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Viscosity solution of second order HJI equation and
application to zero-sum stochastic diffrential game.

Mrinal K. Ghosh, A. K. Nandakumaran® , K. S. Mal!ikarjﬁm Rao? and K.
Sureshkumar®

Abstract. In this article, westudy the existence and uniqueness of viscosity solution of
the second order Hamilton-Jacobi-Isaacs: (HII) equation. Then we give an application
to the zero-sum stochastic differential game of fixed duration where the state is given by
controlled degenerate diffusions. We show that the unique solution of the HJI equation
is the value function associated with the game in an appropriate sense. Finally, we
prove the.existence of saddle point strategies when the state dynamies and the cost are
linear in the state variables.

1. Introduction

In this article, we are interestéd in studying the existence and uniqueness of
degenerate second order Hamilton-Jacobi-Isaacs (HJI for short) equation of the

form

E(t: Iy ¢h Dzﬁé: D§¢) = F(t, Xy ‘ﬁta D:c¢a sz,b) = 0 in [01 T] X ]Rd
where

?(t1 %, ¢h Da:.é'r D:zz:é) = ét + inf sup H(ti Z, Dr¢1 D§¢1 £, #2) (1)
F2EM2 e M)

E(t$ m:.-éh D2¢'1 D;;B,-é) = ‘,ét + sup inf H(t-; x, D:r:¢1 D§¢a By #2-)- (2)
! mEM, K€Mz '

Here M; = P(U;), the space of probability measures on U, i=1,2 and Uls are
the given compact metric spaces and D, = (g%.).lgegm D = (%;1.!) 1<6,5<n -

‘The Hamiltonian H is given by

o 1 | |
H(t, 2 p, A, i, #2) = Ste(alt, x)A)+ (b, %, i1, 22) - p+ £t X, pir, pi2)
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for all {¢,z,p, 4) € [0,T] x RY x R? x RI*4 and p; € M;,i=1,2. Here, we
define b and r as follows:

blt, =, p1; pa) = fU [U .5:(:,x,u1,u_2) 1 (duy) pa(dusg) (3)

r(t, z, g1, it2) =L /U F{t, &, up, ug) por (duq) poldug). (4)

The assumptions on a, b, b, r, 7 are given below.

The -above problem (1) arises in the study of zero-sum stochastic differential
game on the finite horizon in the setup of relaxed strategies. Note that it is
a game of two players 1 and 2 and Uf; are the action sets and M; are sets
of randomized actions. We will describe this in detail in Section 3. In this
introductory Section 1, we specify the conditions on a,b and r, and we also
introduce the concept of viscesity solutions. In Section 2, we state and prove
the existence of a unique solution to (1). This is achieved by proving a related
maximum principle. Finally, Section 3 is devited to the study of application to
the stochastic differential game.

To begin with, we consider the following two equations separately:

E(tl'-z t "ﬁts D ﬂo‘é! D E:é) = 0! (5)
F(tamy 11[?31 D:_ﬂb:' D:"#) =0. (6)

The equations (5) and (6) are, respectively, known as lower and upper HJ1 equa-
tions. We make the following assumptions.

Assumptions:
(A1) Let the matrix ¢ = 00™ > 0, where o : [0,7] x R? —» R? is continuous
and there exists a constant €} > 0 such that

o (t, 2} — (s, y)| < Colft — 8] + |= — y)).

(A2) The function b : [0, 7] x R x Uy x Uz —+ IR? is continnous and there exists
a.constant Cy > 0such that

|B:(tr T, uly Ug) — 5(8, 4 i_‘-lt“ﬂl < Cofft— 8| + iz — 9l)-

(A3) The function 7 : [0,T] x R x Uy x Uz — R? is continvous and there
exists a constant C3 > 0 such that
|7 (&, 2, 1, u2) — 78, y, 41, u2)] < Ca(|t — 5] + |2 —¥]).

We do not assume the uniform ellipticity of ¢ and thus we are considering
the degenerate case. In the non-degenerate case, there exists a unigue classical
C*+? solution for the equations (5), (6) (See [2]). In the degenerate case, the
existence of classical solution is more of an exception than a rule and it. is
far more involved. We study these equations in the framework of viscosity
solutions. There is enormous literature in the, field of viscosity solutions which
was developed in the last two decades and is beyond the scope of this short
article to present a ¢complete survey. However, the notion of viscosity solution
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for general non-linear partial differential equations was introduced by Crandall
and Lions [5] in the early eighties even though some basic ideds were available
prior to it in the works of Evans [6]. Further significant contributions have been
made by various authors, especially in the case of Hamilton-Jacobi equation.
For example; see Crandall, Evans and Lions {8), Crandall, Ishii and Lions 4],
Crandall and Lions [B], Ishii [18], Ishii and Lions [19], Jensen [20] and the
references therein.
We now introduce the definitions of viscosity solutions.

Definition 1. An upper semi-continuous function ¢ : [0,T] X R? —» R is
sdid to be a viscosity subsolution of (5) if whenever (f3,70) € [0,T] x Ri,p €
C'2({0, T] x RY) such that ¢— 7 has a local mazimum at (to, Tg). then.

E(to, 0, me{to, o), Dx-."?(tﬂr 3.303): D :"W (to; 20)) < 0.

Definition 2. A lower semi-continuous function 9 : {0,T] X R? - R is said
to be a viscosity supersolution of (5) if whenever (to,zg) € [0,T] x R, 5 €
CY2([0, T] x le such that 1 — 0 has a local minimum at (tn, o) then

E(tO.r'x'Oa""h (t'-ﬂ'l :t(j)| Da:ﬂ(tﬂs xﬂ) z?}(to, :'C(Z))) >0.

Definition 3. A continuous function ¢ : [0, T]x R® — IR.is said to be a mscossf.y
solution of (5) if it is both viscosity sub and super solution of (5).

Remark 1. One need not have to include the assumption upper semicontinuous
in’ definition (1) (similarly Ls.c in definitioni (2)) as i done in [18]. If ¢ is not
t.5.¢ or Ls.¢, one can define the u.s.c and Ls.c envelopes of ¢ and can give the
definitions in terms of these envelopes. We do not go into such technicalities.

Remark 2. The concept of wiscosity solutions has many inleresting properties
like compactnéss whick are ot preserved by other types weak solutions ( for
ezample: a.e. solution).

2. Existence and uniqueness
Let
CL{[0,T] x RY) := {¢ € C([0, T] x RY) —» R : [¢(t, )| <C(1+ )
for some C > 0}.
We first prove the.following maximum principle.
Theorem 1. Let ¢, € CL([0,T] x RY) be, respectively, the subsolution and
supersolution of (1). Assume that
O(T, ) < (T, 7)Yz € RA.
Then

¢.< ¢ in[0,T]x R
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Proof. Let £ > 0. Define
$1(t. %) == $(t, ) — (1 + [2]*) — €'58(z) (1)
Y1(t, ) := (L, z) + (1 + |2]”) + e*8(2), (2)
where §(z) = B|z|? + v and @, 8,7 are positive constants to be chosen later,
Let (i, 7o) € [0,T) x R? and n € C*2{[0, T) x RY) be such that ¢; — 5 has
a local maximum at (6,%0). Then ¢ — 7 kiaé a Jocal maximum at (tq, Zo), where

7i(t, ) = n(t, 2) + e(1+ |2]*) + 6 (x).
Further,
7ie(t0, To) = m{to, vo) + ae™0§(zo)
D, 7i{to, 20) = Do1(to, To) + 2679 + €*028zg
D2#(tg, z0) = D2n(to, zo) + 21 + 0281y,
where I3 is the d x d identity matrix. _
Since: ¢ is a viscosity subsolutien to {1), we have

e (to, zg')+o¢ef’-‘t°'5(xo)' + illf sup [h(f’ﬁa To, K1, #2) - Dz’?(tﬁ; 3’0)

H2EM2 ) e My

+ f(fo, T, 41, ti2) + b(te, Zo, 11, H2) - (‘2&‘30 + 8"“25330))]

+ %_tr (a{to, o) DZn(to, z0)) + %tr(a(tﬁ, zo)(2ely+ €281} > 0.
| (3)

Now by assumptions (A1) and (A2), we obtain, for some constant C > 0,

|6(t0, o, g1, pi2) - 26m0] < 26Ca(1+ [wgl)jzal
|b(t0, Zo, 1 ia) - €°28z0] < 2BCae™(1+ |20l) ol
[5tr(alio, zo2el)] < €Cull+[aol?)
|5t (alto, s0)e02BR)| < ACI(L+zal’).
Therefore, from (3) it follows that

mefto, ) + inf sup [b'fim@ﬂ, fi1,43) - Den(to, za) + 7 (fo, oy b1, i2)
Ho €Mz ) eM,

1 .
+  5tr(a(to, z0) Din(to, 20))

< 26C4(1 + |zol |20l + 28Cse™ (1 + [2o]) 2ol + Cac (14 |2o)|?)
+Cae*®B(1 + Jzol?) — ae™™ Blao|* — me™y

< { Cs+66CeT - ay g TOIST

= | 6eCyleal® 4+ 68Cse™™ |zq|* — e Blzo)? |20] > 1. $
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Qur idea is to choose suitably «, 8,y independent of the point (o, 2g), so as to
make the right hand side of (4) nonpositive. This can be achieved as follows.
First choose a > 6C, and then define 8 = %?— s0 that 8 > 0. Then it

follows that the second term on the right of (4) is negative. Finally, choose 7 =

M—‘%M Also observe that 8 and v are of O(g). Thus ¢; is a subsolution
of (1) Szmﬁa.rly wecall prove that 1; is supersolution of (1).
Given £ > 0, we have the follovnng terminal condition:

(T, z) = $(T,z) —&(1+ |2f?) — e*Té(z)
(T, 2) = (T, w) +.s-(1 + [2[%) + e*78(2).
It follows that _
G (T, 2) < (T, z) for all z € RY.
Given € > 0, since ¢ has only linear growth, one can choose R(t) > 0, large
enough such that
$i(t: ) <ult,2)  forallze[0,7], 2| > R(e).

Now applying the comparison result for (1) on [0, T} x B(0, R(¢)) (see [12], [18]),
it follows that

$1(t, z) < (L, ), (t,2) € [0,T] x B(0, R(e)).
Simplifying (5), we get
¢ty 2) < (t, )+ 26(1 + [o[*) + 2¢™8(z)

for (t, ) €0, 7] x B(0, R(¢)). Since 8, are of O(e) it follows by passing to the
limit as &€ — 0 that

$(6,2) < ¥(t,z)  forall (t,2) € [0,T] X RS
This completes the proof ef Theorem 1. O
Remark 3. In fact, the above proof shows that the unigueness holds in the class

of functions whose growth is |z|'7%,0 < § < 1, but uniqueness may not hold.in
the class quadratic growth functions.

We next prove the existence of a unique viscosity solution of the HII equa-
tion
F=F=0
with the terminal condition
&(T, z) = g(z).

Assumption (A4): Let g: RY - R be such that there is a constant Cs > 0
such that

19(z) — g(y)| < Cslz — |
Under the assumptions (Al) - (A4) we have the following theorem.
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Theorem 2. The equation (5) has a unigue viscosity solution ¢ in the class
§L([0, T] x RY) satisfying (5).

Proof. We use the vanishing viscosity method to establish the desired existence.
First consider the equation (6). Lete > 0 and consider the perturbed equations

o2
. _ . £ .
¢+ inf sup H(t,z,D:4%(t ), Dgd(t,2), s, pa) + 5 A" =0

prEM2 4y e M,y
¢* (T, z) = g(z)-

One can mimic the arguments in [2] to show that (5) has a unique classical
solution ¢¢ in C¥2([0, T] x R N CL([0, T] x RY). Indeed, ¢° is characterized as
the value furiction of the stochastic differential game associated with (5). More
precisely, )

| oT |
#0,5) = fof sup P [ rterxe) (e ot ds+9(x°(D))|.

(5)

where X*(-) satisfies the stochastic differential equation

— e ; g ,X e S
aX(e) = e Xe(o) (o) ale) dot [ i)
' 6.
X = = ©
Heré W (-} is 2d-dimensional standard Brownian motion and pi-) is a M- valued
process, progressively measirable with respect to the natural filterations of X*(.)
. Using the stochastic representation (6) and the assumptions (A1) - (Ad), it
can be shown that ¢° is pointwise bounded and there exists a constant Cg >0,
independent of € such that

|6%(t1, 21) — ¢° (82, 22)| < Collts — 222 + |1 — 2])-

Therefore, ¢ is equicontinuous and uniformly pointwise bounded. Thus, by
Arzela-Ascoli theorem, there exists a sequence {£,} converging to D and ¢ €
C([0,7) x RY) such that ¢*= — ¢ uniformly on compact subsets of [0, T] x R4
and ¢ satisfies

Iqs(rll xl)' - é(ti‘a J72)' S: Cs(lt[ - t2:|1/2 + 12.‘1 — ?2')‘

By the stability results of viscosity solutions {[12], [18]), ¢ is a viscosity solution
of (6) satisfying (5). Clearly ¢ € CL{[0,7] x IR?). )

Now, we show that ¢ is a viscesity solution to (5). Let (to, za) € [0, T) x Rd
and 7 € C12([0, T) x RY) be such that ¢ — 7 has a local maximum at (%o, Zo)-
Then

Te(tos®a) + sup inf  H(to, zg, Dznlto,=0), D2n(to, zo), 1. f22)
51 EMy HZEM2

= mlte,z0) + inf sup H(to, 2o, Dentor zo), Din(to; o), py t2) < 0.
paEMa BLEM;
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The equality follows by Fan’s minimax theorem [11] and inequality holds, since
¢ is a viscosity subsolution to (6). Thus ¢ is also a viscosity subsolution to (6).
Similarly, we can show that ¢ is a viscosity supersolution to (5). Hence ¢ is a
‘viscosity solution to (5) satisfyirig {5). The uniqueness follows from Theorem 1.

' O

3. Application to Stochastic Differential Game

We consider a zero-sum stochastic differential game on the finite horizon
where the state X (-) is ah IR%-valued controlled degenerate diffusion given by
aXE) = B X@w0), ) bt oK) WD, teOT]
X = = -
where W (-) is a standard d-dimensional Brownian moticn; o : RY — Rdxd, ;.
[0, T) = U; is the strategy of player i, i=1,2, Uy and U; are the action sets
of players 1 and Z respectively. '
Player 1 tries to maximize his expected payoff

R(0, 7, wal"), u5() = E[ [ (e X (1), 1008, a0) +g-(xm-)]

over his strategies u,(-), whereas player 2 tries to minimize the same over his
strategies ug(-). Hete 7 is the running payoff function and g is the terminal
payoff function. The stochastic differential game (SDG for short) has a value if

inf sup R{0, 2, %:(:), wa(-)) = sup inf R(0,z,u1(-), uaf-)).
vz{-) g (-} g {-) 22 (")

A strategy u}(-) is said to be optimal for player 1 if
- _R(Oa z, uir()s ﬁ?()) > inf sup R(Ui x, u-l('): “2())
- L u‘}‘('] .1&1 (.) !

i Y
for any strategy #z(-) of player 2. Similarly, a strategy uj(-) is said to be optimal
for player 2 if '
© B(0,z,%(), u5()} < sup inf B(0,2,u1("), ua(")
' wr{) ¥zt '
for any strategy @ (-) of player 1. A pair of optimal strategies for both players
satisfies
RCU, i, 1.\'.1'{'), “3())5 R(01 x, u;()! 'u;()) < R{Os z, u:()a -u?('_))
for any w;{-) € Uy, i = 1,2. Thus (uf(-),43(-)) constitutes a saddle peint equi-
librium. Conversely, a pair of saddle point strategies (uf(-), u3(-)) is clearly a
pair of optimal strategies for both players. For (%,2) € [0, T] x IRY, define

-
V*(t,2) = inf sup E[[t (s, X (8), ua(s), wa(s)) ds -i-y(X(T-))],

510 TR ()
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and

JE
V7 {t,z) = sup inf E[/ (s, X (5), u1(s), ua(s)) ds+g(X(T))]
uy{-) wa{’) t
where X (-} satisfies (1) with the initial condition X (¢} = z. The functions
V+, V= are called the upper and lower value functions respectively of the SDG.
The study of differential games (i.e., SDG with ¢ = 0} was initiated by
Isaacs [17]. Though, there is a vast lltera.ture in differential pames (see [21]
and the references therein), the corresponding literature for SDG seems to be
rather limited. The non-degenerate case (i.e., when o¢™ is unifermly elliptic)
is treated in [2], [7], [14], [15], [16]. Generallzmg from differential games, one
would expect that V1 satisfies the equation '

Vit z) + 1t,r(ar.(t z)DEV* (¢, %))
+ Supmf [B{t, 2, w1, ug) - D V+(t z)+ 7tz u,ug)] =0, (2)

where a(t, z) = oft,z)o*(t, ). Similarly, V= should satisfy the equation

Vihe) + (el 2)DRV(2)
+ lﬁjs‘lp [B(t, z, Uy, ul)-’ ’ DE-V*(ta ..‘i:-) + F(t.,m, Uy, 1‘2)] =0. (3)
R |

The equation (2) and (3) are referred to as (sec:ond order) Hamilton-Jacobi-
Isaacs (HJI for short) equation. When the matrix a is uniformly elliptic, using
the framework of relaxed ‘strategies, Borkar and Ghosh [2] have shown that
¥+ =V~ := V, i.e., the value function exists and it is the unique ‘classical’ (i.e.,
C1?) solution of (2) and (3) satisfying the terminal condition V(T,z) = g(z).
They have also established the existence of optimal strategies for both players.
The degenerate case (i.¢., when the matrix & is not uniformly elliptic), however,
is far more involved. In this situation, the existence of classical solutions of
(2), (3) is more of an exception than rule even in optimal control problem {ie.,
one person game) as pointed out in [12]. Some significant contributions in this.
case are due to Fleming and Souganidis [13] and Lions and Souganidis [22]. In
these works, it has been shown that ¥+ and V~ are unique viscosity solutions
of (2) and (3) respectively, satisfying the terminal condition V*+(T,z) = g(z) =
V—(T,z). In fact, these works are generalization of the corresponding work on
differential games by Evans and Souganidis [10]. In these works ([10], [13],
[22]}, the authors have used strategies and (upper and lower) vaJues in the sense
of Elliott-Kalton [8]. Wheén the state dynamics and the cost functional are
linear in &, Elliott, Kalton and Markus [9] and Parthasarathy and Raghavan
[23)] showed the existence of saddle point in relaxed strategies framework, for
the deterministic case, i.e., when o =.0.

In this section, we study SDG with degenerate diffusions using relaxed con-
trols. A relaxed control for player 4, i = 1,2, is an M;-valued map on [0, 7],
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where M; is the space of probability measures'on U/;. Let b, 7, b, 7 be as in Section
1.

The state of the system X (') evolves according to the controlled stochiastic
differential equation of Ito type

dX(s) = b(s, X{s), m(8), pals)) ds+ (s, X(s)) dW (s}, s€ (7],

X@) = zeRL

Here W{-) is a standard d-dimensional Wiener process. u;() € A;, where A;
is the set of all M;— valued standard brownian motions such that w(t) =
fi(t,W(.), where f; is progressively measurable with respect to the filtrations

generated by Wi(.).
The payoff function is given by

(4

Rtz pi(-)ya(:)) = B |:]£. r(s, X{(s), pi(s}, p2(s)) ds + g(X(T))] '
where X (-} is givt.én by (4). Let

Vit z inf  sup Rz, (),
(t,z) = M(I)E&m“g& (ENTHONIS)

V7 (t,z)= sup lnf R{t, z, g (), p2l-)).
(€A Ha(I€A2
The functions V* and ¥V~ are called upper and lower value functions of the
game respectively.
A strategy py(-) € A, is said to be optlma.l for player 1 at (¢, ), if

R{t,z, (), pa()) 2 V7 (t,.2),
for any pa(-) € Az. Similarly, a strategy u3(-) € A, is said to be optimal for
player 2 at (¢, z), if ' .
‘ Rtz pa (), 115()) < V™ (8, ),
for any pq(-) € A;. The game is.said to have & value if V*(t,z) = V- (¢, z).:=
V(t, ), for all (¢, ). In such a case, V is called the value function of the game.

Remark 4. One of the biggest advantages in the setup of relaged strategies is
the converily of the sets M;. Due lo this, we kave already seen in section 2
that a viscosity solution of (5) is also a mscos:ty solution of (6} due to the Fan’s
minimaz principle. :

In general, even under the relaxed strategy set up, V* and V- are not equal.
Consider the following simple example. Let the state dynamics be given by z =
u+vwhere u, v € [—1,1]. Let the payoff functional be R{¥,z, u(-), u(-)) = |=(1)]-
Then it is easy to see tha.t V+{0,0) # V~(0,0). But we can show that they are
equal when b and ¥ are linear inthe variable z. See Elliott, Kalton and Markus
[9] and Parthasarathy and Raghavan [23] for the case ¢ = 0 . In such cases, we
can have the following Dynamic Programing Principle, whose proof is omitted.
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Lemma 1. Let b, 7 and o be linear in their first argument, Then for 0 <t <
t+A < T and z € RS,

s o . A X{s £
Vi = (11)12 2 E [ ft r(8, X(5), ta(3), pa(5)) ds o
VA, X+ A))], |

where X (-) s the process given by ({) corresponding to (,(11(4),}12(-)] with the
initial condition X (t) = z. Similarly,

Y (t"'z)=m?};gAmtl;?gAz'E[j; r(s, X(s), ma(s), pals)) de o

LY+ A X (E+ A)j].

By defining the strategies and values in the sense of Elliott- Kalton, Fleming
and Souganidis [13] are able to prove the Dynamic Programing Principle for
general b and 7. We now give the details. of these without proofs.

A strategy for the first player is 2 map & : Az &+ Ay which is/nonanticipative
in the sense that ua(s) = fiz(s) for all s < t, then afu2](s) < affi)z(s) for all
s £ t. The set of strategies for the first player is denoted by 7. Similarly, the
sét 7y, of strategies for the player 2 is defined. The upper and loweér values are
defined as follows:

Vi, e)= sup inf R(t, &, e1fp2](), 2}y

a1 €y b2 (-)EA2
Vﬂ(t:m) = mf ~ sup R@:‘”!ﬂl(‘)a‘h[ﬂl]('))-
2267 1y (VEAL
Now the dynamic programming principle takes the following form.
Lemma 2. For0<t<t+A < T andz € R,

= .. t+a
Yt z) = s n B [ /: (s, X(8), enlpa](s), i2(8)} ds o
+VHE+ A X+ A))] !

where X (-} i5 the process given by () corresponding to (1(-)s p2()) with the
initial condition X (t) = x. Similarly, g

e, 1+4
v(ta= it swp B[ [ rleX(ehmis) calul) d
=010 S ;
p(EA 1 (8)
+V T4+, X (T4 A))] .
Using Lemma (1) or Lemma (2), the following result can easily be proved.
‘Theorem 3. The lower value function V™~ is a viscosity solution of HJT upper

equation. (6). Similarly the upper value function V+ is e viscosily solution of
HJI lower equation (5).
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Theorem 4. The value function V' ezists and is the unique viscosity solulion
of (5) in CL{[0,T] x RY) satisfying (5).

Proof. By Theorem 3, V~ is viscosity solution of HJI equation (6). We now
show that V™ is also viscosity solution of HJI equation (5).

Let ¢ € C1({0, T) x RY) and (to, 2o) € [0,T) X IR? be such that V- — ¢ hasa
local nraximum at (to, Zo). Then

¢:(to, o) + MEIL&MS;& H{to, zo, V=p(to, o), g1, s12) £ 0

Now by Fan’s minimax theorem [11],
inf sup H (?m zg; D 3¢(tﬂnx0)! iy au'li)

= sup inf H(to, %o, Dud(to, Zo), o1, j22)
LMy W2 €EMa

Therefore, V-~ is subsolution of (5). Similarly V'~ is supersolution of (5). Thus
V'~ is solution of (5). Analogously, we can also show that V'* is a viscosity
solution of {6).

Thus V™, VT are solutions of (5) satisfying (5) and hence uniqueness given
by Theotem 2, we have V— = V¥ = V exists as the umique solution of (5)
satisfying (5). n

We now establish the existence of saddle point equilibrium when the Lemma
1 is true: in particular, the resalt is true when b,7and ¢ are linear in z.
Theorem 5. For any = € IRY, there exists (4j("), #3())) € A1 X Az such that
155(-) is-optimal for player 1,i=1,2, Jor (0,%).

Proof. For each #,i = 1,2, let A; be endowed with the (weak*)topology de-
scribed in Chapter 2 in [1]. Under this topology, A; is 2 compact metric space.
Using Lemma I1.1.3, p.20 in {1], it follows that for p1(-) €A1, 2 € R fixed,
the map (") = R(0, %, pr(-), p2(-)) fiom A; to R is continuous, Similarly, the
map p2(+) = R(0, z, (-}, g2(-)) is continuous for fixed (=, pa(-)).

Therefore

inf  sup R0z, (), (")) = min max R(0,z, (), pal-
kel V€2 1 Yy 02, g1} 12(-)) i i, (0, z, pra (-}, ()

and

U inf R.O!"1 sA A I )= ax m' RO,x, ‘,-'-".
y;[:).gAl M_fl‘?@‘-! (©,2:(), 12()) MI(I})EJ‘-I -m-('):lEn'a‘tz ( (), pal))

Hence using Theorem 4, we have

i x R(0,: 3, pe(-)= max min R(0,z,p( ).
M%?A:#l?}faéﬁl ( :B,[Jl() MZ( )) #1(')64‘114221}12&2 ( #1( ),#2( )J
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Choose (P;();#g(')) € A; x Az such that

ol RO’ ! 3, = _.,- - ',.:*.. ’
in, max, (0.2, (o pal)) = max, R(0,z, i (), i55())

IT¥ ], )] = i | % (- -'.'.
 max,  min R{0, z, 4ty (+), p2(+)) in, R(8, z, i (-), p2("))

Clearly (113(-), #5(-)) is a pair of saddle point strategies for (0,%). 0
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