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Abstract

Nandiikiimar, A.K., Homogenization of sipenvalue problems of elasticity in peiforited demains, Asymptotic' Analysis 9
(1994) 337-358.

In this paper, we study theé homogenization of cigenvalue problem associated with the elastu:ity system in a penodlcally
{with period ¢ > 0, a small parameter) pefforated domain with tiny holes. The critical size of the holes 4, is given by
ae = Cpe¥IN=2-if N33 and ¢, = exp(—Cpfe?) if N = 2, where Cy is & constant and N is the dimension. We will

study the above eigenvalue problem as ¢ — 0 and will obtain the iomogenized system. We also study'the correctors for the
eigenvalues and eigenvectors.

1. Introduction and notations

In linear elasticity problems the displacement vector 4 = (u, ..., uy) of an ¢lastic body under
a force f = (fi,..., fwr) can be described by a system of equations of the following form:

~2 si@)=f @ Vi=1,...,N,
ox; (1.1)

:;(1) = ayzu(x)eni(u).

Here

v 1 f0uy  Buy
is the strain tensor and oy;(u) is the stress tensor. The coefficients a;;(z) are given by the
properties of the material of the body and 2 ¢ RY is the region occupied by the body. Suitable

boundary conditions can be associated with the above system, for instance »; = 0 on Iy (Dirichlet
condition) and oi;{e}n; = 0 on I3 (Neumann condition), where I' = I't U I} is the boundary of 2
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and n is the unit exterior normal to the boundary of (2. As a particular case if we take a3 = ;%
where 8 = 1 if i = k, § =1 and = 0 otherwise, then o;(u) = e;;{%).

A vast amount of literature is available on the elasticity problems in bounded and unbounded
domains and for the derivation and the physical interpretation of the above, one can refer to [14].
In fact, the above system can be put in an elliptic variational form and one can study the existence
and uniquencss results. For example see [9-12], and the references therein.

In thi§ paper we consider the eigenvalve. problems associated with the elasticity system in &
domain perforated by periodic holes, the period being a small parameter. Our aim is to study the
homogenization of the above problem. Before describing the problem, we first introduce: some
notations.

Let 2 ¢ RY be a bounded domain with a smeoth boundary I'. LetY = (-1, I)N and T be an
open subset of Y corntaining the origin. Let e > 0 be a small parameter and 0 < a, < . Perforate
the e-periodic cell ¥; = eY by Ta, = a.T. The remaining part is Y;" =¥ \ a.T. Now cover the
whole space RY by e-periodic cells which are translates of £¥. Let I, be the index set so that

2c U (sYk) and ¥Y*n £ 2,
kel

where Y* = Y 4 k. Here k € ZV. Also put T¥ = T 4 k. Now consider the perforated domain

Qae = 2\ (U T")

kel

ie., {2, is the domzin obtained from £ by removing the holes TS, = Ty, + sk from all cells
Yj’ = €¥* = ¢Y + ek which intersect 2. Observe that a. is the size of the holes which are
distributed periodically with period €. The boundary of f2,, is given by

a.ﬂa-, = Fe U (aTgt B .Q),
kel

where I. is the remaining part of the boundary I' after removing the holes. Put S¥ = 87X . Let
B, be the ball of radius = with centre at the crigin. We also use the standard Sobolev spaces. Lat
VO = BHDa)", Va, = HYa)Y, VO = HYQ)Y, and V = HY(2)V.

‘The aim of this work is to study the eigenvalue problem associated with (1.1) when € and a.
vary. We study the eigenvalue problem corresponding to the elasticity system in £2;, with Dirichlet
condition on the holes. This paper is divided into various sections for obtaining the bounds on the
eigenvalues, passage to the limit, construction of test functions, correctors eic.

The same problem with Neumann condition on the whole is quite standard as in the Laplacian
case (see [18]). In this case; one can allow the size of the holes ac and the period & to be of same
size, i.e., @ ~ €. In this case the spectrum is bounded independent of £ and one can obtain the
homogenized system using the standard techniques.

But as far.as the Dirichlet case is concerned the sitimtion is quite différent. In fact, when a; ~¢
the spectrum is not bounded in ¢ and the limit analysis seems to be an open problem. The Dirichlet
casé with Laplacian operator was studied in {18]. In this paper we study the Dirichlet eigenvalue
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problem of elasticity when the size of the holes is much smaller than the period. More precisely,
we take
{ Coe¥N-2 N3
Qe =

_ | 1.2)
exp (%) it N =2 (1.2)

where Cgq is a constant. In this case, we will prove that the spectrum is boundéd in e and we will
obtaifr the homogenized system satisfied by the limit. The homogenized system is similar to the
¢lasticity system, but with an extra term. We will also study the correctors of the eigenvalues and
eigenvectors.,

Now we. will cite a few other references. B()undar'y value problems for'l.aplace operator
in perforated domains where the size of the holes is given by (1.2) were studied in [4]. The
homogcmzatlon of the elasticity system in a domain 12 with osczllatmg coefficients has been
studied in [17] (see [7]). Duvaut [8] has studied the above system in perforated domains when the
size of the boles a. is same as the period £ but with Neumann condition. For the homogenization
of eigenvalue problems of Laplacian in perforated domains, one can see the references [18] (when
a: =~ ¢) and [15] (when ac <€ ¢€). Stokes and Biharmonic ¢igenvalue problems in perforated
domain when ¢, € ¢ have also been studied in [15]. In [1, 2] Allaire studies the homogenization
of the Stokes system, when the size of the holes a. is much smaller than the period ¢ and for the
Laplacian and bi-Laplacian case one can see in Cioranescu and Murat [4]. We closely follow the
same techniques as in [1, 2, 4, 15). The test functions, however, are different in the present case
and are presented in Section 6. Summation convention is adapted throughout the: paper.

2.. Problem description

We consider the following problem :
Find u, € V2, 1, £ 0, A; € R such that

9 . .
— 5—:;; U'”(uz) = Ag.u;”'_ n ﬂ?’_t}
1/ 0uy o 5, = -
oii(ue) = (ﬁ * %) in ., &
e = 0 on aﬂae.

The above problem can be formulated in the variational form and is equivalent:to
Find u. € Vuﬂ, ue Z 0, Ae € R, such that

be(tie, 0) = Aeltie, 2)er VO E Vo, (2.2)

where

- o oy ey — 1 Quy Bv; | [ Bu; Buy
D beu )= jﬂ i) = 2[ fﬂ ey /n ks awi],

i) (k= [ .
RG

e

(23
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Using Korn's mequahty (see [17]), one can see that b is an elliptic bilinear form on Vi x V.(l,
so that the system (2.2) is an elliptic eigenvalue pmblem and hence, for each fixed &, the system
(2.2) has a sequence of eigenvalues {A}j2, and eigenvectors {ul}, such that

i) 0():&*3‘*(\—»00,
_ 249
i)  {ul} form an orthonormal basis for L*(2,)".
Further, the eigenvalues XL can be characterized as
. = min {'mxﬁ,(g): S cV2, dim§; = z} (2.5)
vES] :
where
Ja., 7i5(®)o4i(2)
Re(v) = —F5—=— (2.6)
Ja, PP

Our aim is to study the bchawour of u, and X, s & — 0. In the next section we will obtain
the estimates on the eigenvalues AL.

3. Estimates on the eigenvalues

Introduce the following problem in the domain 12.
Find w € V%, w # 0, v € R, such that

0 .
~ B oyj(w) =vwy in 2,

dw; | Owy .o (3:1)
oij(w) = 2 (Bm, + -B:c.') in 2,
w=0 onl.

This problem (3.1} is similar to the problem (2.1), but with domain {2 instead of the ‘perforated
domain {2,, and it has a point spectrum {»'}{2, and eigenvectors {w'}{2;, such that

D) 0<v VP o oo, 52
3.2
if) {-w’}g‘:l__ form an orthonormal basis for L?(.rz)” .
These eigenvalues ¢ have a characterization similar to (2.5). More precisely,
I . _ 6 5 '___='_
v = mm{g;éaég;:R(v). 5 CV’, dim 85 I},
where. _
R(v) = Ja28()7i(0)
Jalvl

We have the following theorem which provides the necessary bounds on the eigenvalues.
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Theorem 3.1. Let ae be as in (1.2). Then there are constants Cy = C1(I) > 0, Oy = Ca() > 0,
independent of €. such that

C1 <A< Gy (3.3)

Proof, The proof is similar to the one we used in [15] for studying the Laplacian case.
Let i, be a sequence of functions satisfying the following properties
) we € H'($2) and we = 0 in the holes Ty, G
' 3.4
i)  we—1in F(2) weak.

The existence of such functions w, has been proved in [4] (see also [15]). Let w?,...,w be
the first I eigenvectors of the problem (3.1) and consider the set

Si = {wsw?, ..., wew'} C V2.

Notlcc weti' € V;, because %' = 0 on 82, w. = D on the holes sz and w. € H 1(.(2) and

wt € (0.

Claim. S} is an independent set (for sufficiently small ¢).

If
; '.
> eqwew' =0 in &,
=t
where c,;’s are constants, and ¢,; # 0 for some 4, then choose k € {1,...,}, independent of ¢,

such that Jex| 3> |cqif for all i = 1,...,1, along a subsequence of «. Thcn_ if necessary, dividing
cei BY o, without loss of gencrahty we can assume that c; = 1 and [ < L foralli=1,..,,1,
so that ¢;; — ¢;,a5 ¢ — 0 and ¢, = 1. Then by passing to the limit in the above relation as ¢ — 0,
we get

!
Ec,w' =10,
i=1
which in turn will imply that ¢; = 0, Vi = 1,...,1 because {w,...,w'} is independent. This is a
contradiction and hence our claim.
Now orthogonalize 57 using the Gram—Schmidt process in the following way.
_ k-1 _ _
z; = w;'wl and -zf = w,_wk - Z (w_'gwk, w,w‘)swcw'.
f=1
Then 57 = {z2,..., 2L} isan orthogonal set and it satisfies the following: There exist C = C(I) >
0, C' = C'(]) > 0, independent of ¢, such that

|2l 2y 2 € and [Vl ppgs < €, VWi=1,..,0 (3.5)
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The estimates (3.5) can be proved using the convergence (3.4). Let $; be the subspace spanned
by 2%, i=1,...,1. Then §; is an I-dimensional subspace of V2 and using (2.5), we get

X € max Re(v).

Now for any v € S;, we can write
l

v = z c,,-,s-zi

i=1

and using (3.5) we see that

r Ki
[ owi=3d[ Hrrcy
fa, 4=1 a. i=1
i
f oii(v)o (@) < Q'Y i,
flae i=1
so that AL < €, = C,(0) for some constant .
The opposite inequality in (3.3) is a simple consequence of the fact that any v € V2 can be
extended by zéro in the holes and hence v € V‘U, s0 that )\L > o > v! > 0. This completes the
proof of Theorem 3.1. O

4, Homogenization

In this section we pass to the limit in the system (2.1) and we will obtain the homogenized
system. To pass to the limit we need some test functions. In this section we will only state the
required properties of the test functions (Lemma 4.1), and -the construction and the proof wiil
be given in Section 6. Of course we will not explicitly construct the test functions, bot we do
construct certain explicit approximate functions using the fundamental solution of the elasticity
system.

Lemma 4.1. (Test functions.) Let a. be ds in (1.2). Then there exist test functions wf and
i, 1<k € N, such that

)  weVaduwl=0inTE, VkelL,
iy  ume W@y,
1ii} wf — ey, in V weak, where ey, is the k-th unit vector
in the canonical basis of R, 4.1)
iv) whenever ve € V, v =0 in Ts,, Yk € I suck that
wg — v in V weak then we have, V¢ € D(Q)N,_

2 y |
V’< - 'B?J G’i.‘f(waf)’ qb‘us>v — V’(“IF’ é”)y-
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Corollary 4.1. Let a. be of non-critical size, ie., a. = Cpe®, o > N/(N—2if N > 3, and
a. = exp(—Cq/e®), @ > 2 if N = 2. Then the test functions wk defined above will samﬁr the
strong convergence in (4.1, iii). Moreover, in this case, yy = 0.

Corollary 4.2.. By taking ve = wl andv = ep in (4.1, iv) we get
okt $o(a) = lim '/‘; 03 (wF) ay; (wl) (4.2)

for every ¢ € D(12). Hence, sz is the matrix with elements My = uy, then M is a symmetric,
non-negative definite matrix, i.e., for every ¢ € D((2), we have

} 2
<M¢: ¢) = (u’g) ¢k’ 2 0. (4.3)

We are now in a position 10 pass to the limit in (2.1) and we have the following theorem.

’I‘heorem 4.1 Let a be as in (1.2). Let {ul}, {Al} be the solution: of the problem (2.2) and %
be the extension of b by zero in the holes. Then there is a subsequence of ¢, denoted again by E,
such that

. { X
i) Ar = A,

i (4.4)
if) % - in VO weak as e — 0,

where M is the 1-th eigenvalue and u' is the corresponding eigenvector of the following problem:

a . f |
~ 3g; THW T (M) =dus in &,

PR A LA (4.5)
5= (e +38) s,
u=0 onl.
Moreover,
_/D_Ide‘j (L) |2'-*. /{; |ows () | + (3,2, (4.6)

where M is defined in Corollary 4.2,

Proof. Takmg v = v} in (2.2) and using the estimate on the eigenvaloes we get (after normalizing
e by [|uélizza,,) = 1

[l (ve) |.|L2(n-d‘_) < constant.
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So using Kom’s inequality (see [17]), we have
||§i]| Hrig) S constant. (4.7)

Hence there is 2 subsequence of ¢, satisfying the convergence (4.4, i and ii) using the estimates
(3.3) and (4.7).

Now we will show that A, u! satisfies the system (4.5). Let ¢ € D(2) and multiplying the
equation (2.1) by ¢w! and integrating by parts, we get

[ oo (@u) = [ sdiowk > ¥ [ adgew =3 [ e,

Qg n.dl

On the othér hand,

_ FS 5 ok
L.H-S'z-/m oy {ub) = 3 (amj wﬂ_-{- amg i’,—) + ./;?u aii{ut) doy; (wf)

‘But the first term on the right hand side converges to

freilt)

B (uf ).
=— [ T gy,
/o Duxj

Second term is equal to

19 . » < C By o > / -
— Ue; = (Pois(we)) = — ol ), PU ) — [ Being— Cfs We
/m{ e; rs(l)) = (=g, o)~ [ gl o (uh)
— yor{ s éul)v by Lemma 4.1.
So we get, V6 € D(2),
doi(d) o N Lo
_../I.? _333‘;_ exip + V!'(#k;'q’n‘ >V =-A ‘/;?“{eki@s-
This shows that X!, »! is a solution of the system (4.5). In fact, X! is the [-th eigenvalue and +’
is the corresponding eigenvector and the proof of which is quite standard and hence we will omit
the proof here (sec [15]).

The convergence (4.6) follows by taking v = ‘ite in (2.2) and then, after passing to the limit,
use the system (4.5). This completes the proof of Theorem 4:1.
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5. Correctors

Here we. introduce the correctors for the eigenvalues and eigenvectors. Let W, = (wf igk<N
be the matrix with columns ¥ given by Lemma 4.1. Let %, and u be eigenvectors of the system
(2.1) and (4.5), respectively, and @, — u in V weak. Let

Te = te — Wet. (5.1)
Then we have the following theorem
Theorem 5,1. Let r be given by (5.1). Then

re— 0 in V° strong. (5.2)

Proof. Since u is-an eigenvector, & € C™(2)Y N V° and hence given a small number % > 0, for
any 1 £ p < oo choose ¢ € D(.I‘Z)N such that

lu = éllzzay + 1w — Bllyyingg) < 7. (5.3)
Now
aij(re) = 035 (e — Wed) + 03 (We($ — w)).

But [|oy; (Wg(qs w))|| 12(9) can be make arbifrarily small enough using the inequality (5.3) and the

fact that w} is bounded in V independent of £. (Also use the fact that H($2) — L(12), where
1K q<2N/(N—2)if N 23and 1< g <ooif N=2). Now without much difficulty, by
expanding oy (s — Wed) and using (4.1, iv), (4.2) and (4.6), one can see that

loss (@ — Wed) | g2y = lis(e — )| gy + (M = ), u — 4).
The right-hand side of the above equation can be made small because of (5.3) and
M e W@y,

Hence it follows that o¢;(re) — 0 in L2(92) strong. Now using Korn’s inequality we get Vr, — 0
in L2(£2) strong, which completes the proof of Theorem 5.1. O

The above result can be interpreted as a corrector result for eigenvectors, Next, we will give the
corrector result for the eigenvalues A,. Let U, be the unique solution of the following problem:

b.g{U‘g', ‘U) = )l(‘u,_ ‘H)g', Yo € Kg? Ug e Vtﬂ? (5,.4)

where A is a simple eigenvalie and u is the normalized eigenvector corresponding to A of the
homogenized problem (4.5). Here b. is the bilinear form given by (2.3, i). Then one can see that
(following the proof of Theorem 4.1)

U —u in V° weakly. (5.5)
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Moreover, using the same proof as in Theorem 5.1, we get
U.— Weu— 0 in VO strongly.

Let A: be the cigenvahié of the problem (2.1) comverging to A and u. be the corresponding
(normalized) eigenvector. Then M. will be simple for ¢ small. It follows that (using the above
strong convergence)

U. — % — 0 in V° strongly.
Now taking v = %. in (5.4) and v = U, in (2.2), we get

(12, 2te)e
£ — ——— A. 5.6
A (ﬂza Us)s- ( )
Then it is easy to see that
[Ae — Al £ 0_”1‘; —ff_, "L“(ﬂ) . (5.7

Since ¥, — Wen — 0 strongly in V7, the convergence of ||U. — Weul| 1n) is better than the
convergence of || — x| 1) Hence our aim, in the remaining part of this section; is to obtain
an estimate of Ac — A in terms of || — Weu|| sy The estimate of ). — A (see (5.8) below) also
contains terms of the form ||z — U‘“LZ(G) and || Id— W=||L2(I2) J|ee — U¢||L;(3) and observe that these
two terms converge to zero much faster than ||lu — Ue|| r2(y and we have the following result.

Theorem 5.2. Let A. and X be simple eigenvalues of the problem (2.1) and (5.4), respectively,

and Ae — A as ¢ —+ 0. Let u. and u be the normalized eigenvectors corresponding to A\, and A,
respectively, then (u, (2Id — W )u) acts as a corrector in the following sense:

|Ae — (8, (21d - Welu)A| < € [||ﬁ — Wett| g + [T — ull 720

B (5:8)
+ 1= Wy |0 = )

Proof. We roughly sketch the proof For a detailed proof in other cases see [15] Using the
following equality

el — tie, Do — u,_.) [haa, Uede — ,\] + (e — 3)(u, (Id — Weu)),
we get i '
Ao — (4, (21d — Wodu)h = Ag (u, Wou — T) 4+ (A — (4, (I&.— W)
+ A (u— ug, Ue —u) — (2 — A;)(u,u — ).

Then the rcsuh (5:8) will follow from (5 7 aﬁd if we assume that the following estimate (S 9) is
trie

6 — el cagay < Cllw = Tell agay- (5.9)
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To prove. this, introduce z. as the solution of
63 (3-'!-"» ”) - A (ZS: ”)i' = A (Ug, 1.'-‘)3 - A(“ 1}');;
vEVf, EVL, and (z,ue)e = 0.

(5.10)

Using a contradictory argument and using the fact that u is a simple eigenvector, one provés that
o33 C2o)| 2,y < O2eTe _:A“"Lz(_na.,___) (5.11)

where C' is independent of . Moreover, from (5.10), we can see that z. + U: is an eigenvector
cotresponding to A, and since A, is simple, after normalizing 2. + U, wé get

Ue = 2 + Ug_-.
Thus

|l “=”L2(n) lu— 7. | oyt [E ||L2(n)’
so that the estimate (5.9) follows, because by using (5.11), we have
E2 ”L_Z(n-) < O[2eWe = w)]| 2,y + (| (e = A)u ”Lﬁ_(fza.')
< Cllw = Te|| gy
This completes the proof of Theorem 5.2. [
6. Test functions 2w’ and the proof of Lemma 4.1

First define w} in the s-pcnodrc ccll Y: in the following way. Let e be the k-th unit vector in
the canonical basis of B, Define %X as the unique sotution of the following problem:

0 : .o =
~ 3.7 oi(we) =0 in B\ T,
I

wf =0 in Ty, (6.1)

11.’5 =€, n K\FEIZ'

Then extend w to all of RV using e-periodicity. It will be shown that w defined in this way will
satisfy Lemma 4.1. First, let us prove the following

Claim. Let a. be as in (1.2). Then

"wf “ HY(®) < constant, independent of €. (6.2)
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Proof. Choose a sequence of test functions w. satisfying the following propérties
0 w, is bounded in H(£2), independent of ,

i) we=0inT., Viek we=1mn2\ B ad0gw <1
"EI‘

For the ‘existence of such functions, for the above choice of a. one can refer to [4]. Let E* =
w* — weex. Thén *w*ﬁ satisfies

o] [}
— a—z-; o5 (wa) = Ea’,, (weer) in Byjp\Ta.,

wﬁ =0 ondB,;UdT,,.
Multiplying the equation by @5 and integrating by parts, we get
”"‘J )"LZ(B, j\Tae) ""uﬁ"f"k)"Lﬂ(s,,z\n,) C||sz||52(3,,2\n.)
Hence we have
(k12 . 2
[l (@2) [ gy < 1V 2ellz2ay < C-
Since w’; = 0 on 3B,;, using the transformation
S Befz =y= ‘E" € 31;2
and applying Korn’s inequality, we get
[v@ ”Lﬂ(B S Cllo; (wt )"zﬁ(ﬁ,m)
Summing overall cells and using the estimate obtained above; we get
V%] 2y < ©
Hence it follows that
|V gy < €
This completes the proof of the claim (6.2). O

By the above claim, it follows that w — w® in V weak and hence in L2(2)" strong. In fact,
we have w* = e. To see this, let X=(2) be the characteristic function of

(f] \ U B:[.z.

el .
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Then, we have x,w, = xe€x. Observe that if x is the characteristic function of ¥ \ By /2> then
x=(x) = x(z/e), so that x. converges to a positive quantity in L(R2) weak-star namely the
average of y. Therefore by passing to the limit we get w* = e}. So it remains to prove wf defined
by (6.1) satisfies (4.1, iv). To do this we construct certain approximation to wg. In the case of
dimension 2, such approximate solution will be obtained directly from the fundamental solution.
This procedure will not work, in the case of dimension N > 3 (see Remark 6.1). So, for N > 3,
we proceed differently. The method we employ for N 2 3 does not seem to work for ¥ = 2. So
we need to treat the two cases N = 2, N > 3 scparately, O

Now let us' consider fundamental sclutions of elasticity system. Define a solution 4* of the
following equation:

—i 6;5-(‘11") = 5(2’: —y)exs in RN.
GEH

Then a solution u* with singularity at y is given by (see [3])

-.]—T-(—Blog r-e_k,v+%)_, it N =2,
4n
: (6.3)

1 3 €ki Tk .
o (s ). 00>

Here r = |z — y| and Sy is the area of the unit sphere in -RN .

Case N = 2. To simplify matters, we assume T is a ball with centre at the origin and radius 1.
Therefore a.T = B,,. This is not 2 serious restriction. because for any 7', let B be some ball such
that T C B and then the approximate solution in B,/; \ e¢B will be an approximate solution in
B,y \ a:T and we can work out the details in a similar way.

Define gf in B,z \ Ba, as follows

98 = e — BC a—4muf in By \ Be,

. (6.4)

— g e & LT

= ek 36, ( 3log r-ex + )

where Cy is thie constant given in the definition of 4. and r = |z|. The g% defined by (6.4) satisfies
2 oi(e¥) =0 inB.,\B
axj I3\, ;fz Bev

2 . '
k. __ & e (maes,,
fei |aB¢{2 = €hi 300 ( 310g 2 Cki + (5/2)2 L

k —£
gﬂ'laBﬂ‘ = 300‘!% (wi$k)

"t
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Since
Z=\2 ’
les,, < (5) 9 Gwolos, <,
it follows that |
g‘flas‘ 2™t |e*loge] and of IBB'q o~ g2 (6.6)
This shows that g¥ is an approximation to wf in B,j3\ Ba, defined by (6.1). Define the error:
Z=wk—g* in B\ B |
Then z* satisfies

d

) g5 ou(E) =0 mBy\Be,
i)  2*~|efloge| on @By, 6.7)
iii) z~e’ on 8B,

Note that w: is defined in all of Yz. Now extend zF to all of ¥; in some way for example, define
0 k . =
B; oej-(ze). =0 inYe\ By,

z¥ is Y-periodic and continuous across 08,

and in B,

0 : .
—a;; agj_-(zf.) =0 in Bg,,_

zF is continuous across 8Bs,.

We can then extend z¥ periodically to all of R% We denote the extension also by #£. From (6.7,
it and iii) it follows that on 3B, s,

k

Zg
—_—_ ~ 1
|e2log €| (1)
and on 858,,,
2k &%

=0 ase—1,

le*log € ~ [€2 iog £
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so that in a similar fashion as in (6.2), we get

(e
\le?1og €]/ || L)

and hence
122 | 2y < Ol log |-
Note that g¥ was defined only in the domain

2R LN
U (Be.fz \ Bf‘h)'
el
Now, since z¥, ¥ were defined in all of (2, one can define g% in all of 12 satisfying the equation
gE w&' ZC 1 . .
Now observe: that if we consider
0 : .
E Oij (wﬁ) in £2,

it is concentrated only on the boundary of the balls B_: /2 and B,ﬂc, forl € I.. More precisely,

V’( - Bc; O3 (W§-),-¢>V = Z /; . O'gj.(wf) n,—¢; ds.
' ' V. ler LoB

B!,

In térms of g¥ and z_f, We can write,
a7 (vh) = —5-iy (o) — a0 k) = (7 = 78) + (uE =),

dz;

where @F, 7, uf, 4% all belong to V' and are given by

. U .

i) V’(”’s’é)V = %AB:H o35 (ze )njdids,

W ey =2 [m‘ o5 (s da,

i)yl =X [ osmdias
1el, Y98,

) R MEDD ‘/;'B e (98) nighi ds,

ek

forall ¢ € V.
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Hence, for any vg,v, and ¢ as in Lemma 4.1, i€, v €V, v. =0 in Ti‘, lel,and o — v
in V weak and ¢ € D(2), we have

0 .
< - a_% o5 (‘I‘.Ui‘) :-¢”€>V = Vi(ﬁﬁ: ?‘”ﬁ)v + vt (Pﬁ-, WB>V°

Vl .
Multiplying (6.7, i) by ¢ve and integrating by parts, we get

A Yy, = ” f e ).
./BB-”«Z o5 (zs_)njévs </l;,!z\B¢ 0‘__,(2' )D’,J(QS‘U)

So that, by summing over all ¢¢élls and using (6.8) we get
{0y < [ o) ois(6me) | < Cle*loge] 0 as & .
So it suffices to prove that

v (#5f¢ps>v T (#k, Cj-’?‘U)V as g — 0, (6.10)-

for some pz, € (WLo(M)V.
Now the technique is similar to the one in Laplacian and Stokes case. We prove that

u¥ — i in V' strongly,

which in fumn will imply (6.10).
Using formulae (6.4) and n; = z;/r, we get

S = B e (zm)|
%(g,)n_,|w‘ﬁ - 300 eki t 300( r2 ) aB,;z,.

so that if z; is the centre of the ball Bifz, 1 € I., then for any ¢ € Hy(f2), we have

[25 exs 4 & (@i — 2z} —'mrk)]q;(a) ds

T Joml,, L3Co 3Co |z — 22 '
: 4 (6.11)
e. . ) B 1 w
=30, E, (feys9) + 355 2o elointerar9)

where

(2 — z)(z = =)
|z: — I} |'2

gir(z) =

and Sifz is the Dirac. mass concentrated on the sphere: aBi_,_z_ given by

(Bt = [ #0)as and (dhtlpd) = [ shi@oe)ds

)- 4 12 aB! P

Now to find the limit of the right-hand side of (6.11), we use the following lemma, whose proof
may be found in [4] (see also [1]).
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Lemma 6.1. Let &) /2 be the Dirac mass concentrated on the sphere 3B s and let
e = (@ —a)fjz - =,
where € dB! /2 Let Sy denote the area of the unit sphere in RY. Then for N > 2, we have

S bl — —_1 in H1($2) strongly, (6:12)
iel,

% 56,’;2 (ex, et) et — NZZN — e in H YD strongly, (6.13)
£

where (e;, €L) is the standard product-in RY,

Now from the strong convergence (6.12) and {6.13), it follows that, for N = 2, we have
Ze(ai/27¢”ﬂ) —-* <%a 96.”1'-):
lel,
and

bogl (i

Ze(ymﬁa{z; QS"’&i) —* <§ €kiy @i)-
lel, '
Hence it follows that (from (6.11))

(Hreir PVe) — <%—eh évs'),

so that 1 = 7t/(3Cq)ex, is a constant and belongs to W"°(2)". This completes the proof of
the convergence (6.10) and hence Lemma 4.1, in the case N = 2.

Remark 6.1. The above method does not work for §¥ 2 3 for the follow:ng reasons. Observe
that in N = 2, we defined gF = e, — cu® and the consiant C = 4n/(3Cp)e” is determined in such
a way that g¥is an approximate solution. More precisely, let us observe that

* _ Cf ape .. Ziklosa )
and our choice of C implies that 3C/(47) log a: = 1, so that the first two terms get cancelled and
hence
k A
9=="|aBG-, =0(¢).

For N 2 3; the same- prooedure does not yield an approximation to w, This can be seen as
follows. Let us take g* = e, — CuF, then

k _ . C A 3 ey | zzlom,,
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So if we choose ¢ in such a manner that
c 3
258 (N — 2)al 2 )

Theén

k _ N-2{zwklem., )\ _ A,
gei‘lagq. == 3 ( ag. ) - 0(1)':

ie. gm |am,, is not small. The reason lies in the fact that the two terms in the ﬁ.mdamental solution

(6.3) behave differently depending on N = 2 and N 2> 3. Indeed the two terms in u* on 8B,,,
namely,

14 Tik|eB,,
aiv -2 a¥
are of the same order for N > 3, but for N = 2 the first term is log a. which is of order e* and
the second term
zix|oR,,
a?
is of order 1.

Case N > 3. Here we adopt the same method as in the case of Stokes system (see [1]). Define
u* as follows

w*=0 on a7,

o — e, as lx}— o0,

(6.14)

Jois () sy <.

This problem can be solved using Beppo Lew spaces [6]. Also see [13].
Now we define the approximate solution gfin B,y as:

(W (=Y @B \F.. _' |

9i@) = {w (a) o By \ B, (6.15)
0 in B,,.

Observe that gF is an approximation to w” because

=0,

9'§ '|aB;,, laB, T wt |aE«f2ag

which converpes to ey, as & — 0 since £/(2a.) — oo as & — 0 and g¥ satisfies the elasticity system.
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Now using (6.14), it follows that

o3 <. ”L?(B o SC a %,

S0 that

”a,_», (ﬂe)”m( U B‘ ) < C e =,

ely

for our choice of a,.
(This method does not work for N = 2 because in this case

" g (9’3 Ll( U B“,z) £ g.

1€l

which is unbaundcd as £ — 0)

Now define 25 = w¥ — g in B3 \ B,,. Then one can extend 2 in Yo\ B, s; (also g&) as in
the case of N = 2.

Apgain one has to prove (3.6, iv) of Lemma 4.1. We have
k 9 B0 k \ k__k
—Eﬂiﬁ.(ws) = "a—%"ia‘ (=) - gj%‘(gs) = (B: — 7.} + (B — %)
where 1, 75, u¥, 4% all belong to V' with similar definitions as in (6.9). Hence for given v, v,
and ¢ as in Lemma 4.1, we get

0 \ - ' :
V,< - 'a—xJ- G5 (Wﬁ) ¢”=>V = V’<P_:".¢”‘>V + (ﬂfs @S’”S>V~ (6.16)

So it remains to find the limit of the right hand side of (6.16), We express w* using the fundamental
solution (6.3). Assume T’ be the open set such that T' C Bj, where B, is the ball with centre at
the origin and radius 1. Let-# € D(B,) such that # = 1 in a neighbourhood of T" and put

o =(-opt, ad f=—oy@) nm". 617)

; _

Observe that * = w* outside By, ie, nR N\ B, and f} € D(By). Now consider f& »ul", where
u™ 1% the fundamental solution given by (6.3), which is smooth and satisfies the elasticity system
in R™ and

1 3 €k (2% ys)(% ym) IR
fm * ut ZSN [.[;N N'— 2 |$ _ TN._g fm(y)dy‘l'/ yIN fm(y) dy]

_ 1 3 (31 yc WEm — ym) .k
‘z-Sn[ o, N=2 [z — yIN‘ fk(y)d“/ -y fm(y)dy]
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So if |#| is large enough,

: m 3 Ekm k 1 TiTm ok
A 25N(N =2) |e IN'ZF »t %y o |NF

where

kg o ke
= [Bl ftk(y) dy=— [81 E i (wk) dy = — ./;Bi a'ij-'(wk)ﬂj ds

(6.18)
”
= — o (w” )nyds.
| @n;
Here n; denotes the unit normal to the ball By or the hole-T. Also
: 1
V{(fm*ul) ~ O(W"__l) as |z] — oo,
and hence
o3 (o  wT* M zagery < oo
Further,
wf — (er + f,ﬁ xul") = 0 as 2] > o0
and using the uniqueness of the elasticity system in RY, it follows that
W = ex + f; * oy
and hence: for |z| large enough,
1Y ) 3 €km i TiTm ok o
K2} ~ e k FE, 6.19
wi () eiﬂ+2S__-(N_2) |;1‘.'|N_2 + | |N ( )

where F& _is given by (6.18),
So from (6.19) and from the definition of g¥ and 2%, it follows that
zz'['aa";,. =0
and

s \N=2 N-2
& o __ 3 N 2 k Eidm
zr.|-a3,,2 (s ) [2SN(N 2) 2oy + S — 35 Fm |22

0B, IJ

and the right-hand side is of order (a. /-e)N =2 = ¢? and in a similar fashion as in the case of
dimension 2, one can show that

”a'"j (25) "L?.(g) g Gez’
and

7° = 0 in V' strongly. (6.21)
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Claim, uf — py in V' strongly, where |

CN—Z : ‘
Be = gN Fk, and Fh = - ./ag" o ('wh)n}' ds, (622)

where n; is the exterior unit normal fo the hole T. !

Proof. Using (6.15), (6.19) and n; = z;/|z| on 8B,/;, we have

1car.f,\'r

N(Ezwzi)
Cr;';,.' (5‘.5) ZSN [le_ [Fk + Z%_)]
50 that

Co 22" 1ok | N(Fhama:)
U‘J (gg)ﬂj|aB'!2 ~ T £ E + —_—

63,72:|

2B, ,,,]

] in V' strongly

Hence we have

. GN—22N -1 [
He = _"_"'_'_

Fk ! ,ﬁzmw,
Z slojp+ ) Nebeps | - Tl
lele el

. oo g S, Sy p
28N ¢ @N-1 T EN-2

by using Lemma 6.1. So it follows that

where u is given by (6.22) and this completes the proof of the claim and hénce Lemma 4.1.
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