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1. INTRODUCTION

In this short article we investigate complete controllability of the control
system with impulse effects

dx tŽ . w xs A t x t q B t u t q f t , x t , t / t , t g t , TŽ . Ž . Ž . Ž . Ž .Ž . k 0dt
q kx t s I q D u t x tŽ . Ž .Ž .k k k

1.1Ž .

x t s x ,Ž .0 0

w x Ž . Ž .where, for each t g t , T , the state x t is an n-vector, control u t is an0
Ž . Ž .m-vector, A t and B t are n = n and n = m matrices, respectively, with

piecewise continuous entries, and 0 - t - t - ??? - t - ??? - t - T1 2 k r
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Ž .are the time points at which we give impulsive controls u t to the system.k
k Ž .For each k s 1, 2, . . . , r, D u t is an n = n diagonal matrix such thatk

k Ž . m k Ž . nD u t s Ý d u t I, where I is the identity matrix on R , andk is1 i i k
k w x n nd g R, and f : t , T = R ª R is a nonlinear function which is mea-i 0

surable with respect to the first argument and continuous with respect to
Ž .the second argument. The control u t is said to be impulsive if at t s tk

the pulses are regulated and are chosen arbitrarily in the rest of the
domain. Study of such a system received much attention in recent years
due to the fact that many evolutionary processes experience an abrupt

Ž w x.change of state at certain moments refer to Lakshmikantham et al. 5 . In
w x6 , Leela et al. studied the controllability property of a time-invariant

Ž Ž . Ž . Ž ..unperturbed system i.e., with A t s A, B t s B, and f ' 0 in 1.1 . In
w x6 , it is stated that the time-invariant unperturbed system is always

Žcompletely controllable. However, only controllability to the origin null
.controllability is established, and that in a rather tedious manner. In fact,

controllability to the origin follows very easily if one notes that, at any
arbitrary time point t , an impulsive control may be applied to the statek
Ž q.x t , keeping other controls to be zero, so that the system is instanta-k

neously driven to the origin.
ŽWe obtain conditions for complete controllability of unperturbed i.e.,

.with f ' 0 and perturbed systems separately. Section 2 deals with com-
plete controllability of the unperturbed system, and in Section 3, some
sufficient conditions for complete controllability of the perturbed system
Ž .1.1 are obtained.

2. CONTROLLABILITY OF THE UNPERTURBED SYSTEM

Ž .To study complete controllability of 1.1 we first study complete control-
lability of the corresponding unperturbed system

dx tŽ . w xs A t x t q B t u t , t / t , t g t , TŽ . Ž . Ž . Ž . k 0dt
q kx t s I q D u t x tŽ . Ž .Ž .k k k

2.1Ž .

x t s x .Ž .0 0

In this section we prove the necessary and sufficient condition for the
Ž . w xcomplete controllability of 2.1 . As remarked earlier, Leela et al. 6

Ž . Ž Ž . Ž .reported that the impulsive system 2.1 with A t and B t time-invariant
.matrices is always completely controllable, which is an incorrect assertion

as is evident from the following example.
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COUNTEREXAMPLE. Consider a two-dimensional system with

0 0 0A s , B s , and r s 1, t s 0.00 0 1

Let

1d u t 0Ž .1 11D u t s .Ž .1 10 d u tŽ .1 1

That is, the system has the form

d x tŽ .1 0 w xs u t , t / t , t g 0, TŽ . 1ž /1ž /x tdt Ž .2

q 1x t 1 q d u t 0 x tŽ . Ž .Ž .1 1 1 1 1 1s .q 1 ž /ž / x tx t Ž .Ž . 0 1 q d u tŽ . 2 12 1 1 1

Ž .T Ž .TLet 0, 1 be the initial state and let 1, 0 be the desired final state.
With this initial state the state at time t s T is given by

x TŽ . 0 0t1 1s q u s dsŽ .H1 1ž / ž /1 q d u t 1 q d u tŽ . Ž .ž /x TŽ . 1 1 1 102

T 0q u s ds.Ž .H ž /1t1

Ž . Ž .T Ž .TClearly, no control u t will steer 0, 1 to 1, 0 . Therefore this system is
not completely controllable.

w x ŽWhat exactly is proved in 6 is the null controllability i.e., controllable
.to the origin from any initial state . We note that the null controllability of

Ž . Ž .2.1 can be proved in a few lines. For, if we prescribe u t at t s t suchk
that

r
kI q D u t s 0 for 1 F j F rŽ .Ž .Ł k

ksj

u t s 0 for all t / tŽ . k
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Ž .then the solution of 2.1 given by

kx t s f t , t I q D u t xŽ . Ž . Ž .Ł0 k 0
t -t -t0 k r

r
ti kq f t , s I q D u t B s u s dsŽ . Ž . Ž . Ž .Ž .Ý ŁH k

t t -t -tiy1is1 iy1 k

t
q f t , s B s u s ds 2.2Ž . Ž . Ž . Ž .H

tr

Ž .satisfies x T s 0.
Ž .That is, the system 2.1 is always null controllable without any condi-

Ž . Ž .tions on A t and B t . It can be shown that something more is true for
the impulsive system. Any initial condition x g R n can be steered to any0
desired state x , if1

x g Range C q Span f T , t x , 2.3Ž . Ž . Ž .Ž .1 0 0

2Ž m. nwhere C: L I, R ª R is the linear operator defined by

T
Cu s f T , s B s u s ds. 2.4Ž . Ž . Ž . Ž .H

tr

Ž . Ž Ž . . nObviously, 0 g Range C q Span f T , t x for arbitrary x g R , and0 0 0
Ž .this justifies the null controllability of 2.1 . We now give the following

Ž .characterization for the complete controllability of 2.1 .

Ž .THEOREM 2.1. The system 2.1 is completely controllable if and only if
Ž .the controllability Grammian W t , T defined byr

T U UW t , T s f T , t B t B t f T , t dt 2.5Ž . Ž . Ž . Ž . Ž .Ž . Hr
tr

is non-singular.

Ž . Ž . Ž .Proof. For any initial state x the solution x t of 2.1 is given by 2.2 .0
Ž k Ž ..Since I q D u t is a diagonal matrix, it follows thatŁ k

t -t -t0 k r

x T g Range C q Span f T , t x .Ž . Ž . Ž .Ž .0 0

Ž . nThe system 2.1 is completely controllable if and only if for every x g R ,0

Range C q Span f T , t x s R n .Ž . Ž .Ž .0 0

Ž . nThis holds if and only if Range C s R . Now the theorem follows directly
Ž . Ž . w xfrom the fact that Range C s Range W t , T . Refer to Brockett 1 .r
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Ž .For time-invariant system 2.1 we have the following Kalman rank
condition to check complete controllability, which follows as a corollary of
the above theorem.

Ž . Ž .COROLLARY 2.1. Suppose that A t and B t are time-in¨ariant matrices.
Ž .Then 2.1 is completely controllable if and only if

w 2 n -1 xRank B : AB : A B : ??? A B s n.

3. CONTROLLABILITY OF THE PERTURBED SYSTEM

We now give sufficient conditions for the complete controllability of the
Ž . w xperturbed system 1.1 . The solution of the system in the interval t , Tr

satisfies

t t
x t s f t , t x q f t , t B t u t dt q f t , t f t , x t dt ,Ž . Ž . Ž . Ž . Ž . Ž .Ž .˜Ž . H Hr 0

t tr r

3.1Ž .

where x is given by0̃

kx s f t , t I q D u t xŽ . Ž .˜ Ł0 0 k 0
t -t -t0 k r

r
ti kq f t , t I q D u t B s u s dsŽ . Ž . Ž . Ž .Ý ŁH k

t t -t -tiy1is1 iy1 k

r
ti kq f t , t I q D u t f t , x t dt . 3.2Ž . Ž . Ž . Ž .Ž .Ý ŁH k

t t -t -tiy1is1 iy1 k

Since we are looking for some sufficient conditions for complete controlla-
Ž . w k Ž .xbility, let us first choose u t , k s 1, 2, . . . , r, such that I q D u t s 0.k k

Ž .Then 3.1 becomes

t t
x t s f t , t B t u t dt q f t , t f t , x t dt . 3.3Ž . Ž . Ž . Ž . Ž . Ž . Ž .Ž .H H

t tr r

We assume throughout this section that f satisfies a growth condition

n5 5f t , x F a x q b , ; x g R , b ) a G 0. 3.4Ž . Ž .

There are various sufficient conditions on f to guarantee that the
Ž .nonlinear Volterra integral equation 3.3 has a unique solution for every
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fixed u. In this case we can define the solution operator

S : L2 t , T ; R m ª L2 t , T ; R nŽ . Ž .0 0

Ž .by Su s x, where x satisfies 3.3 for a given u. The following lemma
w x w xfollows from Joshi and George 4 and George 2 .

LEMMA 3.1. Under each of the following cases the solution operator S is
well defined and continuous.

Ž .a There exists a constant L ) 0 such that
n5 5f t , x y f t , y F L x y y , ; x , y g R . 3.5Ž . Ž . Ž .

Ž . Ž .b f satisfies a growth condition 3.4 and there exists a constant
Ž .M r ) 0 such that

5 5f t , x y f t , y F M r x y y ,Ž . Ž . Ž .
n 5 5 5 5; x , y g R satisfying x , y F r . 3.6Ž .

Ž . Ž .c f satisfies a growth condition 3.4 and there exists a constant b ) 0
such that

² : 5 5 2 nf t , x y f t , y , x y y G b x y y , ; x , y g R 3.7Ž . Ž . Ž .
and

A ? ) b .Ž .
Ž .Further, in case a S is Lipschitz continuous, i.e., there exists a constant

a ) 0 such that

5 5 5 5 2 mSu y S¨ F a u y ¨ ;u , ¨ g L t , T ; R . 3.8Ž .Ž .0

Ž . Ž .In cases b and c , S satisfies a growth condition; that is, there exist
constants S , S G 0 such that0

5 5 5 5 2 mSu F S u q S ;u g L t , T ; R . 3.9Ž .Ž .0 0

w x w xProof. See 2 and 4 for the proof.

Henceforth we assume that the solution operator S is well defined and
Ž . Ž .satisfies either 3.8 or 3.9 . Under this condition we obtain the following

Ž .result for the complete controllability of 1.1 .

THEOREM 3.1. Suppose that

Ž . Ž .i W t , T is nonsingular,r

Ž . Ž Ž ..ii f is Lipschitz continuous i.e., f satisfies 3.5 ,
Ž .iii T and t are sufficiently close.r

Ž .Then the system 1.1 is completely controllable.
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Ž . Ž .Proof. By ii S is well defined and satisfies 3.8 . Now the complete
controllability follows from the solvability of the equation

T T
x s f T , t B t u t dt q f T , t f t , Su t dt . 3.10Ž . Ž . Ž . Ž . Ž . Ž . Ž .Ž .H H1

t tr r

U U Ž . U Ž . y1Ž . Ž .Replacing u by C ¨ s B t f T , t W t , T ¨ in 3.10 we getr

¨ s x q N¨ , 3.11Ž .1

where N: R n ª R n is the nonlinear operator defined by

T UN¨ s y f T , t f t , SC ¨ t dt . 3.12Ž . Ž . Ž . Ž .Ž .H
tr

Ž . nTherefore it suffices to prove that 3.11 has a solution for any x g R . By1
Ž .ii and from Lemma 3.1, it can be shown that N is Lipschitz continuous

Ž .and iii implies that N is a contraction. Therefore by the Banach contrac-
Ž .tion principle 3.11 has a unique solution. Hence the theorem follows.

When f is not uniformly Lipschitz continuous, we have the following
theorem.

THEOREM 3.2. Suppose that

Ž . Ž .i W t , T is nonsingular,r

Ž . Ž .ii f satisfies 3.4 ,
Ž . Ž .iii f satisfies either the monotonicity condition 3.7 or the local

Ž .Lipschitz condition 3.6 ,
Ž .iv T and t are sufficiently close.r

Ž .Then the system 1.1 is completely controllable.

Ž .Proof. As in the case of Theorem 3.1, it suffices to show that 3.11 has
a solution. By using Lemma 3.1 it is not difficult to show that N is a

Ž .quasi-bounded operator. By iv it follows that the quasi-norm is strictly
less than 1. Compactness of N can also be proved easily. Therefore, by

w x Ž .Grana’s theorem 3 , 3.11 has a solution. Hence the system is completely
controllable.

Ž .Remark 3.1. When the Lipschitz constant L in 3.5 or the growth
Ž .constant a in 3.4 of f is sufficiently small, then the condition on the

closeness of T and t can be removed in Theorems 3.1 and 3.2. Also, if f isr

Ž 5 Ž .5uniformly bounded i.e., there exists constant M ) 0 such that f t, x F
. Ž . Ž .M then the conditions iii of Theorem 3.1 and iv of Theorem 3.2 can be

removed.
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