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1. ABOUT THE LECTURES

These are notes I made for a set of five lectures I gave from 4-8 January at the the ATM workshop
at IIT, Bombay. I thank the organizers Vivek Borkar, Suresh Kumar, Rajesh Sundaresan and also
Mallikarjuna Rao for inviting me and for organizing the workshop. Thanks also to the other
speakers for their lectures and the audience for paying attention to a topic that was certainly not
of central interest to most of them. I learned much of this material with the help of Sourav Sarkar
and Mokshay Madiman. It is a pleasure to acknowledge that.

These notes are not meant to be complete, either in the subject matter or the references given.
A lot is borrowed from the papers referred to in the footnotes. It is almost faithful to the lectures
given. Lecture 1 covered sections 2-6, Lecture 2 covered sections 7-9, Lectures 3 and 4 covered
sections 10-13 and Lecture 5 covered sections 14-17.

2. A MATTER OF SCALE

LetXn = ξ1 + . . .+ξn where ξk are i.i.d. Ber(1/2) random variables1. If In is an interval centered

at E[Xn] = n/2, then P{Xn ∈ In} is close to 1 if the length of In is much larger than
√
n. If the

length is c
√
n, then P{Xn ∈ In} ≈ Φ(c)−Φ(−c) can be any number between 0 and 1 depending on

the value of c. If the length of In is constant, then the probability is only of order 1/
√
n. Decreasing

the length further does not decrease the probability, since Xn has an atom of size 1/
√
n at bn/2c.

More precisely,

(1) P{Xn ∈ [12n+ 1
2a
√
n, 1

2n+ 1
2b
√
n]} = P{Z ∈ [a, b]}+ o(1). This is central limit behaviour.

(2) P{|Xn − 1
2n| ≥ an} ≤ Ce−can for a > 0 fixed. More generally, for 1 << an .

√
n,

we have P{|Xn − 1
2n| ≥ an

√
n} ≤ Ce−ca

2
n . The two inequalities are often called large

deviation and moderate deviation (or if you like, Bernstein, Chernoff, Hoeffding, etc.). These
are concentration inequalities (supremely important, but not the subject of these lectures).

(3) P{Xn ∈ [a, a+1)} ≤ 10√
n

for any a ∈ R. To see this, observe that there is at most one integer

in the interval [a, a + 1) and the largest atom of Xn has size
(

n
bn/2c

)
1
2n . By an application

of Stirling’s formula, this quantity is bounded by 10/
√
n. Such inequalities that give an

upper bound on the probability that can be packed into a short interval are called anti-
concentration inequalities.

Exercise 1. Show that
(

n
bn/2c

)
1
2n ∼

1√
π
√
n

.

Moral: Everything depends on the scale at which we look. At very large scales, the random
variable looks like a constant. At intermediate scales (of the order of the standard deviation), it

1We say ξ ∼ Ber(1/2) if P{ξ = 0} = P{ξ = 1} = 1
2

. We say ξ ∼ Ber±(1/2) if P{ξ = −1} = P{ξ = 1} = 1
2

. Always,

Z denotes a standard Gaussian random variable, having density 1√
2π
e−

1
2x

2
.
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looks like a random variable with density. At shorter scales, the graininess of the distribution
starts showing itself. At that scale the random variable has “anti-concentration”.

3. LÉVY’S CONCENTRATION FUNCTION

Definition 2. If X is a real-valued random variable, define its concentration function QX(t) :=

supa∈R P{|X−a| ≤ t} for t ≥ 0. For an Rd-valued random vector, we defineQX(t) := supa∈Rd P{‖X−
a‖ ≤ t}where ‖x‖ denotes the standard Euclidean norm.

Some simple observations. Unless otherwise stated, random variables are real-valued (usually
for simplicity only).
I 0 ≤ QX(t) ≤ 1 and t 7→ QX(t) is increasing. QX(0) is the size of the largest atom in the

distribution of X .
I QλX+b(t) = QX(t/λ) for any λ > 0, b ∈ R and t ≥ 0.
I For random vectors, we could define concentration function using any other norm, for ex-

ample, ‖x‖∞ := max1≤i≤d |xi| and ‖x‖1 =
∑n

i=1 |xi|. More generally, we can define QX for a
random variable X taking values in any normed linear space.
I If X and Y are independent, then QX+Y (t) ≤ QX(t) ∧ QY (t). To see this, observe that

P{|X−(a−Y )| ≤ t
∣∣∣∣∣∣ Y } ≤ QX(t) a.s.. Take expectations overX to get P{|X+Y −a| ≤ t} ≤ QX(t)

and supremum over a to get QX+Y (t) ≤ QX(t). This completes the proof (where did we use
independence?).

4. ANTI-CONCENTRATION INEQUALITIES

An upper bound for QX(t) is called an anti-concentration inequality. Sometimes, an upper
bound for P{|X−a| ≤ t} for a specific a ∈ R is also referred to as an anti-concentration inequality.
In general, such inequalities restrict the amount of probability that can be packed into a short
interval or a small ball. They assert that the distribution is not too concentrated.

In these lectures we shall consider the following examples.
I Let Xi be independent (not necessarily identical) random variables and Sn = X1 + . . .+Xn.

Most of our study will be on the concentration function of Sn.

I Let Mn = (Xi,j)i,j≤n where Xi,j are i.i.d. Bernoullis, P{X = 0} = 1
2 = P{X = 1}. Then

what is pn = P{Mn is singular}? Clearly pn ≥ 2−n, since the first column can be zero (or the first
two columns can be equal).

Open problem: For any λ > 1
2 , show that pn ≤ λn for large enough n.

History: Komlos: pn → 0. Kahn-Komlos-Szemeredi: pn ≤ λn for some λ < 1. Tao and Vu:

pn ≤ (3/4)n. Bourgain, Vu and Wood: pn ≤ (1/
√

2)n (all for large enough n).
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Bounding pn can be interpreted as bounding the maximal atom of det(Mn), or of sn(Mn), the
minimal singular value. The Littlewood-Offord problem (anti-concnetration for sums of indepen-

dent random variables) has a direct bearing on this problem, as we shall see2.
I If the entries have continuous distribution in the previous example, thenMn is non-singular

with probability 1. A better formulation of the problem that does not give unfair advantage to
continuous distributions is to ask for P{sn(Mn) ≤ ε}, either for firxed ε or for some ε = εn → 0.
I Let Xi be i.i.d. Let Zn be the number of real zeros of the random polynomial X0 + X1t +

. . .+Xnt
n. Then E[Zn] ≤ C0

√
n. Proving this requires one to use the anti-concentration inequality

for sums of independent random variables.
I In the previous problem, it is also true that E[Zn] ≤ C0 log n, but proving it requires anti-

concentration inequalities proved very recently and that lie beyond the scope of these lectures.
Towards the end, we shall mention this and other anti-concentration inequalities, mostly open.

5. LITTLEWOOD-OFFORD-ERDŐS

Motivated by a problem in random polynomials, Littlewood and Offord3 showed that for any
strictly positive v1, . . . , vn and any t ∈ R, (let v = (v1, . . . , vn) and 〈v,x〉 = v1x1 + . . .+ vnxn)

#{x ∈ {0, 1}n : 〈v,x〉 = t} ≤ C.2n.n−
1
2 . log n(1)

and conjectured that the log n factor could be removed. This was proved spectacularly by Erdős4.
In our language, (1) has the following equivalent formulation.

Lemma 3 (Littlewood-Offord-Erdős). Let Xi be i.i.d. Ber(1/2) and let vi > 0 and let Sv = v1X1 +

. . .+ vnXn. Then, QSv(0) ≤ 1
2n

(
n
bn/2c

)
≤ C√

n
.

Proof. We define a partial order on {0, 1}n by setting x ≤ y if xi ≤ yi for each i. An anti-chain is a
subset of {0, 1}n such no two distinct elements of which are comparable.

Sperner’s lemma: The maximal size of an anti-chain in the above poset is
(

n
bn/2c

)
.

For any strictly positive vis and any t ∈ R, the collection of x ∈ {0, 1}n such that
∑

i vixi = t is an

anti-chain. Therefore, by Sperner’s lemma such a set has at most
(

n
bn/2c

)
elements. This completes

the proof of (1). �

Exercise 4. If vi are strictly positive real numbers, show that QS(vmin) ≤ Cn−1/2.

2These things and many other things we have discussed here may be found in the survey article- Nguyen, Hoi H.;
Vu, Van H, Small ball probability, inverse theorems, and applications, Erds centennial, 409-463, Bolyai Soc. Math. Stud., 25,
Jnos Bolyai Math. Soc., Budapest, 2013.

3Littlewood, J. E.; Offord, A. C. On the number of real roots of a random algebraic equation. III. Rec. Math. [Mat. Sbornik]
N.S. 12(54), (1943). 277-286.

4Erdős, P. On a lemma of Littlewood and Offord, Bull. Amer. Math. Soc. 51, (1945), 898-902.
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6. WHAT DID LITTLEWOOD AND OFFORD DO?

Given the strikingly beautiful, elementary and optimal proof of Erdős, the original Littlewood-
Offord proof of their weaker inequality is rarely mentioned. But it is a nice lesson in how to
approach a problem in analysis in three steps: (1) Consider the extreme cases, (2) Prove the the-
orem (usually by different methods) for each extreme case, (3) Break any case into extreme cases
and invoke the results.

Assume without loss of generality that v1 ≤ . . . ≤ vn. Also assume (with loss of generality),
that v1 ≥ 1 and give a bound for QSv(1) (or equivalently for QSv(vmin)).

Extreme case 1: Suppose A ≤ vi ≤ 2A for all i for some 0 < A < ∞. Then, viXi are independent
random variables of comparable magnitude and the Berry-Esséen theorem gives

sup
a,b
|P{Sv ∈ [a, b]−P{σnZ ∈ [a, b]}| ≤ 1

σ3
n

n∑
k=1

v3
k

where σ2
n = v2

1 + . . .+ v2
n. From this, it is easily deduced that QSv(1) ≤ 8√

n
.

Extreme case 2: Suppose 1 ≤ v1 ≤ 1
2v2 ≤

1
4v3 ≤ . . . ≤

1
2n−1 vn. In this case central limit behaviour is

actually false (because vnXn is as big as Sv), in the sense that the right hand side of Berry-Esséen

theorem, σ−3
n

∑
v3
k, is quite large. However, a much simpler argument shows that Sv takes 2n

distinct values each with probability 2−n and these values are separated by at least 1 (think of

binary expansion). Thus, QSv(1) ≤ 2−n+1.

General case: Let k1 = 1 and for j ≥ 2, let kj be the first index (if any) such that vkj−1
≤ 1

2vkj . This

gives us some indices k1, k2, . . . , km. Let T =
∑m

j=1 vkjXkj . Then, Sv = T + T ′ where T and T ′ are

independent. Therefore, by the second extreme case,

QSv(1) ≤ QT (1) ≤ 2−m+1.

If m ≥ log n, then this is smaller than 2/n which is is better than the bound 1/
√
n that we are after.

Otherwise, m < log n and hence there is some 2 ≤ j ≤ m such that kj − kj−1 ≥ n/ log n. Note that

the vi for kj−1 ≤ i ≤ kj − 1 are all between A and 2A with A = vkj−1
. Hence if Tj =

∑kj−1
i=kj−1

viXi,

then again Sv = Tj + T ′j where Tj and T ′j are independent, and hence by the first extreme case,

QSv(1) ≤ QTj (1) ≤ 2
1√

kj − kj−1

≤ 2
√

log n√
n

.

Putting everything together, we have proved the (sub-optimal) bound5 of 3
√

logn√
n

. �

5Actually Littlewood and Offord got logn/
√
n because they used a weaker precursor of Berry-Esséen theorem due

to Lyapunov.
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FIGURE 1. Hasse diagram of the poset P4 (picture taken from Wikipedia)

7. SPERNER’S LEMMA: A SIMPLE AND A NOT SO SIMPLE PROOF

Let Pn be the collection of all subsets of [n] with the inclusion partial order. Sperner’s lemma is
the assertion that no anti-chain of Pn has more elements than the anti-chain consisting of subsets
of size bn/2c.

It is usually helpful to visualize a poset through its Hasse diagram. For Pn, it may be described
as follows: Let Lk be the collection of subsets with k elements, for 0 ≤ k ≤ n. We refer to Lk as the
kth layer of Pn. If A ∈ Lk and B ∈ Lk+1, then A ≤ B if and only if B can be got from A by adding
one element. If we define the order like this and extend it by transitivity, we get back the poset Pn
with the inclusion order. The Hasse diagram is a graph with elements of Lk+1 written above the
elements of Lk and with an edge from A ∈ Lk to B ∈ Lk+1 if and only if A ≤ B. See Figure 7.

First we present what may be the shortest proof of Sperner’s lemma (I got this way of phrasing
it from Mokshay Madiman).

Katona’s proof of Sperner’s lemma. On the Hasse diagram of the poset Pn, start from 0 . . . 0 at the
bottom and do an up-ward random walk till it hits 1 . . . 1 at the top. This means that at each step,
one of the neighbours in the layer immediately above is chosen.

If {A1, . . . , A`} is an anti-chain, let pk be the probability of the event that the random walk
passes through Ak. The anti-chain property implies that these events are pairwise disjoint and

hence
∑`

k=1 pk ≤ 1. By symmetry it is also clear that pk = 1/
(
n
|Ak|
)

which is at least 1/
(

n
bn/2c

)
.

Putting both these together, we get ` ≤
(

n
bn/2c

)
. �

Katona’s proof of Sperner’s lemma. For each x, let Sx be the collection of all permutations of [n] such

that each i with xi = 1 precedes each j with xj = 0. If x(1), . . . ,x(`)} is an anti-chain, then the
sets Sx(j) , j ≤ ` are pairwise disjoint, and hence their cardinalities sum to at most n!. But if

6
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x has k ones, then Sx has cardinality k!(n − k)! which is minimized when k = bn/2c. Thus,

n! ≥ `(bn/2c)!(n− bn/2c)! which is the same as ` ≤
(

n
bn/2c

)
. �

Actually the above proof showed a stronger inequality known as the LYM (or LYMB inequality).

If {A1, . . . , A`} is an anti-chain in Pn, show that
∑`

k=1
1

( n
|Ak|

) ≥ 1 (exercise).

Now we give what may be the least straightforward proof of Sperner’s lemma. Its advantage
is that it generalizes to several other posets where no other method is known. This is borrowed

from a beautiful paper of Proctor6.

Stanley-Proctor proof of Sperner’s lemma. For simplicity of notation, let M = bn/2c.

Step -1: Sperner’s lemma is implied if we show that for each k < M , there is an injective map
Ik : Lk 7→ Lk+1 such that A ≤ Ik(A) for each A. By symmetry, this implies that for k ≥M , there is
a surjective map Ik : Lk 7→ Lk+1.

Reason: Draw a picture of the poset with layers one above another and the maps Ik indicated by
arrows upwards. Stare at it till you see that the whole poset has been broken into disjoint chains
each of which passes through exactly one element of the middle layer. Hence the proof.

Step -2: Suppose that for each k < M we find an Lk+1 × Lk matrix Xk with full column rank and
such that the the (B,A) entry of Xk is positive if and only if A ≤ B. Then the injective map Ik of
Step-1 exists.

Reason: Xk has full column rank and hence there exists an Lk × Lk sub-matrix of Xk whose
determinant is not zero. Expand the determinant as a sum over permutations to see that at least
one of these summands must be non-zero. This permutation gives the injective mapping Ik.

Step -3: Define Xk as the Lk+1 × Lk matrix with the (B,A) entry equal to 1 is A ≤ B and 0
otherwise. Then Xk has full column rank.

Reason: For k < M , check that XkX
∗
k − X∗kXk is the scalar matrix θkILk where θk = 2k − n.

Hence, Xk must have full column rank. �

8. EXTENSIONS OF LITTLEWOOD-OFFORD

One can try to extend Littlewood-Offord inequality in different ways. One is to take more
general distributions in place of Bernoullis. But more interesting is the relationship between the
coefficients v1, . . . , vn and the largest atom of Sv. We stay with Bernoullis for now. If v∗i = 1 for all
i, then the Littlewood-Offord-Erdős lemma may be restated as follows:

6Proctor, Robert A. Solution of two difficult combinatorial problems with linear algebra, Amer. Math. Monthly, 89 (1982),
no. 10, 721734. Richard Stanley’s book on Algebraic combinatorics explains all these things in detail. After the lectures,
I came to know of Zeilberger’s very nice paper.

7
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Littlewood-Offord-Erdős lemma: If vi are strictly positive, then, (1) QSv(0) ≤ QSv∗ (0) and

(2) QSv∗ (0) ≤ 10/
√
n.

Next suppose we restrict vi to be distinct. Then, how large can QSv(0) be? To get a guess, let us
take Xi to be i.i.d. N(0, 1) and investigate QSv(1) (since there are no atoms anyway). Suppose that
vi satisfy vi+1 − vi ≥ 1 for all i (without such a condition, we can replace vi by εvi and get QSv(1)
to be as close to 1 as we want by making ε small!).

Exercise 5. Assume that Xi are i.i.d. N(0, 1). If vi are positive and vi+1 − vi ≥ 1 for all i ≤ n − 1,

then show that QSv(1) ≤ 10.n−3/2.

This suggests that even for Xi ∼ Ber(1/2), i.i.d., we must have QSv(0) . n−3/2 for distinct vis.
This was conjectured by Erdős and Offord but it was their turn to lose a log n factor! The optimal
inequality was proved by Sárközy and Szemeredi. It was shown by Stanley that the optimal choice
of vis is 1, 2, . . . , n.

9. STANLEY’S THEOREM

Theorem 6. Let Xi be i.i.d. Ber(1/2) and let vi be distinct positive real numbers. Let v∗ = (1, 2, . . . , n).

Then, (1) QSv(0) ≤ QSv∗ (0) and (2) QSv∗ (0) ≤ 10.n−3/2.

We shall leave the second part as an exercise later. The proof of the first part is an absolute gem!
We present the proof in the beautifully simplified form given by Proctor (the paper was referred
to earlier).

Step 1: A new poset. Let Pn = {0, 1}n and define the level of x ∈ Pn to be
∑n

i=1 ixi. Levels range

over all integers from 0 to N = n(n + 1)/2. Let Lk be the set of all x for whose level is k, for
0 ≤ k ≤ N . For x ∈ Lk and y ∈ Lk+1, define x ≤ y if you can get y from x by moving a 1 to right
or by converting the left-most bit of x from 0 to 1. For example, with n = 5, the string 01101 ∈ L10

and the only elements of L11 that are above 01101 are 01011 and 11101.
By extending the partial order transitively, we get a poset structure on Pn. Compared to the

earlier partial order, fewer things are comparable in this poset.

Step 2: We claim that the first part of Stanley’s theorem is equivalent to the statement that no
anti-chain in Pn is larger than LbN/2c.

To prove this, suppose v1, . . . , vn are distinct positive numbers and t ∈ R. If x ∈ Lk, y ∈ Lk+1

and x ≤ y, then 〈v,x〉 is strictly smaller than 〈v,x〉 (why?). Therefore, the set of x such that
〈v,x〉 = t forms an anti-chain in Pn. Thus, if we prove that LbN/2c, then is follows that

#{x : 〈v,x〉 = t} ≤ #{x : 〈v∗,x〉 = bN/2c}.

If we divide both sides by 2n and maximize over t we get QSv(0) ≤ QSv∗ (0).
8



With these two steps, the problem is reduced to finding the maximal size of an anti-chain in the
poset Pn. For simplicity of presentation, we give the proof for a modified poset defined as follows:

Let 0 ≤ ` ≤ n and let Pn,` = {x ∈ {0, 1}n :
∑n

i=1 xi = `}. The levels in Pn,` range from

N1 = 1 + 2 + . . . + ` (achieved when all 1s are to the left) to N2 = (n − ` + 1) + . . . + n (achieved
when all 1s are to the right). On Pn,`, define an order in exactly the same way as in Pn. For
example, in 01101 ∈ P5,3 has level 10 but the only element above it in L11 is 01011 (in general,
cannot add a 1 from the left because that would take x out of Pn,`).

Claim: The middle layer LM where M = b(N1 +N2)/2c is a maximal anti-chain in Pn,`.

Step -1: The claim will be proved if we show that for k ≤ M , there is an injective map Ik : Lk 7→
Lk+1 such that Ik(x) ≥ x for each x. Then by symmetry, for k > M , there is an injective map from
Lk into Lk−1 such that Ik(x) ≤ x.

Reason: Given these maps Ik, the poset can be decomposed into chains, each of which passes
through the middle layer.

Step -2: The previous step will be achieved if for each k < M we find an Lk+1 × Lk matrix Xk

such that the (y,x) entry of Xk is positive if and only if x ≤ y.
Reason: By injectivity, there is an Lk × Lk submatrix of Xk with non-zero determinant. Expand

this determinant over permutations and note that at least one of the summands must be non-zero.
The corresponding permutation gives the injective map Ik.

Step -3: Define Xk by setting the (y,x) entry to be
√
r(n− r) if y = x + er+1 − er for some

1 ≤ r ≤ n− 1. Then, Xk is injective for k < M .
Reason: Xk−1X

∗
k−1 −X∗kXk is an Lk × Lk matrix that is in fact equal to the scalar matrix θkILk

where θk = 2(k −M) (a straightforward calculation). Thus X∗kXk = Xk−1X
∗
k−1 + θkILk is strictly

positive definite for k < M . Thus Xk must have full column rank if k < M . �

10. FURTHER EXTENSIONS: HALÁSZ’S THEOREM

The more general idea coming from Littlewood-Offord and its extension by Sárközy-Szemeredi
and Stanley is that the more the restriction on vis, the smaller the smaller the atoms of Sv. More
precisely, it is the arithmetic structure of vis that determines how concentrated Sv can be. Halász

proved such a theorem7. We give a restricted version of his theorem where vi are all assumed to
be integers and Xi are Ber±(1). Later we shall see theorems even more powerful than Halász’s
full theorem.

Theorem 7 (Halász). Suppose v1, . . . , vn are non-zero integers. For k ≥ 1, let Rk be the number of
solutions to the equation ε1vi1 + . . . + ε2kvi2k = 0 over 1 ≤ i1, . . . , i2k ≤ n and εj ∈ {−1, 1}. Let Xi be

7Halász, G., Estimates for the concentration function of combinatorial number theory and probability, Period. Math. Hungar.
8 (1977), no. 3–4, 197-211.
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i.i.d. Ber±(1/2) and let Sv = v1X1 + . . .+ vnXn. Then,

QSv(0) ≤ Ck
Rk

n2k+ 1
2

.

Here are some examples to illustrate the power of the theorem.

I Suppose vi are any non-zero integers. Then, Rk ≤ n2k2k for any k. Thus we get the

Littlewood-Offord boundQSv(0) ≤ C1/
√
n (without sharp constants, but we don’t care anymore).

I Restrict vi to be distinct integers. Take k = 1 and observe that Rk ≤ 2n (we must take i2 = i1

and ε2 = −ε1). Hence, QSv(0) ≤ C1n
−3/2, the Sárközy-Szemeredi-Stanley bound.

I If we further restrict vis so that vi+vj 6= vk +v` unless {i, j} = {k, `}, then R4 ≤ Cn2 (why?)

and we get QSv(0) ≤ C2n
−5/2.

I If all triple sums vi + vj + vk for i < j < k are distinct, then R3 ≤ Cn3 and we get a bound

of n−7/2 for the largest atom. So on and so forth...

Exercise 8. Let vk = k2 (if convenient, take vk = k(k + 1) or any quadratic you prefer). Get a tight
bound for R2.

11. THE MOST IMPORTANT IDENTITY IN ANALYSIS

Fourier was perhaps the first to realize that∫ 1/2

−1/2
e2πikθdθ = δ0(k) for k ∈ Z.

This identity allows us to write integer identities in terms of integrals and we shall use it to prove
Halász’s theorem. As a simple illustration, first we sketch an estimate that is very close to what
we needed in the second part of Stanley’s theorem.

Claim: If Xi are i.i.d. Ber±(1/2), then P{X1 + 2X2 + . . .+ nXn = 0} ≤ 10.n−3/2.

Proof. Let T = 1X1 + 2X2 + . . .+ nXn. Using the identity of Fourier and taking expectations, we

get (henceforth I = [−1
2 ,

1
2 ])

P{T = 0} =
∫
I
E[e2πiθT ]dθ =

∫
I

n∏
k=1

E[e2πiθkXk ]dθ =
∫
I

n∏
k=1

cos(2πθk) dθ.

We claim that only the integral in a neighbourhood of length 1/n around 0 actually contributes.
For instance, if θ = 2/n, then about half of the cos(2πkθ) values are less than 0.9 and hence the
integrand is at most 0.9n, a very small quantity. One needs to fill in some details, but with this, we
come to

P{T = 0} =
∫ 1/n

−1/n

n∏
k=1

cos(2πθk) dθ +O(e−cn).

10



For small u, we have cos(u) ≈ 1 − 1
2u

2 ≈ e−
1
2
u2

. If we make that approximation, then we get the

above integral to be ∫ 1/n

−1/n
exp{−1

2

n∑
k=1

4π2k2θ2}dθ =
∫ 1/n

−1/n
exp{−2

3
π2n3θ2}dθ.

If we multiply this by cn3/2, we get the integral of theN(0, n−3) density integrated over an interval
of length 1/n around the mean. That integral is bounded by 1 (since it is a probability). Thus,

P{T = 0} . n3/2. �

12. FOURIER ANALYSIS TO THE RESCUE: A PROOF OF HALÁSZ’S THEOREM

The proof of Halász’s theorem used analysis, namely the Fourier identity8. I am not aware of
any purely combinatorial proof (even in the restricted setting we have of Bernoulli variables and
integer vis).

Write I = [−1
2 ,

1
2 ] henceforth in this section. For Sv = v1X1 + . . . + vnXn with vi ∈ Z (also

remember that Xi takes values ±1), we deduce that for t ∈ Z,

P{Sv = t} = E
[∫

I
e2πi(Sv−t)θdθ

]
≤
∣∣∣e−itθ ∫

I

n∏
k=1

E[e2πivkXkθ]dθ
∣∣∣ ≤ ∫

I

n∏
k=1

| cos(2πvkθ)|dθ.

Since cos(2πθ) vanishes exactly when θ is an integer, we can use the cosine function to measure
the distance of a number from the closest integer as follows (both inequalities are elementary and
left as exercise).

1− 2π2θ2 ≤ cos(2πθ) ≤ e−8θ2 for θ ∈
[
−1

2
,
1
2

]
,(2)

Hence | cos(2πvkθ)| ≤ e−8‖vkθ‖2 where ‖x‖ := min{|x− n| : n ∈ Z} (it is not a norm!). Thus,∫
I

n∏
k=1

| cos(2πvkθ)|dθ =
∫ ∞

0
|At|8e−8tdt

where At = {θ ∈ I :
∑n

k=1 ‖vkθ‖2 ≤ t} and |At| is the Lebesgue measure of At. Since |At| ≤ 1 for
all t, we can write

QSv(0) ≤
∫ n/4π2

0
|At| 8e−8tdt + e−2n/π2

.

Now we want to bound |At| for t ≤ n/4π2. If θi ∈ At then θ1 + . . . + θm ∈ Am2t by triangle

inequality. Using the Cauchy-Davenport9 inequality |A + A| ≥ 2|A| we get |At| ≤ 1
m |Am2t|. In

8This proof is taken piecewise and slightly edited from the book- Tao, Terence; Vu, Van H., Additive combinatorics,
Cambridge Studies in Advanced Mathematics, 105, Cambridge University Press, Cambridge, 2010.

9Proof: Assume A and B are compact and translate them so that supA = inf B = 0. Then A + B ⊇ A ∪ B while A
and B are almost disjoint. Hence |A+B| ≥ |A|+ |B|.
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particular, for any t < n
4π2 we take m = b

√
n

2π
√
t
c and get |At| ≤ 100

√
t√
n
|An/4π2 |. It remains to bound

the latter.
If t = n

4π2 and θ ∈ At then by the inequality cos(2πx) ≥ 1−2π2‖x‖2 we see that
∑n

k=1 cos(2πvkθ) ≥
n
2 . Thus setting B∗n = {θ ∈ I :

∑n
k=1 cos(2πvkθ) ≥ n

2 }, we have the bound |An/4π2 | ≤ |B∗v|.
Putting everything together we get

QSv(0) ≤ 100√
n
|B∗n|

n/4π2∫
0

√
t8e−8tdt+ e−n/5

≤ 1000
1√
n
|B∗n|+ e−n/5.(3)

From assumptions on arithmetical structure of v we can get precise bounds on |B∗n| by computing

moments of
∑n

k=1 cos(2πvkθ) and using Markov’s inequality.

∫
I

∣∣∣ n∑
j=1

cos(2πvjθ)
∣∣∣2kdθ =

∫
I

∣∣∣ n∑
j=1

(
e2πivjθ + e−2πivjθ

) ∣∣∣2kdθ
=
∑
εi=±1

∑
j1,...j2k≤n

∫
I
e2πiθ

P2k
i=1 εivjidθ =

∑
εi=±1

∑
j1,...j2k≤n

1ε1vj1+...+ε2kvj2k=0

= Rk.

Hence by Markov’s inequality |B∗n| ≤ Rk 22k

n2k . The conclusion is that QSv(0) ≤ 103

n2k+1
2
Rk + e−n/5.

13. SINGULARITY PROBABILITY OF THE BERNOULLI MATRIX

Recall the Bernoulli matrixMn = (Xi,j)i,j≤n and pn = P{Mn is singular}. We use the Littlewood-
Offord lemma to show that pn → 0 as n→∞.

Write Mn = [v1 v2 . . .vn] and let Wk = span{v1, . . . ,vk} with W0 = {0} be subspaces of Rn.
Then, considering the first k for which vk depends linearly on the previous columns, we get

pn =
n∑
k=1

P{dim(Wk−1) = k − 1 = dim(Wk)}.

Fix k ≤ n and suppose dim(Wk−1) = k−1. Then we claim thatWk−1 contains at most 2k−1 distinct

vectors in {0, 1}n. Hence, vk belongs to Wk−1 with a probability of at most 2k−1−n. Summing this

over k gives a bad bound since 2k−1−n is very large when k = n (or even when k is close to n).
To get a decent bound for k close to n, we must use the randomness of Wk−1 and its indepen-

dence from vk. For simplicity, let k = n.
Condition on Wn−1 and fix a vector η ∈ Wn−1. If vn ∈ Wn−1, then we must have 〈η,vn〉 = 0.

Writing the co-ordinates of v areX1, . . . , Xn, this is the same as
∑n

i=1 ηiXi = 0. But the probability
12



of this event (conditional on η) is at most 10/
√
m where m is the number of non-zero co-ordinates

of η. Thus,

P{vn ∈Wn−1} ≤
10√
log n

+ P{η has at most
1
2

log n non-zero co-ordinates}.

But, writing m = 1
2 log n for simplicity,

P{η has at most
√

log n non-zero co-ordinates} ≤
(
n

m

)
.2m.(1− 2−m)n−1

by choosing the m non-zero co-ordinates out of n, choosing the signs of ηi on these non-zero co-
ordinates, and ensuring that none of the first n− 1 columns have the same set of signs as η (or else

it could not be orthogonal to η). Check that the last quantity is o(e−0.1
√
n).

We considered only the case k = n. Work through the argument and use the bounds

P{vk ∈Wk−1} ≤

2−k+1 for k ≤ n− log n,

e−c
√
n for n− log n < j ≤ n− 1.

Put together to get the bound pn ≤ C
(logn)1/10

. �

The bound for the singularity probability given by the above proof is a far cry from the conjec-

tured λn for any λ < 1
2 .

14. GENERALIZATION OF THE BASIC LITTLEWOOD-OFFORD INEQUALITY

As mentioned earlier, the anti-concentration inequalities we have seen extend to general ran-
dom variables (exact results such as optimality of (1, . . . , 1) and (1, 2, . . . , n) are special to the
Bernoulli case, of course). Here we state the results and in the next section we shall see a lemma
which is an essential ingredient in all proofs.

Theorem 9 (Kolmogorov-Rogozin inequality). Let X1, . . . , Xn be independent random variables and
let S = X1 + . . .+Xn. Then, for any t > 0 and any 0 < ti < t, i ≤ n, we have

QS(t) ≤ 100
t√∑n

i=1 t
2
i (1−QXi(ti))

.

Since the denominator is at most t
√
n, it is clear that the bound can never be better than 1/

√
n,

whatever be the random variables and however small t may be. In this sense, it is exactly like the
original Littlewood-Offord-Erdős inequality. This bound is often attained but not always. One
should only be careful to note that increasing ti all the way up to t may not be the best idea, since
1−QXi(ti) decreases.
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There are two approaches that I know of to the Kolmogorov-Rogozin inequality. The second
proof is due to Esséen and uses his inequality that we mention later. The first proof is due to Kol-

mogorov (with a loss of log n factors) and Rogozin (who found the inequality in its final form10).
Since we shall not present details of the proof, we would like to mention a neat idea due to Kol-
mogorov of writing any distribution as a mixture of symmetric Bernoullis and hence transferring
results for Bernoulli to general distributions. This isea, although simple, is quite useful and has

been used in many contexts11.

For every a ≤ b, let λa,b denote the measure that puts mass 1
2 at a and at b.

Claim 10. Let µ be any non-degenerate probability measure on R. Then, there exists a probability dis-

tribution ν on {(a, b) : a ≤ b} with the property that µ(·) =
∫

R2 1a≤bλa,b(·) dν(a, b) and such that

ν{(a, a) : a ∈ R} < 1.

In terms of random variables, what this says is that if we pick (A,B) from the measure ν and
conditional on (A,B) setX = A orX = B with equal probability, then the unconditional distribu-
tion of X is µ. The last condition says that ν puts a non-trivial mass on non-degenerate Bernoullis.

Proof. Let U ∼ Uniform[0, 1] and ξ ∼ Ber(1/2) be independent of each other. From basic prob-
ability class we know that there is an increasing, measurable function T : [0, 1] 7→ R such that
T (Z) ∼ µ (in fact T is a sort of inverse of the distribution function of µ). Define A = T (Z) and
B = T (−Z) and X = A if ξ = 0 and X = B if ξ = 1. Check that X ∼ µ. �

15. INVERSE LITTLEWOOD-OFFORD THEOREMS

Again we work with arbitrary distributions. Like in the result of Halász, the arithmetic structure
of vks is closely related to the concentration of Sv. Results are often stated by assuming that a
specific lower bound on the concentration function of Sv forces a minimal amount of arithmetic
structure on the vks. In this form, the results were named inverse Littlewood-Offord theorems by

Tao and Vu. The first such results were dure to Arak in the 1980s12, and more recently Tao and
Vu and Rudelson and Vershynin. We just present one result in the form stated by Rudelson and

Vershynin and simplified by Friedland and Sodin13. The LCD measure of arithmetic structure:

10Rogozin, B. A., On the increase of dispersion of sums of independent random variables, Teor. Verojatnost. i Primenen 6
1961 106-108.

11For example, Aizenman, Michael; Germinet, Franois; Klein, Abel; Warzel, Simone, On Bernoulli decompositions for
random variables, concentration bounds, and spectral localization, Probab. Theory Related Fields 143 (2009), no. 1-2, 219238.

12Arak’s results appear to be unknown even to most experts. In recent preprints of Eliseeva-Götze-Zaitsev, the
contributions of Arak as well as their relationship to the more recently published inverse Littlewood-Offord theorems
are explained.

13On the webpages of Rudelson and of Vershynin, one can find a great many interesting papers and surveys and
lecture slides on this topic. The form presented here is taken from: Friedland, Omer; Sodin, Sasha, Bounds on the
concentration function in terms of the Diophantine approximation, C. R. Math. Acad. Sci. Paris 345 (2007), no. 9, 513-518.
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Fix a parameter α > 0 (usually taken to be c
√
n for a small constant c). For a vector v ∈ Rn, define

Lcdα(v) := min

{
θ >

1
‖v‖

:
n∑
k=1

‖θvk‖2 ≤ α2

}

Example 11. Let vk = 1 for all k. If 1√
n
≤ θ ≤ 1

2 , then
n∑
k=1

‖θvk‖2 = nθ2 ≥ 1. Hence Lcd√n(v) ≥ 1
2 .

Example 12. Let vk = k. We claim that Lcd√n(v) � n3/2. Suppose 1
n3/2 ≤ θ ≤ 1

2 .

Theorem 13 (Rudelson-Vershynin, Friedland-Sodin). LetXk be i.i.d. random variables withQX1(ε) ≤
1− pε. Let v = (v1, . . . , vn) ∈ Rn. Then,

QSv(ε) ≤ 10
pε ‖v‖ Lcdα(v)

+ 10.e−p
2
εα

2/10.

For simplicity, if p = QX1(0), then we may use p in place of pε and get

QSv(ε) ≤ C
{

1
‖v‖ Lcdα(v)

+ e−cα
2

}
for some constants C and c that may depend on p. In particular, on scales larger than 1/Lcdα(ε),
the random variable looks like a random variable with density.

16. CHARACTERISTIC FUNCTIONS AND CONCENTRATION

Fourier analysis is the standard tool to study sums of independent random variables. To go
beyond ±1 valued (or integer-valued) random variables, we cannot use Fourier series but Fourier
transform or characteristic function. Recall that if X is random variable, its characteristic function
if ϕX(λ) = E[eiλX ]. The following inequality (or similar ones) forms an essential step in almost all

proofs of anti-concentration14.

Lemma 14 (Esséen’s inequality). If X ∼ µ is a real-valued random variable with characteristic function

ψ, then QX(t) ≤ t
∫ 2π/t
−2π/t |ψ(λ)|dλ.

Proof. Let T = 2π/L and consider the probability density g(x) = T
π

sin2(Tx/2)
(Tx/2)2

with characteristic

function ω(λ) =
(

1− |λ|T
)

+
(easier to check this by Fourier inversion). If V has density g and is

independent of X , then X + V has characteristic function ψ(λ)ω(λ) and hence its density is given
by

h(x) =
∫ T

−T
ψ(λ)ω(λ)dλ ≤

∫ T

−T
|ψ(λ)|dλ.

14Esseen, C. G., On the Kolmogorov-Rogozin inequality for the concentration function, Z. Wahrscheinlichkeitstheorie und
Verw. Gebiete 5 1966, 210-216.
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But we can also use the convolution formula to write

h(a) = E[g(a−X)] ≥

[
min
|t|≤ 1

2
L
g(t)

]
P{|X − a| ≤ L/2}.

Since sinu/u is decreasing for u ∈ 1
2π, we get a lower bound of 4/π2L for the minimum on the

right side. Thus we arrive at QX(L) ≤ L
4π2

∫ 2π/L
−2π/L |ψ(λ)|dλ. �

The following exercise is a simple illustration of a use of Esséen’s inequality.

Exercise 15. Let Xk be i.i.d. with characteristic function e−|λ|
α

where 0 < α ≤ 2 (the distribution
of X1 is called the symmetric α-stable distribution). Let Sn := X1 + . . .+Xn be the random walk
with steps Xk. If α < 1, show that {Sn} is transient, i.e., |Sn| → ∞ a.s.

17. SOME QUESTIONS IN ANTI-CONCENTRATION

In the lecture I mentioned the problems of singularity of symmetric Bernoulli matrices, the prob-
lem of quadratic Littlewood-Offord, the relative anti-concentration problem and its application to
random polynomials, a permanental anti-concentration conjecture (Aaronson and Arkhipov) and
that anti-concentration inequalities are used in many places such as the localization problem for
random Schrodinger operator in one dimension when the potential is Bernoulli, smoothed anal-
ysis and the singularity question etc. These key words are presumably enough to find out more
and read about them. I shall not write them out in detail.
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