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Abstract

Allaire; G. and F. Murat, Homogenization of the Neumann problem with nonisolated holes, Asymptotic Analysis 7 (1993)
81-95,

Wk considér the homogenization of Second-order elliptic equations with & Neumann boundary conditien in open -sets
periodically perforated with holes of the size of the period. When the holes are isolated, Cioranescu and Saint Jean Paulin
(1979) proved the convergence of the homogenization process. Ong of their main tool wis the construction of an extension
of the sotution, which is uniformly botmded. In the present paper, we give a new proof of the convergence, which avoids the
use of such an exfension. The main 2dvantdge of our approach is that it generalizes the result of Cibfanescu and Saint Jean
Paulin to the general case of periodic holés which may be not iselated {including, for example in three dimensions, the case
of a domain perforated by interconnected cylinders).

0. Introduction

This paper is devoted to the homegenization of second-order elliptic equatious in 2 domain
periodically perforated by infinitely many small holes (having the same size as the period), with
a Neumann boundary condition. This type of problems arises from several fields of physics or
mechanics. Let us mention a few of them: the convection—diffusion of a chemical in a porous
medium [12,10], the elasticity (resp. viscoplasticity) problem for a perforated material [9] {resp.
[11], or the Navier—Stokes equations for a gas condensating on rods {8]. For all those problems,
the heuristic derivation of the homogenized problem is by now well known and understood,
thanks to the celebrated two-scale method (see ¢.g. [5,14]). Here we focus on the mathematical
problem of proving the convergence of the homogenization process. The first result in this
direction is due ‘to Cioranescu and Saint Jean Paulin [7]. Following the lines of Tartar [15], they
rigorously proved the convergence in the case of isolated and periodically distributed holes
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which do not meet the boundary of the domain. Their main tools were the so-called energy
method of Tartar and the construction of an extenmsion operator. Here, we generalize their
result to the case of periodically distributed holes which are either isolated or connected, and
which may meet the exterior boundary. OQur main tools are, again, the energy method, and a
new compactness lemma in perforated domains, which avoid the use of any extension operator.

Now, we turn to a more precise presentation of our resulis. Let (2 be a bounded set in B
(N > 2). The set 2 is covered by identical small cells £Y, where Y= (—1,+ 1)¥ i¢ the unit cell,
and & is the period which will tend to zero. Let Y * be a subset of the unit cell ¥ (we call it the
material part). The domain {2, is defined as the intersection of 2 with the union of the small
material parts Y *. We assume that the material part ¥ ¥, and the union of all the material
parts which cover R¥, are connected, and that the volume fraction of the material 8=
|Y#* /| Y| is strictly positive (see hypotheses (H1), (H2) and (H3) in Section 1). Those
assumptions are not too restrictive, and the holes are allowed to be isolated (ie. Y—Y* is
strictly included in ¥), or to be connected (i.e. Y— Y * meets the boundary aY; this case only
occurs when the dimension is greater or equal to 3). We consider the following scalar equation
in the domain 2,

( ( ) ']+“'s=f in 0,

( )Vu] n=0 onan,, (0.1)

BVAQ

where the matrix A(y) is Yeperiodic, uniformly bounded, and coercive, and the right-hand side
f belongs to L*(§2). It is well known that this problem has a unique solution in H(£2,).
Using the two-scale methad, it is easy to see that the corresponding homogenized problem is

~V-[AVu] +ou=0f inn,
o . (0-2)
— =0 on 942, '
vy
where the matrix Aisa constant which can be computed through the so-called cell problem
(see (1:5) -and (1.6) in Section 1), and @ is the material volume fraction. Our main result
(Theorem 1.4) is the following,.

Theorem 0.1. The sequence of solutions u, of (0.1) converges to the solution u of the homogenized
problem (0.2) in the following sense

for any open set w with w C (2, llﬂ}] %, — 2l 220,00y =0.
& ’

In the above result, the introduction of the set « means that the convergence is loeal inside
{2 (this local result is forced by a possible “wild” boundary 442, in the vicinity of 8(2). The proof
of this theorem relies upon a compactness lemma which states that “the embedding of H({2,)
in LX(£2) is compact, uniformly in &” (Lemma 2.3), This avoids the use of any extension of the
sequence %, in the holes 2 — 2, (this was the technical part of the proof in [7]).
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In the Appendix, written in collaboration with A.K. Nandakumar, we adapt the above result.
to a slightly different problem in the same geometric situation. Instead of having a Neumann
condition, both on the holes boundary, and on the exterior boundary, we consider there a
system with a Neumann condition on the holes boundary, and a Dirichlet one on the exterior
boundary; namely

r—V- (A(i_]VuE)=f in 0.,

" [A Va, ] n=0 ondf, -3, (0.3)
3VA
%, =0 on 32 nafl,.
Again, there is a unique solution of this problem in H(£2,), and the homogenized system is
( -V (AVu)=8f in0 (0.4)
=10 on a{2, '

where the matrix A is the same as above. Then, we prove the following result (see Theorem
Ad).

Theorem 0.2, (G. Allaire, F. Mutat, A.K. Nandakumar). The sequence of the solutions u, of (0.3)
converges to the solution u of the homogenized problem (0:4) in the following sense

th[.% ” H,—u " Ly~ 0.
Observe that, in this case, the result is no longer local, but valid up to the exterior boundary
30, This is due to the Dirichlet boundary condition on af2.

After this work had been completed, we learned that Acerbi et al. [1] obtained the same
result ag ours (i.e. Theorem 0.1), but with a completely different method; indeed, they construct
a bounded extension operator from H 1(0,) into H'(2), as in [7], but with no restrictions on
the geometry of the holes (which may be isolated or connected). Theorem 0.1 can also be
proved by using the two-scale convergence method (sée [3] and [4]). Anyway, we believed that
our main tool (the compactness Lemma 2.3), which is interesting by itself, provides the simplest
praof of Theorem 0.1,

1. Setting of the problem

As usual in the periodic homogenization theory, we first define a so-called unit cell, which,
upon rescalling to size &, becomes the period of a periodic medium. The unit cube ¥ =
{—1, +1)¥ is perforated by a hole, and the part of Y occupied by the materal is called Y *.
The volume fraction of the material is denoted by 8= |Y* | /| Y |. We make ‘the following
hypotheses on the material part Y*:

(H1) Y* is.a connected open set of RY, has a Lipschitz boundary 3Y *, and is locally located
on one side of its boundary;
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(H2) the union E* of all material parts, defined as the periodic open set obtained by covering
R¥ with the material part Y *, is connected, has a Lipschitz boundary, and lies locally on
one side of its boundary;

(H3) the material volume fraction @ is strictly positive.

Hypotheses (H1) and (H2) imply that the material is in one: piece, while hypothesis (H3) means
that there is actually some material. However, they do not restrict the topology of the holes. In
particular, the holes may be isolated, or connected in one piece, or any intermediate situation.

Remark 1.1. In hypothesis (H2) we have skipped a little technical difficulty in the definition of
E*, Because the material part ¥* is an open set, it does not contain its boundary &Y *. Thus
the physically realistic material part of two contignous cells Y and Y, is the union of the two
open sets Y;* and Y,* plus the material interface 8¥,* M 8Y,*. Conséquently the union E* of
all material parts is rigorously defined as the interior of the union of the closures of all the
open sets Y ¥,

Now, let £ be a bounded open set in R¥, with Lipschitz boundary 842, 0 being locally located
on one side of its boundary. Let & be a sequence of strictly positive real numbers which tends to
zero. The set Q is periodically covered by cells Y*, similar to the unit cell ¥ rescaled to size .
More precisely, we define
o X _
Ye- {x e RV |(— —.2;'] e Y}, Y= {xe RNI(— - zs) e Y*}_, (1)
1 & ) £ :
where i is an element of Z%. _
We also define the open set ¢ E* as the material part E* rescaled to size . Up to material
interfaces, zE* is equal to the union of the ¥;**. Then, the material part {2, is defined by
Q,=0nsE*, (1.2)
Denoting by 1, the characteristic function of the set £2,, a well-known result states that the
sequence 1, converges to 0 in the weak star topology of L“‘(ﬂ)

Remark 1.2. Although we have assumed (H2), the set (2, may be not connected. Indeed there
may be somie connected components of €2, in the nelghborhood of 802, which have a size
smaller than ¢. In the same vein, because of (H2) the boundary 12, is smooth in the interior
of £27, but “in the neighborhood of 3£2” nothing can be said about its regularity, because,
under our assumptions, the holes may meet the boundary 802 (contrary to reference [7]). The
definition of £2, is similar to that of a porous medium in [2}, where the homogenization of
Stokes flows was studied.

In the material domain (2., we consider the Neumann problem for the second-order elliptic
equation
-V (A(—] V-ua] +u.=f infQ,
E/
Ou x
= [A(—] Vus] ‘n=0 ond,.
£

ov ‘A,

(1.3)
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As in [7], we make the following assumptions:
(A1) fe LX),
(A2) The coefficients a;; of the matrix A are periodic of period ¥, and belong to LA(RY);
(A3) there is a strictly positive mimber « such that
YA(y)té>al£)? forany £€RY and y €Y.
Under these assumptions it is well-known that (1.3) admits a unique solution in H 1(02,) (the

zero-order term + u, is here to enforce existence and unigueness).

Remark 1.3, The boundary condition in (1.3) is of Neumann type, both on the boundary of the
holes 802, —3f2 and on the “exterior boundary” 8(2, Maf. In the appendix, written in
collaboration with A.K. Nandakumar, we consider a problem anglogous to (1.3), where the
Neumann boundary condition on 3(2, N 8f2 is replaced by a Dirichlet boundary condition; this
allows us to rémove the zero-order term + u, in the equation.

Using the celebrated two-scale method (see, e.g., [S] or [14]), it is easy to see heuristically that
the limit problem of (1.3), wheén & goes to zero, is

(-v-[AVu] +6u=067f nQ,
du (1.4)

—={ on 2.
av}_;

The constant matrix A is given by

te.tde, = —f Vw4 Vw, (1.5)
’ vk

where the functions (w)), .; . » are the solutions of the so-called cell problem

(-V-[FA(y) VW] =0 inY™,

i g on Y * — Y’ 1.6)
I, B on ’ (1.6)
(w;—y) Y-periadic.

From (1.5) it is easy to deduce that there exists a strictly positive number 8 such that
ttAg>B|£|° for any £€RN.
Thus, system (1.4) admits a unigue solution in H'(12).
The goal of the present paper is to rigorously prove the convergence of the sequence of the

solutions of (1.3) to the solution of the homogenized problem (1.4), i.e., to prove the following
theorem.
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Theorem 1.4, Let u_ (resp. u) be the unique solution of (1.3) (resp. (1.4)). Under the hypotheses
(H1), (H2) and (H3) on the geometry of the unit cell, the sequence u_ tends to u in the following
sense:

ﬁ??’ any open set w with @ i, ]i.l.'l}) II U, —u “ X, nw) = 0. (1.7)

Remark 1.5. Let us recall the result obtained by Cioranescu and Saint Jean Pailin [7]. Under a
certain further hypothesis on the holes (namely, the holes are isolated in each cell, and no holes
meet the boundary 3(2), they built an extension operator P, from H'({2,) in H'(12), such that
the sequence P,u, converges wedkly to u in H (). In their context, the convergence (1.7)
appears as a consequence of the compact embedding of H'(f2) in L3 ) (Rellich’s theorem).
Note however that the present result (1.7) is local (i.e. holds only in the interior of 2) because
some holes may meet the boundary 9£2.

The main interest of Theorem 1.4 is obviously that it holds true under less restrictive
assumptions than in [7]. For example in three dimensions, the holes may be connected like a
mesh of cylinders.

2. Proof of convergence

The proof of Theorem 1.4 is based on the so-called energy method introduced by Tartar (see
(15], partially written in [13]) and on Lemma 2.3 which, loosely speaking, states that the
embedding of H'(Q,) in LX(Q,) is compact, uniformly in &. In [7] the energy method was also
the main tool; thus the orginality of our approach lies in Lemma 2.3 which, more or less,
replaces the extension operator and Rellich’s theorem used in [7].

Definition 2.1. We denote by ~ the extension operator by zero in the holes {2 —£2,. Thus, for
any function u, of L*(£2,), §, is defined by

- ug. i]]. ﬂg‘!.
b, = 0 i___'['lﬂ—'ﬂ_s.

Lemma 2.2. Assume. that hypothesis (H1), (H2) and (H3) hold. We then have
(1) There exists a positive constant €, which depends only on Y *, such that, for any function
veE HYY *), we have

1
) ——— [ ¢ < CliVull Ly 2.1
) |Y*|[Y"‘u . I U"L(Y} ( 1)

(2) Let Yand Y' be two contiguous cells (i.e. two cells which share a common side). Let us
denote by Z* the material part of the two cells, namely Z* =Y* UY'* U@Y* NaY'*). There
exists a positive constant C, which depends. only on Y *, such that, for any function v € H{(Z*),
we have

-1 1
1W-‘;n.v B W];*v <ClIVoll zzs. 2-2)
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Proof. Inequality (2.1) is nothing but the Poincaré—Wirtinger inequality in Y *, which is easily
proved by contradiction since Y* is connected (hypothesis (H1)). Similarly, inequality (2.2) is
casily proved by contradiction since hypotheses (H1) and (H2) obviously implies that Z* is
connected. O

Lemma 2.3. Let u, be a sequence with wniformly bounded norm in H((2), i.e.

e, il 41y < C, (2.3)
where the constant C does not depend on . The sequence ii, being bounded in LX), there exists
a function u in LXQ) such that, up to a subsequence, we have

il, — Ou weakly in L*((2). (2.4)

Then, this subsequence u, is “compact™ in the following sense _
For any sequence v, in L(f1,) such that U, — v weakly in L*((2), and for any function
¢ € D), we have:

v — | dduy. 2.5
[y pune= [ pow 25)
Furthermore, the limit u actually belongs to HY(2).

Remark 2.4. Although the sequence , is “compact” in the sense of (2.5), we emphasize that i,
is definitely not compact in L*({2). Nevertheless, it is easy to deduce from (2.5) that, for any
open set o satisfying @ €2, we have

" i, _u“ I.-z(ﬂ; M) — 0.

Note also that the compdctness (2.5) could be easily deduced from the existence of a bounded

‘extension operator, if any. Indeed, if we assume that there exists an extension operator P, such
that further to (2.3), P.u, is bounded in H'(f2), it is easily seen that (2.4) and the eQuahty
i,=1oF,u, in 0 1mply

Pu,—u weaklyin HY{(Q),
and (2:5) holds true.

Proof of Lemma 2.3. Let @ be a convex subset of {2 such that w C{2. The domain £ is covered
by cells Y77, but is usually not exactly equal to an union of entire cells (some cells meet the
boundary 8{2). For that reason, we introduce the set C, which is the largest union of entire
celis included in {2, namely C, = U, ¥*, with 1, = {i| Y c 02). For sufficiently small values of
g, wehave wCC_Cf). In C, we define a piecewise constant function @ u, by

1
U, = W f u, inthecell ¥* foriel, (2.6)
i Jyxe

Let us prove that the sequence %, is relatively compact in L¥ @) by application of the
Kolmogorov criterion. For any vector e, of the canonical basis of RY, let z# €R™ be sufficiently
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small, such that, for any point x €w, x + he, belongs to Q. Let Y’ and Y}* be two contiguous
cells such that i’ — i = 2¢,. By rescaling inequality {2.2) we obtain for x € ¥

eV |7,(x) — T, (x + 2eey) |* < Co? | Vi, I aggor ey (2.7)

If 0 <& <2¢, denoting by ¢; its center, the cell ¥ = {x €0 |(x —¢f) €(—s, —£)"} is made of
two parts Ai={xe€¥ [—e<(x~¢f) e, <e—h} and Bf={xe¥*|e—h<(x—cf)-¢ <
+&}, such that

yeAi=>(x+he)eY” and xcBf=(x+he)<EY.
Since &, is constant in each cell, we deduce that
[e¥ 12,(x) — 8, (x +he) > =0 for x- €4, 28)
. SN 'l_lg(x) - ﬁs(x + hek) | 2 £ C_Ez " Vu.k_-lliltnmsuy;x_)'_ for xe Bf. ’
Integrating (2.8) over ¥;* and noticing that | Bf | = (2£)"~'A, then summing on i, leads to
-E-N ” E_s(x) - Es(-x +he,-c_) ”?_‘q(w) = 2C‘EN+ lk ” VH-E "%2('%}._
Thus
1Z,(x) —5,(x+ ke ) |l 1200y < CRY26M2 for h < 2s. (2.9)

If 1 > 2¢, then there exists an integer n.> 1 and a positive real #' < 2¢ such that & = 2ne + A’
Since @ is convex, and since #(x) is a constant in each eell ¥7, it is easy to relate Z,(x) to
ux+he,) by using a path made of segments of the type (x + 2jee,, x +2(j + Dee,;), for
0<j<n—1, and an end segment (x + 2nee,, x + (2ne + h')e, ). For each segment (x + 2jze,,
x+2(j + 1)se, ), integrating (2.7) over Y, then summing on i, leads to

eV 1%, (x + 2jse,) —&,(x + 2jee, + 2s€,) | 22, < Ce V2| Vi, 1720,y
which impligs
[l % (% +2jee,) —u,(x+2jee; + 2e€,) || 12w < Ce.

Thus, summing over all segments (inciuding the end segment for which formula (2.9} holds)
gives

18,(x) —&,(x+ke) | 2y < Cline + 1" *2) < Ch for h>2s. (2.10)

Since #, is casily seen to be bounded in L*(w), inequalities (2.9) and (2.10) are nothing but the
Kolmogorov criterion for the relative compactness of the sequence &, in L?(w). Therefore,
there exists & such that, extracting a subsequence, we have

u,—u strongly in L*{w).
Passing to the limit in (2.10), we obtain for any value of %
la(x) —B(x + he )|l iy < Cl 1), (2.11)

where the constant C depends neither on % nor on «. Inequality (2.11) implies that & belongs
to H(Q) (see if necessary Proposition IX.3 in [6]).
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For any smooth function ¢, with compact support in (2, and for any sequence v, in L*(2,)
such that &, weakly converges to §v in Lz(.Q) we ‘now study the limit of

buw,= [ 55+ [ $lu,—7,),. (2.12
Jopmeve= [ ou+ | < )

Because i, is relatively compact in L2 (), we pass to the limit (for a subsequence) in the first
term of the rhs. of (2.12)

fdé'ﬁgﬁs - fﬂ 0. (2.13)

For & small enough, the support of ¢ is included.in C,, and the second term of the r.h.s. of
(2.12} is bounded by

[ ¢~ %),

Rescaling the Poincaré-Wirtinger inequality (2.1), and summing over all the cells of C, leads
to

<Cl @l e Nu, — 7, || 0, ey

2, — 3, | 22, ncy < Ce | Vu, |l i, ncyy- (2.14)
Thus, we deduce from (2.12) that
s—bﬂf duv, —demv

Finally it Temdins to prove that & =u, where u is defined by (2.4). This is obvious because
(2.14) implies
lim "u
€—0

while the strong convergence of &, implies that 1 alt; converges weakly to 0i in L{w). O

=0,

Proof of Theorem 1.4. In order to prove the convergence of the homogenization process, we use
the energy method, introduced by Tartar [15]. We follow along. the lines of [7], with some
modifications since. here we. are not using any extension operator.

First step: a priori estimates for the sequence u,
Multiplying equation (1.3) by «_, and integrating by parts, we obtain

f Vi A( Vu, +f (,) —f fu,. (2.15)
From (2.15) we easily deduce that
Il oy <C. (2.16)

Defining a function £, = A(x/¢)Vu, in £2_, (2.16) and assumption (A2) yield
" fs“ 2n) s C. (2.1?)
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In view of (2.16) and (2.17), there exist two fanctions » € LX) and ¢ € [LA(D1Y, such that, up
to a subsequence, we have

fi, = 0u weakly in L*(02), _
> o N (2.18)
£ —0¢ weaklyin [I2(02)]".
Since £, belongs to [L*(£2,)]1Y; and V - ¢, belongs also to LX(2,), there is no problem to define
the trace £, - n as an element of H~1/2(3£2,). Furthermore, because of the Neumann boundary
condition satisfied by u_, the normal component £, - n is continuous through the bonndary 302,

-

and thus V- £, is a well-defined function of L2(£2) which satisfies

~V-{ +i, =1, f inQ,
} gs | & ﬂ,f (2.19)
\&,-n= 0 on 912,
Passing to the limit in (2.19), and dividing by 6 gives
(—V-g+u=f inQ, _
{g- n=0 on 8. (2:20)

Second step: definition of the test functions
Rescaling the solutions of the cell problem (1.6), we define in the union ¢E* of all material
parts (see hypothesis (H2) and (1.2))
_ x x
wi{x) = ewl-_(;), U =tA-( ;) Vw}. (2.21)
The functions wf satisfy

-v- [5.4(5) wa] =0 ineE*
&

dwf (2.22)
=0 on 3(eE*),

__av,_zg

and we have the estimates
[ leap<C and  |nfllxg,y< C. (2.23)
Since wi(x) =x;+ex(x/e) in eE*, where y; is Y-periodic, we have
W 0x, weakly in LX(2),
|77 — |17|fy*54(y) Vw; weakly in [Lz'(!))]ﬁ. (2.24)
Furthermore, multiplying equation (1.6) by x{(y) =w/(y) —y, and integrating by parts yiclds

j;_*z[tA(y) Vw,;| - Vx; = 0.
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Thus

N -
lYlf ‘A(y) Iw; = Ee_, |Y|f [ A(y) Vw,] - [e;+ V)] = Jr_Ee.',-[t.flt_z;] ne;=e,.
Consequently (2.24) implies that

-

HE— QT' weakly in [L2(02)] . (2.25)

Third step: passing to the limit in the equations
For any function ¢ € D({2), we multiply (2.22) by ¢u,, and (1.3) by ¢w/. Integrating by
parts, and subtracting one from the other, lead to

o) 2 ) o

_ Lﬁ‘w,m( ;) Vs — fﬂ su.g[‘A' (*E ) Q.w;’] V= f_ﬂ 5 ot 226)

The.first and the fourth terms of (2.26) cancel out. For the remaining ones, we apply Lemma
2.3 to obtain

L)swf[fl(—::) Vu.e] - Vo *fﬂﬂ;ig- V,. féﬁgﬂwfu_s_)fﬂgtﬁxiu’

fn [A( )vw] V‘ﬁ_’fn"“ ATe: - Ve, fn :bﬁ*ff—*L 0 fx;. (2.27)
Thus (2.26) yields
' r’&;:i'g].__ :
j;zx‘..V'(ﬁ.-g-i-L;,bxiu—fag Ve - LT, =-’;¢ﬁi_‘
Integrating by parts, and recalling (2.20) gives
— e+ [ ¢ Vu--(iéi]=0
a 2 8 ’
hence
AVu B
&= PR 2.28)

Together with (2.20), (2.28) is the homogenized problem (1.4) which has a unique solution
u € H'(£}). Thus the entire sequence u_ converges. This proves Theorem 1.4. O
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Appendix; Homogenization with a Neumann boundary condition on the holes and a Dirichlet
condition on the exterior boundary 1

~ In the same geometric situation as in Seetion 1, we consider in the appendix the homogeniza-
tion of a system slightly different from (1.3), namely

( { (% :
v(4ff)w)-r o
du : -
-~ = [A(E] Vu_,] ‘n=0 onaN -3 (A1)
dvy E
w, =0 on 2 N 12,

System (A.1) is similar to (1.3), except that the boundary condition on the exterior boundary
(and on the exterior boundary only) i§ different: Dirichlet here, while it was Neéumann in
Section 1. Passing from (1.3) to (A.1) we have dropped the linear term + u,, which was there
only to ensure existence and uniqueness in (1.3). Anyway, whether this zero-order term is
present or not does not matter for the homogenization process.

The same assumptions Al, A2, and A3, as in Section 1, are made on the matrix A:
consequently it is well-known that (A.1) has a unique Solution in H(£2,). With the help of the
two-scale method, it is easy to heuristically obtain the limit problem of (A.1)

{—v-(A’vu)=ef in 2 (A2)

u=10 on 402,

where the matrix A is still defined by (1.5) (the cell problem is the same as it was in Section 1).
In this appendix we prove the rigorous convergence of the sequence of solutions of (A.1) to

the solution -of {A.2) when & goes to zero.

Theorem A.1. Let u, (resp. u) be the urigue solution of (A.1) (resp. (A.2)). Under the hypotheses
(H1), (H2) and (H3) on the geometry of the unit cell, u, tends to u in the following sense

li_% li2, —ull L2,y =0. (A3)

Remark A.2. Theorem A.1 has already been proved by Cioranescu and Saint Jean Paulin in [7]
when the holes are isolated in each cell. As. already mentioned in the intreduction of this
paper, Theorem A.1 generalizes their result to the case of connected holes. Furthermore, éven
in the case of isolated holes, their result is improved here because we do not “remove” the:
holes which meet the exterior boundary a(2.

Remark that the convergence is not local in the interior of {2, as it was the case in Théorem
1.4. This is due to the Dirichlet boundary condition which allows us to get a result up to the.
exterior boundary,

Before proving Theorem A.1, we modify Lemma 2.3 to take into account the Dirichlet
boundary condition on 3£2.

! Written jointly with A K. Nandakumar.
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Lemma A.3. Let u_ be a sequence such that
u,=0 onaf2,NdN

g Ad
1, | reay < C, (A.4)

where the constant C does not depend on €.
 The sequence i, is bounded in L*(€2), and thus, extracting a subsequence, we can define a
function u in L*({2) such that

f,—~0u weakly in L*(0). (A.5)

Then the sequence u,, is relatively “compact” in the following sense
For any sequence v, in LX{2,), such that §, —~ Qv weakly in. Lz(_ﬂ')_, we hdve

f_ U, f Buw. (A.6)
a1, n
Furtherimore, the limit u actudlly belongs to HM}{2).

Proof of Lemma A.3. We proceed as in Lemma 2.3, but, instead of defining the function #, in
12 only, we define it in the whole of R", Before that, we need to extenda function defined only
in £2, to the union of all material parts e E* (see hypothesis (H2) and (1.2)). For any function
v, € HY({2,) we define its extension Q,v, in ¢E* by

_ v, inf,
Qe = {0‘ in sE* - @, (A7)
The key point is now to remark that, if v, satisfies a Dirichlet boundary condition on the
exterior boundary 82 N 342,, then the extension Q,v, actually belongs to H'(sE*).
Applying this result to a sequence u, satisfying (A.4), we define a piecewise constant
function ﬁs; by

1 o .
= Bl [ _Qu, inthe cell ¥ for ic 2", (A.8)
i Y

Then, as in Lemma 2.3, we prove that the sequence #, is relatively compact in L%(e) for any
convex subset w of RY, In particular, @, is relatively compact in L*(£2). Furthermore, the limit
@ of a subsequence of i, is known to belong to H) (R"). In order to prove that # is actually
equal to zero in RY — £2, i.e. belongs to H}(2), we simply note that in RY —42, at a distance of
8} greater than &, the function i, is equal to zero. _

The end of Lemma A.3 is as Lemma 2.3, except that we do not need to localize inside Q by a
function ¢. O

Now, we give a Poincaré inequality in £2,.

Temma Ad. There exists a consiunt C, which does not depend on &, such that, for any
v, € H'(,) satisfying v, =0 on 302, N2, we have

121 oy < €11 V5, | ey (A9)
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Proof. For ‘any function v, € H(2,), let D, be the function defined by (A.8).
Mo, Il ixay < Cllo, — B, |l i2ay + 11 5 [l 22,y (A.10)

The first term in the right-hand side of (A.10) is bounded with the help of the Poincaré-
Wirtinger-type inequality (2.14), i.e.

e, =3, Il 20,y < Ce || Vo, Il 120,
For the second term in the right-hand side of {A.10), we use inequality (2.10), i.e.
”E (X) U (x+k)|[Lz(m€C|h| “ VU I]Ll(ﬂ) (A.l].)

Because of the Dirichlet condition on the exterior boundary 382, N (2, the function 7, is equal
to zero outside a neighborhood of (2. Thus there exista k € RN such that 7,{x +k) 0, and
(A:11) yields

Iz, | oy <€l Vo, [ 150, 0O
Proof of Theorem A.l. The only difference with the proof of Theorem 1.4 comes from the first

step, establishing 4 priori estimates for the sequences ..
Multiplying equation (A.1) by u,, and integrating by parts, we obtain

X .
[ Vu_s-A(—) Vu,= [ fu,. (A.11)
4, ' £ a,
Using the Poincaré inequality of Lemma A.4, we deduce from (A.11)
e, I} iy <C. (A.12)

At this point, we proceed as in the proof of Theorem 1.4, except that we know from Lemma
A.3. that the limit # of u, belongs to Hj({2). Thus, we replace the last result (2.20) of the first
step by
—V-f=f in D N
: ’ ‘A13
{u =1 on 32, (A-13)
and we repeat the second and third step. O
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