence u, — u. |

Our next lemma gives a sharper version of the uniqueness theorem, by getting a bound on the
Lévy distance between two probability measures in terms of the difference between their Stieltjes

transformes.

8. Bounding Lévy distance in terms of Stieltjes transform

The following lemma is a quantitative statement that implies parts (2) and (4) of Lemma 32|as
easy corollaries (how do you get part (4) of Lemma 32]).

Lemma 34. Let u,v € P(R). Then, for any y > 0 and & > 0 we have
2 1
D(u,v) < %aflyﬁ/Rysc,,(xwy) 3Gy + i) |dx.

PROOF. Let yy = uxCy and vy, = v+ Cy. We bound the Lévy distance between y and v in three
stages.

D(u,v) < D(py, ) + D(Vy, V) + D(uy, Vy).

By the proof of Lemma we know that y, has density —n~!'3G,(x+iy) and similary for v,. Hence,
by exercise

(10) D(uy,vy) < /\SG (x+iy) —SGy(x+iy)|dx.

Next we control D(uy,u). Let X ~pand Z ~ C; so that V = X +yZ ~ u,. For t > 0 observe that
PZ>t)=["n ' (1+u?)'du< [Fn'u2du=n"'t"". Thus, for any § > 0, we get

PX<t,V>t+8) <P(z>y ') <n '8y

PV<t,X>t+8) <P(Z<—y'8)<n's 'y

These immediately give D(u,uy) < 8+ 2. Similarly D(v,v,) < 8+ 2. Combine with (10) to get the
inequality in the statement. n

Exercise 35. Let uand v have densities f and g respectively. Then show that D(u,v) < [|f —g| (the
latter is called the total variation distance between u and v).
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9. Heuristic idea of the Stieltjes” transform proof of WSL for GOE

Let X,, be a GOE matrix. LetA,, = ﬁXn have eigenvalues Ay and ESD L,. The Stieltjes” transform
of L, is
1 1 & 1
Gu(z) .= | —L,(dx) = —
@= [ L= ¥

ni=z— M

1
=—tr(zl - X
tr(al —X,) !

We show that L, — ;.. by showing that G,(z) — Gj..(z) for all z € H. By Lemma ??, this proves the
claim. We are being a little vague about the mode of convergence but that will come in a momentﬁ

We introduce the following notations. We fix n for now. Y; will denote the matrix obtained

Kt row and the k<t column. And u; € C"! will denote the column vector

ith

from X by deleting the

xth

got by deleting the k™" entry in the k"' column of X.

From the formulas for the entries of the inverse matrix, we know that for any M,
1
Z — TX/( k— *ll,t(ZI— ﬁYk)*luk

and hence letting Vi denote the denominator on the right side, we can write

n
Yy
k=1

1
Vi

(11)

:\'—‘

The key observations are

(1) Yy isjust an (n— 1)-dimensional GOE matrix.
(2) uy is a standard Gaussian vector in (n — 1)-dimensions.
(3) Yx and u; are independent.

Therefore,
EV|] = z—rllE[E[ 1@ —=Y1)” ul‘Y1:|:|
= [tr(zl—\lle) }
(12) ~ z—E[G,-1(2)].

provided we ignore the difference between n and n — 1. As Vj are identically distributed, E[V}] is
equal to the same quantity.

Let us assume that each Vj is very close to its expectation. This will be a consequence of high
dimensionality and needs justification. Then return to and write

Jelf 1
n /= E[Vi] z—%E[Gnq(z)]'

®The method of Stieltjes” transform for the study of ESDs, as well as the idea for getting a recursive equation for

G, is originally due to the physicist Leonid Pastur ?. The method was pioneered in many papers by Zhidong Bai.
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There are two implications in this. Firstly, the random quantity on the left is close to the non-
random quantity on the right, and hence if we assume that E[G,(-)] converges to some G(-), then
so that G,(+), and to the same limit. Secondly, for G we get the equation

1
G(z) = G

This reduces to the quadratic equation G(z)? — zG(z) + 1 = 0 with solutions G(z) = (z4 V72 —4) /2.

By virtue of being Stieltjes’ transforms, G, (z) ~ z ™!

as z — o0 and G must inherit this property. Thus
we are forced to take G(z) = (z— Vz> —4) /2 where the appropriate square root is to be chosen. By
direct calculation, the Stieltjes transform of u; . is identified to be the same. This completes the

heuristic.

Exercise 36. Show that G = G, satisfies the equation (G(z))? —zG(z) + 1 =0 for all z € H. Argue
that no other Stieltjes” transform satisfies this equation. One can then write

z—Vz2—4

G(z) = >

where the branch of square root used is the one defined by V're® = \/re®/2 with 6 € (—x,n). Expand

by Binomial theorem and verify that the even moments are given by Catalan numbers.

10. The Stieltjes’ transform proof of WSL

Now for the rigorous proof. The crucial point in the heuristic that needs justification is that Vj
is close to its expected value. The following two lemmas will come in handy.

Lemma 37. Let V be a complex valued random variable and assume that almost surely, 3V >t for some
constant t > 0. Then, for any p >0

1 1
E||o——=| | <tTPE[[V-EV|].
g5y || e -eve
PROOF. Almost surely, 3V >t and hence 3{E V} > too. Hence, |V| >t a.s.,, and [EV| > 1.
Thus,

11 V-EV|

—_—— | =<t “|V-EV]|.

)V EV‘ VIEV| ~ | |
Raise to power p and take expectations. u

Lemma 38. Let u be an n x 1 random vector where u; are independent real or complex valued random
variables with zero mean and unit variance. Let M be a non-random n x n complex matrix. Then,

(a) E[u*Mu] = trM.
(b) If in addition my = E[|u;|*] < oo, then Var (w*Mu) < (24 my)tr(M*M).
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PROOF. Writew"Mu =Y
those with i = j give M;;. The first claim follows. To find the Varianceﬂ we compute the second
moment E [[w*Mu|?| =¥, ;¥4 o M; jMy B[t iigug).

E[u;u jiiru] vanishes unless each index appears at least twice. Thus, letting m;, = E[u%]

4 o1 M juiu . When we take expectations, terms with i # j vanish and

E[ﬁiujﬁkug] = 8,-’]'8](7[ + 8,-,[6,-,;( + ’mz ’28,-71(5]'7[ + m46i,j,k7£-
Thus
E UU*MU‘Z] = ZMi,iMk-,k +ZM,"]-M]'_’,' + IMQIZZM,-JM,'J +my ZM@,‘M,‘J
ik i,j i,j i
= (tM)* +te(M*M") + |ma P te(M*M) +ms Y |M;|
i

< (M) + (14 |[ma|* +ma)tr(M*M).

Observe that |[my|*> < E[|u1]?] < 1 where equality may not hold as u; is allowed to be complex
valued. Subtract E[u*Mu]? = (trM)? to get Var(u*Mu) < (2 +my)tr(M*M). [ |

Now we are ready to prove Wigner’s semicircle law under fourth moment assumption.

Theorem 39. Let X, be a Wigner matrix. Assume ms = max{E[|X,»|*], B[X},]} is finite. Then, L, L e
and L, — pg..

PROOF. Let G, and G, denote the Stieltjes’ transforms of L, and L, respectively. Of course,
G,(z) = E[G,(z)]. Fix z € H. From we have G,(z) =n~!'¥1_, 1/V, where

. %\
(13) Vi=(d —X)hF =722 u <zl — \/,z> u.

Here Y} is the (n— 1) x (n — 1) matrix obtained from X by deleting the kth

ith column, and

row and
u; is the (n — 1) x 1 vector obtained by deleting the kth element of the Kt column of X. Clearly Y is
a Wigner matrix of dimension (n— 1) and uy is a vector of iid copies of X| », and uy is independent

of Y. We rewrite as

ka 1 Yk -1 \/ﬁ
14 Viecrg——2————u | 2, — —— Uy, where z,, := Z.
(14) ¢ Vn nn—1) k(” \/n—1> § V=1

Hence,

e[| gyl = £|[2E (e []

2
< E [’]1 Z |]k — E[]Vk] ’ ] (by Cauchy-Schwarz)
k=1
1
< @E[Wl —EWi]P] by Lemma 38|

"For a complex-valued random variable Z, by Var(Z) we mean E[|Z — E[Z]|?] = E[|Z|?] — |E[Z]|?>. This is consistent

with the usual definition if Z is real-valued.
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For a complex-valued random variable with finite second moment, E[|Z — ¢|?] is minimized uniquely
at ¢ = E[Z]. In particular we also have |E[Z]|? < E[|Z|?]. Therefore, the above inequality implies the
following two inequalities.

(15) Var(G(2) < BV~ BV
(16) GolD)— i || < g BV~ EWAIPY
"TEW L T (@ T

The next step is to compute E[V;] and obtain a bound for Var(V;). Firstly,

oo oo 2 0]
o)

Jn -1 Vi1

n—1

(17) = I— 6n—l(zn)-

Now, to estimate Var(V;), recall that X; ;, u; and Y; are all independent. Write A = (z/ — %)_1 and

B = (z,] — \/%)*1 and observe that if 0; are eigenvalues of Y| then the eigenvalues of A and B are
(z—90,/v/n)"!and (z—0;/v/n—1)~! both of which are bounded in absolute value by (3z)~!.
Write Var(V;) as E [Var(Vl ‘ Y )} + Var <E[V1 ’ Y1] ). We evaluate the two individually as follows.

Using the expression and part (b) of Lemma 38|for Var(V; ’ Y)) we get
E [Var(vl ) Yl)} =E[n ' +n 22+ ma)tr(A*A)] <n ' +man”' (32) 7%

Using the expression we get E[V; ’ Yi|=2—4/ "T’lGn_l (zx) and hence

n—1

Var (E[Vl ‘Yﬂ) = Var (G,,—1(z,)) < Var (G,—1(za)) -

n

Add this to the inequality for E [Var(Vl ‘ Y )} gives a bound for Var(V;) which when inserted into
gives

1 1 mqy
Var(Grla)) < (32)* <n + n(3z)? +Var(Gn_1(zn))) '

Let V, := sup{Var(G,(z)) : 3z >2}. Observe that V, <272 as |G,(z)| < (3z)7}, in particular V,, is
finite. Since 3z, > 3z, we arrive at the recursive inequality

ny
VvV, < —
" 26p

szn-i-

1 A 1
+ ?anl < - + Eanl
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where A = 27242 %m,. We increased the first term from 2* to 22 so that V; < A also. Iterating this

inequality gives

v, < 44 A4 A 4,4
"= on 2m—-1) 22(n-2) ' 2022 20l
AL A
< Yy 4+ 2 °
= n2 kg;) M TIER
A
< A (for n > 10).
n
Insert this into and and use (17) to get
1
(18) sup Var(G,(z)) < —
3222 n
(19) G.(2) 1 <
sup z)— — <-.
[7>2 " Z— (l’l — 1)/n anl(Zn) n

Convergence of L, to semicircle: L, is a sequence of probability measure with Stieltjes transforms
G,. Let u be any subsequential limit of L,, a priori allowed to be a defective measure. By G,
must satisfy G,(z)(z— Gu(z)) = 1 for all z with 3z > 2 (why? Justification is needed to claim that
Gn—1(zn) — G,(z), but one can argue this by using equicontinuity of G, as in the next paragraph).
Thus, G,(z) = (z+ V22 —4)/2. Since G, must be analytic in z and G,(z) ~ u(R)z™! as z — o, the
branch of square root is easily fixed. We get

V-4

2 , for 3z >2

G,U(Z)

where the square root is the branch V/re® = \/re™®/? with 8 € (—x, ). By exercisethis is precisely
the Stieltjes transform of the semicircle distribution on [—2,2]. Thus all subsequential limits of L,
are the same and we conclude that L, — u..

Convergence of L, to semicircle: Without loss of generality, let X, be defined on the same prob-
ability space for all nﬂ If ¥ 1/ni < oo, then by it follows that for fixed z with 3z > 2 we have
G, (2) — Gy, () © 0. Take intersection over a countable dense subset S of z and invoke the conver-
gence of G, to conclude that G, (z) — G;(z) for all z € S, almost surely. For a Stieltjes transform G,
we have the inequality |G'(z)| < (3z) 2, from which we see that G, are equicontinuous on {3z > 2}.
Therefore we get G,, (z) — G(z) for all z with 3z > 2, almost surely. Hence L,, “ y;...

Now, given any subsequence {n;}, choose a further subsequence {n,} such that Y 1/n, <
co. Then L, %% us.. Thus every subsequence has an almost sure convergent sub-sub-sequence.

Therefore L, il U |

8The strategy used here is as follows. To show that real-valued random variables ¥, converge in probability to zero,
we may first of all construct random variables Z, on the same probability space so that Z, 4 Y, and then show that Z,
converge in probability to zero. And for the latter, it suffices to show that any subsequence has a further subsequence
that converges almost surely to zero.
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Remark 40. If we had used Lemma[37|with p = 4 instead of p = 2 (which would force the assump-

2
tion that X; ; have finite eighth moment), then we could get n~2 as a bound for E [ ‘ Gu(z) — ﬁ ’ } .

Therefore we would get almost sure convergence.

In fact, one can conclude almost sure convergence assuming only finite second moment! This
requires us to use p = 1, but then we are faced with estimating E[|V; — E[V;]|] which is more com-
plicated than estimating the variance. Lastly, Stieltjes” transform methods are very powerful, and
can be used to prove rates of convergence in Wigner’s semicircle law.

Exercise 41. Prove Theorem 24| by Stieltjes transform methods. Mainly, work out the heuristic
steps in the proof and arrive at an equation for the Stieltjes transform of the limiting measure and
show that the equation is satisfied uniquely by the Stieltjes transform of the Marcenko-Pastur law.
The full details will involve similar technicalities and may be omitted.

11. Chatterjee’s invariance principle

We have seen in a first course in probability that the sum of » i.i.d random variables with
zero mean, scaled by /n, converges to Gaussian law provided the random variables have finite
variance (these distributions are therefore said to be in the normal domain of attraction). And
now we have Wigner’s semicircle law which states that the spectrum of X, /+/n converges to the
semicircle law whenever X, is a Wigner matrix with entries having finite variance. On the one
hand this does not sound surprising. However, it is entirely unclear why finite variance condition
which worked for sums of random variables should also be the right condition for eigenvalues of
Wigner matrices. Chatterjee’s invariance explains this phenomenon of invariance in much greater
generalityﬂ In this section we state the invariance principle in general and apply it to random
matrices in the next section.

Theorem 42. Let Xy, k < n be independent real valued random variables with zero mean, unit variance and
finite third moments satisfying maxy<, E|X;|* <y for some y < oo. Let Y;, k < n be i.i.d N(0,1) variables.
Let f:R" — R be a C? function and define U = g(f(Xi,...,X,)) and V = g(f(Y1,...,Y,)). Then for any
g € C3(R), we have

E[g(U)] — Eg(V)] | < SYC(8)Aa(f).
where C(g) = ry1<zi3x||g(i)\\m and A3(f) = max{|9;f(x)|¥" : k<n, 1 <r<3,xeR"}.

Let us parse the statement. If for every g € C}(R) we had E[g(U)] = E[g(V)], then U must have
the same distribution as V, since Cg is a measure-determining class (for example, the characterisitic
functions would have to coincide). Hence if E[g(U)] and E[g(V)] are close for very g, then U and V
must be close in distribution.

Sourav Chatterjee ? resurrected and developed an old method of Lindeberg to prove this general invariance
principle. At once elementary and powerful, it has found many applications and has drastically simplified proofs in

many cases.
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The theorem asserts gives a bound for E[g(U)] — E[g(V)] in terms of C(g) and A3(f). For fixed
g, the constant C(g) may be ignored. What does A3(f) signify? It is a bound on iterated partial
derivatives of f. If f is a function that does not depend too much on any one of the variables, then
A3(f) is small, while if it does depend too much on one or more of the variables, A3(f) is large,
giving a weak bound. The following example illustrates this well.

Example 43. As a quick application, consider f(xi,...,x,) = ﬁ Y?_, x. Then, A3(f) = n=3/2. Hence
for any g € C}(R), Theorem (42| gives

() e ()]

But (Y1 +...4Y,)/v/n 4 Y). Thus letting S, = X; +...+ X, we get for any g € C,f that

[Elg(S,/v/m)] — Elg(¥))]] < chg“f 0

as n — oo. If we knew this for every g € C,(R) that would be the definition of % 4 y,. Ttis an
easy exercise to check that knowing this only for C; functions also suffices (why?). Thus we have
proved CLT under third moment assumptions without recourse to characteristic functions! This
was Lindeberg’s proof of the CLT. Note that X; are assumed to be independent, not necessarily
identical in distribution.
In contrast, consider the function f(xi,...,x,) =c1x1+. ..+ cux, where Zc,% =1sothat f(Y1,...,Y,)

Y; still. However A;(f) = max|ci|®. Thus, the bound is nmaxy |cx|* which may not go to zero as
n — oo, for example if ¢, = 2-k/2_ 1n this case, X; has too much influence on the outcome.

PROOF OF THEOREM [42] . Define the vectors
Wk — (Xla"'vxkflek)"'aYn)v
Wko = (Xb"'>Xk—1707Yk+la"'7Yn)-

Then, writing h = go f,

Uu-v = Z h(Wis1) — h(We)

k=0
= i h(Wii 1) —h(WD) — i h(Wi) — h(Wy).
k=0 k=0

ih

By Taylor expansion we write the k~'' summands as

X2 X7

H(Wei1) — h(W2) = (W) Xe + Rh(WE) -+ n(w) &

Y2 v}

h(We) = h(W) = Och(W ) Yic+ Sh(W) - + i h(W) -
where W € [0,X,] and W} € [0,Y;]. Observe that X; and ¥, are independent of W_. Take expectations
in the above equations and subtract the second from the hirst. As the first two moments of X;
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match with those of Y, the first two terms cancel and we get
1 o1
E[h(Wi1)] — EI(W0)] = ZE[X203(W)] + E [2ah(W)].

As Oh(x) = g" (f(x))(Orf (x))* + 38" (f(x))07 £ (x)0kf (x) + &' (f(x))07 f (x) we get the bound [9}h(x)| <
C(g)A3(f) where v,C(g),A3(f) are as defined in the statement of the theorem (if necessary increase
v so that E[|Y;]] < ). Thus we get

EDH(Wei1)] — BIR(W)] | < 37l ().

Sum over k to get E[|U —V|] < 3y C(g)A3(f) as claimed.
|

For simplicity we assumed the existence of third moments in Theorem The following
exercises show how to eliminate this condition.

Exercise 44. Let X; be independent random variables having mean zero and unit variance. Let Y}
beii.d N(0,1). Let f and g be as in Theorem Fix any constant A > 0. Then,

Elg(f(X)] —Els(/(")]| < Cloms (ZE\Xk Lgjcal + ;Ennﬁlmﬂ)

+C' (g9, (ZE X P, 5] + éE[|Yk!21|yk|>A]>

where C(g) and A3(f) are as before and C'(g) = max || and Az (f) = max{|3; f(x)[¥" : k<n, 1<
r <2, x € R"}. [Hint: Follow the same steps asi)efore, except that in addition to the third order
Taylor expansion, use also the second order Taylor expansions

X2

M(Weer) ~hOVY) =  Qh(WO)Xe+ () L
Y2
h(We) —h(We) = Okh(WY)Ye+h(W) ;

Use these second order expansions on the event |X;| > A and |V;| > A, respectively, and the third

order Taylor expansions when [X;| <A and |V;| <A. Add them up and follow the same steps as

before with minor modifications.]

Exercise 45. As an application of Exercise prove the Lindeberg-Feller central limit theorem
for triangular arrays. In particular, we do not need identical distribution and we do not need
moments higher than 2 (the Lindeberg condition replaces it).

12. Wigner’s semicircle law using invariance principle

For a vector t € R"™1)/2 (indexed by (i, j), 1 <i < j <n), let M(t) be the real symmetric matrix
with entries M; j = M, ; = t; j//n. Fix z € H and define f : R""*1)/2 — C by f(t) = n~'tr(zI - M(t)) ..

Let X = (X; j)i<; where X; ; are i.i.d real-valued with mean zero and variance one and let Y =
(Yi,j)i<j where Y; ; are i.i.d N(0,1). Then M (X) and M(Y) are scaled Wigner matrices.

38



For simplicity we assume that 3 := E[|X; ;] < . Let g € Cf) (R). We apply Theorem to this
situation. A small issue is that f is complex valued, but one can apply the theorem separately to
Rf and 3 f and put them together. We ignore this issue and just apply the bound in Theorem
directly to f and leave the rest as exercise. The only thing needed is to compute A3(f). Let H; ;
denote the Hermitian matrix which has 1 in the (i, j) and (j,,i) slots, and zeros elsewhere. As
f(t) =n"ltr(z - M(t)) ! and 9; ;M(t) = n~V/2H;;, we get

9 (0) = n ™"t { (2L —M(0) 34M(0) | = n~ 2 { (o1 —M (1) "My
02, (8) = n 2t { (2l = M(8)) 20 MOMig | =t { (o — M (1) B},

9 if(t)=n""tr { (d—M (t))*“H?,j} '

If M is any square matrix, let M*M = Y 6;vv; be the spectral decomposition of M*M. For any

matrix A, we then have

ltr(MA)|> < tr(A*M*MA) = ZekHA*kaZ < Opmar ) A V][> = Bmaxtr(A*A).
k k

We apply this with (zZ — M(t))"P~! in place of M and Hf ;in place of A (for p = 1,2,3). Then Opax <
(3z)7?7~2 and tr(Hff ) is bounded by a constant for p < 3. Hence we get

0, /()] <Cn¥2(Sz) %, (R <Cn¥2(Sz)74, [9f(1)] < CnT3(Sz)
Thus, A3(f) < Cn~"/2. Theorem [42]implies
|Elg(Gx(2))] - Elg(Gy ()] | < Cyan 2,

Thus, if Gy(z) L G;.c(z), then so does Gx(z).

13. Summary

We have essentially seen one theorem in random matrix theory, the Wigner’s semicircle law
(and Marchenko-Pastur law, if you solved the exercises). This is the first nontrivial result in the
subject, but another reason for spending time on this is to introduce the more widely applicable
techniques of moment method, stieltjes’ transforms and invariance principle. Put together, we
have proved Theorem [15( under the assumption that X,, = (Xi(,;%))i, j<n has independent (for i < j)
with finite first and second moment and satisfying the Pastur condition

n

1
= Y E|X,[ Ly, 2505 =0 forall3>0.
1

i j=

A similar result holds for Wishart matrices. Let us remark on some other models of random
matrices.

(1) Jacobi random matrices: Let X<, and Y,,x, be independent matrices with i.i.d entries.

Then A = (XX* +YY*)"1XX* is a random Hermitian matrix. Let m < n and m/n — ¢ (posi-

tive and finite) as before. Without any scaling, the ESD L4, converges to a Beta distribution
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€)

(4)

with parameters depending on c. This can be handled by the methods given earlier. To-
gether with the Wigner and Wishart matrices, this is one of the classical models of random
Hermitian matrices. In all these cases, the Gaussian versions have particularly nice prop-
erties, for example, the exact eigenvalue density may be found.

Random Toeplitz matrices: A matrix T,, is said to be Toeplitz if T; ; depends only on j —i.
If we pick i.i.d real valued random variables Xj,...,X,—; and define an n x n matrix T
with T; ; = X|;_;, then we get a random, real symmetric Toeplitz matrix. If X; have mean
zero and finite variance, the ESD of T'/\/n converges to a probability measure on the line.
This has been shown by the method of moments and in some sense the moments of the
limit distribution are understood. However, it is not known at present whether the limit
distribution has a density!

Other models of random matrices with various structures like Toeplitz are being studied.
For example, Hankel matrices have H; ; depending on i+ j only. Real symmetric Hankel
matrices with H; ; = X|;, ;;, where X; are i.i.d with zero mean and finite variance have been
looked at. H/sqrtn has a limit distribution which is again not fully understood.

Consider a Wigner matrix, but drop the finite variance condition. For example, X; ;, for
i < j could be i.i.d Cauchy random variables. What is the right scaling, and what is the
limit distribution? Again, some results have been found in very recent time (the scaling is
by n~1/%if the entries fall in the Stable(ot) domain of attraction, and then the ESD converge
to a (nonrandom) probability measure. Various properties of the limit measure are yet to
be understood.
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CHAPTER 3

GOE and GUE

We quickly recall that a GUE matrix can be defined in the following three equivalent ways. We
leave it to the reader to make the three analogous statements for GOE.

In the previous chapters, GOE and GUE matrices appeared merely as special cases of Wigner
matrices for which computations were easier. However they have a great many neat properties
not shared by other Wigner matrices. The main fact is that the exact density of eigenvalues of
GOE and GUE can be found explicitly! And even more surprisingly, these exact densities have a
nice structure that make them amenable to computations. Many results that are true for general
Wigner matrices are much harder to prove in general but fairly easy for these two cases. Crucial to
the “integrability” properties of GOE and GUE are their invariance under orthogonal and unitary
conjugations respectively.

Exercise 46. (a) Let X and Y be n x n GUE and GOE matrices respectively. Then, for any fixed
U € U(n) and P € O(n), we have U*XU £ X and P'YP LY.

(b) If X is a random matrix such that X; ;, i < j are independent real valued entries and suppose
that PXP' £ X forall P € O(n), then show that X has the same distribution as cX where c is a
constant and X is a GOE matrix. The analogous statement for unitary invariance is also true.

Remark 47. This is analogous to the following well known fact. Let X be a random vector in R".
Then the following are equivalent.

(1) X ~ N,(0,6°I) for some 2.
(2) Xi are independent and PX 2 X for any P € O(n).

To see that the second implies the first, take for P an orthogonal matrix whose first column is
(1/v/2,1/4/2,0,...,0) to get X, L (X1 +X»)/V/2. Further, X;,X; are i.i.d - independence is given, and
choosing P to be a permutation matrix we get identical distributions. It is well known that the
only solutions to this distributional equation are the N(0,6?) distributions. If not convinced, use
characteristic functions or otherwise show this fact.

What is the use of unitary or orthogonal invariance? Write the spectral decomposition of
a GUE matrix X = VDV*. For any fixed U € U(n), then UXU* = (UV)D(UV)*. By the unitary
invariance, we see that VDV* has the same distribution as (UV)D(UV)*. This suggests that V
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and D are independent. The only hitch in this reasoning is that the spectral decomposition is not
exactly unique, but it can be taken care o!ﬂ

1. Tridiagonalization

Let A be an n x n GOE. Write it as
a o
u B

A=

so that a ~ N(0,2), u ~ N,_1(0,1), B~ GOE,_;, and all three are independent. Condition on u.
Then pick any orthogonal matrix P € O(n— 1) such that Pu = ||u||e;. To be specific, we can take the
transformation defined by

(v, w)
{w,w)

For any w # 0, the transformation defined on the left is the reflection across the hyperplane per-

Pv=v-2 w, withw=u—e;.

pendicular to w. These are also referred to as Householder reflections. Check that P is indeed unitary
and that Pu=e,.

Since P depends on u and B is independent of U, the orthogonal invariance of GOE shows that
A :=P'BP 4 B, that is A; is a GOE matrix. Also A; is independent of u and a. Thus,

C e 1 0 a o Lo | a rej
o 0 P u B 0 P B riep A1

where A; ~ GOE,_j,a~N(0,1) and r; = ||u|| are all independent. Since C is an orthogonal conjuga-

tion of A, the eigenvalues of A and C are exactly the same. Observe thatC;; =C; j=0for2 < j<n.
Note that r? = |Ju||? has x2_, distribution.
Now A; is a GOE matrix of one less order. We can play the same game with A; and get a matrix

D which is conjugate to A; but has Dy ; = D;; =0 for 2 < j <n— 1. Combining with the previous
one, we get

a 1 0

Cz = r a’ rze’l
0 me D

with the following properties. C, is conjugate to A and hence has the same eigenvalues. D ~
GOE,_», a,a’ ~N(0,2), 1} ~%2_,, 5 ~ x2_,, and all these are independent.

IThe eigenspace for a given eigenvalue is well-defined. This is the source of non-uniqueness. The set S of Hermitian
matrices having distinct eigenvalues is a dense open set in the space of all Hermitian matrices. Therefore, almost surely,
a GUE matrix has no eigenvalues of multiplicity more than one (explain why). However, even when the eigenspace is
one dimensional, we can multiply the eigenvector by ¢ for some 8 € R and that leads to non-uniqueness. To fix this, let
D(n) be the group of n x n diagonal unitary matrices and consider the quotient space Q = U(n)/?D(n) consisting of right
cosets. Then, the mapping X — ([V],D) is one to one and onto on S. Now observe that for any U, ([UV],D) 4 ([V],D)
and hence [V] and D are independent.
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It is clear that this procedure can be continued and we end up with a tridiagonal matrix that is
orthogonally conjugate to A and such that

ap by 0 0 . 0
b] ay b2 0 ce 0
0 by a3 b3 . 0
0 ... 0 bys any bp
L 0 . 0 0 bn_1 ay

where a; ~ N(0,2), b7 ~ x> _,, and all these are independent.

Exercise 48. If A is an n x n GUE matrix, show that A is conjugate to a tridiagonal matrix 7' as in
([20) where ay, by are all independent, a; ~ N(0,1) and b7 ~ Gamma(n —k, 1).

p1l
2:2
Gamma(%). Thus, we arrive at the following theoremﬁ

Recall that y3 is the same as Gamma(4, }) or equivalently, the distribution of 2Y where ¥ ~

Theorem 49. Let T be a tridiagonal matrix as in where ay, by are all independent.

(1) If ax ~ N(0,2) and b} ~x2_,, then the vector of eigenvalues of T has the same distribution as the
vector of eigenvalues of a GOE, matrix.

(2) If ax ~ N(0,2) and b} ~ X%(n— ) then the vector of eigenvalues of T has the same distribution as
the eigenvalues of a GUE,, matrix scaled by a factor of /2.

2. Tridiagonal matrices and probability measures on the line

Our objective is to find eigenvalue density for certain random matrices, and hence we must
find n — 1 auxiliary parameters in addition to the n eigenvalues (since there are 2n — 1 parameters
in the tridiagonal matrix) to carry out the Jacobian computation. The short answer is that if UDU*
is the spectral decomposition of the tridiagonal matrix, then p; = |U;, j|2, 1 < j<n—1 are the right
parameters to choose. However, there are many conceptual reasons behind this choice and we
shall spend the rest of this section on these concepts.

Fix n > 1 and write T = T (a,b) for the real symmetric n x n tridiagonal matrix with diagonal
entries Ty y = ai for | <k <mand Ty j41 = Trp1x =br for 1 <k <n—1.

Let 7, be the space of all n x n real symmetric tridiagonal matrices and let 7,0 be those T'(a,b) in
7, with n distinct eigenvalues. Let 7, be the space of all probability measures on R whose support
consists of at most n distinct points and let 2? be those elements of B, whose support has exactly
n distinct points.

Tridiagonal matrix to probability measure: Recall that the spectral measure of a Hermitian op-
erator 7 at a vector v is the unique measure v on R such that (T?v,v) = [xPv(dx) for all p > 0.

’The idea of tridiagonalizing the GOE and GUE matrices was originally due to Hale Trotter ?. Part of his original
motivation was to give a simple proof of the semicircle law for GOE and GUE matrices.
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For example, if T is a real symmetric matrix, write its spectral decomposition as 7 = Y ;_; lyuiu;.
Then {u;} is an ONB of R" and A are real. In this case, the spectral decomposition of T at any
vER"isjust v=Y¢_ [(v,u)|?8,. Thus v € B, (observe that the support may have less than n
points as eigenvalues may coincide). In particular, the spectral measure of 7 ate; is ) p jskj where
p;j = Uy j|* (here U, j is the first co-ordinate of u;).

Given a real symmetric tridiagonal matrix T, let vr be the spectral measure of T' at the standard
unit vector e;. This gives a mapping from Z, into B, which maps 7 into P.

Probability measure to Tridiagonal matrix: Now suppose a measure u € P is given. Write u =
P19y, + ...+ pudy, where A; are distinct real numbers and p; > 0. Its moments are given by o =
ZpJ-?L’J‘-. Let /i (x) = x*, so that {ho,hi,...,h,_1} is a basis for L?(u) (how do you express h, as a linear
combination of hg,...,h, 1?).

Apply Gram-Schmidt to the sequence kg, i1, ... by setting ¢ = yo = ho, and for k > 1 inductively

by
k—1

We=hi— Y (0,0, O Y

= il

This process is stopped when ||y || = 0. Here are some elementary observations.

(a) Since {hy,...,h,_1} is a linear basis for L?(u), it follows that {0p,...,d, 1} are well-defined and
form an ONB for L?(u).

(b) For 0 <k <n—1, ¢ is a polynomial of degree k and is orthogonal to all polynomials of degree
less than .

(c) As hy, is a linear combination of hy, . ..,h, 1 (in L*(u)), we see that y, is well-defined but ||y, || =
0 and hence ¢, is not defined. Note that ||y, || = 0 means that y,(A«) = 0 for all X < n, not that
y, is the zero polynomial. In fact, y, is monic, has degree n and vanishes at Ay, kK < n, which
implies that y,(A) = [Tj_; (A —2;).
Fix 0 <k <n—1 and expand x¢x(x) as

) L T 0,00, ey = [0, (du(e).
=0

Now, x¢;(x) has degree less than k if j < k and x¢y(x) has degree less than j if k < j. Hence, ¢z ; =0
if j <k—2orif j > k+2. Further, ¢ k11 = cit14 as both are equal to [ x¢(x)dr+1(x)du(x). Thus, we
get the three term recurrences

@) x0ux) L b0 () + ax0u(x) + e (v),  0<k<n

where @ = / ()2 du(x), by = / 20 ()0 1 (X)),

We adopt the convention that ¢_1, ¢,, b—; and b,_; are all zero, so that these recurrences also hold
for k = 0 and k = n. Since ¢, all have positive leading co-efficients, it is not hard to see that by is
nonnegative.

From u € B we have thus constructed a tridiagonal matrix 7, := T'(a,b) € T, (caution: here we
have indexed ay, by starting from k = 0). If u € 2% for some m < n, the T, constructed as before will
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have size m x m. Extend this by padding n —m columns and rows of zeros to get a real symmetric
tridiagonal matrix (we abuse notation and denote it as 7, again) in 7,. Thus we get a mapping
u— T, from B, into 7,.

The following lemma shows that T — vr is a bijection, and relates objects defined on one side
(matrix entries, characteristic polynomials, eigenvalues) to objects defined on the other side (the
support {A;}, the weights p;, associated orthogonal polnomials).

Lemma 50. Fixn > 1.

(a) The mapping T — Vr is a bijection from ‘T into P whose inverse is u — T,.

(b) Let T =T(a,b) and let u=vy. For 0 <k <n—1 P be the characteristic polynomial of the top k x k
principal submatrix of T and let i, O be as constructed earlier. Then \y; = Py for k < n and hence there
exist constants dy such that ¢y = diPy (for k <n—1).

(c) The zeros of ¢, are precisely the eigenvalues of T .

(d) IfT =T(a,b) and vy = Y;_, p;Sy,, then

(22) 152 =TT o [T~ P
k=1 k=1

i<j
In particular, T, gets mapped into PY (but not onto).

PROOF. (a) Letu=Y_p;®, € ByandletT =T, For0 <k <n-—1,let

W = (P10 (M)s -+ v/ PrOn—1(Me))"-

The three-term recurrences can be written in terms of 7 as Tu; = Ayu;. Thus, uy is an eigen-
vector of T with eigenvalue A. If U is the matrix with columns uy, then the rows of U are or-
thonormal because ¢ are orthogonal polynomials of u. Thus UU* =1 and hence also U*U =1,
that is {u;} is an ONB of R".

Consequently, T = Y}, Myuiuy is the spectral decomposition of 7. In particular,

n n
Tpel = Z |Mk71’27\.£ = Zpkkf
k=1 k=1

because u;1 = /pido(M) = \/Pk (as ho = 1 is already of unit norm in L?(u) and hence after
Gram-Schmidt ¢ = hg). Thus, (T?e;,e;) = [ xPu(dx) which shows that vr = u. This proves the
first part of the lemma.

(b) We saw earlier that ¢, is zero in L*(u). Hence ¢,(A;) =0 for 1 < j < n. Thus, ¢, and P, are
non-zero polynomials of degree n both of which vanish at the same n points. Hence, ¢, = d,,P,
for some constant P,.

If S is the top k x k principal submatrix of T, then it is easy to see that the first k orthogonal
polynomials of v are the same as ¢y, ..., 0r (which were obtained as orthogonal polynomials
of vr). This is easy to see from the three-term recurrences. Thus the above fact shows ¢y = di Py
for some constant dj.
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(c) By the first part, v = Y. p;6;, where X; are the eigenvalues of T and p; > 0. The footnote on the
previous page also shows that ¢, vanishes at A;, j < n. Since it has degree n, ¢, has only these
Zeros.

(d) This proof is taken from Forrester’s book. Let 7; denote the bottom (n —k) x (n — k) princi-
pal submatrix of 7. Let Qi be its characteristic polynomial and let k( 1< J <n—kbe its
eigenvalues. In particular, o =T

If T =Y Muguy is the spectral decomposition of 7 and A is not an eigenvalue of T, then
(M—T)"'=Y(A—M) 'wuj. Hence, M\ —T)" = (M —T) 'ej,e;) =%, pj(A—1;) " for A &
{\;}. But we also know that (M —T)"! is equal to det(Al — T;)/det(Al — T) = Q1 (1) /Qo(A) . Let
A approach A to see that

o= lim (A=A =T = fim (A — ) 23 _ an(xk) |
A—Ag A—Ax Q()Ob) H (7\-]( B 7\',)
j=1j#k '

Take product over k to get (the left side is positive, hence absolute values on the right)
(23) Hpk [1%=2)* = [Tl ().
i<j k=1

Let A be any n x n matrix with characteristic polynomial x4 and eigenvalues A;. Let B be an
m x m matrix with characteristic polynomial xp and eigenvalues ;. Then we have the obvious
identity

H’XB |_HH‘”] 7“|_H’XA/J]
i=1 i=1j=
n n—1
Apply to Tp and T; to get [] |Q: (7»,({0))\ =TI \Qo(k,(cl)) |. But by expanding det(Al — T') by the first
k=1 k=1

row, we also have the iden_tity
Qo(A) = (A—a1)Q1 (M) —b1Q2(R).

Therefore Qo (2, Al )= szz( )fork<n—1 Thus H |Q1( )| = b 2 H [0)) ( ) The right

side is of a s1m11ar form to the left side, with matrix 51ze reduced by one. Thus inductively we
get [T;_, |Q1( ) )| =[I}=} b;" % Plugging into (23) we get the statement of the lemma. [

3. Tridiagonal matrix generalities

Fix n > 1 and write T = T'(a,b) for the real symmetric n x n tridiagonal matrix with diagonal
entries Ty x = a for 1 <k <n and Ty j+1 = Tiy14 = bx for 1 <k <n—1. Let Z, be the space of all
n x n real symmetric tridiagonal matrices and let 7," be those T (a,b) in ‘T, with by, strictly positive.
Let P, be the space of all probability measures on R whose support consists of at most n distinct
points and let 2 be those elements of P, whose support has exactly n distinct points.
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Given a real symmetric tridiagonal matrix 7', let vr be the spectral measure of T at the standard
unit vector e IH This gives a mapping from 7, into #,. For future purpose, we also give the
following idea to find eigenvalues of T

Fix some A € R and suppose we want to find a vector v such that 7v = Av. This means
Ak — br_1vi—1 — agvk

by '
where we adopt the convention that by = 0. We have also assumed that by # 0 for all k (if b, = 0, the

bk 1Vk—1 + v+ vy 1 = Mg = Vi =

matrix splits into a direct sum of two matrices). Thus, we set v| = x to be arbitrary (non-zero)and
solve for vi,vy,... successively. Denote these as v;(x),v2(x),.... Therefore,

Now suppose a measure u € P is given. We can construct a tridiagonal matrix T as follows.
Write u= p19), + ...+ pn0), where A; are distinct real numbers and p; > 0. The moments are given
by oy =¥ pjAL. Let hy(x) = x*, so that {ho,h1,...,h, 1} is a basis for L*(u). [Q: How do you express
h, as a linear combination of hy, ..., A, 1?].

Apply Gram-Schmidt to the sequence hg, A1, ... to get an orthonormal basis {¢x : 0 <k <n—1}
of L?(u). Tt is easy to see that ¢y is a polynomial of degree exactly k, and is orthogonal to all
polynomials of degree less than k. Fix any k and write

() LY a0, en = [ xu0, ).
=0

Now, x¢;(x) has degree less than k if j < k and x{y(x) has degree less than j if k < j. Hence, ¢; j =0
if j <k—2orif j > k+2. Further, ¢ k11 = cit14 as both are equal to [ x(x)dr+1(x)du(x). Thus, we
get the three term recurrences

(24) Xk (x) 2 br—10k—1(x) + axdx (x) + brrr1(x), 0<k<n

where ax = /xd)k(x)zd,u(x), by = /x(])k(x)(bk“(x)dy(x).

We adopt the convention that ¢_, ¢,, b—; and b, are all zero, so that these recurrences also hold
fork=0and k =n.

From p € B we have thus constructed a tridiagonal matrix 7, := T'(a,b) € 7, (caution: here we
have indexed ay, by starting from k = 0). If u € ) for some m < n, the T, constructed as before will
have size m x m. Extend this by padding n —m columns and rows of zeros to get a real symmetric
tridiagonal matrix (we abuse notation and denote it as 7, again) in Z,. Thus we get a mapping
u — T, from B, into 7,.

Lemma 51. Fixn > 1.

(a) The mapping T — vt is a bijection from ‘I, into ‘B, whose inverse is u — T,,.

3The spectral measure of a Hermitian operator T at a vector v is the unique measure v on R such that (T”v,v) =
JxPv(dx) for all p > 0. For example, if T is a real symmetric matrix, write its spectral decomposition as T = Y}, Ayuiu;.
Then {u;} is an ONB of R" and A4 are real. In this case, the spectral decomposition of T at any v € R" is just v =
Y7 [(v,u)[?8y,. Thus v € B, (observe that the support may have less than n points as eigenvalues may coincide). In

particular, if T = UDU* the spectral measure of T at e is vr = ¥ p;5),, where p; = |U1,,'|2.
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(b) Let u=vr. Write Py for the characteristic polynomial of the top k x k submatrix of T for k < n and let ¢y
be the orthogonal polynomials for u as defined earlier. Then ¢, = diPx for for constants dy. In particular,
zeros of O, are precisely the eigenvalues of T.

(c) If T =T(a,b) and u=Y}_, p;S, correspond to each other in this bijection, then

(25) 1524 = [T [T P
k=1 k=1

i<j
In particular, T,° gets mapped into B (but not onto).

PROOF. (a) Letu=Y_p;®, € ByandletT =T, For0 <k <n-—1,let

we = (vP10o(Ae), - -5 v/Pan—1 (M)

The three-term recurrences can be written in terms of 7 as Tu; = Ayu;. Thus, uy is an eigen-
vector of T with eigenvalue 2. If U is the matrix with columns uy, then the rows of U are or-
thonormal because ¢ are orthogonal polynomials of u. Thus UU* =1 and hence also U*U =1,
that is {uy} is an ONB of R".

Consequently, T = Y}, Myuiuy is the spectral decomposition of 7. In particular,

n n
T”el = Z |uk71]27\.£ = Zpk%.;:
k=1 k=1

because w1 = \/Prdo(M) = /Pk (ho = 1 is already of unit norm in L?(u) and hence after Gram-
Schmidt ¢y = hg). Thus, (T”e;,e;) = [xu(dx) which shows that v; = u. This proves the first
part of the lemma.

(b) By part (a), the coefficients in the three term recurrence are precisely the entries of 7. Note
that the equality in is in L%(u), which means the same as saying that equality holds for
x=M, 1<k <n.

Here is a way to find

T

(c) Let A be any n x n matrix with characteristic polynomial x4 and eigenvalues A;. Let B be an
m x m matrix with characteristic polynomial x5 and eigenvalues u;. Then we have the obvious
identity

HXBOW) = HH(Hj —A) = (=1)™ HXA(.UJ)
i=1 i=1 j=1 j=1
If by are all positive, the right hand side of (??) is non-zero and hence A, must be distinct.
This shows that Z,° gets mapped into €. It is obviously not onto (why?). [

Lemma 52. For T = T(a,b) having the spectral measure Z’/’i} piﬁxj at ey, we have the identity

ok T
[1o: ZgPi [T =2y

k=0 i<j<n+l
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4. More on tridiagonal operators*

This section may be omitted as we shall not use the contents in this course. However, as we
are this close to a very rich part of classical analysis, we state a few interesting facts. The following
four objects are shown to be intimately connected.

(1) Positive measures u € P(R) having all moments.

(2) Positive definite sequences o = (0 )i>o such that (o ); j>0 is non-negative definite (that
is every principal submatrix has non-negative determinant).

(3) Orthogonal polynomials. Given an inner product on the vector space of all polynomials,
one can obtain an orthonormal basis {¢x } by applying Gram-Schmidt process to the basis
{hi }i>0 where Iy (x) = x*. The sequence {¢;} (which may be finite) is called an orthogonal
polynomial sequence.

(4) Real symmetric tridiagonal matrices. We now consider semi-infinite matrices, that is
Tix = ar, Ti k41 = Tiw14 = by, for k > 0. Finite matrices are a subset of these, by padding
them with zeros at the end.

Measure to Positive definite sequences: If 1 is a measure that has all moments, define the moment
sequence 0 = [ x*du(x). Then for any for any m > 1 and any u € R”"*!, we have

L 12
u’ (ai+j)0§i,j§mu: Z Oy jUiUj :/ Zu,-x‘ ‘ ,u(dx) > 0.
i=0

i,j<m
Hence a is a positive definite sequence. It is easy to see that u is finitely supported if and only

L?(u) is finite dimnesional if and only if (0 ;) i.j>0 has finite rank.
Positive definite sequence to orthogonal polynomials: Let o be a positive definite sequence For
simplicity we assume that (1), ;- is strictly positive definite. Then the formulas (h;,h;) = i+
define a valid inner product on the vector space ? of all polynomials. Complete  under this inner
product to get a Hilbert space H.

In H, hy are linearly independent and their span (which is ) is dense. Hence, applying Gram-
Schmidt procedure to the sequence hy, Ay, ... give a sequence of polynomials ¢¢, ¢2, ... which form
an orthonormal basis for H. Clearly ¢, has degree k.

Orthogonal polynomials to tridiagonal matrices: Let ¢; be an infinite sequence of polynomials
such that ¢, has degree exactly k. Then it is clear that ¢, are linearly independent, that 4 is a linear
combination of ¢y, ..., {x.

Consider an inner product on ©? such that (¢x,d¢) = & ¢. The same reasoning as before gives

the three term recurrences for ¢x. Thus we get ax € R and b > 0, k > 0. Form the infinite real
symmetric tridiagonal matrix 7 = T'(a,b).
Symmetric tridiagonal operators to measures: Let T be a semi-infinite real symmetric tridiagonal
matrix. Let e, be the co-ordinate vectors in ¢>(N). Let D = {Y xe; : x; # O finitely often}. This is
a dense subspace of (*(N). T is clearly well-defined and linear on D. It is symmetric in the sense
that (Tu,v) = (u,Tv) for all u,v € D and the inner product is in /*(N).
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Suppose T’ is a self-adjoing extension of 7. That is, there is a subspace D’ containing D and a
linear operator T’ : D — R such that 7’|p = T and such that 7" is self-adjoint (we are talking about
unbounded operators on Hilbert spaces, hence self-adjointness and symmetry are two distinct
things, and this is not the place to go into the definitions. Consult for example, chapter 13 of
Rudin’s Functional Analysis). Then it is a fact that 7" has a spectral decomposition. The spectral
measure of 7’ at ey is a measure. In general there can be more than one extension. If the extension
is unique, then u is uniquely defined.

This cycle of connections is quite deep. For example, if we start with any positive definite
sequence oy and go through this cycle, we get an OP sequence and a tridiagonal symmetric oper-
ator. The spectral measure of any self-adjoint extension of this operator has the moment sequence
o. Further, there is a unique measure with moments o if and only if T has a unique self-adjoint

extension!

Remark 53. In the above discussion we assumed that a is a strictly positive definite sequence,
which is the same as saying that the measure does not have finite support or that the orthogonal
polynomial sequence is finite or that the tridigonal matrix is essentially finite. If we start with
a finitely supported measure, we can still go through this cycle, except that the Gram-Schmidt
process stops at some finite n etc.

5. Exact distribution of eigenvalues of the tridiagonal matrix

We wish to find the joint density of eigenavalues of certain random tridiagonal matrices. For
this, we have to arrange the eigenvalues as a vector in R", and write the density with respect to
Lebesgue measure on R". There are two common ways to arrange eigenvalues as a vector. Firstly,
in descending order to get a vector Al = (Ay,...,A,) with A; > 2, > ... > A,. Secondly, we can place
them in exchangeable random order. This means that we pick a permutation © € §, uniformly at
random (and independently of the our random matrix), and set Aex = (Ax(1),-- -, An(n)). Of course,
if f is the density of Al and g is the density of Aex, we can recover one from the other by the
relationship

f(ll],. "7”)’[) == n!g(ula' . 7un)1u1<...<u,,

and the fact that g is symmetric in its arguments. We shall usually express the eigenvalues in
exchangeable random order without explicitly saying so, but this is just a convention.
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Theorem 54. Let T = T(a,b) be the n x n random, real symmetric matrix, with a; ~ N(0,1), b} ~ x%(n_k)
and all these are independent. Then, the eigenvalues of T have joint densit],ﬁ

{—ZM} ITIn—20P

i<j

B

where the normalization constant may be explicitly found as

Corollary 55. The joint density of eigenvalues of the GOE matrix is

{ Zkk}HM Ajl.

<J

n,1
The joint density of eigenvalues of the GOE matrix is

1

=—exp{ —= Z?uz H|7u Y
Z i<j
where Zyr = 2, 227712,
PROOF OF THE COROLLARY. By Theorem 9] it follows that the eigenvalues of a GOE matrix

have the same distribution as the eigenvalues of the tridiagonal matrix in Theorem 54| with f = 1.

This gives the first statement. The second is similar, except that there is a scaling by v/2 involved
in Theorem (49 |

PROOF OF THEOREM 54l The joint density of (a,b) on R” x R ! is

e
noe—1% N 3 Ab
fla,b) =
kl;ll 2ym kH2%" D-I0(B(n—k)/2)
1 1 " Bk -1
(26) = exp{—tr T2 } b
ZB,n 4 ( ) kI;II k

where the normalizing constant

n—1
Z[57 _n221+4nn 1) Hr(ﬁ]/z)
j=1

4The corollary here was proved by by Wigner (or Dyson? before 1960 anyway) and it was noticed that the density
could be generalized for any > 0. Whether the general f-density could be realized as that of eigenvalues of a random
matrix was in the air. The idea that this could be done by considering these random tridiagonal matrix with indepen-
dent entries, is due to Dumitriu and Edelman. This development has had far-reaching consequences in the study of
random matrices. In short, the reason is that the B-density given here is complicated to analyze, although explicit, and

the tridiagonal matrix itself can be used in the analysis, as it has independent entries.
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Now, let v be the spectral measure of T at the vector e; (this corresponds to ey of the previous
section). Thenv=}"_,p jﬁxj. According to the previous section, A; are the eigenvalues of 7' while
p; = |Uy j|* are elements of the first row of the eigenvector matrix.

Observe that almost surely none of the &;s is zero, and hence by part (c) of Lemma the
eigenvalues of T are distinct. By part (a) of the same lemma, Z is in bijection with ?? and hence
we may parameterize the matrices by A, k <n and py, k <n—1. We shall also write p, in many
formulas, but it will always be understood tobe 1 — p; —... — p,_1. If we write (a,b) = G(A, p), then
by the change of variable formula we get the density of (A, p) to be

g(h,p) = f(G(A,p))|det(Jg(A,p)) | (Jg is the Jacobian of G)

1 2 B(n—k)—

(27) = Z&exp{—Zl } Hb |det (Je(A\,p)) ]|

It remains to find the Jacobian determinant of G and express the product term in terms of A
and py. For this we use the definition of spectral measure (T*e;,e;) = ZN]‘. pjfork=1,...2n—1.
We get

Y piki=Ti=a Y pihi= (T =bi+1.]
Y Pk} = (T)11 = axbi+[.. ] Y pjki = (T 11 =bsbi+].. ]
Y Pk = (T7)11 = asbabi +...] Y pjA = (T%)11 = b3b3bt + ...

Here the [...] include many terms, but all the a, b, that appear there have appeared in previous

equations. For example, (T?); 1 = b] +a} and as a; appeared in the first equation, we have brushed
it under .. .].

Let U = (uy,...,usn—1) where u; = (T7); ;. The right hand sides of the above equations express
U as F(a,b) whlle the left hand sides as U = H(A, p). We find the Jacobian determinants of F and
H as follows.
Jacobian of F: Note that uy is a function of g;,i <k and b;, j < k while us;_; is a function of a;,i <k
and b;, j < k— 1. Thus, Jr(a,b) is an upper triangular matrix and we see that

n—1
(28) det(Jr(a,b)) = 2" T 5"
k=1

Jacobian of H: The equations above give the Jacobian of H (recall that p, =1 — Z;f;} Pj)

p1 D M—Ay, M1 — Ay
2p1A 2pnn A2 U v v
Ju(h,p) = pf 1 : p: 1 : : "
2n—1)p A2 . 2n—1)p, A2 At oAzt 2]
th

To find its determinant, first factor out p; from the i*"* column, for i <n — 1. The resulting matrix
is of the same form (as if p; = 1 for all i) and its determinant is clearly a polynomial in A, ..., A,.
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It must also symmetric in Axs, because the original problem we started with was symmetric in Axs
(can you infer symmetry directly from the above matrix?).

If h:=X —A, — 0, then C,11 = O(h), C, —C, = O(h). Further, it is easy to check that C,;| —
h(Cy +C>)/2 = O(h?). Thus for fixed Ay, k > 2, the polynomial in A; has (at least) a four fold zero
at A,. By symmetry, the determinant has a factor A(A)*. However, the determinant above and
A(M)* =TTi<j(A; — Aj)* are both polynomials of degree 4(n — 1). Further, the coefficient of A4 in
both is the same. Therefore we get

n

(29) det (Jy(a,b)) = £[AN) |*T ] pi-
i=1

From (28) and (29) we deduce that
ITpi TT 1A =20

i=1 i<j

|det(Jo(h,p))] = &

on—1 nﬁl bi("*k)*l .
k=1

Substitute this in to get
n

4
1 1 & n—1 ne
gh,q) = MGXP{—A‘ZX%} HpiHW—M4 (Hbl(c k)>
B.n k=1

i=1  i<j k=1

-1

1 1}’1 n
= ———exps — Y A pi A AP
sz (i) e

by part (c) of Lemma
This gives the joint density of A and p and we see that the two are independent. It remains to

[Slyes)

integrate out the p variables. But that is just a Dirichlet integral

—1

1 l-pi =L p \ n
// / (Hm) dPnfl---dmZDiriChlet(B/L...,ﬁ/z):F(B/Z)‘
0 0 0 i=1

[Sliey]

I(Br/2)
This completes the proof of the theorem. |

6. Beta ensembles*

Consider n particles (A1,...,A,) with density

1 1 n
=3 exp{—42x%} [T
k=1

B,n i<j

for B > 0. As we saw, this is the density of eigenvalues of random tridiagonal matrix 7. What can

we do with this density? Here are some features.

(1) Repulsion of eigenvalues: The density is g(A) = exp{— X,V (M) }AX)|P with V (x) = x*/4 and
where A(L) is the Vandermonde factor. Without the Vandermonde factor (i.e., p = 0), this
is the density of n i.i.d variables with density exp{—V (x)}. But A(A) vanishes whenever
Ai —A; =0 for some i # j. This means that the eigenvalues tend to keep away from each
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other. Further, the vanishing of |; — A;|P increases with B which means that the repulsion
increases with . As B — oo, the density concentrates at a particular configuration, or “the
particles freeze at the lowest energy configuration”.

(2) Gibbs interpretation of the density: For convenience, scale the eigenvalues down by +/B.
Continue to denote the variables by A;. The resulting density is f3(A) = gg( (A/B) =exp{—BH, pM)}
where

1 n
ZZKk—fZlog\k —Ajl.
k=1 i#j

H, () is called the energy of the configuration A. According to Boltzmann, all systems in
Statistical mechanics have this structure - the density is exp{ —energy} where the energy
(or Hamiltonian) varies from system to system and in fact characterizes the system.

In the case at hand, the energy has two terms. The function V is interpreted as a po-
tential, a particle sitting at a location x will have potential energy V(x). Further, there
is pairwise interaction - if a particle is at location x and another at y, then they have an
interaction potential of —log|x — y|. This just means that they repel each other with force
(which is the gradient of the interaction energy) 1/|x —y| (repulsion rather than attraction,
because of the negative sign on log |x — y|). This is precisely Coulomb’s law, suitably mod-
ified because we are not in three dimensions. More physically, if one imagines infinite
sheets of uniformly charged plates placed perpendicular to the x-axis, and a potential
V(x) is applied, then they repel each other by a force that is inverse of the distance.

Thus, they prefer to locate themselves at points xi,...,x, that minimizes the energy
H,(x). However, if there is a positive temperature 1/B, then they don’t quite stabilize at
the minimum, but have a probability to be at other locations, but with the density that
decreases exponential with the energy. Thus the density is given exactly by the density
gp(A)! This is called a one-component plasma on the line.

(3) Note that we ignored the normalization constants in the previous discussion. Many
probability distributions that arise in probability are described by giving their density as
Zg "exp{—BH(x)} where H(-) is specified. The trouble is analyzing the system to make
useful statements about a typical configuration sampled from this measure. As Zg =
Jexp{—BH (x) }dx, we see that Z is like a Laplace trnaform of the function H(x). Thus,
if we can compute Z (for all ), one can deduce many things about the distribution. For
example, the expected energy of a random sample from the given density is

Z /H Yexp{—PBH (x)}dx = Zlaa[i aa[s logZg.
This is the reason why physicists lay great stress on finding the normalization constant
Zg, which they term the partition function. Generally speaking, computing Zg is fairly
impossible. The system that we have, the one with energy function H,, is exceptional in
that the partition function can be found explicitly, as we did in the previous section!
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(4) The computation of the normalization constant from the previous section proves the fol-
lowing highly non-trivial integration formula (try proving it!)

n—1

| RIS IRIED
(30) /exp{ in} TTI% = %P ..dh, = miomrant=D =
i 43 i<j F(%)

This can be derived from a similar but more general integral of Selberg, who computed
S(py) = [ 18P (1)
i=1
0.1

where A(x) = [];<; |xi —x;| and «, B,y are complex parameters satisfying some inequalities
so that the integral convergeﬂ

But this does not cover the main questions one would like to answer when an explicit density
g(A1,...,7,) is at hand. Observe that the labeling here is introduced for convenience, and what
we care about is the empirical measure L, =n~'Y}_, 8,,. If A has density gg(A), what is E[L,[a,b]]
for any a < b? What about the variance Var(L,[a,b])? What is the typical spacing between one
eigenvalue and the next? What is the chance that there in no eigenvalue in a given interval? Does
L, (perhaps after rescaling A;) converge to a fixed measure (perhaps the semicircle law) as n — oo?

The last question can actually be answered from the joint density, but the other questions are
more “local”. For example, if I = [a,b], then by the exchangeability of Axs

E[L,LB(I)]:nP(MEI):n/ ({R/ gt M) Dy | dy
I n—1

which involves integrating out some of the variables. Can we do this explicitly? It is not clear at
all from the density gg. In fact, there is no known method to do this, except for special values of
B, especially B = 1,2,4. Of these p = 2 is particularly nice, and we shall concentrate on this case in
the next few sections.

7. The special case of B =2
Consider the GUE ensemble density

n
s =exp {—i y x%} [T~
k=1 i<j
where Z, is the normalizing constant. More generally, let u be a Borel probability measure on R
and consider the density f on R" proportional to |A(x)|> with respect to the measure u®". All of
what we say in this section will apply to this more general densityﬁ This is symmetricin Ay, ..., A,.

The following lemma shows that it is possible to explicitly integrate out a subset of variables and

SMore on the Selberg integral, its proofs and its consequences may be found in the book of Mehta or of Andrews,
Askey and Roy.

®These are special cases of what are known as determinantal point processes.
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get marginal densities of any subset of the co-ordinates. As we discussed earlier, this is crucial to
computing local properties of the system of particles defined by the density f.
Observation: Let pg, pi, ..., p,—1 be monic polynomials such that p; has degree k. Then,

1 x x% x’f_l po(x1) pi(x1) pa(x1)... pa—1(x1)

1 x, x5 ... X! po(x2) pi1(x2) pa(x2)... pu_1(x2
s R | ] ) pi) pae) et

1 x, xﬁ ... xﬁ_l po(xn) p1(xn) P2(xn)... pu—1(xy)

as can be seen by a sequence of column operations. If ¢ is any polynomial with degree k and hav-
ing leading coefficient c;, then we get A(x) = C,det(A) where a; ; = ¢;(x;) with the index i running
from 0 to n — 1 and the index j from 1 to n. The constant C,, = (coc; ...c,—1)~!. Thus,

A(X)]> = Crdet (A A") = C, det (Ku(xi,x))); <
where K,(x,y) = Z;f;é ¢;(x)0j(y). It turns out that choosing ¢; to be the orthogonal polynomials

with respect to u enables us to integrate out any subset of variables explicitly!

Lemma 56. Let (A, 4,u) be a measure space. Let ¢y, 1 < k < n, be an orthonormal set in L*(u) and define

K(x,y) = X4y 0x(x)(y). Define f : A" — R by
flx)= (n!)_ldet(K(xi,xj))ingn.

(1) For any m < nand any A, k < m— 1, we have

/det (Aisj)); jemtt(dhm) = (n—m+1)det (K(Ai, ), icpy s -
(2) f is a probability density on A" with respect to u®". Further, if (\,...,\,) is a random vector in

R" with density f, then A; are exchangeable, and for any m < n, the density of (A1,...,A,) with

respect to u®™ is given by

—k)!
Al ) = . " det(K(hiA)); 1o
Corollary 57. Let u € P(R) have finite moments up to order 2n —2 and let ¢o,...,0,—1 be the first
n orthogonal polynomials normalized so that [ O0.du = 8. Then, the density f(x) = Z, '|A(x)|* on
where K, (x,y) =

R" with respect to a measure u®" can be rewritten as f(x) = (n!)~!det (Kn(is X)), i<p

Z;f;é 0;(x)0;(y). Further, the marginal density of any k co-ordinates is given by (";!k)! det(K(A;,Aj))

ij<k’
The corollary trivially follows from the lemma and the observations made before the theorem.

We now prove the lemma.

PROOF. (1) We need two properties of the kernel K. Both follow from orthonormality of

s
(a) The reproducing kernel property: [ K(x,y)K(y,z)u(dy) = K(x,z).
(b) [K(x,x)u(dx) = n.
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By expanding the determinant

/ det (K (i, A), ;o =

sgn /ﬁK Aiy Agiy)

TESH R1:1

Fix ©. There are two cases.
Case 1: m(m) = m. then by property (b), the term becomes

m—1 m—1

TT K2 / K Qo ) = 1 [T K (i Aey)-
i=1 i=1

where 6 € §,,_; is defined by (i) = n(i). Observe that sgn(c) = sgn(m).
Case 2: Fix n(m) # m. Let p =n~"'(m) and q = nt(m) (thus p,q < m). By property (a) above,

/HK(X,-,M(i))dkm = [T K /pr,x K (Ao Ao
R i=1

i#pm
= [I1KR o)
i#m
where 6(i) = n(i) for i # p and 6(p) = ¢g. Then 6 € §,,—; and sgn(c) = —sgn(m).
Now consider any ¢ € §,,—;. It arises from one permutation 7 in Case 1, and from
m— 1 distinct 7 in Case 2. As the sgn(c) has opposing signs in the two cases, putting them

together, we see that f det(K(Ai,Aj). .., dhy is equal to

i,j<n

(n—(m-1) Y HKkl,k (n—m+1)det (K(Ai,Aj); oy -

CES,—1 I=

(2) Letm <nandlet fi,(x1,...,%0) = [pnm f(X1, -, %0 )du(Xms1) - . . du(xy,). Inductively applying
the integration formula in part (2), we get

T, ) = C (n— m) 1 det (K (i, X))

iL,j<m:

In particular, if we integrate out all variables, we get C, 'nl. Thus, we must have C, = n!
for f to be a probability density (the positivity of f is clear because (K (x;,x;)) isn.n.d,
being of the form AA’).

Plugging the value of C, back into the expression for f,, shows that

ij<n

(n—m)!

F(htsv ) = S det (K (i ) ey

These integration formulas are what make B = 2 special. None of this would work if we con-

sidered density proportional to |A(x)|P with respect to u®". As a corollary of these integration
formulas, we can calculate the mean and variance of the number of points that fall in a given
subset.

Proposition 58. In the setting of Lemma |56} let N(-) = Y.;_, &, be the unnormalized empirical measure.
Let I C A be a measurable subset. Then,
(i) E [(N(z))m J = [ det (K (x,x)), ;. du(x) where (k) = k(k—1)... (k—m+1).
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(i) EN(I)] = [, K(x,x)du(x) and Var(N(I)) = [ |K(x,y) 20,

(iii) Let Ty be the integral operator on L*(I,u) with the kernel K. That is Trf(x) = [,K(x,y)f(y)du(y)
for x € I. Let 61,6,,.. be the non-zero eigenvalues of T. Then ©; € (0,1] and if &; ~ Ber(0;) are
independent, then N(I) = él +&+..

PROOF. (i) Write N(I) = ¥;_; 1),/ Use the exchangeability of A; to write

E[(ND)y | =E| L Ty clager Ty, er| = (PR 1,1 <i <.
dlst‘mct

Using the density of (A1,...,A,) given in Lemma[56| we get

E (V)] =

(ii) Apply the formula in part (i) with m = 1 to get E[N(/)] = [, K(x,x)du(x). Expressing the vari-
ance of N(I) in terms of E[N(I)] and E[N(I)(N(I) — 1)] one arrives at

Var(N /Kxxd/,l //|ny|2dy )du(y).

- det (K (xi,X7)); i< du(x).-

Write the first integral as [, [, |[K(x,y)|?du(y) by the reproducing property of K. Subtracting
the second term give [, [, |[K(x,y)|*du(x)du(y).
(iii) With1=A, wehave Ty f =Y }_, (f,0)¢«. Thus, T is a projection operator with rank n. Clearly,
0 < T; < Ty from which it follows that 8; € [0, 1] and at most n of them are nonzero. If y; are
the corresponding eigenfunctions, then it is easy to see that K(x,y) = Y; 0;y: (x)W;(y).
|

Remark 59. In random matrix theory, one often encounters the following situation. Let u € P(C)
such that [ |z]*"2u(dz) < s. On C" define the density f(x) o |A(x)|*> with respect u*". Then we can
again orthogonalize 1,z,...,2" ! with respect to u to get ¢y, 0 < k <n—1 and the kernel K(z,w) =
Z;f;é 0;(z)¢;(w). The density can be rewritten as f(x) = (n))~'det(K (xi,xj))w. <~ This is of course
a special case of the more general situation outlined in Lemma 56, except that one needs to keep
track of conjugates everywhere when taking inner products.

8. Determinantal point processes

Consider the density f,, of (A,...,A,) as described in Lemma 56| Let us informally refer to it
as the chance that A; falls at location x; for 1 <i < m. Then the chance that L, := Y}_, §,, puts a
point at each x;, i <m, is precisely (n),,| fin(x1,...,Xn) = det (K(x;,x;)).

For any random variable L taking values in the space of locally finite counting measures (eg.,

L,), one can consider this chance (informally speaking), called the mth

joint intensity of L. If for
every m, the joint intensities are given by det(K(x;,x;)) for some K(x,y), then we say that L is a
determinantal point process. A determinantal point process may have infinitely many points.
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If a point process which has a fixed finite total number of points, then we can randomly ar-
range it as a vector and talk in terms of densities. But when we have infinitely many points, we
cannot do this and instead talk in terms of joint intensities. Like densities, joint intensities may
or may not exist. But if they do exist, they are very convenient to work with. In random matrix
theory we usually get finite determinantal processes, but in the limit we often end up with infi-
nite ones. Therefore, we shall now give precise definitions of point processes, joint intensities and
determinantal processesﬂ

Definition 60. Let A be a locally compact Polish space (i.e., a complete separable metric space) and
let u be a Radon measure on A. A point process L on A is a random integer-valued positive Radon
measure on A. If L almost surely assigns at most measure 1 to singletons, we call it a simple point
process;

Definition 61. If L is a simple point process, its joint intensities w.r.t. u are functions (if any exist)
pr: A¥ — [0,00) for k > 1, such that for any family of mutually disjoint subsets 71, ..., of A,

k
(31) E [HL(I»] = [ pelonexdun) )
j=1

I XX,

In addition, we shall require that py(xi,...,x;) vanish if x; = x; for some i # j.

Definition 62. A point process L on A is said to be a determinantal process with kernel K if it is
simple and its joint intensities with respect to the measure u satisfy

(32) Pr(x, o, xk) :det(K(xiaxj))lgi,jgw
forevery k > 1 and xy,...,x € A.

Exercise 63. When A has density as in Lemma check that the point process L =Y;_, &, is a
determinantal point process with kernel K as per the above definition.

9. One dimensional ensembles

Let V : R — R be a function that increases fast enough at infinity so that [ e PV dx < o for all

B > 0. Then, define the probability measure u,(dx) = e V() /Z, and the let A be distributed accord-

ing to the measure Zn’é |A(x)[PeEi=1V (%) Under some conditions on V, the empirical measure of A

converges to a fixed measure uyg. Then one asks about

We will now concentrate on two particular examples of B = 2 ensembles.

(1) The GUE (scaled by v/2). The density is Z, !|A(A)|[>exp{—X_, A?/4}. To write it in deter-

minant form, we define u as the N(0,2) distribution, that is u(dx) = (2y/T) " 'e™*"/4dx. Let

Hy, k > 0, be the orthogonal polynomials with respect to u obtained by applying Gram-

Schmidt to the monomials 1,x,x%,.... Hy are called Hermite polynomials. The kernel is

’For more detailed discussion on joint intensities, consult chapter 1 of the book ?  available at
http:/ /math.iisc.ernet.in/ manju/GAF_book.pdf. Chapter 4 of the same book has discussion and examples of de-

terminantal point processes.
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K (x,y) = YiZo Hy(x)Hi(y). We have chosen them to be orthonormal, [ Hy(x)H(x)du(x) =
Ok¢. Hermite polynomials are among the most important special functions in mathemat-
ics.

(2) The CUE (circular unitary ensemble). Let u be the uniform measure on S! and on (S')"
define the density f(x) = |A(x)|> with respect to u®". In this case z* = ¢/*" are themselves
orthonormal, but it is a bit more convenient to take ¢ (1) = e {("~1)/2¢i  Then, the kernel
is

—i(n—1)s/2,yi(n—1)r/2 1 — € in(s~1) . sin(nu/2)

¢ ey~ Pnls=t) Dalu)i=—lers

D, is the well-known Dirichlet kernel (caution: what is usually called D, is our Dy, ).
We shall later see that the eigenvalues of a random unitary matrix sampled from the Haar
measure are distributed as CUE.

The GUE and CUE are similar in the local structure of eigenvalues. However, there are edge
phenomena in GUE but none in CUE. However, all calculations are simpler for the CUE as the
kernel is even simpler than the GUE kernel. The difficulty is just that we are less familiar with
Hermite polynomials than with monomials. Once we collect the facts about Hermite functions
the difficulties mostly disappear. The study of the edge is rather difficult, nevertheless.

10. Mean and Variance of linear statistics in CUE

Let A be distributed according to CUE,,. Let & : S — R be a bounded measurable function. Let
N, (h) be the linear statistic Y}, 2#(Ax). Then,

E[N,] = /h K (x,x)du(x —n/h o

Actually this holds for any rotation invariant set of points on the circle. In particular, E[N,(I)] =
11]/2m.

The variance is considerably more interesting. Write the Fourier series of A(t) = Yz are’™
where a; = [;"h(t)e~* & This equality is in L. Then,

dt ds
)2
Var(N, 2// K, (s,1)Ky (1, S)Tnz

—T-T
We write

n—1
(h(t)=h(s)2 = ¥ ad(e® — ) (e —e ™), Ky(t.s)Ka(s,t) = Y P 9Veila P,
kleZ Pig=0
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Hence,

dt d
Var(Nn (h)) - Z aydy zkt z(t lkc ils zkv ilr zkt zé?) i(p—q)t z(q D)s s
2 k€Z p,q=0 412
1 n—1
) Z Z aay {sk%w*qsqu +8p—gSk—t1g—p — Okt p—gO—t4g—p — 54+p7q8k+q,p}
k,l€Z p,q=0
1 n—1
) Z Z aragSi— {Sp—q +08pg—Okipg— 5k+q—p}
kALeZ p,g=0

= *Z|ak|2 Z {2517 q 5k+p q 5k+q P}

keZ p,q=0
= ) lal* (n—(n—|k[)+)-
keZ

Remark 64. The variance can be written as Y.<, k| |h(k)|? + nY |k >n |ax|> where h(k) = a;. The first
sum is the contribution of low frequencies in # while the second gives the contribution of the high
frequencies. For smooth functions, the high frequency Fourier co-efficients will be small and the
first term dominates. For more wild functions, the second sum becomes significant. We shall

consider two cases next.

Case 1: h € H'/? which by definition means that HhHHl/2 := Yrez |k||ax|? < . Observe that if h € C”,
then h(") has the Fourier series ¥y (—ik)2ae ™™ and hence ¥ |k|"|a|> = [|h(")||2,. Thus H'/? can be
roughly called those functions hat have half a derivative. Indeed, one can also write the norm in
a different way as

Exercise 65. Show that ||h[|?, , = f f 2 djn‘é‘.

—T-T

If h € H'/?, we use the inequality n— (n — k), < |k| to see that

Var(, (1)) < 3 X lax Ik = [l
keZ

This means that even as the expectation grows linearly in n, the variance stays bounded! Further,
for each k fixed, n — (n — k) — |k| as n — oo, and hence by DCT Var(N, (h)) — Hh||l%11/2 asn — oo,

Case 2: h is the indicator of an arc I = [a,b]. Then N, (h) = N,(I). We assume that the arc is proper

(neither I or I is either empty or a singleton). The Fourier coefficients are given by a; = [ ¢~ d —

HeW—et) Evidently 4 is not in H'/2,

2nk
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We work out the special case when I = [—n/2,7/2|. Then a; = % which is zero if k is even
(—1)/1 . A
and equal to TE(T)H) if k=2j+1. Thus,

- n—(n—=2j—1)4
Var(N,) = 2 :
ar(V) J;) m2(2j+1)2

2j+1 n
IR TR T
AsY ., j=0(m"), the second term is O(1). The first term is easily seen to be %%long- o(1).
Thus, Var(N,) = ni logn+ O(1). Although it increases to infinity with n, the variance grows re-
markably slower than the mean. Compare with sums of independent random variables where
the mean and variance are both of order n. In the next exercise, take I = [—a, o] without losing
generality and show that the variance is asymptotically the same.

Exercise 66. Let f be a 2n-periodic function on R such that ||f|? := (2n)~! /™, |f|* is finite. Let
f (k) := ffn f (t)e_ik’ %’t denote its Fourier coefficients. Let f;(t) = f(t — 1) be the translates of f for
any T € R.
(1) Use the Plancherel theorem to show that 4 Y, | f(k)|?sin?(kt) = || fc — f_<|*. [Hint: f;(k) =
e (k)]
(2) Let f(t) =t on [, 7] and extended periodically. Show that f(k) = % and hence con-
clude that for t € [0,7]

i sin®(kt)

a0k

(3) Fixte[0,n] and letA, =Y}, smz# and B, =Y}, mz% Show that A, + B, =logn+ O(1)
and B, — A, = O(1) as n — . Conclude that both A, and B, are equal to }logn+ O(1).

(4) Deduce that Var(N,(I)) = # logn+ O(1) as n — oo for any proper arc / (proper means 0 <
1] < 2m).

=1(n—1).

Observe that the constant in front of logn does not depend on the length of the interval. Es-
sentially the entire contribution to the variance comes from a few points falling inside or outside
the interval at the two endpoints. Points which “were supposed to fall” deep in the interior of /
(or deep in I€) have almost no chance of falling outside of / (outside of I¢, respectively) and do not
contribute to the variance. This shows the remarkable rigidity of the CUE.

Proposition 67. In the setting of the previous discussion, for any proper arc I, as n — oo,

Nu(1)—
MiN(O,I).
n—1y/logn

PROOF. Fix an arc I. By part (c) of Lema 56, N,(I) is a sum of independent Bernoulli random
variables. By the Lindeberg Feller CLT for triangular arrays, any sum of independent Bernoullis
converges to N(0,1) after subtracting the mean and dividing by the standard deviation, provided
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the variance of the random variable goes to infinity. As Var(N,(I)) ~ clogn, this applies to our

case. [ |

Next we compute the covariance between N(I) and N(J). We take I and J to be disjoint. Then,
Cov(N(1),N(J)) = — [ J; K (x.y)|*du(x)du(y)-

11. Fredholm determinants and hole probabilities

Let (A, 4, u) be a probability space. Let K : A* — R or Cbe a kernel such that [|K|| := sup, , |[K(x,y)| <
. Let T be the integral operator with kernel K.

Definition 68. The Fredholm determinant of the operator I — T which we shall also call the Fredholm
determinant associated to the kernel K is defined as
—1)"
AK) =Y (W) / det (K (x5,%))); o dit(31) - i),
m=0 Am

Recall the Hadamard inequality for matrices which says that if M is a square matrix with columns
u, k < n, then |det(M)| < T}, ||u;|. Therefore, |det(K(x;,x;)), ;,, | < (IIK||/m)™ for any m and any
X1,...,%u. This shows that A(K) is well-defined for any K with ||K|| < eo.

Remark 69. Let M be an n x n matrix with eigenvalues 6;, j < n. Then, we leave it as an exercise to
show the identity
Z eil Giz .. eim = Z det (Mipviq)p,qgm

1<i|<ip<...<i<m 1< <ip<...<i<m

for any m > 1. For m =1 this is just the identity }.8; = Y;M;,;. For any m > 1, one can think of
the identity as being exactly the same identity, applied to a different matrix. If M acts on a vector
space V, then one can define the operator M"* on the alternating tensor power V/** as (M(e;, A
A e.,-k),e,-l VANVAN e,-k> = det (MiP7j‘1)p,q§k'
Expressing tr(M"¥) in two ways gives the above identity.

This has eigenvalues 6; 0;,...0; where ij <i, < ... <.

Anyhow, from this identity, we get the following expression for det(I — M) =T, (1 - 6;).

n

det(/—M) = JJ(1—-6))

j=1
= 1-Y6;+)Y66,— ) 666+...

i<j i<j<k
Mi; M;; My
1 Mi; M;; 1 ’ 7 7
— 1—2Mi7,~+52det o —gzdet Mji Mjj; Mjx | +-..
; iy Mji M;,; i,k My My; My,
’,l 7] k)

Thus, det(I — M) is exactly what we defined as A(K), provided we take A = [n] and K(i, j) = M ;.
With the usual philosophy of regarding an integral kernel as a matrix (K(x,y)), ,, we arrive at the
definition of the Fredholm determinant. The following exercise is instructive in this respect.
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Exercise 70. Let T be the integral operator with a Hermitian kernel K with ||K|| < eo. Let 6; be the
eigenvalues of 7. Then, for any m > 1, we have

1
Y 00,0, = / det (K (xi,%))), oy dp(x1) ... dpi().

11<ip<...<lp Am
We shall need the following simple lemma latetﬁ

Lemma 71. Let K and L be two kernels on L*(A, 4, u) such that C = max{|| K|, ||L||} < . Then,

> m m)"—1
AGK) - AW < K - L] (2 “Q) .

m=0
PROOF. Fix m > 1 and x1,...,x, € A. Let Xo = (K(xi,x;)) and X,, = (L(x;,x;)) For 1 <
k < m, let X; be the matrix whose first k rows are those of X; and the rest are those of X,,. Then,
det(Xo) — det(X,,) = Yo det(X;—1) — det(Xy). Using Hadamard’s inequality we see that |det(X;—;) —
det(Xy)| is bounded by (Cy/m)™!||K — L||. Thus

i,j<m i,j<m’

et (K (x1,%7)) 1 — det (L3, %)), o] < m(Cy/m)™ K ~ L.

ij<m i,j<m

Integrate over x;s and then sum over m (after multiplying by (—1)"~! /m! to get the claimed result.
|

The importance of Fredholm determinants for us comes from the following expression for
“hole probabilities” or “gap probabilities” in determinantal processes.

Proposition 72. Let (A, A,u) be a probability space and let K be a finite rank projection kernel (that is
K(x,y) = Y-, 0;(x)0;(y) for some orthonormal set {0;}). Let A have density (n!)~" det (K (xi;x})); j<,- Let
I C A be a measurable subset of A. Then P(N(I) = 0) = A(K;), where K; is the kernel K restricted to I x I.

PROOF. From part (c) of Lemma ??, we know that P(N(7) = 0) = [];(1 —8;) where 0; are the
eigenvalues of the integral operator 7; with kernel K;. Hence,

P(N(I)=0) = 1729,-+Ze,-9j7 Y 6660 +...

i<j i<j<k
_ oy & .
= Z o det (K (xi,x})); i<y dp(x1) ... dp(xm)
m:O ' 1777
by Exercise[70l The last expression is A(K;) by definition. |

8We have borrowed much of this section from the book of Anderson, Guionnet and Zeitouni ? where the reader
may find more about these objects. FRiesz and Sz. Nagy’s great book on Functional analysis is another good reference

for Fredholm’s work in functional analysis.
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12. Gap probability for CUE

Let A be distributed as CUE, ensemble and unwrap the circle onto the interval [—x, nt]. Thus A
follows the measure on [—mx, nt]" given by

...dt, in(2(s—t
dn...dt whereKn(t,s)zsm(z(s ))

i,j<n W> W

1
adet(Kn(l‘i,tj)) s

Scale up by a factor of /2 to get A = n\/2 which follows the measure (on [—nm/2,nm/2]")

1 _ dt ...dt _ 2 2t 2s
adet (Kn(ti,tj))i’jgn(zT)n”, where K, (z,s) = ZK” <n,n> .
Then,
. 2si —t 2si —t
K(t,s) = %H) — K(t,s) = %
”Sm(T) s—t

Itis also easy to see that the convergence is uniform over (¢, s) in any compact subset of R2. Further,
| K|l <2and ||K|| < 2. Thus, by Lemma we see that A(K,, ;) — A(K;) for any compact interval /.
By Proposition prop:holefordeterminantal this shows that for any a <0 < b,
P (x,- ¢ [2“, ”’] Vi < n> —p (X,- & [—a,b] Vi < n) — A(Kjuy)
n n
as n — oo, This gives the asymptotics of gap probabilities in CUE. Some remarks are due.

Of course, it is incorrect to say that we have calculated the gap probability unless we can
produce a number or decent bounds for this probability. For example, we could define F(z) :=
A(K[—,)) which is the asymptotic probability that the nearest eigenvalue to 0 in CUE, is at least
2t /n away. Can we find F(¢)? All we need to so is study the kernel K (called the sine kernel) and
deduce F(t) from it. This is not trivial, but has been done by ???? They show that F(¢) can be

prove this result in this course.

Secondly, we considered only the gap probability, but we could also consider the distribu-
tional limit of the whole point process L, := ¥ d;,. But then we must employ the language of
Section ?2. In that language, it is not difficult to show that the convergence of K, to K implies that
L, converges in distribution to L, the determinantal point process with kernel K. The latter is a
stationary point process on the line (and hence has infinitely many points, almost surely). Basi-
cally this distributional convergence is the statement that all the joint intensities det (K, (xi,x;), ;-,,

converge to the corresponding quantities det (K (x;,x;), ... However, note that the distributional

L<
convergence does not automatically imply convergence of the gap probability, because the latter
is expressed as a series involving joint intensities of all orders. That is why we had to establish

Lemma [71] first.

13. Hermite polynomials

Our next goal is to prove results for GUE analogous to those that we found for CUE. Addi-
tionally, we would also like to study the edge behaviour in GUE, for which there is no analogue in
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CUE. In this section we shall establish various results on Hermite polynomials that will be needed
in carrying out this programme.
For n >0, define A, (x) := (—1)% "/ z%e*xz/ 2. Tt is easily seen that A, is a monic polynomial of

n—3

degree n. It is also easy to see that the coefficients of x"~1 x"73 etc. are zero. Consider

_2n dx i d"
/Hn(x)Hm(x)e ﬂﬁ — (1) /Hn(x)ﬁe

I Y TR
J e gt o
B {0 if n < m because H, has degree only n.

7)(2/2 d.x

V2m

n! ifm=n.

Thus H,(x) := ﬁf]n (x) define an orthonormal sequence of polynomials with respect to N(0,1)
measure called Hermite polynomials. Let y,(x) = (21)~'/4¢="/4H, (x) be the Hermite functions. Then
{w, : n>0} for an ONB for L*(R,Lebesgue). The following properties may be derived easily (or
look up any book on special functions, for example, Andrews, Askey and Roy ?).
Exercise 73. (1) (—% +x) H,(x) = H,,1(x) and hence also (—% +x) H,(x) = v/n+1H, 1 (x).
(2) Hermite functions are eigenfunctions of the Hermite operator: (—% + %) Yo (x) = v+ 1y, (x)
and (a% + %) Y, (x) = /ny,_;(x). Consequently,

02 x? 1
(3) Three term recurrence: xH,(x) = nH,_(x) + H,11(x). Consequently, xH,(x) = v/nH,_(x) +
vn+1H,1(x).

2/2 _

We now derive two integral representations for Hermite polynomials. Observe that a%e_(x_w) .
w=

(—1)”%("2/ 2. Therefore, fixing x, we get the power series expansion e W =y H (x)w" /n!

which simplifies to e — Yo oHu(x)w"/n!. Thus,

w2

| - ,

(34) H,(x) = T / de, for any closed curve y with Ind,(0) = 1.
Y

A second integral representation will be obtained from the well-known identity

2 . 2 dt 2 dt
e X/ = /e‘”xe_’ 22— [ cos(tx)e " P——.
V2T 2 (1) V2T

Differentiate n times with respect to x to get

1) [cos(tx)x"e " /2 AL if n ="2m.
(35) YOI A S

(—1)m-! fsin(tx)x”e*’z/z\;’—2’—7t ifn=2m—1.
R

We end the section with the Christoffel-Darboux formula.
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Lemma 74. Let u be a probability measure on R with infinite support. Let py be the orthogonal polynomials
with respect to u normalized so that p,(x) = kX" + ... with x, > 0. Then,

n—l _ K1 Pa(X)Pn-1(y) = Pu-1(x)Pa(y)
k;opk(X)pk(y) - Ky xX—y

For x =y the right hand should be interpreted as K]"(—;‘( Pn(X)pl_ 1 (x) = ph(x) pp_1(x)).
PROOF. Write the three term recurrence
Xpn(x) = bu1Pn—1(X) + anpn(x) + bppni1 (x).
Multiply by p,(y) to get the equation
Xpn(X)Pn(Y) = b1 Pn1(X) Pu() +@nPn(X) Pn(Y) + bupnt1 (x) Pa(y)-
Write this same equation with x and y reversed and subtract from the above equation to get

(X =) Pu(X)Pu(y) = =bn-1(Pn—-1(3) Pn(x) = Pn—1(X) Pn()) + bn (P (¥) Prs1 (X) = Pu(X) Pu1(3))-

Put k in place of n and sum over 0 <k <n—1 to get the identity

n—1
Pn\X)Pn—-1\Y) — Pn—1X) Pn\Y
Y pe(X)pi(y) = buy o2)210) = Per (4)Pa0)
k=0 =y
In the original three term recurrence equate the coefficients of x"™! to see that bk, = k,. This
completes the proof. |

Corollary 75. For any n > 1, we have

n—1 ¥ - _ x
T welowely) = v )W W),

The corollary follows immediately from the lemma. The importance for us is that it makes

it very clear that analysis of the GUE for large n depends on understanding , (or equivalently,
understanding H,) for large n.

Remark 76. Below are supposed to be three sections on

(1) Deriving the semi-circle law from the exact GUE density using properties of Hermite
polynomials, Hermite polynomials,

(2) Getting the bulk scaling limit using Laplace’s method and

(3) Getting the edge-scaling limit using the saddle-point method.

But never got to cover all of it in class or to write notes for them.

67






CHAPTER 4

Elements of free probability theory

1. Cumulants and moments in classical probability

Let (Q, 7,P) be a probability space. For random variables X; on this probability space, define
my[Xy,..., X, = E[ X ;] whenever the expectation exists. We will also write my = 1. The function
m.[-] is called the moment function.

Let P, denote the set of all set-partitions of [1]. For example, P; consists of the five partitions

{{1,2,3}}, {{1,2},{3}}, {{1,3}.{2}}, {{2,3},{1}} and {{1},{2},{3}}. The sets that make up a

partition are referred to as blocks. Note that the order of the blocks, or of the elements in individual
blocks are irrelevant (in other words, the partition {{3},{2,1}} is the same as {{1,2},{3}}). For
a partition IT we denote the number of blocks by /11 and the individual blocks by IT;, 1 < j < ¢y.
If we ever need to be more definite, we shall let IT; be the block containing 1, IT, to be the block
containing the least element not in IT; etc.

Definition 77. Define the cumulant function x,[Xi,...,X,] by the equations

(36) malXi, . Xa] = ) HK\H |

Ile?, j=
Here if I1; = {ki,...,k,} with k; < k» < ... < k;, then |IT}| := r and [X[IT}]] is the short form for
[Xiys- s X, |-

Rewrite the first three equations as

KI[X] :ml[X], Kz[X,Y] :mz[X,Y]*Kl[X}KI[Y]
K3[X,Y,Z] = m3[X,Y,Z] —Kz[X,Y]Kl [Z] —Kz[X,Z]Kl [Y] —Kg[Y,Z]Kl [X] =+ K1 [X]K] [Y]Kl [Z]

It is clear that we can define k; from the first equation, x; from the second and so on, inductively.
For any II € B, introduce the notation

Xl, Hmm i KH[Xl,.. . ,Xn] = UK|Hj|[X[Hj]]‘

In this notation, the equations defining cumulants may be written as m,[X] = ¥ jcp, kn[X] where
X=(X,....X,).

Exercise 78. Show that «,[X] = Yrce (—1)17 (0 — 1) !Imp[X].

The following lemma collects some basic properties of cumulants.
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Lemma 79. (1) Cumulant function is multilinear: x,[cX) +dX{,Xa,...,X,] = ¢k, [X1, X2, ..., X, +
dx,[X{, X2, ..., Xs| and similarly in each of the other co-ordinates. Further, x, is symmetric in its
arguments. For I1 € P,, xny is multilinear but not necessarily symmetric.

(2) Assume that X = (X1, ...,Xy) is such that E[e"*X)] < oo for t in a neighbourhood of 0 in RY. Let
Ox (t) = E [eX)] and yy (t) = logE [e*X)]. Then,

ti ...t
ox(t)=Y ) %mn[xi”---,xin},
n=0i1 .. iy= :
> d Ly ...t
llfx(t): Z Z o Kn[X[l,...,Xin].

(3) LetU = (X1,...,Xx) and V = (Xi+1,- .., Xa). Then, the following are equivalent.
(i) U and V are independent.
(ii) %n[Xiy,-..,X;,) =0 for any n > 1 and any iy,...,i, € [d] whenever there is least one p such
that i, < k and at least one g such that i, > k.

PROOF. (1) Obvious.
(2) Expand ¢tX) = ¥ (£, X)"/n! and (t,X)" = thm’in:l ti, ...t Xj, ... X,. Taking expectations

gives the expansion for ¢x (7). To get the expansion for Wx (t), lety(t)= Y ¥ by - bin Kn[Xigs - - -

. - n!
n=1iy,...,ip=1

and consider

wt) -
MU= Yo L
n=1""ky,... k,=1

(3) U = (Xi,...,Xu) is independent of V = (Xy11,...,X,) if and only if yy v (t,5) = Wy (t) +
yy (s) for all t € R™, s € R"™™. By part (b), yy (respectively, yy) has an expansion in-
volving k[X;,,...,X;] where i1,...,ir < m (respectively, iy, ...,ix > m). However, Yy v) has
coefficients ¥ [X;,,...,X; | where i, range over all of [n]. Thus, U and V are independent
if and only if k[X;,,...,X;] = 0 whenever there are p,q such that i, <m and i, > m. This
proves the equivalence of the two statements. u

Part (c) of the lemma is the reason why cumulants are useful in studying independent random
variables. We shall illustrate this by a quick proof of the central limit theorem (for a restricted
class of random variables). However, first we make a few remarks on cumulants of one random
variable which the reader may be familiar with.

Let X be a real-valued random variable such that E[¢/X] < o for ¢ in a neighbourhood of zero.
Then Ox (1) =Y om,(X)t"/n! and yx (t) = Y, K,(X)t" /n! where m, = m,[X,...,X]| and x,[X,...,X].
The relationship between moments and cumulants becomes

‘n

‘n
mn(X): Z 1K|Hj|(X), Kn(X)I Z (—l)gnil(fn—1)!I:IIK|HJ.|(X).

e, j= ez,
The cumulant sequence (or the moment sequence) determines the moment generating function
and hence the distribution of X. Thus knowing the cumulant sequence is sufficient to answer
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every question about X (in principle). Of course, a quantity like P(1 < X < 2) is not easy to express
in terms of cumulants, so the “in principle” phrase must be taken seriously. There is an additional
issue of loss of generality in considering only random variables with moments. For these reasons
usually one does not base probability theory on moments or cumulants exclusively. However,
there are features that can be captured well in terms of cumulants. Independence is one of them,
as part (c) of Lemma |[79|shows.

Summing of independent random variables is also captured nicely in terms of cumulants.
Indded, if X and Y are independent random variables, by part (a) of Lemma we can write K, (X +
Y)=1,[X+Y,...,.X +Y] as a sum of 2" terms. By part (c) of the same lemma, using independence,
all but two of these vanish and we get «,(X +Y) = %,(X) +x,(Y). A particular case is whenY =¢, a
constant, in which case (X +¢) = %,(X) +¢3,,1. Observe that in contrast, m, (X +c) has a relatively

more complicated expression in terms of moments of X.

Exercise 80. (1) If X ~ N(u,0?), then x; [X] =, k2 [X] = 6% and K,[X] = 0 for n > 3.
(2) Conversely, if k,[X] =0 for all n > 3, then X ~ N(x;,%2).
(3) If X,Y arei.i.d random variables and X +Y £ /2X, show that X ~ N(0,6?) for some o2.

Example 81. Let X ~ exp(1). Then ¢x(¢) = (1 —1#)"! = ¥,ot" for t < 1. Hence m, = n!. yx(t) =
—log(1—1) =Y,>n 't" which shows that k, = (n—1)!. If ¥ ~ Gamma(v, 1) then for integer values
of v itis a sum of i.i.d exponentials, hence x,(Y) = v(n—1)!. It may be verified directly that this is

also true for any v > 0.

Example 82. Let X ~ Pois(1). Then E[¢X] = ¢ !*¢. Expanding this, one can check that m, =
e ! Yo % It is even easier to see that yx (1) = —1 + ¢’ and hence x, = 1 for all n > 1 and hence
also ki1 = 1. But then, the defining equation for cumulants in terms of moments shows that m, =
Yriee, K = |B,|. Thus as a corollary, we have the non-trivial relation | 2,| = e~ ' 7 (&7, known as
Dobinsky’s formula.

Remark 83. The relationship between m, and x, just comes from the connection that log¢ = vy
where m,,/n! are the coefficient of ¢ and x,/n! are coefficients of y. The same is true for coefficients
of any two power series related this way. A closer look at the expressions for m, in terms of %, or
the reverse one shows that if m, counts some combinatorial objects, then «, counts the connected
pieces of the same combinatorial object.

For example, in Example my, = n! counts the number of permutations on »n letters while
K, = (n—1)! counts the number of cyclic permutations. As any permutation may be written as a
product of disjoint cycles, it makes sense to say that cycles are the only connected permutations.

In Example |82} m, = |P,| while k, = 1. Indeed, the only “connected partition” is the one having
only one block {1,2,...,n}.

In case of N(0,1), we know that m,, counts the number of matching of [#]. What are connected
matchings? If n > 2, there are no connected matchings! Hence, k,, = 0 for n > 3.
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Now we turn to the promised proof of CLT. By part (c) of Exercise [80, if S,/+/n were to con-
verge to a limit, then it is easy to see that the limit random would have to satisfy the recursive
distributional equation U +V L \/2U where U,V are iid copies of the limit variable and hence
U ~ N(0,0?). Using cumulants we can actually show that this is the case.

PROOF OF CENTRAL LIMIT THEOREM ASSUMING MGF EXISTS. Suppose X;,X,... are i.i.d with
zero mean and unit variance and such that the mgf of X; exists in a neighbourhood of zero, then
for any fixed p > 1,

N\\

KIS/ V] = RIS S = Z
by multilinearity of cumulants. If X; # X; , the corresponding summand will vanish by the inde-
pendence of X;s. Therefore,

950/ =176 0 X =

which goes to zero for p > 3. As the first two cumulants are 0 and 1 respectively, we see that the
cumulants of S, //n converge to cumulants of N(0, 1) and hence the moments converge also. Thus,
Sn/+/n converges in distribution to N(0, 1). [

2. Non-commutative probability spaces

We defineﬂ three notions of non-commutative probability space, of which the first one is suffi-
cient for our purposes. In the next section we shall introduce the notion of independence in such
spaces.

Definition 84. A non-commutative probability space is a pair (A4,0) where 4 is a unital algebra over
complex numbers and ¢ is a linear functional on A4 such that ¢(1) = 1.

A unital algebra 4 is a vector space over C endowed with a multiplication operation (a,b) — ab
which is assumed to be associative and also distributive over addition and scalar multiplication.
In addition we assume that there is a unit, denoted 1, such thatal =a=1a foralla € 4.

Example 85. Let 4 be the space of all polynomials in one variable with complex coefficients. This
is a unital algebra with the obvious operations. Fix a complex Borel measure ¢ on R such that
u(R) = 1. Define ¢(P) = [ P(x)u(dx) for any P € 4. Then, (4,¢) is a (commutative!) ncps. This leads
us to a smaller class of ncps. If we considered polynomials in three variables and ¢ a measure on
R3, we would again get a ncps. The difference is that in one dimension, at least if u is compactly
supported, then (4,¢) has all the information in the classical measure space (R, Bgr,u).

IMuch of our presentation of free probability is taken from three sources. The St. Flour lecture notes of Voiculescu ?,

various lecture notes of Roland Speicher available on his home page, and the book of Anderson Guionnet and Zeitouni.
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In the example above, of particular interest are probability measures. We have assumed that
u(R) = 1, but positivity is an extra condition which can be framed by saying that ¢(P) > 0if P(x) >0
for all x € R. Observe that there is no clear way to introduce the notion of positivity in a general
unital algebra. This leads us to a smaller sub-class of ncps.

Definition 86. Let 4 be a C*-algebraﬁ with a unit Let ¢ : 4 — C be a linear functional such that
¢(aa*) > 0 for all a € A4 (we say that ¢ is a positive linear functional). Assume also that ¢(1) = 1.
Then, we say that ¢ is a state. (4, ¢) is called a C*-probability space.

Observe that ¢ is necessarily bounded. In fact, for any self-adjoint a, a — ||a||1 and ||a||1 — a are
non-negative elements (can be written as b*b for some b). Hence |¢(a)| < ||a|| as ¢(1) = 1. If a is any
element of the algebra, it can be written in a unique way as x+ iy where x,y are self-adjoint and
hence |¢(a)| < 2.

Example 87. Let 4 := B(H) be the algebra of bounded linear operators on a Hilbert space H. This
is a C*-algebra where the identity / is the unit and taking adjoints is the involution. Let u € H be a
unit vector and define ¢(7') = (Tu,u). Then, ¢ is a linear functional and ¢(7) = 1. Further, ¢(7*T) =
| Tu||? > 0. Thus, (4,0) is a C*-probability space. Here multiplication is truly non-commutative.
If w(T') = (Tv,v) for a different unit vector v, then for 0 < s < 1, the pair (A4,s¢+ (1 —s)y) isalsoa
C*-probability space. ¢ is called a pure state while s¢ + (1 —s)y is called a mixed state. Any closed
subalgebra of B(H) that is closed under adjoints is also a C*-algebra. We only consider those that

contain the unit element.

Example 88. Let K be a compact metric space and let 4 = C(K) (continuous complex-valued func-
tions). The operations are obvious (involution means taking the conjugate of a function). Let u be
any Borel probability measure on K and define ¢(f) = [ fdu. Then (A4,0) is a C*-probability space.

Example 89. The same applies to C,(R) and ¢(f) = [ fdu for some Borel probability measure u. It is
a commutative C*-algebra. In fact this is not different from the previous example, as C,(R) = C(K)
where K is the Stone-Cech compactification of R.

As these examples show, a C*-probability space generalizes the idea of presenting a probability
measure on R by giving the integrals of all bounded continuous functions which is more than
giving the integral of polynomials only. However, for later purposes, it is useful to remark that
C*-probability space is like the algebra of complex-valued random variables, not real valued ones.
A third level is to specify a probability measure u by giving the integrals of bounded measurable

functions.

2By definition, this means that 4 has three structures. (a) That of a complex Banach space, (b) that of an algebra
and finally, (c) an involution % : 4 — 4. These operations respect each other as follows. The algebra operations are
continuous and respect the norm in the sense that ||ab|| < ||a||||#||. The involution is idempotent ((a*)* = a) and satisfies
(ab)* = b*a*. In addition it is norm-preserving, and conjugate linear (and hence also continuous). Lastly, we have the

identity ||aa*|| = ||a||? for all @ € 4. We say that a is Hermitian if * = a and that a is positive is a = bb* for some b € 4.
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Definition 90. Let H be a Hilbert space and let 4 C B(H) be a W*-algebreﬂ We assume that it
contains the identity. Let u b a unit vector in H and define ¢(7') = (Tu,u) for T € A4 (a pure state).
Then we say that (A4,¢) is a W*-probability space.

Example 91. (1) Let (@, F,P) be a probability space and let 4 = L*(P). We can think of 4
as a subalgebra of B(L?(u)) by the map M : 4 — B(L?*(u)) by f — My where Ms(g) = f - g.
Then we leave it as an exercise to check that A4 is closed under weak operator topology.
Let 1 be the constant random variable 1. Then 4 is a unital algebra. Let ¢(X) := E[X]| =
(Mx1,1) for X € 4. This satisfies the definition of an.c.p.s. Of course (A4, ¢) is commutative
and not of the main interest to us here, but this example explains the phrase “probability
space” in the n.c.p.s. In this case there is a notion of positivity, and ¢(X) > 0 for X > 0.
(2) The example[87]is a W*-probability space too. Subalgebras of B(H) that are closed in weak
operator topology are also W*-probability spaces.

Example 92 (The prime example - 1). Let M, be the space of n x n complex matrices. This is a W*-
algebra (it is B(H) where H = C"). If e is the kth standard co-ordinate vector, then O0x(T) = (Tey, ex)
defines a pure state on M. Average over k to get a new positive linear functional tr,(T) :=n~'tr(T).
In other words, fr is the mean of the ESD of 7.

Example 93 (The prime example - 2). Let (Q, F,P) be a probability space and let 4 = L*(P) @ M,
be the space of all random matrices X = (X; ;); j<» where X; ; are bounded, complex-valued random
variables on Q. Then, define ¢,,(X) = E[fr(X)], the mean of the expected ESD. Then (4,¢) is a ncps,
in fact a C* probability space.

Boundedness of entries is too restrictive as it does not even allow GUE matrices. Instead,
we may consider the space A of random matrices X = (X; ;) j<n Where X;; € N, L”(Q, F,P).
Define ¢,(X) = E[tr(X)] as before. This is a non-commutative probability space, although not a C*
probability space.

3. Distribution of non-commutative random variables and Free independence

Let (4,¢) be a ncps. Any element a € A4 are referred to as a non-commutative random variable
and 0(a) as its non-commutative expectation.

Define the non-commutative moment function as my[ay,...,a,] = d(ajaz...a,). As in the clas-
sical case, m,[-] is multilinear, but not symmetric because of non-commutativity. If a,...,a; are
ncrvs on the same ncps, then the collection of all moments {my[a;,...,a;] : 1 <i,...,i, <k} is
called the joint distribution of ay,...,a,. For one variable, this is just the collection of moments
o(d"),n>1.

In classical probability, the distribution of a bounded real-valued random variable X can be
recovered from its moments E[X"], n > 1. However, for a complex-valued random variable (even

3This means that 4 is a C*-subalgebra of B(H) and in addition is closed under weak operator topology. That is, if
T € B(H) and Ty is a net in A4 such that (Tou,v) — (Tu,v) for allu,v € H, then T € 4.
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if bounded), one needs joint moments of the real and imaginary parts of X, or equivalently, that of
X and X, to recover the distribution of X. This motivates the following definition.

In a C* or W* probability space, the joint distribution of a and a* is called the *-distribution
of a. Observe that this involves specifying ¢(P(a,a*)) for any non-commutative polynomial P
(with complex coefficients) in two variables. Similarly one defines the -distribution for more
than one variable. As we remarked earlier, an element of a C*-probability space is analogous to a
complex valued random variable. For a probability measure on the complex plane, the moments
,{[Z"'u(dz) : n> 1} does not determine the measure. For example, any radially symmetric u has
J7"u(dz) =0 for n > 1. Instead, one should specify the joint moments of the real and imaginary
parts, or equivalently, [z”'Z"u(dz). Thus, the x-distribution is what corresponds to the distribution
of a complex-valued random variable.

In the special, but important case when a is Hermitian (to be considered analogous to real-
valued random variables), the the x-distribution is the same as the distribution of a. Further, the
following fact is important.

Proposition 94. If a is a self-adjoint element of a C*-probability space, then there exists a unique Borel
probability measure u, on R such that m,(a) = [ x"u,(dx).

Assuming the fact, by abuse of terminology we may refer to u, as the distribution of a. Thus,
for self-adjoint elements of a C*-probability space, the distribution refers to a p=classical proba-
bility measure on R. Observe that this does not hold for non self-adjoint elements, or for joint

distribution of several ncrvs.

PROOF OF myla] = 0(a"). Let P(a) = Y¢_,cxa*. By the positivity of ¢, we see that

0< 6 (P(a)P(a)") = Z crerd(d )

k=0

which means that the infinite matrix (¢(a'*/)) is a positive definite matrix. Therefore, there

i, j>
exists at least one probability measure u witI:Jr;looments ¢(a"). However, by the boundedness
of ¢ (we showed earlier that ||¢|| < 2) and the properties of norm in a C*-algebra, we see that
d(a") < 2||a"|| <2||al|". Thus, the moments of u satisfy [x"u(dx) < 2||a||". This implies that y must
be compactly supported in [—|al|, ||a||]]. Since the moments of a compactly supported measure

determines the measure, we also see that u is unique. |

Remark 95. Alternately, restrict to the example of a C*-probability space given in Then a is
a self-adjoint operator on H and by the spectral theorem, there is a spectral measure of a at the
vector u satisfying [x"u(dx) = (a"u,u) = ¢(a"). This is the u we require. Since we know that the
spectral measure is supported on the spectrum, and the spectrum is contained in B(0, ||a||) and the
spectrum of a self-adjoint element is real, it follows that u is supported on [—||a|, ||a||].

We now illustrate with an example.
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Example 96. Let H = /*(N) and ey := (1,0,0,...). Let 4 = B(H) and ¢(T) = (Teo,er). Now let
L(xo,x1,...) = (x1,x2,...) define the left-shift operator. Its adjoint is the right shift operator L* (xo, x, ..
(0,x0,x1,x2,...). It is easy to see that ¢(L") = ¢(L*") = 1 for n = 0 and equal to 0 for n > 1. Let
S = L+L*, a self-adjoint variable. Then ¢(S") = ((L+L*)"eo,e). It is easy to check that the latter is
zero for n odd and is equal to the Catalan number C;, = leTl (zkk) for n = 2k. These are the (classical)
moments of the semicircle law supported on [-2,2]. Hence the non-commutative distribution of
S is ys.c.

If we define y(7) = (Te;,e;) where e; = (0,1,0,...), can you find the distribution of § in the

new ncps (4,y)?

Example 97. Let H = (*(Z) and let e) be the vector ey(k) = & 9. Then define the left shift operator
L and its adjoint L* (the right shift operator) in the obvious way. Again, m, (L) = m,(L*) = J, 0. Let
S =L+L*. Now, it is easy to check that m,(S) is (zkk) if n = 2k and equal to zero if n is odd. These

are the moments of the arcsine distribution with density n [—2,2]. Hence S has arc-sine

1
T/4—x? 0
distribution on [-2,2].

4. Free independence and free cumulants

Independence is a central concept in probability theory. What is the analogue in the non-
commutative setting? There is more than one possible notion of independence in non-commutative

probability spaces, but there is a particular one that relates to random matrix theory.

Definition 98. Let (A4, phi) be a ncps and let 4; be a collection of unital subalgebras of 4. We say
that ; are freely independent if ¢(ayaz ...a,) =0 forany n > 1 and any a; € 4y, where k) #ky # k3 ... #
k, (consecutive elements come from different subalgebras). Elements b;,b,, ... are said to be freely
independent if the unital subalgebras generated by by, by b; etc., are freely independent.

Example 99. So far, classical probability spaces were special cases of non-commutative probability
spaces. However, classically independent random variables are almost never freely independent.
For example, if X,Y are random variables on (2, 7, P), for them to be freely independent we must
have E[XYXY| = 0 by this happens if and only if at least one of X and Y is degenerate at zero.

Example 100. We construct two non-trivial variables that are freely independent. Let H = C? with
orthonormal basis e}, ;. Then for n > 2 we define H*" as a 2"-dimensional space whose basis ele-
ments we denote by e;, ®e;, ®...®e;, whereiy,...,i, € {1,2}. Let H*? = C with orthonormal basis
eo = 1 (thus ey = +1).Then set H := @,-oH*". #. This is called the full Fock space corresponding
to H and clearly {e; ®e;, ®...®e;, : n>1, iy =1,2} U{ep}. It is evident how to generalize this
definition for any Hilbert space H, not just C.

Define the state ¢(7') = (T'eg,e9) for T € B(H). This is a C*-probability space.
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We define Li,L, € B(H) as follows. Let Li(e; ®e;, ®...Qe;,) =€ Xe; ®...®e¢;, and extend
linearly to . Likewise define L, using e,. The adjoints are given by

e,®...0¢, ifij=1
Li(e, ®e,®...0¢,) =1 l .
0 otherwise

and likewise for L3. By the same logic as in example [97]it is easy to see that the non-commutative
distribution of 7 := L; + L} and S := L, + L} are both semicircle distribution on [-2,2]. We now
claim that they are freely independent. In fact the algebras 4; = (L,,L}) and 4, = (L,,L}) are
freely independent.

We shall only consider the simplest non-trivial example and leave the full proof to the reader.
Since ¢(T') = ¢(S) = 0, we must show that ¢(7'STS) = 0. For this, consider ((L; +L})(Lo+L})(L; +
L})(Ly +Lj)eo, e), expand the product and observe that each term vanishes.

I have not written the next few sections fully or properly. Please refer to the books
of Anderson, Guionnet and Zeitouni or the various lecture notes of Roland Speicher available
on his homepage. If I find time, I shall write this stuff and post it here. For now,

just a summary of what we covered in class.

Topics covered next:

(1) Free cumulants defined through free moments by a similar formula to the classical
case, but summing only over non-crossing partitions.

(ii) Free independence is equivalent to vanishing of mixed cumulants.

(iii) Free central limit theorem - once the previous section is in place, this follows
by copying word by word the proof of classical CLT using cumulants.

(iv) Relationship to random matrix theory - Random matrices XE:(AQj%JSn where AQj are
random variables on (Q,%,P) can be considered also as elements of the non-commutative
probability space as described in Example (93]

(v) The crucial connecting fact is that in many cases, large random matrices that are
independent in the classical sense, are asymptotically (as the matrix size grows)
freely independent. In particular this holds for the following pairs of random
matrices.

(a) Let D be a real diagonal whose ESD converges to a compactly supported measure
on R. Let X® pe (scaled by 1/4/n) independent Wigner matrices with entries
that have all moments. Then [LX(D,X(M,.“ are freely independent.
(b) Let A, and B, be fixed sequences of real diagonal matrices. Let U, be a Haar-distribut

unitary matrix. Then A, and U,B,U, are freely independent.
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In all these cases, a particular consequence is that the ESD of the sum converges

to the free convolution of the two individual limits.

5. Free cumulants
6. Free central limit theorem

We have said before that the semicircle plays a role in free probability very analogous to
the Gaussian in classical probability. Now we prove a free version of the central limit theorem.
Suppose a; are freely independent and identically distributed elements in an algebra 4. Does
(a1 + ...+ ay)//n converge in distribution to some variable? Firstly note that kz[a; +... 4+ a,] =
nkz[a;] and hence /n is the right scaling factor. Secondly, if we assume that (a; +...+a,)/+/n does
converge in distribution to some variable g, then for two freely independent copies a,b of this
variable a + b must have the same distribution as v/2a. Just as we saw earlier for classical random
variables, this forces the free cumulants to satisfy the relationship 2g1<p la] = 2%, [a] which implies
Kpla] = 0 for p # 2 which implies that a is a semicircular variable. Now we actually prove that the
convergence does happen.

Theorem 101. Let a,ay be freely independent, identically distributed self-adjoint variables in a non-
commutative probability space (4,$) with ka[a] > 0. Then,

ay+...+a,—nxi[a) a
—>ALIS.C.7
vaavasil

the standard semicircle law supported on [—2,2].

PROOF. Without loss of generality assume that «;[a] = 0 and k;[a] = 1. The proof is word for
word the same as we gave for classical CLT using cumulants (wisely we did not even change the
notation for cumulants!). We conclude that ,[S,/\/n] — 8, 2. The only non-commutative variable
whose free cumulants are 3, is the standard semicircle law. Hence the conclusion. u

7. Random matrices and freeness

We have now seen Voiculescu’s world of free probability with objects and theorems analogous
to those in classical probability theory (we saw only a tiny sample of this. There is a free version
of nearly everything, free Poisson, free Brownian motion, free Lévy process, free entropy, ... even
free graduate students).

Apart from analogy, there is connection between the classical and free worlds, and that is pro-
vided by random matrix theory. Indeed, one of our motivations for introducing free probability
theory is to explain the occurrence of semicircle law and other limit laws in random matrices, from
a more conceptual algebraic framework. The essential connection is in the following theorem (and
other such statements asserting free independence of classically independent large random matri-
ces).
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Theorem 102. Consider M,(C) ® L*(P), the algebra of n x n random complex matrices with the state
0(A) =n'E[tr(A)]. Let X, = (X;;) and Y, = (Y, ;)
ability space taking values in M, (C). We consider two scenarios.

i j<n be random Hermitian matrices on a common prob-

(1) X, and Y, are Wigner matrices with X, ; and X, » having exponential tails.

(2) X, =A, and Y, = U,B,U,; where A,,B, are real diagonal matrices and U, is a Haar distributed
unitary matrix. We assume that the ESD of A, and B, are tight????

In either of these two situations, X, and Y, are asymptotically freely independent.

Now suppose X, and Y, are independent copies of GOE matrix. By properties of normals,
X, + Y, has the same distribution as v/2X,,.

8. Spectrum of the sum of two matrices and free convolution

Let a,b be two self-adjoint, freely independent variables in a non-commutative probability
space (A4,0). Then, x,[a + b] = k,[a] + %, [b]. Hence the distribution of a and b determine the distri-
bution of a + b. The procedure to find the distribution of a + b is as follows.

(1) Let u and v be the distributions of a and b respectively. This means ¢(a") = [x"u(dx) and
O(b") = [x"v(dx) for all n.
(2) From the moments m,(a) := ¢(a") and m,(b) = ¢(b") find the free cumulants k,[a] and
Kx[b]. This can be done using the relations (??).
(3) Find x, := x,[a] + x,[p] and insert into formulas (??) to find m,,.
(4) Find the measure 6 whose moments are m,,. Then 0 is the distribution of a + b.
An analogous procedure can be described in classical probability, to find the sum of two inde-
pendent random variables using their cumulants. But there are also other useful techniques for
dealing with sums of random variables such as the characteristic function (which is multiplicative
under independence) or the logarithm of the characteristic function (which is additive). There are
also such analytic objects associated to non-commutative random variables, which we describe
now.

Let u be a compactly supported on R with Stieltjes” transform G,(z) = [(z —x)~'u(dx) for the
Stieltjes” transform of u. From properties of Stieltjes transforms, we know that knowing G, in a
neighbourhood of e one can recover all the moments of 1 and hence recover y itself. Further, G,
is one-one in a neighbourhood of « and has an analytic inverse K, defined in a neighbourhood
of 0. Since G,(z) =z ' +mz72 +... (where my are the moments of u) for z close to =, we see that
K,(w) = w1 +R,(w) for some analytic function R (defined in a neighbourhood of 0). R, is called
the R-transform of p.

Lemma 103. R,(w) = Yoo, khw" ™!, where i, are the free cumulants of p.

PROOF. Let S(w) = ¥ k"', We show that G(w~! +S(w)) = w for w close to 0 and this
clearly implies that S = R,,. |
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