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Abstract. In this paper, we study the homogenization of the steady state and evolution
Stokes equations with nonhomogeneous Dirichlet data on the boundary of the holes of a
porous media ., obtained from a domain (2 by removing a large number of holes of size €
{€ > 0, a small parameter}, periodically distributed with period £. In the homogenization
process, we abtain a well defined system of equations involving both the ‘slow’ variable  and
the ‘fast’ variable y = £. We also derive the Darcy’s law which contains an extra term and
this additional term is the contribution due to the non-homogeneous data. '

1. Introduction and the problem to be studied. We consider the steady
state and evolution Stokes equation in a porous domain 2, which is obtained ftom a
domain Q by removing a large number of holes of size € (a small positive parameter)
periodically distributed in the domain with period e. We study the homogenization
of the Stokes system with non-homogeneous Dirichlet condition on the boundary of
the holes. |

First we introduce the standard notations and then formulate the problemsto be
treated in this paper. . \

Notations. Let ¥ = {0,1)", N > 2, and T be an open set strictly contained in
Y with smooth boundary § (the boundary S is a smooth manifold of dimension
N-1and ¥Y* =Y \T. Let k € Z¥, where Z is the set of all integers, and let

Yo=Y+Ek T =T+k, Y;:=Y‘+k, S =85+k=0T..

Let QO ¢ RY be a bounded domain with smooth boundary . Let £ > 0 be a small
positive parameter. Consider the index sets

L={keZ":e¥, cQ} andJ.={keZ¥:cYinT #0}.

Looseijr speaking, {¢T}, k € I.} are interior holes and {¢T} : k € J,} are boundary
holes and then define the perforations in £2 as follows: |

T.= | elk, S.=0T.=|] 8(eTw).
kel, kel
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74 A.K. NANDAKUMAR

Now consider the perforated domain {2, given by
Q. = O\T,.

More precisely, {2, is the set obtained from § by removing all holes of size £ from
those cells €Yy completely contained in . Note that we do not remove the holes
intersecting the boundary I'. Then

Q=] | (7:n0), 80.=TUS..
kel ked, )

The: domain {2, can be thought of as the part occupied by the fluid.

We also fix up notations for defining the evolution Stokes equations. Let T > 0 be
any positive number. Let Q7 = (2 x (0,T) and Q.7 = Q. x (0,7), T =T x (0,T),
SsT = S,.; X (0, T).

In addition to the standard Sobolev spaces I?, H!, H 1 ete., we also consider
the following spaces: H(Y) (resp. C,(Y)) are H'(Y) (resp. C(Y), the space
of all continuous functlons) functions which are ¥-periodic and L2(Y) is the class
of all functions in L7, (R¥) which are Y-periodic. For any Banach space X and
for any domain D, define the spaces L*(D, X), L>=(D, X) and C(D, X) as the set
of all functions f : D — X which are square integrable, essentially bounded and
continuous, respectively, and which are Banach spaces under the obvious norms.
We denote by | - {|sc,2,0 the norm given by

111 = ess. sup [ 17(z, )" da.
ogi<T Jo

Also, let _Cc(ﬁ) be the set of all continuous functions with compact support in Q
and ‘Cc(§2, Cp(Y')) be the functions 1 :  — C,(Y) with continuous and compact
support in © and taking values in C,(¥).

Problem formulation. First, we consider the steady Stokes equation. We look
for the velocity v; = {(ver,---ven) € H (%)Y and the pressure p. € L*(2.)/R
satisfying the equations
1) _Avs'!'vpe:.fz i]le,
ii) divee=0 inQ,,
(1.1)
i) ve=0 onT,
iv) v,=¢° onS..

Here g° is given in the following way. Let g € H'(Y)¥ and g be Y-periodic and
satisfy the compatibility condition

/Sg- v='0, (1.2a)

where v is the outward unit normal to §. Then we extend g to all of RY in a
periodic manner and define g*(z) = g (£). The sequence {f.} is from L?(f2) such
that

e2f, = f in L}(Q) strong. (1.2b})
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For the variational formulation and the existence of solutions, one can refer to
Temam [9]. We also introduce the evolution Stokes equation. We look for v.(z,%) =
{veyy--- 1 Ve ) and pe(x,?) such that

Hv, .

i) 3t Ave + Vp, = fe  in .7,
iiy dive, =0 in .7,
iy v.=0 onTy, (13)

iv) v,=¢° onS.r,
and the initial condition

v) ve{z,0) = v{z) in Q..

Here g: Y x (0,7) — R and is Y-periodic with the compatibility condition
/ g(-,tlvds =0 fora.e. t €(0,T). (1;4a}
]

We also assume g is smooth; ie., g, %f- € C{[0,T],L (Y)) and define g*(x,1) =
g(&,t). Also, {f.} is a sequence from L*({27) such that

e*f. — § in I*(27) strong. (1.4b)

The initial data v, satisfies
divev, =0 in (2 (1.4c)

Qur alm in this paper is to study the behaviour of the solutions of the problem
(1.1) and (1.3) as ¢ — 0. More precisely, we study the asymptotic behaviour of
¢, and p, as ¢ — (. We use the methods from the theory of homogenization: for
studying the problems (1.1) and (1.3). The homogenization process for the Stokes
equation with zero Dirichlet condition on the boundary (i.e., the problem (1.1) with
g = 0) has been studied by Tartar [8] and the proof of convergence can be seen in [8]
(see also [7]). The same problem with zero Dirichlet condition on the boundary of
the holes, but with non-homogeneous data on the outerboundary T of {2, has been
studied by Mikelic [4], Mikelic-Aganovic [5] and the proof is essentially the same
as in [8]. Later, we compare our results with the results from [8], [4] and [5]. See
Remark 2.1 in §2.

The first step in our problem is that we have to transform the problem (1.1) to
another Stokes system in {u.,p.) in which the solution u, will satisfy the homo-
geneous Dirichlet condition on the boundary of the holes. This can be achieved
using a lemma (See Lemma 3.4) which we will be proving in §3, and this lemma is
the main content of §3, in addition to a few prelimmary lemmas. After this trans-
formation, we study the behaviour of the solutions of the transformed problemn as
¢ — 0. Using a multi-scale expansion for u, involving both the slow variable =
and the fast variable y = £, one can obtain a well defined set of equations forithe
first term u,{z,y). This system admits a unique solution. The interesting aspect
of our analysis is that we obtain the system satisfied by u, not only via the formal
asymptotic expansion, but also in a rigorous way (see Remark 2.2). We use certain
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convergence results given by Nguetseng [6] to achieve this. We also show that the
weak lmit u(x) of u.(x) is the averaged value of u,(z,y) with respect to y. So we
can obtain the weak limit without the apriori knowledge of any test functions, which
is the main ingredient in the energy method. Finally, we derive the Darcy’s law
using the test functions and the system satisfied by u,. The Darcy’s law contains
an éxtra term which is the contribution due to the non-homogeneous data.

In §4, we transform the problem (1.1), and §5 is devoted to study the homoge-
nization process. In the remaining Sections 6 and 7, we study the evolution case.

Before completing this introduction, we cite few references regarding the theory
of homogenization. The general references are the books by Bensoussan-Lions-
Papanicolaou [2], Attouch [1], Sanchez-Palencia [7], J.L. Liouns [3] etc. For more
references, one can refer to any one of these books.

2. Main results. In this section, we present the main results of this paper.
First, we define the following problems.

Let e, be the k™ unit vector in the canonical basis of R and v*, ¢* be the
unique solution of the following problem:

i) —A 4V =¢ inY*
i) dive*=0 inY* v*=0on$§ (2.1)
iif) o*,¢* are Y-periodic.
Now put
K= [ @y (22)
The problem {2.1) has a unique solution such that

””kllyl(y-) < Cand "‘Ik”p(y.} <C. (2.3)

The matrix [K;;] is symmetric and positive definite. For these results, the reader
can refer to [7].

Now, we define a system in the domain @ x Y*. Let v, = vo(z,y), p = p(2),
p1 = pi(z,y) be the unique solution of the following system:

i) —Apw,+Vyp1+Vep=f mOxY*
it) v,,p; are Y-periodic, v,=¢ on §

i) divyuo=0 ImQxY* div, /1.“ vo(z,y) =0 in Q, (2.4)

iv) vx-/ vo(x,y)dy=—vz-/(g-yy)yds on I'.
Y 8

Here v,, vy, are, respectively, the outward umnit normal fo I' and S. The non-
homogeneous terms f and g are given by (1.2).

The above problem (2.4) has a unique solution v,, po, p1 (P, is unique up to an
additive constant and p; is unique upto an additive function of z). The existence
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and uniqueness of the problem (2.4) with homogeneous boundary data, i.e; with
g = 0, has been studied in Lions [3]. Fl-om this, one can immediately prove the
umqueness of our problem (2.4) because if v} and v? are two solutions of (2. 4), then
vl - vo is the unique solution of the problem (2. 4) with f = 0, ¢ = 0 and, hence,
vl — 2 = 0. See the remark 5.1 for the existence result. i

Now, we are in a position to state the main results. .

Theorem 2.1. Let v,, p. be the solution of the system (1.1). Then there exist
extensions i, p, of v., p., respectively, such that

i, - v(z) in L*(Q) weak, | (2.5)
e%p, = p{x) in L2()/R strong, 1 (2.6)
v(z) = j;_- vo{z,y) dy + ./S (g-wy)yds. 27

Here v, and p are given by the system {2.4)

Theorem 2.2. Let v and p be as in Theorem 2.1. Then v and p are given by the
unique solution of the following system:

i} dive=0 inQ !
i) v=K(f-Vp)+c inQ (2.8)
i) v-v,=0 onl.

Here K = [K,j] is the matrix given by (2.2) and c is the contant vector give.ti: by

'Uk
ck=/S(g-g—%—(g-vy)q’“)+/S(g-vy)yk (2.9)

System (2.8) has a unique solution since [Kj;;] is a symmetric positive definite

matrix. The system (2.8) is referred to as Darcy’s law. i is the normal derwatwe

at 8.
We also state the main theorem for the evolution Stokes equation.

Theorem 2.3. Let v, and p, be the solution of the system (1.3). Then there exist
extensions U, and p. of v and p,, respectively, such that

i) . —v inL?(0r) weak,
(2.10)
i) &p.—p inL?(0,T,LHQ)) weak
and u, p is the unique solution of the following system:
| i) dive=0 inQr
i) v=K(f-Vp)+8(t) mQr (2.11)
i) v-vz=0 orl, aetel0,T] |

Here 3(t)} is the vector given by

k
Br(t) = [S (s- 3% —g-vyd) + /S (g-vy) ve (2.12)
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The proof of these results will be presented in §5. As a last part of this section,
we make few remarks. :

Remark 2.1. The problem (1.1) with homogeneous boundary data (g = 0) has
been studied by Tartar [8] and the weak limit is the solution of the system (2.8},
but with C' = (. Similarly the problem (1.1) with non-homogeneous data on the
outer' boundary T (zero condition on the holes) has also been studied by Mikelic [4],
Mikelic-Aganovic [5] and the resulting system is the same as above. In this case,
boundary value of - » on I' is non-homogeneous, but without the extra term C in
the eguation (2.8, ii). In our case, the extra term €' is the contribution due to the
homogeneous boundary data.

Remark 2.2. Applying the two scale multi expansion for v, and comparing the
terms, at least formally, it is possible to obtain the system (2.4). Also, Theorem 2.2
can be proved using the energy method with the help of the test functions v*, ¢*
given by (2.1). But in this paper, we prove Theorem 2.1 and then derive Theorem
2.2 as a corollary of Theorem 2.1. As far as our problem is concerned, tliere is not
much difference in either way of proving the result because it leads to the same
results. The motivation behind doing this is that we can derive the system (2.4)
(i.e., the system satisfied by the first term of the asymptotic expansion) without
the apriori knowledge of the test functions and the weak limit v can be obtained as
the average of the solution v, with respect to y. Perhaps, it may be useful to study
other problems when there is no apriori knowledge of test functions to be used.

A. Steady state Stokes equation.

3. Preliminary lemmas. In this section, we state and prove the crucial lemma
whicli is used to transform the problem (1.1) to a problem with homogeneous con-
dition on the boundary. Before that, we recall few lemmas by Tartar ([8], [7]) which
we use to extend the pressure p. to all of (1.

Lemma 3.1 (Tartar [8]). The constant of the Poincaré-Friedrich’s inequality in §2,
is of order €2; i.e., there exists constant C independent of £ such that

fﬂ luf2 < Ce? /9 IVul?, Vue H(QL). (3.1)

Lemma 3.2 (Tartar [8]). There exists an operator R: H'(Y) — H(Y™*) such that
i) Rw=w in a neighbourhood of Y,
iy Rw=0 ons8,
i} w=0 ooS=>Rw=w inY", (3.2)
iv) divw=0 inY=divRw=0 inY"
V) NRullm ey < Cllwllmy, Ywe H(Y).
Now, for w € H(Q), define w*(y) = wiey) if y € Yi, k € I, and define R, as
follows:
(Ruw®)(2) ifxeeYi, kel
w, fzeeY,, k€.

(Rew) (a) = {

Then R, satisfies the following.
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Lemma 3.3 (Tartar [8]). There exists an operator R, : H1(R}) — H1(€). such
that
i)y w=0o0n8.= Rw=uw in (,,
i) divw=0inQ=divR,w=01in%,,
i) | Rewllzaga,) < C (lollzsm) + el Vallza) , Voo € Hy(9), (33)

X 1
v) NV (Bl aga,) < CENwl 2@ + 1 Vell@), Yo e Ho(S),
where C is a constant independent of .

Now, we state and prove the crucial lemma. Using this result, we transfer our
problem (1.1) to a problem with homogeneous boundary condition on the holes.

Lemma 3.4. There exists an operator ¢ : Hy(Y'} = H} (Y} such that
i) - Qw =0 in a neighbourhood of 3Y, neighbourhood being independent of w,
i) Quw =w in a neighbourhood of T, neighbourhood being independent olf W,
i) divw=0inY =divQw=0inY,
i) | Qulla:ry < Cllwll gy, Yw € Hy(Y). i(3 9

Proof: Consider two smooth non intersecting hyper-surfaces v and v, in ¥* such
that ~y2 contains ; which in turn contains S. Let A; be the region between 4 and
8 and Ay be the region between ; and e. Let ¥** =Y\ (TUZl U A,). 'Take
any w € le (Y). Let v and g be the unique solution of the following problem:

—Vo+Ag=—-Aw in A,

dive= divw+ L divw in A, (3.5)
|A2| Ve

Ul“h = w%‘)’u ”!Tu =0

Here |A;| =volume of A;. The problem (3.5) has a unique solution.

We express v in the form v = o + 8 + © where «, 3, ¢ are defined as follows.
First, we choose a € H'(A43)" such that ||o] g1¢a;) < Cllw| gy and ey, = wiy,
and oy, = 0 which exists by standard trace properties.

Now, define 8 as the solution of

i) djvﬁ=~diva+divw+|—;—| divw= F(y) in A, 36)
a Yo .
i) B € Hy(A2)" and [iB]la1(an < ClIF||racas)-

The problem (3.6) has a solution since the compatibility condition A, Fly)dy=10
is satisfied. For

F(y)dy:—/ a-v+ wev+ (L div w)|A2]
S Ag 7Yz Y1y |A3| Yy

=—/ w-v+ w-v+f w-v+f w-(—v)=0.
T ! Yz Yz
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Now, # = v — o — [ satisfies
—At+Vg=-A{w—a—8) in 4,
divi =0 in Aj, (3.7
7€ HL(Ap).

This has a unique solution ¥, ¢ and satisfies |[&|| g1(4,) < C|lw| z2(v) and, hence,

there is a unique solution v for the problem (3.6). Obviously, if div w = 0 then div
v =0. Now, we define @ as follows:

w(y) fyeTUA
(Qu)(y) =4 v(y) ifye€ A (3.8)
0 fyet*
for all w € HL(Y). Then Q satisfies (3.4) and the proof of Lemma 3.4 is complete.

Suppose {4} is a sequence from H(Q) and ¥. — ¥ in L?(Q) weak, then, in
general, we cannot conclude anything about the value of 1 on the boundary I' of
Q. But if div ), = 0, then we have the following result which is trivial.

Lemma 3.5. Let {y):} be a family from H}() such that div ¢ = 0 in Q@ and
suppose that ¥ — 1 in L?(?) weak. Then ¢-v =0o0n .

We state another lemma from a recent paper by G. Nguetseng (see Theorem 2 in
{6]) which we use to obtain the limijt equation in both variables = and y. Roughly
speaking, it says that weak limit in L?(£2) of any sequence u, is the weak limit of a
sequence of the form u, {z, £) for some u, = u,(z,y).

Lemma 3.6 (Nguetseng [6]). Let {u.} be a sequence in L2(§}). Suppose that there
exists a constant C' > 0 such that

"“z”}:zm) <C, Ve
Ther there is a subsequence of ¢, denoted agam by ¢, and
U= to(x,y) € L7 (R, LE(Y))

such jtha.t
/ﬂug(x)qb (x,%) d:u'l' —*/r; uo(x, y)¥(, y) de dy (3.9)

xY

ase — 0, forally € C (0, C,(Y)). Moreover,
/ﬂus(a:)v(x)w (E) dr — -/an wo(z, y)v(x)w(y) dedy (3.10)

ase — 0, for all v € C.() and w € L2(Y). Further, if u is the L?-weak limit of ue,
then by taking w = 1 in (3.10} we get

u(z)=£,uo(z,y}dy. (3.11)

We close this section by proving the following lemma.
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Lemma 3.7. Let w € Hy(Y)" such that fow-v = 0; then there exists @ €
H(Y)" such that
) dive=0 inY,
i) w=w oné, (3.12)
i) )@l gy < Chelrarys,
where C is 2 constant independent of w.

Proof: Consider the following problems. Look for w;, ¢ such that

—Aw +Vg =—-Aw in¥Y* .
divuy = divw inY™ 63.13)

wy € HAY)Y !
and lock for ws, ¢o satisfying

—Aws+Vg=-Aw T, .
divawe = dive in T, (3.14)
wa € Hi (T)N.

The problems (3.13) and (3.14) have unique solutions because the compatibility

conditions
divw:f w-v=/w-v=0
e gy~ g

Ldivw=£w-(—v)=0

are satisfied. Now, define @ as follows:

_ w— wy inT
w = .
w—un in Y*.

Then it is easy to see that ¥ satisfies (3.12) and the proof of Lemma 3.7 is complete.

4. Transformation, estimates and extension. In this section, we transform
our problem to another problem with homogeneous condition and then estimate

the solution. Finally, we obtain an extension of the pressure p, using the technique
developed by Tartar [8]. First, define

Qo (2) iHeeelr, kel

=

bo(z) = ] 4.1
(=) {0 frceYy, keld, (1)
where @ is given by Lemma 3.1 corresponding to g, which is the non-homogeneous
boundary term in the problem (1.1). Recall the operator ¢ constructed in the
previous section. Then one can easily verify that b, satisfies the following.
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Lemma 4.1. We have
i) be HY{(Y andb, =¢g° oneSy, kel
i) divb.=0in9Q,
i) [0l pagey < Cliglmryy and [[Vbe| agqyr < gllgllmm,
iv) b — 0 in L*(Q) weak,
where C Js independent of e,

No:E:s Observe that b. — m(Qg) in L*(Q) weak. But, m{(Qg) = [, (Q7)dy = 0
because the average of a divergence-free, compactly supported vector is zero.

‘We are now ready to transform the problem (1.1) to a problem with homogeneous
condition on the boundary of the holes. Let

U, =v. —b. in Q.. (4.3)
Then u, will satisfy the system of equations:

) —Au—Ab+Vp.=f in®

i) dive,=0 onfl (4.4)
i) we€H ()Y, peL?()/R

We want to study the behaviour of the problem (4.4) as £ — 0. Further, we need
to extend v., p. to 1. Since u. = 0 on the boundary 5. of the holes, one can extend
g to @, by zero inside the holes and so define

U, =1t.+b mnQ (4.5)

Then div 4. = 0 in £ automatically.
Next, we extend the pressure p,. We have the following result, which achieves
this apart from providing basic estimates on the solutions.

Theorem 4.1. There exists an extension p, of p, such that
2 -
||.s ps”Lﬂ(n};n <C. (4.6)

Also, ., the extension by zero of the solution u, of the problem (4.4}, satisfies

|
lléell g2y < €,  and (4.7)

" C
Vit ]| 200y < -

, where C' is independent of . (4.8)
Proof: Multiplying (4.4) by u, and integrating by parts, we get
2
IVeelzs S NVOe|| g2 IVuell 2 + [ fell g2 llese 2

C C c
< Sul+ Se Vel < T 17wl
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which gives (4.8). Again by (3.1), we have
"“s"L*{n,) <Ce "V“s"L!(.Q.] <C.

Now, we extend the pressure p, using the same technique as in Tartar [8]. We will
roughly sketch the proof. Define an element F. € H-1(Q)V as follows. For any
w € HY Q)Y define

(Fe,w)q = (Vpe, Rew)g , where R, is given by Lermma 2.3

Oug; O (Row); Obe; 8 (Rew); (4.9)
o, 0z; 0z;  Jo, Oz; Oa; + Qtfe‘(Rew)s-

One can easily check that, in fact, F, € H~1(Q)". Purther, if div w = 0 in Q'then
(Fe,w)q = 0 which shows that F, is a gradient in 2. However, we know F. = Vpe

in 2, because if w € H} (QE)N, then R.w = w. Hence, there exists an extension p.
of p. such that

F,=Vp, Q.
Again from (4.9), by using Lemma 2.3, one can obtain
& |(Vie, w)] < C (lwllzacay + el Vellaqmy) , Ve € (@)Y, (4.10)
which gives
1w i-d ;
' le sz”ﬂ—!(m <C (4.11)
and
€8l < (1)

This completes the proof.

Remark 4.1. Using the estimate (4.10), one can see that the extension f,. of p.
satisfies

2Vp, — Vp in H™Y(Q) strong, (4.13)
e2p, - p in L%(Q)/R strong. (4.14)

Also, from the Lemma 4.1 and Theorem 4.1, it follows that

17ell z2ey < €, (4.15)
and

!

Vel 2@y < (4.16)

c .

5. Convergence results. Asymptotic expansion. Applying a two-scale
asymptotic expansion for %, and p., namely,

l) ue(m) = Uo(&“,y) + eul(x, y) 4+,
i) epe(z) = p(z) + epr(z,y) +- -,
iii) u"(x, y) = 0 for d E Q’ y E S a'n'd ui! p!’ are Y‘Pel'iodic, Vi = 1, 21 31 T
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We can see that w,, p and py satisfy the system:

) —Ayue+ V1 +Vep=F+8,(Q7) n 2xY"
ii) ue,p1 are Y-periodic, u, =0 on S,Vz € O
i) divy uo=0m x¥Y* (5.1)

iv) divzf uo(z,y)dy =01n 2, and v-/ Uo(z,y)dy=0onT.
Y- Y-

The above system (5.1) has been studied in Lions [3] (of course, without the term
A, {@§)) and there exists a unique solution u,, p, p1 (p uvnique up to an additive
constant and p; up to an additive function of z).

First, we state and prove the homogenization of 4. and p..

Theorem 5.1. Let @, be the extension by zero of u. and p. be the extension of p,
given by Theorem 4.1, where u., p. are given by the problem (4.4). Then

#te — u(z) in L*(Q) weak, (5.2)
£%fe — p(z) in L*(Q)/R strong, and {5.3)
u(z) = fy _Uo(@,y) dy, (5.4)

where u,, p are the unigue solution of the problem (5.1).

Theorem 5.2. Let u and p be as in Theorem 5.1. Then u and p are given by the
unique solution of the system (2.8).

Proof of Theorem 5.1: The convergence (5.1) and (5.2) follow from (4.7) and
(4.14), respectively. Now, put

and let fs,rj be the extension by zero inside the holes. Then, by (4.8), we have

Euij

oy S (5.5)

So, applying Lemma 3.6 to i,; and Eg,-j, there exist
uoi(xay) and foij(xsy) € Lz(ﬂ!Li(Y))

corresponding to %,; and E_,,-_,-, respectively, satisfying (3.9}, (3.10) and (3.11). So
that we have

u(:r.):fyuo(x,y)dy.

Now, we prove that u, will satisfy the system (5.1).

Step 1. In this step, we derive a relationship between £,;;, p and p;. Let ¢ € D(Q)
and w € (P(Y*)}" with div w = 0 and define w*(z) = w(2) (by extending w to
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all of RY). Multiplying the equation (4.4, i) by £2¢w® and integrating by parts and
passing to the limit as ¢ — 0 (which can be achieved using Lemma 3.6 and the
results from §4), we get

L L, gy + TGP — i) ] as

= /r; [ /Y (wily) dy)p(r)g—i] dz,

which holds for all ¢ € D(£1), so that

[Owi | 0(Qg): Owi _[ %,
j;" (Eou ayj ayj‘ 6y3 fs ') h/Y' Jz; ws(!}) dy- (5'6)

This holds for all w € D(Y*)¥ with div w = 0. In fact, (5.6) is true for all
w € CP(Y*)Y (set of all C* functions which are ¥-periodic) with div w =0 and
w=0on §. So, there exists a function p;{x,y) (see Temam [9]}, ¥-periodic, and
p1(z,-) € L2(Y*) such that

_ i Qg): pm _Gp .
dy; dy? * B =5 T1E (5.7

The existence. of p; is the standard problem of the solvability of the equatlon div
= f for f € L*(Y*) and one can see the references [9], [6].

Calcuiatwﬂ of £oij: For any ¢ € D(Q) and w € D(Y™*), we have
f §eijp(z)w® — f §oij S )w(y) dady.
Q. axy=
But on the other hand,

- . _ _ 6_¢ . St
fﬂ&e,-jqb(a:)w (r)dx = —¢ /s;, Uej (3ij + (,6-5:;) .

The first term on the right hand side goes to zero as £ — 0 and the second term is

equal to
_ /ﬂ e (%)5(3) iz — — /ﬂ N ua;(x,y)qb(m)%.

Hence, it follows that
dw
f §oijwly) dy = —f Yot 5y dy, ae. z € 0, Yuw € D(Y™),
Y‘

which implies that
foii = Fuo;
o013 ‘ Byj -

The equation (5.1,i) follows from (5.7) and (5.8).

(5.8)
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existence of u, and p;.

Claim: u,(z,y) = 0 on § for « € £}, In fact, we prove u,(z,y)=0fory €T, z € Q.
Let ¢.€ D(Q) and w € D(Y). Let xy+ be the characteristic function of ¥*. Then

/ Ui =] tle; bW — Ui w dedy.
Q. o oxy

Now, observe that xy-w € LZ(Y) and we have

f Ui pw® = f teid (xy-w)° () dz — ] uaidxy - (y)w(y) dedy,
0. a axy

s0 that we get

fn ( /; UosW{y) dy) Hz)dz = fﬂ ( L uaiXy (Y)w(y) dy) é(z)dz

which: holds for all ¢ € D(f?) and w € D(Y'} and, hence, we have

UoilT, ¥) = Xy {¥)uoi(2, ¥)-

Therefore, we get %,{z,y) =0in T.
Claim: div,u, = 0. Multiplying div 4, = 0 by e¢w®, where ¢ € D(2), w € D(¥*),
and integrating by parts and passing to the limit, we get

0=E/ div,ﬁe-¢wg=—s/ i, (V- w* + ¢Vus)
Q o

= —ELEEV¢ ~wt — /{; e (Vyw) dz.

The first term goes to 0 as € — 0 and the second term is equal to

- / e (V) do — — j wo(z,4)8(2) Vyw(y) dedy;
-4} xy-

- [ ([ v dv) 6(a) = 0,¥ € D@, w € D),

which’ gives divy u, = 0. Since div u, = 0, it follows that div, . uo(z,y)dy =
div.u(z) = 0 and the condition v - i, uo(z,y)dy = v-u = 0 on I is an easy
consequence of the Lemma 3.5. This completes the proof of Theorem 5.1.
Proof of Theorem 5.2: It suffices to show that u and p, given by the above
Theorem 5.1, satisfy the equation (2.8,ii).

Multiplying the equation (5.1,i} by v*, where v* is the solution of (2.1}, and
integrating with respect to y and observing that divyv"' =0inY*,v*=0on S, we

get
Bug; Dv¥ 3?/ k j & f }Qg): O}
a— e+ — 1 vily)dy = fi(z vy dy — ————dy;
v+ Oy; Oy; Oz Jy (W) dy = fi(=) ¥ Y . Oy; Oy 4
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ie.,
3u0, Bk ( dp ) A(Q7); Hvk
gy =Ky [ fi- 2y | DT g 5.9
v- 0y 0y; V= EN T ) T e Ty oy @ 59)
On the other hand, if we multiply the equation (2.1,i) by u, and integrate by
parts, we get

Bup; Fu¥
ol —d —f Eritlo; AY = Up. {5.10
Y- Oy ayj Y S Y * .( :
Therefore, the proof of Theorem 5.2 is complete if we show that
8(Qg): OvF
Cr=— — ==ty {5.11
¢ - Oy Oy 610

where C}. is given by (2.9).
Proof of (5.11): Multiplying the equation (2.1,i) by QF and integrating by parts,

we get
31;’93 Qg') av' " _ B . N
v Oy; Oy; f 7, (Q9): — f ¢QF vy = fy _ex{(Q0):;

y-%agf)i=f5( (g-2)—g- gf,:) j(c;’*):c .(5.12)

Note that v, is the exterior unit normal at S (i.e., exterior to T}
Now, since div(@g) = 0 in Y*, multiplying this equation by yz and integrating
by parts, we get

le.,

- [ @ u- [ @z,

so that

[ @=- [e-n)m (5.13)

Substituting this in (5.12), we get (5.11) and, hence, the proof of Theorem 5.2 is
complete.

Proof of the main results {Theorems 2.1 and 2.2): Theorems 2.1 and 2.2
follow directly from Theorems 5.1 and 5.2, respectively. Define

Vo, ¥) = %o(%,y) +{QF)(y), €2, yeY. (5.13}

Then v, satisfies all the equations in (2.4) trivially, except the boundary condition
Vo ] Vo dy = —u, /{g ‘vy)yds onT. {5.14)
. s

Since v, » fi. to(2,y) dy = 0 on T, it follows that

UE-L'vo(x,y)zvz-/}.’.Qﬁdy.
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Then (5.14) follows from the equation (5.13) and, hence, v, is a solution of system
(2.14). Now, since # = u. + b: and b, — m(Q7) = 0 in L%(Q) weak, we have

v(z) = v/Y't,n,(..":, y)dy = -/Y‘ uo(z,y) = u(x).

This completes the proof of Theorems 2.1 and 2.2.

Remark 5.2. v, = u, + Q7 is the unique solution of the system (2.4). Also, what
we have observed is that the weak limits of %, and #, are the same but the equation
satisfied by u, and v, are different. Further, from the uniqueness of the system
{2.4); v, is independent of the operator @ and the construction of § in ) x Y™* and
Vo = %o+ QF provides an extension to all of 2 x Y. The weak limit v = [, vo{, 3).
Even though the extension of v, outside £ x Y* depends on the construction of g,
v is independent of this because it is the unique solution of the system (2.8).

B. Evolution Stokes Equation. Now we proceed to study the behaviour of
ve, Pe @5 € — 0 for evolution Stokes equation given by the system (1.3) with the
conditions (1.4) and (1.5). Here also we transform the problem to another problem
with homogeneous boundary condition on the holes as in the case of Stokes equation.
For this, we have to modify the Lemma 3.4 in a different form. Since the method
is same as in part A, we do not present all the details.

6. Transformation, estimates and extensions. Because of the Lemma 3.7
and the compatibility condition (1.4), without loss of generality we can assume, in
addition to the hypothesis on g given in §1, that

divyg(-,¢) =0. (6.1)

We will state the Lernma 3.4 in the following form.

Lerma 6.1. There exists an operator @r : L®(0,T : HL(Y)) — L®(0,T : H,(Y))
such that

i) Qrw =0 in aneighbourhood of 8Y, Vte€[0,T)],
fi) @Qrw=1w in aneighbourhood of T, ¥t ¢ [0,T],
iit) divyw = 0= div,Qrw =0,
) [Q10llue + 1V @rt)lan iy < Cllwloony +IVelopy),  62)

d 8 w
V) ”EQTw"m,Z,Y S C(”Ew”coﬁ,y + ”V(E) " 00,2,Y)
. forallw e L® (0,7 : HA(Y)).

Proof: For any w € L* (0,7 : HL(Y)), let we(z) = w(z,1), then w; € HY(Y).
Then define @ as follows

(@rw) (2,t) = (Qw:) (2),

where @ is given by Lemma 3.4. This Qr satisfies (6.2) which completes the proof.
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Now define d. = d.(, t) as follows:

de(,?) = { (@r9)' (0= @r9) (3.1) itzechy kel (63)

0, zce¥, keld.
Here g is given by (1.4) and (6.1). This d, defined by (6.3) satisfies the following
lemma which can be verified easily using Lemma 6.1.
Lemma 6.2. We have
i) de(x,t)=0 onTyandd.=g¢° onS.r,
ii) divyd, =0 inQr,
i) ez <G

V) Vdillwnga < (6.4)

1

L Ew!

v) ||% < ', where C is independent of ¢,

ooz
vi) d. — 0in L*(Q) weak, uniformly in ¢.
Now, we transform the problem (1.3) to a problem with homogeneous boundary

condition. Put
Ue = Vg — de. (6.5)

Then u, is the solution of the following equation:

. Oue ad. .
l) auf _Au£+vps=fs_E+AdstsTy

j_i) div Ue = 0in QET: (6.6)

iii) u.=0o0nIrUS,r, |
iv) ue{z,0) = vo(x) — be(x,0) in ..

Now, extend u, to &. by zero inside the holes and define
¥, = & +d. in Qr and we have div,, = 0. (6.7)

Estimates on u, and v.: Multiplying the equation (6.6,i) by u. and integrating, it
is easy to see that

1 C ]
[ @i+ [1Vudiany <0+ Z [ IVnlp s 68)

so that we have

i a2 i 2 C t
[[1vud]’ < [1vur ¢+ [1vulagde ©9)
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Hence, it follows that

! C
[ et [ 1Vt < 5 (6.10)

C is independent of &, ¥ 0 < ¢t < T. In terms of 4, we have

1
_ o c
fn #(z, ) do + fn 1Vl o < S5 (6.11)

Let

Velt) = Ve(z, t) = fo ve(z,8)ds, Vi(t) =j0- Be(x,s) ds (6.12)

t

Ue(z,1) =£tug(x,s)ds, f}e(t)=/; tie{z,s)ds, and (6.13)

i 3
Fu(z,8) = /u fu(z,5)ds, Du(t)= j; di(z,5) ds. (6.14)

Then if v, and u, are the weak solutions of the problems {1.3) and (6.6), respectively,
then

Ve, U. € C([0, T}, H(2)Y), div Ve =0, div U, =0 (6.15)
and, due to the theory developed by Temam [9], there exist F, € C([O, T), L2()),
VP, € C([0,T], H1(§2)Y) such that

ve(t) — vs(0) — AV, + VP, = F, in Q,7, (6.16)

g (f) — u(0) — AU, + VP, = F; — (d.(t) — d:(0)) + AD, in Q7. {6.17)
We have the following result and the proof follows as in §4 of Part A.
Lemma 6.3. There exists an extension f’s of P, such that
. = C
) "VPa ”C{[D,T],H—l(ﬂ)] < =L
. ~ C -
i) |Pllogomz@m <

(6.18)
C is independent of .

7. Convergence theorems. Now we state and prove the homogenization
results.

Theorem 7.1. Let U., U. be given by (6.13) and P, be as in Lemma 6.3. Then
U, —»U inL™(0,T,L*(Q)/R) weak", (7.1)
2P, —» P in L*®(0,T,L*(Q)/R) weak", (7.2)
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where I/ and P satisy the elliptic system:
i) divU=0 inQr
ii) U:O:-FK(F—VP) in Qp
i) U-v=0 onl, aete[0,T] (7.3}
Here K = [K;] is given by (2.2) and a = a{t) = {o*(t)), where

iv) o*(t) /f ——y vyq*) fofs(g-vnyk

v) F(z,t)= ]t flz,s)ds.

and

Theorem 7.2. Let u., p. be the solution of (6.6). Then there exist extensmﬂs U,
Pe of u;, p., respectively, such that

i) @, —u inL?(Qr) weak,

(7.4)
i) P, —p= % in L*{0, T, L%(Q)) weak, :
where u and p are given by the unique solution of the system (2.11). Moreover,
1
P
Uz, t) = f w(z, o) dr and p = %—t. (75)
0

Proof of Theorem 7.1: We briefly sketch the proof. It is easy to see that

liiell jagapy < € and ||TellLeogo,r,22¢0y) < constaxt. (7.6)
The convergence (7.1)-(7.2) and the equation (7.3,1,iii) can be verified without much
difficulty. So, it remains to prove the equation {7.3,ii). Let ¢ € D(Q2) and v¥{z) =

v* (2), where v* is the solution of (2.1). Then multiplying the equation (6.17) by
e?¢v* and integrating by parts we get,

e[ e 99 (e) - i sl 0)gol

e 3UE,¢3U i g2 . 3¢» k _ 2 p 2 J¢ oF,
n,r 0T;  Oxj Qur 39:3 33:3 Q.r OT;
(7.7)
= 62/ Fsitﬁvfi — &2 ] d:i(z, t)q&v?i +&2 / dei(z, 0){;’)1}2‘
ﬂr‘T QtT ﬂgT
. k.
__E2 3DE, ¢% _52 aDm 3@5 k

€i"
Q.1 6&7‘-’. 35:5 [y J 3.‘1?_-', 327:

LiLh+ L+ L+t =+ +13+ L+ L.
Note that vF; — Ki; in L*(Q) weak and ”Vv "L’(Q) < €. Using this and the
estimates on u, and U, it is easy to pass to the limit in all the terms, except
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possibly on I3 and I5s. In I5, one cannot pass to limit immediately because we do
not have the strong convergence of P. in L2(Q27). We have

=- [ @ragiohi=- [ @rygtat—met) [ @RIZE, (8)

where
7= o= m (05) andm (o) = 1o [ ok 19)
2] Jo
then
/ 7¢ =0 and 7 — 0 in L*(Q2) weak (7.10)
)
and
Lf o — / v*(y)dy in R (7.11}
2] Jo Y+
because

vk - f v*(y) dy in L*(Q) weak.
Y‘

Cfasm Jar (2B,) 22 3275; — 0 as ¢ — 0. Once the claim is proved, it is easy to see
that from ( 8):
I5 o Kks P'8—¢
Ox;

So, from (7.7), it follows that
—

I3 = 62
0 6.7:3 6.’33 Qr

KuFip+ K:nP—u f o*(t)p(a) dz, (7.12)
Qr Qp

k
where a(t) = F (g—iﬁg—;?) {y,t) dy, where D(y,t) = f:(QTg)(y, o) do. But using

the same argument as in part A, one can prove that, in fact, cek(t) = oy(t), where
(%) is given by (7.3,iv).
Od the other hand, by multiplying the equation (2.1,i) by #U, and passing to the
limit; we get
' vk, 80, f
2 €1 £t
£ P i er; dU;. 7.13
e 0% O%; e ’ (19
So, from (7.12} and {7.13), it follows that U satisfies the equation {7.3,ii}. Hence,
the proof of Theorem 7.1 is complete if we prove the claim.
Proof of the claim: Because of (7.10), for each k, i, there exist % € HX{(MN
such that

div 45 = 5%, and ¥** — 0 in H>(Q) weak and, hence, in L*(Q) strong. (7.14)
Now,

|/ 2P 7, <l/(zgf; c’?i " |.;_lf/ 2P5¢f;aigi

= Cllszvﬁl"‘”“’“”“’(”)) IR sy + CllE™Pell o 2.0 1967 | gy
<C ("’bf!i”m(m +€||V;bfaf"m(m) 0 ase— 0,
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where K, is as it Lemma 3.3. This completes the proof of the claim and, hence,
the proof of Theorem 7.1.

Proof of Theorem 7.2: This theorem follows from the above Theorem 7.1 by

observing that p, = a_ér;,_ and p, has an extension p, given by §, = —35%. Moreover,

Pe € L*(0,7,L*()} and VP, € H~1(0, T, H1(Q2)).
Proof of the main result (Theorem 2.3): Follows from Theorem 7.2 and the
fact that d, — 0 in L?(Q7).
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