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1. ABOUT THE LECTURES

These are notes I made for a set of five lectures I gave from 4-8 January at the the ATM workshop
at IIT, Bombay. I thank the organizers Vivek Borkar, Suresh Kumar, Rajesh Sundaresan and also
Mallikarjuna Rao for inviting me and for organizing the workshop. Thanks also to the other
speakers for their lectures and the audience for paying attention to a topic that was certainly not
of central interest to most of them. I learned much of this material with the help of Sourav Sarkar
and Mokshay Madiman. It is a pleasure to acknowledge that.

These notes are not meant to be complete, either in the subject matter or the references given.
A lot is borrowed from the papers referred to in the footnotes. It is almost faithful to the lectures
given. Lecture 1 covered sections 2-6, Lecture 2 covered sections 7-9, Lectures 3 and 4 covered

sections 10-13 and Lecture 5 covered sections 14-17.

2. A MATTER OF SCALE

Let X, = &, +...+¢&, where &, are i.i.d. Ber(1/2) random variables'. If I,, is an interval centered
at E[X,,] = n/2, then P{X,, € I,} is close to 1 if the length of I,, is much larger than /n. If the
length is cy/n, then P{X,, € I,,} = ®(c) — ®(—c) can be any number between 0 and 1 depending on
the value of c. If the length of I, is constant, then the probability is only of order 1/,/n. Decreasing
the length further does not decrease the probability, since X,, has an atom of size 1/\/n at [n/2].
More precisely,

(1) P{X,, € [n+ say/n, in+ 1by/n]} = P{Z € [a,b]} + o(1). This is central limit behaviour.

2) P{|X, — in| > an} < Ce %" for a > 0 fixed. More generally, for 1 << a, < V/n,

we have P{|X,, — in| > a,/n} < Ce~n. The two inequalities are often called large
deviation and moderate deviation (or if you like, Bernstein, Chernoff, Hoeffding, etc.). These
are concentration inequalities (supremely important, but not the subject of these lectures).

B) P{X,, € [a,a+1)} < % for any a € R. To see this, observe that there is at most one integer
in the interval [a,a + 1) and the largest atom of X, has size (Ln72 j) 7. By an application

of Stirling’s formula, this quantity is bounded by 10/y/n. Such inequalities that give an
upper bound on the probability that can be packed into a short interval are called anti-

concentration inequalities.

Exercise 1. Show that (U:/l? J)Qin ~ ﬁ

Moral: Everything depends on the scale at which we look. At very large scales, the random

variable looks like a constant. At intermediate scales (of the order of the standard deviation), it

IWe say ¢ ~ Ber(1/2) if P{¢ =0} = P{¢ =1} = 1. Wesay € ~ Ber+(1/2) if P{¢{ = —1} = P{¢ = 1} = 1. Always,

Z denotes a standard Gaussian random variable, having density \/%e 2
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looks like a random variable with density. At shorter scales, the graininess of the distribution

starts showing itself. At that scale the random variable has “anti-concentration”.

3. LEVY’S CONCENTRATION FUNCTION

Definition 2. If X is a real-valued random variable, define its concentration function Qx(t) :=
sup,eg P{|X —a| < t} fort > 0. For an R%-valued random vector, we define Q x (t) := sup,cga P{[| X —
a|| <t} where ||z|| denotes the standard Euclidean norm.

Some simple observations. Unless otherwise stated, random variables are real-valued (usually
for simplicity only).

» 0 < Qx(t) <landt — Qx(¢) is increasing. Qx(0) is the size of the largest atom in the
distribution of X.

> Quax+b(t) =Qx(t/A) forany A > 0,b € Rand ¢t > 0.

» For random vectors, we could define concentration function using any other norm, for ex-
ample, ||z]|s = maxi<i<q|z;| and ||z|1 = > |zi|. More generally, we can define Qx for a
random variable X taking values in any normed linear space.

» If X and Y are independent, then Qx+y(t) < Qx(t) A Qy(t). To see this, observe that
P{{X—(a—Y)| <t | Y} < Qx(t) a.s.. Take expectations over X to get P{| X +Y —a| <t} < Qx(¢)
and supremum over a to get Qx41y(t) < Qx(t). This completes the proof (where did we use
independence?).

4. ANTI-CONCENTRATION INEQUALITIES

An upper bound for Qx(¢) is called an anti-concentration inequality. Sometimes, an upper
bound for P{|X —a| < t} for a specific a € R is also referred to as an anti-concentration inequality.
In general, such inequalities restrict the amount of probability that can be packed into a short
interval or a small ball. They assert that the distribution is not too concentrated.

In these lectures we shall consider the following examples.

» Let X; be independent (not necessarily identical) random variables and S,, = X; + ...+ X,,.
Most of our study will be on the concentration function of S,,.

» Let M, = (Xi;)ij<n where X;; are i.i.d. Bernoullis, P{X = 0} = § = P{X = 1}. Then
what is p,, = P{M,, is singular}? Clearly p,, > 27", since the first column can be zero (or the first

two columns can be equal).

Open problem: For any A > 3, show that p, < A" for large enough n.
History: Komlos: p, — 0. Kahn-Komlos-Szemeredi: p, < A" for some A < 1. Tao and Vu:
pn < (3/4)™. Bourgain, Vu and Wood: p,, < (1/+/2)" (all for large enough n).
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Bounding p,, can be interpreted as bounding the maximal atom of det(M,,), or of s,(M,), the
minimal singular value. The Littlewood-Offord problem (anti-concnetration for sums of indepen-
dent random variables) has a direct bearing on this problem, as we shall see’.

» If the entries have continuous distribution in the previous example, then M,, is non-singular
with probability 1. A better formulation of the problem that does not give unfair advantage to
continuous distributions is to ask for P{s, (M,) < €}, either for firxed € or for some € = ¢, — 0.

» Let X; beiid. Let Z, be the number of real zeros of the random polynomial Xy + Xt +
...+ X,t". Then E[Z,] < Cy\/n. Proving this requires one to use the anti-concentration inequality
for sums of independent random variables.

» In the previous problem, it is also true that E[Z,] < Cjylogn, but proving it requires anti-
concentration inequalities proved very recently and that lie beyond the scope of these lectures.
Towards the end, we shall mention this and other anti-concentration inequalities, mostly open.

5. LITTLEWOOD-OFFORD-ERDOS

Motivated by a problem in random polynomials, Littlewood and Offord® showed that for any

strictly positive v1,...,v, and any t € R, (let v = (v1,...,v,) and (v, x) = vix1 + ... + vp2p)

(1) #{x e {0,1}": (v,x) =t} < C.Q”.n_%.logn

and conjectured that the log n factor could be removed. This was proved spectacularly by Erdés®.
In our language, (1) has the following equivalent formulation.

Lemma 3 (Littlewood-Offord-Erd&s). Let X; be i.i.d. Ber(1/2) and let v; > 0 and let Sy, = v1 X1 +

oo+ vy Xy, Then, Qg, (0) < 2%(@7%) < %

Proof. We define a partial order on {0, 1}" by setting x < y if ; < y; for each i. An anti-chain is a
subset of {0, 1}" such no two distinct elements of which are comparable.

Sperner’s lemma: The maximal size of an anti-chain in the above poset is (\_nT/LQ | )

For any strictly positive v;s and any ¢ € R, the collection of x € {0,1}" such that ), v;z; = tisan
anti-chain. Therefore, by Sperner’s lemma such a set has at most ( Ln% J) elements. This completes

the proof of (1). [

Exercise 4. If v; are strictly positive real numbers, show that Q g(vmin) < Cn~1/2,

These things and many other things we have discussed here may be found in the survey article- Nguyen, Hoi H.;
Vu, Van H, Small ball probability, inverse theorems, and applications, Erds centennial, 409-463, Bolyai Soc. Math. Stud., 25,

Jnos Bolyai Math. Soc., Budapest, 2013.
SLittlewood, . E.; Offord, A. C. On the number of real roots of a random algebraic equation. III. Rec. Math. [Mat. Sbornik]
N.S. 12(54), (1943). 277-286.

“Erdés, P. On a lemma of Littlewood and Offord, Bull. Amer. Math. Soc. 51, (1945), 898-902.
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6. WHAT DID LITTLEWOOD AND OFFORD DO?

Given the strikingly beautiful, elementary and optimal proof of Erdés, the original Littlewood-
Offord proof of their weaker inequality is rarely mentioned. But it is a nice lesson in how to
approach a problem in analysis in three steps: (1) Consider the extreme cases, (2) Prove the the-
orem (usually by different methods) for each extreme case, (3) Break any case into extreme cases
and invoke the results.

Assume without loss of generality that v; < ... < v,. Also assume (with loss of generality),

that v; > 1 and give a bound for Q)g, (1) (or equivalently for Qs, (Umin)).

Extreme case 1: Suppose A < v; < 2A for all i for some 0 < A < oo. Then, v; X; are independent

random variables of comparable magnitude and the Berry-Esséen theorem gives

1 n
sup [P{Sy € [0,0] — P{onZ € [a,b]}[ < — > o}
a,b k=1

where 02 = v} + ... + v2. From this, it is easily deduced that Qg, (1) < %.

Extreme case 2: Suppose 1 < v; < %’02 < %’03 <...< Tl%lvn. In this case central limit behaviour is

actually false (because v, X, is as big as Sy ), in the sense that the right hand side of Berry-Esséen
theorem, o, 3 > v;z, is quite large. However, a much simpler argument shows that S, takes 2"
distinct values each with probability 27" and these values are separated by at least 1 (think of

binary expansion). Thus, Qg, (1) < 27"+

General case: Let k; = 1 and for j > 2, let k; be the first index (if any) such that Vg, < %vkj. This
gives us some indices ki, k2, ..., ky,. Let T = 27:1 vg; X, Then, Sy, =T + T' where T and T" are

independent. Therefore, by the second extreme case,
Qs, (1) < Qp(1) <27,

If m > log n, then this is smaller than 2/n which is is better than the bound 1/+/n that we are after.
Otherwise, m < log n and hence there is some 2 < j < m such that k; — kj_1 > n/logn. Note that

the v; for kj—1 < i < k; — 1 are all between A and 24 with A = v, _,. Hence if T; = Zfi;j_l v; X,

then again Sy, = T; + TJ’ where T; and T]’ are independent, and hence by the first extreme case,

1 Vlogn
Qs, (1) < Qr(1) <2 <2 :
N R ERREC
Putting everything together, we have proved the (sub-optimal) bound® of 37”)\/%". |

5Actually Littlewood and Offord got log n/+/n because they used a weaker precursor of Berry-Esséen theorem due
to Lyapunov.
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FIGURE 1. Hasse diagram of the poset P, (picture taken from Wikipedia)

7. SPERNER’S LEMMA: A SIMPLE AND A NOT SO SIMPLE PROOF

Let P, be the collection of all subsets of [rn] with the inclusion partial order. Sperner’s lemma is
the assertion that no anti-chain of P,, has more elements than the anti-chain consisting of subsets
of size [n/2].

It is usually helpful to visualize a poset through its Hasse diagram. For P, it may be described
as follows: Let L, be the collection of subsets with k elements, for 0 < k < n. We refer to L;, as the
kthlayer of P,,. If A € L, and B € Ly, then A < B if and only if B can be got from A by adding
one element. If we define the order like this and extend it by transitivity, we get back the poset P,
with the inclusion order. The Hasse diagram is a graph with elements of Lj; written above the
elements of L, and with an edge from A € Ly to B € Ly, if and only if A < B. See Figure 7.

First we present what may be the shortest proof of Sperner’s lemma (I got this way of phrasing
it from Mokshay Madiman).

Katona’s proof of Sperner’s lemma. On the Hasse diagram of the poset P, start from 0...0 at the
bottom and do an up-ward random walk till it hits 1...1 at the top. This means that at each step,
one of the neighbours in the layer immediately above is chosen.

If {A;,..., A} is an anti-chain, let p; be the probability of the event that the random walk

passes through Aj. The anti-chain property implies that these events are pairwise disjoint and
hence %, pr. < 1. By symmetry it is also clear that p, = 1/ (j4,) which is at least 1/(},,))-

Putting both these together, we get £ < (|, ). [

Katona'’s proof of Sperner’s lemma. For each x, let Sk be the collection of all permutations of [n] such

that each 7 with x#; = 1 precedes each j with z; = 0. If xM, . ,x(f)} is an anti-chain, then the

sets S, (), 7 < { are pairwise disjoint, and hence their cardinalities sum to at most n!. But if
6
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x has k ones, then Sy has cardinality k!(n — k)! which is minimized when k£ = |n/2|. Thus,
nl > (([n/2])!(n — [n/2])! which is the same as £ < (|,,},)- u

Actually the above proof showed a stronger inequality known as the LYM (or LYMB inequality).

If {Ay,..., As} is an anti-chain in P, show that Zi:l ﬁ > 1 (exercise).

[ Al
Now we give what may be the least straightforward proof of Sperner’s lemma. Its advantage

is that it generalizes to several other posets where no other method is known. This is borrowed

from a beautiful paper of Proctor®.
Stanley-Proctor proof of Sperner’s lemma. For simplicity of notation, let M = |n/2].

Step -1: Sperner’s lemma is implied if we show that for each k& < M, there is an injective map
Iy, : Ly — Ly such that A < I (A) for each A. By symmetry, this implies that for £ > M, there is
a surjective map Iy, : Ly +— L.

Reason: Draw a picture of the poset with layers one above another and the maps I, indicated by
arrows upwards. Stare at it till you see that the whole poset has been broken into disjoint chains

each of which passes through exactly one element of the middle layer. Hence the proof.

Step -2: Suppose that for each £ < M we find an Ly x Ly matrix X, with full column rank and
such that the the (B, A) entry of X}, is positive if and only if A < B. Then the injective map I, of
Step-1 exists.

Reason: X, has full column rank and hence there exists an L, x Lj sub-matrix of X; whose
determinant is not zero. Expand the determinant as a sum over permutations to see that at least

one of these summands must be non-zero. This permutation gives the injective mapping I;,.

Step -3: Define X}, as the Ly x L; matrix with the (B, A) entry equal to 1 is A < B and 0
otherwise. Then X}, has full column rank.
Reason: For k < M, check that X X; — XX}, is the scalar matrix 017, where 0, = 2k — n.

Hence, X; must have full column rank. [ |

8. EXTENSIONS OF LITTLEWOOD-OFFORD

One can try to extend Littlewood-Offord inequality in different ways. One is to take more
general distributions in place of Bernoullis. But more interesting is the relationship between the
coefficients vy, . .., v, and the largest atom of S,,. We stay with Bernoullis for now. If v} = 1 for all

i, then the Littlewood-Offord-Erdés lemma may be restated as follows:

®Proctor, Robert A. Solution of two difficult combinatorial problems with linear algebra, Amer. Math. Monthly, 89 (1982),
no. 10, 721734. Richard Stanley’s book on Algebraic combinatorics explains all these things in detail. After the lectures,

I came to know of Zeilberger’s very nice paper.
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Littlewood-Offord-Erd6s lemma: If v; are strictly positive, then, (1) Qs, (0) < Qg . (0) and
2) Qs,. (0) < 10/ /7.

Next suppose we restrict v; to be distinct. Then, how large can Qg, (0) be? To get a guess, let us
take X; tobeii.d. N(0,1) and investigate Qg, (1) (since there are no atoms anyway). Suppose that
v; satisfy v;11 — v; > 1 for all ¢ (without such a condition, we can replace v; by ev; and get Qs (1)

to be as close to 1 as we want by making e small!).

Exercise 5. Assume that X; are i.i.d. N(0,1). If v; are positive and v;1; —v; > 1 foralli <n —1,

then show that Q. (1) < 10.n73/2.

This suggests that even for X; ~ Ber(1/2), i.i.d., we must have Qg, (0) < n~3/2 for distinct v;s.
This was conjectured by Erdés and Offord but it was their turn to lose a log n factor! The optimal
inequality was proved by Sarkozy and Szemeredi. It was shown by Stanley that the optimal choice

ofv;8is1,2,...,n.

9. STANLEY’'S THEOREM

Theorem 6. Let X; be i.i.d. Ber(1/2) and let v; be distinct positive real numbers. Let v* = (1,2,...,n).
Then, (1) Qs, (0) < Qs,.(0) and (2) Qg,. (0) < 10.n73/2,

We shall leave the second part as an exercise later. The proof of the first part is an absolute gem!
We present the proof in the beautifully simplified form given by Proctor (the paper was referred

to earlier).

Step 1: A new poset. Let P, = {0,1}" and define the level of x € P, tobe > | ix;. Levels range
over all integers from 0 to N = n(n + 1)/2. Let L be the set of all x for whose level is &, for
0<EkE<N.PForxe Lpandy € Ly, define x <y if you can get y from x by moving a 1 to right
or by converting the left-most bit of x from 0 to 1. For example, with n = 5, the string 01101 € L1g
and the only elements of L1, that are above 01101 are 01011 and 11101.

By extending the partial order transitively, we get a poset structure on P,,. Compared to the

earlier partial order, fewer things are comparable in this poset.

Step 2: We claim that the first part of Stanley’s theorem is equivalent to the statement that no
anti-chain in P, is larger than L /o).

To prove this, suppose vy, ..., v, are distinct positive numbers and ¢t € R. If x € Ly, y € Ly
and x < y, then (v,x) is strictly smaller than (v,x) (why?). Therefore, the set of x such that
(v,x) =t forms an anti-chain in P,,. Thus, if we prove that L|n/2), then is follows that

#{x: (v, x) =1} < #{x: (vix) = [N/2)}

If we divide both sides by 2" and maximize over ¢t we get Qs, (0) < Qg . (0).
8



With these two steps, the problem is reduced to finding the maximal size of an anti-chain in the
poset P,,. For simplicity of presentation, we give the proof for a modified poset defined as follows:

Let0 < ¢ < nandletP,, = {x € {0,1}": 3", z; = ¢}. The levels in P, , range from
Ny =142+ ...+ /¢ (achieved when all 1s are to the left) to No = (n — £+ 1) 4+ ... + n (achieved
when all 1s are to the right). On P, ,, define an order in exactly the same way as in P,. For
example, in 01101 € P53 has level 10 but the only element above it in L1y is 01011 (in general,
cannot add a 1 from the left because that would take x out of P, /).

Claim: The middle layer Lj; where M = |(N; + N»)/2| is a maximal anti-chain in P,, o.

Step -1: The claim will be proved if we show that for £ < M, there is an injective map I, : Lj —
Lj41 such that Ij(x) > x for each x. Then by symmetry, for k£ > M, there is an injective map from
Ly into Ly such that I} (x) < x.

Reason: Given these maps Ij, the poset can be decomposed into chains, each of which passes

through the middle layer.

Step -2: The previous step will be achieved if for each k¥ < M we find an L;; x Lj matrix X
such that the (y,x) entry of X, is positive if and only if x < y.

Reason: By injectivity, there is an Lj x Lj submatrix of X} with non-zero determinant. Expand
this determinant over permutations and note that at least one of the summands must be non-zero.

The corresponding permutation gives the injective map 1.

Step -3: Define X}, by setting the (y,x) entry to be \/r(n —r) if y = x + ;11 — e, for some
1 <r <n—1. Then, X} is injective for k < M.

Reason: X1 X;_ | — XX} isan Ly x L; matrix that is in fact equal to the scalar matrix 0,17,
where 6, = 2(k — M) (a straightforward calculation). Thus X} X}, = X1 X} | + 0,11, is strictly
positive definite for £ < M. Thus X} must have full column rank if &£ < M. [ |

10. FURTHER EXTENSIONS: HALASZ’S THEOREM

The more general idea coming from Littlewood-Offord and its extension by Sarkozy-Szemeredi
and Stanley is that the more the restriction on v;s, the smaller the smaller the atoms of S,. More
precisely, it is the arithmetic structure of v;s that determines how concentrated Sy can be. Halész

proved such a theorem’. We give a restricted version of his theorem where v; are all assumed to
be integers and X; are Ber (1). Later we shall see theorems even more powerful than Haldsz’s

full theorem.

Theorem 7 (Halasz). Suppose v, ..., vy, are non-zero integers. For k > 1, let Ry, be the number of

solutions to the equation e v;, + ... + €, = 00ver 1 <y, ..., ig < nande;j € {—1,1}. Let X; be

"Halasz, G., Estimates for the concentration function of combinatorial number theory and probability, Period. Math. Hungar.
8 (1977), no. 3-4, 197-211.
9



i.id. Bery(1/2)andlet Sy = v1 X1 + ...+ v, X,,. Then,

@s.(0) < Ciryir

Here are some examples to illustrate the power of the theorem.

» Suppose v; are any non-zero integers. Then, R, < n?*2F for any k. Thus we get the
Littlewood-Offord bound Qg, (0) < C1/+/n (without sharp constants, but we don’t care anymore).

» Restrict v; to be distinct integers. Take £ = 1 and observe that R, < 2n (we must take i3 = i1
and e = —¢1). Hence, Qg, (0) < C1n~3/2, the Sarkozy-Szemeredi-Stanley bound.

» If we further restrict v;s so that v; +v; # vy, +ve unless {i, j} = {k, (}, then Ry < Cn? (why?)
and we get Qg, (0) < Cyn=5/2,

» If all triple sums v; 4+ v; + vy, for i < j < k are distinct, then R3 < Cn? and we get a bound

of n~7/2 for the largest atom. So on and so forth...

Exercise 8. Let vy = k? (if convenient, take v, = k(k + 1) or any quadratic you prefer). Get a tight
bound for Rj.

11. THE MOST IMPORTANT IDENTITY IN ANALYSIS

Fourier was perhaps the first to realize that
/2
/ >R do = 5o(k)  for k € Z.
1/2

This identity allows us to write integer identities in terms of integrals and we shall use it to prove
Halasz’s theorem. As a simple illustration, first we sketch an estimate that is very close to what

we needed in the second part of Stanley’s theorem.

Claim: If X; are i.i.d. Bery(1/2), then P{X; +2X5 4 ... 4+ nX, = 0} < 10.n3/2.

Proof. Let T'= 1X; + 2X5 + ... + nX,. Using the identity of Fourier and taking expectations, we

get (henceforth I = [—%, %])

P{T =0} = / 20T ] dG—/HE [e2m 0k Xk dQ—/H s(2m0k)
I _

k=1

We claim that only the integral in a neighbourhood of length 1/n around 0 actually contributes.
For instance, if § = 2/n, then about half of the cos(27k6) values are less than 0.9 and hence the
integrand is at most 0.9", a very small quantity. One needs to fill in some details, but with this, we

come to
1/m M
P{T = 0} — / [T cos(2rnk) db + O(e=<").
1n 2y
10



For small u, we have cos(u) ~ 1 — fu® ~ e 2%”_ If we make that approximation, then we get the

above integral to be

1/n n
/ exp{—% Z 472 K20}do = /
k=1

—1/n _ -1/

1/n

exp{—%w2n392}d9.

If we multiply this by cn®/2, we get the integral of the N (0, n~3) density integrated over an interval
of length 1/n around the mean. That integral is bounded by 1 (since it is a probability). Thus,

P{T =0} <n%> |

12. FOURIER ANALYSIS TO THE RESCUE: A PROOF OF HALASZ’S THEOREM

The proof of Halész’s theorem used analysis, namely the Fourier identity®. T am not aware of
any purely combinatorial proof (even in the restricted setting we have of Bernoulli variables and
integer v;s).

Write I = [—%, %] henceforth in this section. For S, = v1 X1 + ... + v, X,, with v; € Z (also
remember that X; takes values +1), we deduce that for ¢t € Z,

n n
P{Sv _ t} - |:/ eQTFi(Sv—t)edO] < ‘e—itG / H E[e2mkak6]d9) < / H |COS(27TUk9)|d9.
I Th=1 Th=1
Since cos(27f) vanishes exactly when 6 is an integer, we can use the cosine function to measure
the distance of a number from the closest integer as follows (both inequalities are elementary and

left as exercise).

11
(2) 1—27%0% < cos(2m0) < e 8% forg e [—2, 2] ,
Hence | cos(2mvi8)| < e~ 8Isfl* where ||z|| := min{|z — n| : n € Z} (it is not a norm!). Thus,

/H|cos(27rvk0)|d9:/ |Ay|8e 8t dt
I 0

where A; = {0 € I: Y 7_, |lvgf]|? < t} and |A4;] is the Lebesgue measure of A4;. Since |A;| < 1 for

all ¢, we can write
n/471'2 )
Qs.(0) < / A 8eBtdt 4 e/,
0

Now we want to bound |A;| for t < n/4x?. If0; € A, then 01 + ... + 0, € A, by triangle
inequality. Using the Cauchy-Davenport’ inequality |4 + A| > 2|A| we get |A;| < L14,,2]. In

8This proof is taken piecewise and slightly edited from the book- Tao, Terence; Vu, Van H., Additive combinatorics,
Cambridge Studies in Advanced Mathematics, 105, Cambridge University Press, Cambridge, 2010.
9Proof: Assume A and B are compact and translate them so that sup A = inf B = 0. Then A + B O AU B while A
and B are almost disjoint. Hence |A + B| > |A| + |B].
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particular, for any ¢ < ;5 we take m = L2;/\E/ZJ and get |4;| < 100%|An J4x2|- It remains to bound

the latter.
Ift = /% and 0 € A; then by the inequality cos(2rx) > 1—27%||z||* we see that }}_; cos(2mui6) >
4. Thus setting B, = {0 € I : Y7;_; cos(2mvif) > 5}, we have the bound |A,, /4,2| < |By|.
Putting everything together we get
n/4m?

QSV()§—|B*| / Vige Stdt + e/

=]

3) < 1000——

From assumptions on arithmetical structure of v we can get precise bounds on | B};| by computing

moments of Y, cos(2mvi0) and using Markov’s inequality.

n 2k n - oriv-g) |2F
/‘ Zcos(27rvj9)‘ do = / ‘ Z (e R L ) ‘ do
= 1=
2k
_ Z Z /627r192i—1611)]2’d9 - Z Z Leyuy, +.eanvsy, =0

ei=%1j1,...50.<n 1 €=%17j1,...jox <n

= Ry.

0? Ry + e~n/5,

1
n2k+ 3

Hence by Markov’s inequality |B};| < Rk%. The conclusion is that Qg, (0) <

13. SINGULARITY PROBABILITY OF THE BERNOULLI MATRIX

Recall the Bernoulli matrix M,, = (X ;)i j<n and p, = P{M,, is singular}. We use the Littlewood-
Offord lemma to show that p,, — 0 asn — cc.
Write M,, = [vi vo ...v,] and let W, = span{vy,..., v} with Wy = {0} be subspaces of R".

Then, considering the first k& for which v;, depends linearly on the previous columns, we get

n
pn =Y _ P{dim(W,_1) = k — 1 = dim(W},)}.
k=1

Fix k < n and suppose dim(Wj_1) = k— 1. Then we claim that IW},_; contains at most 2*~* distinct
vectors in {0, 1}". Hence, vj belongs to Wj,_; with a probability of at most 2¥~1~". Summing this
over k gives a bad bound since 2717 is very large when k = n (or even when k is close to n).

To get a decent bound for & close to n, we must use the randomness of Wj,_; and its indepen-
dence from vy,. For simplicity, let &k = n.

Condition on W,,_; and fix a vector n € W,,_;. If v, € W,,_4, then we must have (n,v,) = 0.

Writing the co-ordinates of v are X7, ..., X, thisis the same as > ;" | 7;X; = 0. But the probability
12



of this event (conditional on ) is at most 10/1/m where m is the number of non-zero co-ordinates

of n. Thus,

P{Vn S anl} <

10 1
+ P{n has at most - log n non-zero co-ordinates}.
Toan {n 5 108 }
But, writing m = % log n for simplicity,

P{n has at most y/log n non-zero co-ordinates} < (n) 2m (1 —27m)nt
m

by choosing the m non-zero co-ordinates out of n, choosing the signs of 7; on these non-zero co-

ordinates, and ensuring that none of the first n — 1 columns have the same set of signs as 7 (or else
it could not be orthogonal to 7). Check that the last quantity is o(e~%1vV").
We considered only the case £ = n. Work through the argument and use the bounds

27k+1 for k < mn —logn,

P{Vk € Wk—l} <
e~V forn—logn<j<n-—1.

Put together to get the bound p,, < W. [ |
The bound for the singularity probability given by the above proof is a far cry from the conjec-
tured A" for any A < 1.

14. GENERALIZATION OF THE BASIC LITTLEWOOD-OFFORD INEQUALITY

As mentioned earlier, the anti-concentration inequalities we have seen extend to general ran-
dom variables (exact results such as optimality of (1,...,1) and (1,2,...,n) are special to the
Bernoulli case, of course). Here we state the results and in the next section we shall see a lemma

which is an essential ingredient in all proofs.

Theorem 9 (Kolmogorov-Rogozin inequality). Let X1,..., X, be independent random variables and
let S =Xi+ ...+ X, Then, foranyt > 0and any 0 < t; < t, ¢ < n, we have

t

) <100 .
VI B0 - Qx, (1)

Since the denominator is at most t/n, it is clear that the bound can never be better than 1//n,
whatever be the random variables and however small ¢t may be. In this sense, it is exactly like the
original Littlewood-Offord-Erdés inequality. This bound is often attained but not always. One
should only be careful to note that increasing ¢; all the way up to ¢ may not be the best idea, since

1 — Qx, (t;) decreases.
13



There are two approaches that I know of to the Kolmogorov-Rogozin inequality. The second
proof is due to Esséen and uses his inequality that we mention later. The first proof is due to Kol-

mogorov (with a loss of logn factors) and Rogozin (who found the inequality in its final form').
Since we shall not present details of the proof, we would like to mention a neat idea due to Kol-
mogorov of writing any distribution as a mixture of symmetric Bernoullis and hence transferring

results for Bernoulli to general distributions. This isea, although simple, is quite useful and has
been used in many contexts'".

For every a < b, let A\, denote the measure that puts mass % at a and at b.

Claim 10. Let p be any non-degenerate probability measure on R. Then, there exists a probability dis-
tribution v on {(a,b) : a < b} with the property that u(-) = [po La<pAap(-) dv(a,b) and such that
v{(a,a):a € R} <1

In terms of random variables, what this says is that if we pick (A, B) from the measure v and
conditional on (A, B) set X = A or X = B with equal probability, then the unconditional distribu-

tion of X is p. The last condition says that v puts a non-trivial mass on non-degenerate Bernoullis.

Proof. Let U ~ Uniform|0, 1] and { ~ Ber(1/2) be independent of each other. From basic prob-
ability class we know that there is an increasing, measurable function 7" : [0, 1] — R such that
T(Z) ~ p (in fact T is a sort of inverse of the distribution function of 1). Define A = T(Z) and
B=T(-Z)and X = Aif¢ =0and X = Bif { = 1. Check that X ~ p. |

15. INVERSE LITTLEWOOD-OFFORD THEOREMS

Again we work with arbitrary distributions. Like in the result of Haldsz, the arithmetic structure
of vis is closely related to the concentration of Sy. Results are often stated by assuming that a
specific lower bound on the concentration function of Sy forces a minimal amount of arithmetic

structure on the v;s. In this form, the results were named inverse Littlewood-Offord theorems by

Tao and Vu. The first such results were dure to Arak in the 1980s'?, and more recently Tao and

Vu and Rudelson and Vershynin. We just present one result in the form stated by Rudelson and

Vershynin and simplified by Friedland and Sodin'®. The LCD measure of arithmetic structure:

1ORogozin, B. A., On the increase of dispersion of sums of independent random variables, Teor. Verojatnost. i Primenen 6
1961 106-108.

NEoy example, Aizenman, Michael; Germinet, Franois; Klein, Abel; Warzel, Simone, On Bernoulli decompositions for
random variables, concentration bounds, and spectral localization, Probab. Theory Related Fields 143 (2009), no. 1-2, 219238.

12Arak’s results appear to be unknown even to most experts. In recent preprints of Eliseeva-Gotze-Zaitsev, the
contributions of Arak as well as their relationship to the more recently published inverse Littlewood-Offord theorems

are explained.

130n the webpages of Rudelson and of Vershynin, one can find a great many interesting papers and surveys and
lecture slides on this topic. The form presented here is taken from: Friedland, Omer; Sodin, Sasha, Bounds on the
concentration function in terms of the Diophantine approximation, C. R. Math. Acad. Sci. Paris 345 (2007), no. 9, 513-518.
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Fix a parameter a > 0 (usually taken to be ¢y/n for a small constant c). For a vector v € R", define

n

Ledy (V) := min {0 > ||Vl|| : Z 16vg||* < 042}

k=1

L <o<

Example 11. Let vy, = 1 for all . If NG

< 3, then Z |0v||? = n6? > 1. Hence Led m(v) > 3.

Example 12. Let vy, = k. We claim that Led 5 (v) < = n®2. Suppose —/ <6<

M\»—A

Theorem 13 (Rudelson-Vershynin, Friedland-Sodin). Let X}, be i.i.d. random variables with Q) x, (¢) <
1—pe. Let v = (v1,...,v,) € R™ Then,

10

1 10. P10,
Pe ||Vl Leda(v)

Qs, (€) <

For simplicity, if p = Qx, (0), then we may use p in place of p. and get

1 e
092 e+

for some constants C' and ¢ that may depend on p. In particular, on scales larger than 1/Lcd, (),

the random variable looks like a random variable with density.

16. CHARACTERISTIC FUNCTIONS AND CONCENTRATION

Fourier analysis is the standard tool to study sums of independent random variables. To go
beyond +1 valued (or integer-valued) random variables, we cannot use Fourier series but Fourier
transform or characteristic function. Recall that if X is random variable, its characteristic function
if ox (\) = E[e!*¥]. The following inequality (or similar ones) forms an essential step in almost all

proofs of anti-concentration'.

Lemma 14 (Esséen’s inequality). If X ~ p is a real-valued random variable with characteristic function

W, then Qx (1) < t %1%, [w(N)|dA.
Proof. Let T = 27/L and consider the probability density g(z) = %% with characteristic

function w(\) = (1 - I%') (easier to check this by Fourier inversion). If V' has density g and is
+

independent of X, then X + V has characteristic function ¢ (A\)w(\) and hence its density is given

by
T T
- / P(\w(N)dA < / () [dA.
-7 -7

4Esseen, C. G., On the Kolmogorov-Rogozin inequality for the concentration function, Z. Wahrscheinlichkeitstheorie und
Verw. Gebiete 5 1966, 210-216.
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But we can also use the convolution formula to write

P{|X —a| < L/2}.

h(a) = Blg(a - X)] > [ﬁiﬁg(ﬂ

Since sinu/u is decreasing for u € %77, we get a lower bound of 4/7?L for the minimum on the

right side. Thus we arrive at Qx (L) < 2 f;/rfL |9 (N)|dA. [ |

The following exercise is a simple illustration of a use of Esséen’s inequality.

Exercise 15. Let X, be i.i.d. with characteristic function e~ where 0 < a < 2 (the distribution
of X is called the symmetric a-stable distribution). Let S,, := X1 + ... + X, be the random walk
with steps Xj. If o < 1, show that {S,, } is transient, i.e., |S,| — oo a.s.

17. SOME QUESTIONS IN ANTI-CONCENTRATION

In the lecture I mentioned the problems of singularity of symmetric Bernoulli matrices, the prob-
lem of quadratic Littlewood-Offord, the relative anti-concentration problem and its application to
random polynomials, a permanental anti-concentration conjecture (Aaronson and Arkhipov) and
that anti-concentration inequalities are used in many places such as the localization problem for
random Schrodinger operator in one dimension when the potential is Bernoulli, smoothed anal-
ysis and the singularity question etc. These key words are presumably enough to find out more
and read about them. I shall not write them out in detail.
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