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Abstract
We study zero-sum stochastic differential games of fixed dura-
tion where the state is given by controlled (possibly) degenerate
diffusions. Using the framework of relaxed sirategies, we derive a
stochastic minimax prin¢iple.

1 Introduction

We study a zero-sumn stochastic differential game on the finite horizou
where the state X (-) is an R%valued controlled degenerate diffusion given
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by

dX(t) = b(t, X(t),ur(t), we(t)) di+o(X(2)) dW(R), t€(0,7]
(1.1}
X0 = =z,

where b: [0,7] x RY x Uy x Us + R, U, and U, are action sets of
players 1 and 2 respectlvely, W(-) is a staundard d-dimensional Brownian
motion; o : R — R¥*, : {0,7T] — U; is progressively measurable
with respect to the o-field g_enerat_e_d by W{(-) which is the strategy of
player 7,7 = 1, 2. Player 1 tries to maximize his expected payoff

Bz w (), ual)) = B [f r(t, X (2), ua(8), ualt)) dt + o(X(T))] (1.2)

over his strategies u; (), whereas player 2 tries to minitnize the same over
his strategies us(-). Here 7 is the running payoff function and g is the
terminal payeff function. Precise conditions on b, a, g, us, g will be given
in next section. The stochastic differential game (SDG for short) has a
value if

inf sup B(z,u1(-), us(-}) = sup inf R(z,u1("), ua(-)).

w2(-) oy () ux () u2{*)
A strategy u?(-) is said to be optimal for player 1 if

Bz, i), 8()) 2 inf sup Rz, w (), va(")
B2l bay ()

for any strategy @s{-) of player 2. Similarly, a strategy wi(-) is said to be
optimal for player 2 if

Rz, @("), u3()) < sup inf R{z, ("), ua())

o) ua(")

for any strategy @,(-) of player 1. A pair of optimal strategies for both
players satisfies

Rz, ui(), w5()} < Rlz,w(-), w3()) < Rl uil-), ual-))

for any pair of strategies (us(-), uo()) of the players. Thus (w(-), u5(*))
donstitutes a saddle point equilibrium. Conversely, a pair of saddle point
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strategies (u¥(-),u4()) is clearly a pair of optimal strategies for both
players.

In this note, we establish a {stochastic) minimax principle in the frame-
work of relaxed strategies which gives necessary conditions for optimality.
This framework is explained in the next section. Our papér is organized
as follows. In Section 2, we introduce the basic notation and assumptions.
The minimax pringiple is derived in Section 3.

2 Preliminaries
Let U;,4 = 1,2, be given compact metric spaces and M; = P(Ij;) , the
space of probability measures on U;. Let T > 0 be fixed. Let

b [O,T] X Rd X U] X Ug — R.d

and ) \
& [0,T] x R* — R4,

We assume that
(A1) the functions b and o are continuous and there exists a constant
Cy > 0 such that

B(2, , w1, 6a) — B(s, g, ur, )| + |o(t, 2) — o (s, )| < Cu(]t — 8| + [ — yl)
for all (uy,ug) € Uy x Up and (¢,2), (5,) € [0,T] x R Define
b:]0,7] x R* x M; x M, = R®
by o
btz ) = [ [ B0, 00) () pald).

The state of the system. X {-) evolves according to the conirolled stochas-
tic differential equation of Ito type
AX(E), = bt X (), m(t),ald) dt+ 0l X () W), te€ (0,T]
| (2.1)
X(0) = zeR:

Here W({-) is a standard d-dimensional Wiener process; y;(-) is an M-
valued process which is progressively measurable with respect to o-fields
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F¥ = o(W({t) : 0 < ¥ £ t). The process u;(-) is called an (admissible)
relaxed strategy for player i. Let A; denoté the set of all admissible
strategies for player 5. A relaxed strategy u(-) of player 4 is called a pure
strategy if y;(-) is a Dirac measure, ie., pi(-) = Gu), where us{’) is a
[;-valued process.

Let 7 : [0,T] x R* x Uy x Uz -+ R be the running payoff function. If z
is the state at time ¢ and the players choose actions (ur, ug) € Uy x U,
then player 1 receives a payoff #(1, z, 1, u2) from player 2.at time ¢. Let
¢ : B¢ — R denote the terminal payoff function.

We assume that:

(A2) (i) the functions ¥ and g are bounded and continuous;

(ii} there exist constants Cy > 0, C3 > 0, such that

|7 (2, 3,01, 09) — P8,y w )| < Cal|t — 5[+ |z — gl

l9(z) —gly)] < Cslz—yl,
for all t,s € [0, T], &, 4 € RY, (w1, us) € Uy % Us.
Let r: [0,T] x R x My x My — R be defined by

T@:-ms by, .ru'2) = j;}'g /r‘fl F(It-:-m: U1, uz) H1 (dul) :U’E(du2)

When the initial state of the system at time 4 is z and the players use
relaxed strategies (1 (-), pe(-)) € A1 X Ajg, then the payoff of player 1 is
given by
T \ o
Rie, o a(0) = | [ (o, X (2, (), ) ds + X1,
| (2.2)
where X{-) is given by (2.1). A relaxed strategy 17() € A is said to be
optimal for player 1, if :
Rz, i), u2()) = inf  sup Rz, -}, p2()),
0,50, ) 2 nf, s Rz i) al)
for any pa-) € Ap. Similarly, a relaxed strategy pj(-) € Az is said to be
optimal for player 2, if

R{t,z, i (), p5(-}) € wsup inf R(z, (), 2(-));
(et P64
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for any pi(-) € A;. Thus a pair of optimal strategies constitute a saddle
point equilibrium.

Remark 2.1. Since u;(-) is progressively measurable with respect to
the o-field generated by W{(-), there exists 4 progressively measurable
function f; such that p(t) = fi(t, W(-)),0 < ¢ < T. Thus the player 1
chooses the function fi, whereas the player 2 chooses f;. This way the
noncooperative nature of the game is preserved.

3 Stochastic Minimax Principle

In this section, we derive a stochastic minimax principle. We make the
following additional assumptions.

(A3) (i) For each (1,41, u2) € [0, T|x Uy x Uy, the functions b(t, -, uy, uz),
(8, -, u1, up) and o{-) are contimuously differentiable.

(ii) The function g is continuously differentiable.

Let (5(-), 45(-)) € A1 x Aj; be a pair of optimal strategies and X*(-) th
process corresponding to (w(-), #5(-)) with initial condition X*(0} = .
We define the following “adjoint” process p(-) given by

dp(t) = —H.(t, X*(2t), w1 (), 5 (2)) p(2) db
—Dgr(t, X*(t), (t),#g(t ) di

p(T) = Dug(X*(T)), (3.1

where b; denotés the Jacobian matrix and b, its adjoint. Let ¢ > 0 and
pa(+) € Aj. Let X*(-) denote the process

dX¥(1) = b{t, X°(£), 4 (8), wa(8)) dt + olt, X°(8)) AW (), X°(0) =12,
(3.2)
where p5(-) = 15(-) + (g (") — g5(-)). Then we can prove the following
lerima by invoking Gronwall’s lemma. We omit the details.

Lemma 3.1. Assume (Al) - (A3). Let Z(-) denote the process given by
dZ(t) = ba(t, X*(2), 1i(8), 15(8)) Z(t) dt + 0u{X*(t)) Z(2) W (2)

+(b(t, X*(£), (), p5(8)) — b(t, X*(2), 41 (1), pi2(2)) et
0. (3.3)

Z(0)
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Then
< [ s, X5, 450, 8(5) = o, X, i) i) s
- /uT [Der(s, X*(s), 1(5), 15(8)) - Z(s) + r(s, X*(s), uas), t5(s))

—r(8, X*(5), 111(8), B5(s))]ds| = 0 as £ — 0.

E

Let G: [0,T] x R* x R* x M; x Mz — R be defined by
G(t:-xapz'p'lu au'Z) = b(t'i'm:#h pﬂ) Pt T"(t, Z His #2)
We, now, prove the following minimax principle.

Theorem 3.2. Assume (A1) - (A3). Let (p3(-), #5(-), X*(-)) be as above.
Then for a.e. t € [0,T],

g, mes EIG0, X0, 90, )]

_ o (3.4)
= max min E[G(t, X*(8), p(t), 1, )]
= min E[G(t, X*(2), p(t), wi(2), a)].
Proof. Using Lemma. 3.1, we have
R0 50,
= E[fT [Dar(t, XX(8), (), 5(8)) - Z(8) + rlt, X0, i), i3(2)) —
—r(t, X*(t), 122), 15 (1)) |t + Dog(X(T)) - 2(T)|. (3.5)
Now

d(p(t)- 7(8) = 2(2) - dn(t) + p(0).dZ(2).
Integrating the above from 0 to T, taking expectation and then rearrang-
ing the terms using (3.1) and (3.3), it follows that

B[ [ Darts, X*(0), (9, 156)) - 20 d + Dug (7)) - 2(1)|

= E[/GT (b(8, X(0), s (8, 15(0)) — (& X (8), 38, 3(8)) - (2 k.
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Hence by (3.5}, we obtain .
4 Ble ()40, = B[ [ {6620, p0, m(0hp5e) -
G, X(0), 28 0, 13} ] (36)
Since (u*(-), u5(-)) is an optimal pair, we have
E[ [D T {6t X*(0),p(2), s (0), £(6)
{8, X020, 5005000} ] <0 (3.7

Let p1(-) € .A; be given by

wis) =4 " s€ (Lt +¢)
U st seb Ul T)

wheré p; € M, is arbitrary. Since £ > 0 is arbitrary, by (3.7), it follows
that for any p; € My, ae ¢

BIG(, X4, 98, i, 14(0)) < BIGEX°(0), 208 1), 50 (38)
Similarly, we can show that for any py € Mz, a.e. t

E[G(t, X (1), p(), wi(t) ()] < E[G(, X*(8), p(t), i (0), ). (3.9)
From (3:8) and (3.9), the desired result follows.

Remark 3.3. We refer to {1, [2] for stochastic maximum prineiple for
stochastic optimal eentrol problem. Here we have adapted the argurnents
in [1]. There is, however, a crucial technical difference. Note that in [1],
the maximuin principle involves the derivative with respect to the control
variable, whereas in the framework of relaxed strategies the derivative
term with respect to the control variable does not appear. See [3] for a
detailed discussion on stochastic maximum principle.
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