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Absiract. In this article we study the homogenization, of a particular example, of degenerate elliptic equations of second order
in the setup of viscosity solutions, These results are an attempt fo extend the corresponding results of Evans [8] to degenerate
sitsatiens.

1. Introduction

The homogenization of nonlinear partial differential equations

F‘(Dzug, Dt e, %) =0, ®)
&

having sclutions in the viscosity sense has been studied by Evans using his innovative method of per-
turbed test functions (7). This method was inspired by the téchniques adopted by Lions, Papanicolaou
and Varadhan [13] for the homogenization of Hamilton-Jacobi equations. Evans proves homogenization
results for fully nonlinear second order, uniformly elliptic, equations and for fully nonlinear first order
equations satisfying a coercivity condition in his paper [8]. Typically it is shown that the solutions u,
converge uniformly fo the solution of an effective partial differential equation

F(D?u, Du, u,z) = 0, (P)

where F is determined from an auxiliary problem which resembles an ergodic problem in the theory of
differential games. We shall always use the notation 7 to denote the homogenized operator. Subsequently
there has been more literature on the homogenization of pdes in the setup of viscosity solutions; see
[1,5;10], to mention a few.

Coming back to the preblem of Evans, it is to be noted that the uniform ellipticity of F is. nit ¢s-
sential to have existence of solutions to (P,). Hence, one would like to ask the question “can one have
homogenization results for (P.) when F is of second order but not uniformly elliptic, i.e., admits some
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degeneracy”? This seems to be a difficult question in general as it Jeads to a sifuation where one canaot
have good estimates on the sequence u, guarantecing uniform convergence and possible homogeniza-
tion. To the best of our knowledge there seems to be no result in the literature comresponding to this case.
In this paper, we consider the family of degenerate second order equations

i3 2
_a(%) azlg; + D] + e — f@y =0,
where x; denotes the first coordinate of z and ' denotes the remaining coordinates, i.e., 2 = (21, ). The
above family is an example of the kind of degenerate situation we are speaking of and in this case, we are
able to prove a homogenization result. Roughly speaking, it seems to be possible to have homogenization
if the oscillations in the coefficients and the non-degenerate directions are in complementary directions.

The paper is organised as follows. In Section 2, we introduce the family of equations and provide the
assumptions under which one has existence and unigueness of solutions to the equations. In Section 3, we
define the homogenized operator and discuss its properties. In Section 4, we prove the homogenization
result. Proofs of certain propositions and verification of some details are done in Appendix. We conclude
with some remarks in Section 5.

2. The example
Before introducing the example, we recall the notion of viscosity solution for the Dirichlet problem
corresponding to a second-order degenerate elliptic equation.
Let {2 be a bounded domain in B”. Let F': 5" x R® x R x R™ — R be continuous where S™ is the
set of all symmetric matrices of order n. F' is said to be degenerate elliptic if
F(X,p,s2)< FY,p:5,%) VY,Xe8 suchthatY € X, Vp, 5,2. @.1)
The inequality Y £ X between symmetric matrices is taken to mean that X —Y is positive semi-definite.

Definition 2:1. An upper {lower) semi-continuous function » € USC{E?) (LSC?)) is said.to be a vis-
cosity subsolution (supersolution) te the Dirichlet problem

F(D*, Du,u,2) =0 in {2, : -
{‘h.‘. =0 on 912 (DP)

if for any z € 2 and ¢ € C%({7) such that u — @ has a local maximum (minimum) at z one has
F(D*)(z). Dd(z), (=), ) < 0 (20)

and u < 0(20) on 3f2. A continuous function 1.€ C'(£2) is said to be-a viscosity selution to the Dirichlet
problem if it is both a sub- and super-solution.

We now turn fo the example. Let ¢ > 0 be 4 parameter which eventually tends to zero. Let §2 be a
bounded domain with C? boundary. We assume the following;
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(HO) The principal curvatures (see Appendix A1) of the boundary 92 (with respect to the ihward unit
normal) dare nonnegative at every point on the boundary.

(H1) () is a nonnegative continuous periodic function on R1) with the cell [0, 17D as period.
We further assume that ¢!/2(-) is Lipschitz continuous with Lipschitz constant L.

(H2) f()isanonnegativé Lipschitz continuous function on R™ with Lipschitz constant” L.

Note that we have used the same lettér L 1o denote the Lipschitz constants in (H1) and (H2). We can
always do this by choosing a comuon constant (need not be the best possible).
‘We consider the Dirichlet problem

NEd d%u, - ey n i
~a(Z) +[Duel e~ f@) =0 2, .

0x19z1
u,=0 on 942.
The above family constitutes our example and we shall prove a homogenization result for this family as
£ — 0. But first, for each £ > 0, we examine the question of existence and uniqueness of solutions to the
equation (P;) using Perron’s method. We set
F(X,p,s,2,y) = —ay) X11 + [p| + s — f(z), @.2)

where | - | shall stand for the /! norm in R” to make matters simple in the sequel. We observe that F has
the following propetties.

(P1) F is degenerate elliptic.
(P2) Forall X, p, zand for 5,7 € R

F(X!_p's'vwv g) - F(X!pa T-J:B;E) Z8—T.

In fact, the above inequality is an equality.
(P3) Forall z,z € R®, for 8 > 0 and X, Z € S™ satisfying

(5 %)< %)<l 7)
one has.
F (Z Bz — ), 8,2, z) — 'F(X Bz — 2), 8,3, 4:—) < BL-EIQ:—;ZJE + Liz — 2|

(P4) F(0,0,0,z,z/g) < Oforall z € 2.
(P5S) There exists a constant C' > 0 such that

(OOCSC—)>O forall z € 2.
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It is not difficult to verify the above properties; for the sake of completeness the verifications are done in
Appendix (see A3).

The properties (P1)-(P3) imply, by [6, Theorem 3.3}, a comparison principle for sub- and super-
solutions of (P,). To be precise, if u € USC({2) be a subsolution and v € LSC($2) be a supersolution of
the Dirichlet problem (P¢) (note that w < 0 v on 842 by definition) then « < v in 2. In particular, if a
viscosity solution to (P,) exists then it is xrigue,

The existence will follow from Theorem 4.1 [6] provided we construct a subsolution and a supersolu-
tion vanishing on the boundary. It i$ obvious from (P4} that ( 1s a subsolution to (P,.). If €' is as in (P5)
then it is clear that C is a viscosity supersolution of (P.) in {2. We need to construct a supersolution
which vanishes identically en 8£2. For A > 0, let 2, = {z € £2: d(z, 852) < 1/A}. Choose M such that
M(1 —e!) > C. Define

[M(1- e MEAM A i 12,
vz} = . -

Clearly v = 0 on 9£2. We verify that v is a supersolution in {2 for A sufficiently large.

Set d(zx) = d(z, 042) for short. Choose 0 < g, initially, such that d is twice differentiable in -QAQ
This is possible since 312 is C2. By the condition (H0) we can choose a A > Ag such that D?d(z) is
negative semi-definite in {2, (see Appendix A2). Also |Dd(:z:)| = 1, in fact, Dd(z) = nfy) where y is
the point nearest to % on the boundary and n(-) Is the inward unit norrmal at a point on the boundary. Let
vg = M(1 — e %)), Then for z € 2

F (Divo(w), Dug(z), vo(x), T g) > —a-(g)M 4= (X2 Dd(z) ® Did() + AD d(=)),,
+ M ¢~ | Ddz)| + M (1 — e~ %) — f(z)
>Me A~ [|f]loo

since —a(z’/e)M C"ME}(—AEDG’.(:D)@Dd{x)+w2d(z))11 > 0and M(1—e @) > 0. Thns, ﬁn::ﬂly,
if we further choose X such that X > || f[leo /(M £7) we have

F(D%g(ﬁ'), Dug(z), vo(z), , g) 20 forz e 2.

Thus wg is a viscosity supersolution of (P¢) in 2 and hence by inf stability v = vs A C is-a viscosity
supersolution in £2). To have that v extended by C outside §2), is a viscosity supersolutien in 2 it remains
to check that it is so for . € (2 such that d(z) = 1/A. But for such an z, by the choice of M above, there
exists. a neighbourhood of & such that v = ' in that neighbourhood. Thus we ate able to conclude that v
is a viscosity supersolution of (P,) satisfying v = 0 on 3.£2.

We, therefore, obtain the following result directly from the above by an application of [6, Theorem 4.1].

Proposition 2.2. Assume (H1), (H2) and thit thé boundary satisfies the curvature condition (HO). For
each € >> () there exists a unique viscosity solution . of (P;)

0 ue S0 (2.3)
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As a consequence of (2.3) we also have that the solutions u, satisfy the uniform bound

Sup [[tejoo < co- (2.4)
0

3. F and its properties

We now introduce the homogenized operator F corresponding to our example by mieans. of the cell
problem (3.1} below. The choice of F will be completely justified by the homogenization result in Sec-
tion 4.

Proposition 3.1. For each (X, p, s, ) there exists a pair (p,w) where p is.a constant and w is bounded,
uniformly continuous on R such that w is a viscosity solution of

—a@)Xu +|p1| + ¢ + Dyl + s~ f@) = p inR*V. (3.1)
Moreaver, p is unigue.
Proof, The proof follows the lines of [8, Lemma 2.1] but in R® Y and is given in Appendix (see A4)
for the sake of completeness. O

We are now able to define F as follows.

Definition 3.2. For (X, p, s, z) given, let {, w) be as above. Notmg that p is unique for given (X, p, s, z),.
we define the homogenized operator by

FX,p,5,2) = p = p(X,p,5,2).
We now study some properties of F.

Proposition 3.3. F defined as above has the following properties.
(i) F(X,p,s,x) depends only on Xy, in the variable X.
(iiy F is Lipschitz continuous in all its variables.
(iii) Forall X, p, = and all 7,8 € R one has
F(X,p,s,4) — F(X,p,7,2) > (s ~ 7).

In fact, the above holds with an equality,
(v} Forallp, +, xand all X, Z € 8™ such that X > Z one has

F(x, pra) < F(Z, D7)
Further, if a(-) 2 o > 0, one has

FX,p.r.2)+ X — Z)y < F(Z,p,7,2).
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V) Porall;,z e B® r € B, ﬁ}(}and_x'-zesu tisfying

(5 %)<(5 St 7)

one has
F(Z,8(x — 2),1,2) — F{X,3(x — 2),7,x) < L|z.— |,

where L. is the Lipschitz constant of f in the definition of F,
(vi) F(0,0,0,2) <Oforallz € 0.
(vii) F,0,C, ) > Ofor all £ € 12 where.C is as in property (P5) in Section 2.
(viti) For M, X sufficiently large 1o = M(1 — e~ =3y satisfies

F(D?vy(z), Dup(z), vol(z),z) = 0 forallz € 0.

The proof of the proposition is along the same lines as that of (8, Lemma 2.2] and it shall be given in
Appendix (see AS).

We like to draw some conclusions from the proposition before concluding this section. The proper- ;
ties (i)—(v) in the proposition imply, by [6, Theorem 4.1], a comparison principle for sub- and super-
solutions of the equation

F{D%, Du,u,z) =0 inf, Pron)

u=0 on 3.2 " hom

In particular, we zlso have unigueness of sclutions to the above equation. We can have existence using

Perron's method since 0 is a subsolution following (vi) and v defined before will be a supersolution
following (vii) and (viii).

4. Homogenization
We now state and prove our main theorem.

Theorem 4.1. The solutions v, of (P.) converge uniformly to the solution of the homogenized equa-
tion (Poom) Where F is as i Definition 3.2,

Proof. We note that the bound (2.4) does not indicate in any way the uniform convergence of the se-
quence u.. But in fact, we shall be able to prove this follewing the technique of Barles and Perthame [4].
One uses the bounds {2.4) first to define

w'(@) = Hmsup ui(s) and u.(#)= liminf ue(2). ' @.1)

z—t, g0

Then by the very definition it follows that »*(z) is upper semicontinuous and «.(z) is lower semicontin-
uous and

U 2 U 4.2)
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The proof will be completed if we show that %*(:} i$ 2 viscosity subsolution of (Phom) and that #.(z) is a
viscosity supersolution of (Pyom) verifying u* = u, = 0 on 812, Indeed it will follow, by the comparison
principle, that

U < U ‘ (4.3)

By these inequalities, we will have a common value u* = 4, = u which is both a sub- and super-
solution to. (Ppeg) and hence, a viscosity solution. The equality of the two limits in (4.1) also implies that
the sequence u, converges uniformly to .

We shall only show that u*(z) is a viscosity subsolution of (Phom) 2nd the other part can be proved
sinilarly. _

Let zg € £ and let ¢ € C(2) be such that ©* — ¢ has a strict local maximum at zo and

u*(zp) = ¢(zp). We need to show that F(D?¢(zo), Ddlzo), plzo). o) < 0. However, taking into ac-
count (i) Proposition 3.3, we can write this simply as.

F( 8% o), Do) )z)so (4.4)
39, O D90, $lzo) %o | <0 4,
Assume the contrary, that is, let.
2¢ _
F (o (20) D).z, ) > 6 >0, @5

for some & > 0. Let w be the viscosity supersolntion of (3.1) with

Xy = 2z, ¢ (-'Bo) p= D¢{zp), s=4(xo) and
( —(a0), Dzo). ) o)
Let
Ge(x) = E) + cw (3’) (4.6)
Claim. ¢, satisfies the following equation in the viscosity sense
I\ A2 _ )
~a(Z) pote + Do) + 4@~ 1@ > 5 @7

in the ball B(zy,r) for v and & sufficiently small.

We complete the proof of the theorem assuming that the claim is true. From (P;) and (4.7), it follows
by the comparison principle that

ue(z) — 9e(2) € ag(laf J(Ue be)
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for all z € B{zg,r) and all £ >> 0. Passing to the limit as € — 0 in the above we get

u*(2) — d2) < max (u —¢) forall z € Bz, )

which, by taking ;:'.sufﬁcien-tly small, contradicts our assumption that u* — ¢ has a strict local maximum
at &p. Thus, (4.4) must be valid or in other words we have shown that 4* is a viscosity subsolution
of (Ppom). DO

Proof of the claim. Set H(p, s,z) = |p| + s — f(x) for convenience of writing. Let M be a constant
such that ||w||o € M. Note that there éxists ap > 0 such that

|Hp, s,%) — H(g;t, 2)| < g whenever max([p — g, |s — t], [z — 2|} < a0- (4.8)

Fix any £ such that £ M < . Let r be a positive mumber to be fixed later. _
Let z € B(zg, ) andlety € G_""(R") be such that ¢ —1 has a strict minimum at z with ¢.(2) = ¥(2).
We easily conclude, using the fact that ¢, — 1 is smooth in the x, direction,

Dy ¢e(2) = D2} or  Dg,é(2) = Dy, 9(2) 4.9)
and, _

Bz 95 e —¥)2) 20 or dx;0z; (2) 2 z,0z; @.10)
We also have.

|[6(2) — ()| < eM. (4.11)

We are now ready to establish the claim. As
8:) = 9o =e[u( 2 ) - 2wt 4601

we have that w(i/) — é({l_;(ey) -~ ¢(ey)) has alocal minimum at ¢, = 2/ and hence also:its restriction to
R*~! has a local minimum at g.. So by the definition of w we have

¢

(ng (1‘0) + H{ Dz, (o). Do) + {((Dert)eye) — (Dord)eye)))s dzs). 2o)

— 82 . .
?F(a qé {zo). Do), ¢'('$o),-=$o) 238
0x,0%

that is

H 2
~a(% )ax o 0+ H (D, 6020, Dyrlac) + (Do) — Dp(e). $ae) 20) 3 5.
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As ¢ is smooth, ais bounded and H is Lipschitz continuous, we can choose r sufficiently small such that

A 2 .
—a("" ) T () 4 H(Da,$(2), Dydle) + (Date) — Doriba)), (2),2) > 1—5.

- ; axiam‘;

Now using the relations (4.9), (4.10) and the fact that g is nonnegative we obtain

9 2.1 _ |
e (z_) O+ HDY@.62.7) > 2

g/ 0219z 4

It now follows from (4.11), the choice of ¢ and (4.8) that

t 2
_a,(z ) %y (2) + H (Di(2),42), 2) > g _

€ ) w102y
‘This proves the claim. O
Boundary condition, It remains to show that 4* = 0 = u, on 8£2. Since 0 < 4 < v we have

0< Eminf u:(z) € limsup uz) € limsup v(z)
22, £ -

2=+, g0 z—iz, €0
that is
0 < u.{z) € u"(z) < v(x)
as v is continuous from its definition. As v = 0 en 0/2 we obtain the desired conclusion.

Remark 4.2. The curvamre condition (HO) played a role only in the existence of & supersolution to (Px)
and to (Pyom). So the homogénization result holds true without this condition if, by some other means,
one is-able to show the existence of a bounded sequence of solutions to (P.). We also remark that we get,
for free, the existence of a solution to the homogenized problem by the limiting process.

5. Remarks

The above example is particularly easy to.deal with as even though the problem is partially degenerate
to begin with, the cell (ergodic) problem (3.1) is purely degenerate (a first order problem) and could be
solved. If instead the ergodic problein defining F were partially degenerate in the strict sense it may
not even have a solution(cf. Arisawa and Lions. [2]). So one cannot expect a homogenization result
for partially degenerate equations in general but only for good classes & problem which veeds further
investigation.
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Appendix
Al Principal curvatures of 342

For each point p € 042 choose a rectangular coordinate system with the inward normal at p as the posi-
tive 2, direction. As 942 is a C? surface it is possible to represent it locally as the graph of 2 O function.
More precisely, let (p/, ;) represent p in the coordinate system. Then there exists a neighboarhood U7
of ¢/ and a neighbourhood V of p,, and a €2 function ¢: U/ — V" such that

(#',2n) €ANNAU XV ifandounlyif =z, = ¢(z').

Definition. The eigenvalues of D2¢(p’), denoted by k1(p), ..., kn—1(p), are called the principal curva-
tures of 32 at p (see [9]).

The curvature condition roughly tells us that the boundary is locally the graph of a convex function
(with the positive 4y, direction same as the inward normal). Examples of such domains are balis. A non-
example is an annular domain. In this case; the curvature condition is satisfied on the outer boundary but
on the inner boundary all the curvatures are negative.

A2. Ramification of the curvature condition
We show, under the curvature condition (H0), that the Hessian of the distance function to the boundary

is negative semi-definite in 12, for A sufficiently large. Given € 2, lety € 942 be such that |z — yl=
d(z). Then the Hessian of d at z is given by [9]

Kl — dine | P2 —kaly)
] = e = G T 4D

Thus, by the curvature condition (H0), the Hessian of the distance function is negative semi-definite in 12,
if we fix A such that X > maxyeacy maxy(k;(y))). This is possible since the k;’s are bounded from above
on 842. To see this one notices that the boundary can be covered by a finite number of charts{closed) on
each of which the principal curvatures are upper bonnded by continuity.

A3. Verification of properties (P1)-(P5)

(P1) follows from the non-negativity of a. (P2) is obvious. Next note that

-2(5 )< (% 5)<s(4 e

implies

—# ((Il —Dl) < (-X(t)II —fg’n) Q'B(—I.I _11)
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Thaus for the vector (::; ig:ﬁ;) the right most inequality, in the sense of quadratic forms, yields

(z’)ZH+a( )Xn gg( 1,’2(%) _am(%’)) <ﬁL2|x 5 _ 2] <ﬁL2|$_3|2

£2

Now, (P3) follows from this and the Lipschitz continuity of f. Next we see that F(0,0,0,z,z/¢) =
—f(#) < 0 by the nonnegativity of f. Finally, F(0,0,C,z,z/e) = € — f(x) > 0by fizing C such that
A4. Proof of Proposition 3.1
For § > Oand (X, p, 5,x) given we consider the equation
—aly) X1 + |p1| + [P + Dyw®| +5— F) + fwf =0 inR"D, (A2)
Define
Gl 7,y X, p.8,2,8) = —a@)Xn + o] + ' + ¢l +5 — f@) + dr,
where (X, p, s, ,8) play the role of parameters. (X, p, 8, ) are arbitrary but fixed and 0 < § <1
which we will allow to tend to zero eventually. We will suppress these parameters for convenience of
presentation. It is clear that
(i) forany g,y andry, 72
Glg,r,4) — Glg,r, ¥} 2 8(ri —r2),  in fact, equal,
(i) limyg,o Glg.T, 1/") = oo locally uniformly in the other variables,
Giii) G(g,r,y) is uniformly continuous on R0 x R x R™Y and:
(iv) theére exists K5 > () such that
G0, ~K53) < 0< GO, Ksyy inR™D,

Indeed this is true for K5 = (|le|loo|Xa1{ + [p| + [s — f(z)])/8 for given (X, p,s,z).

$o by [3, Theorem 2.12] we have the existence. of a unique bounded Lipschitz continuous viscosity
solution to (A.2) in R~V satisfying

”m‘sﬂw < K; foreach 8.

We remark that w?® is periodic with period [0, 11°~" by the periodicity of G and the uniqueness of
solutions to (A.2). We have by the choice of K and the above inequality that

m;p.l |&2?| o < 00 (A.3)
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Using (A.3) and (ii) 2bove one obtains, from Eq. (A.2), that
sup |Dw?||, < oo.
Set v¥ = w? — mingem—y; wf, Then v¥ is Lipschitz continuous, periodic and satisfies
519 1o cas oy < 00
Thus, we may extract a subsequence indexed by & such that
v¥ —sw uniformly in R*D.
Hence,
§'w® — —p aconstant, uniformly in R®~D,
Passing to the limit in (A.2), using the above, we obtain that (p, i) satisfies
—a()Xn + o[+ [P + Dyw| +5 - f)=p mR®D
in the viscosity sense.
AS5. Proof of Proposition 3.3
(i) is obvious. _
The remaining properties are all obtained by an application of the comparison principle.
Let %’ and 7° be bounded Lipschitz continuous functions satisfying the following equations in the
viscosity sense '

—a)X11 + o) + |p' + Dypw®| + 3 — f@)+ 6w® =0 in R™Y,
—a( )it + o]+ + Dbl +7— )+ 5% =0 inRD.

We rewrite the first of the equations as follows

—ay)Z0 + g1l + |¢ + Dyw| + 7 = £(2) + 80 + (aly)Z11 — a1 Xu1) + o] — lai]
P+ Dyw’| - [d' + Dyw®| 45—+ f)— f@) =0 m R (a4)

which gives
~a(y)Zn + |qul + |¢ + Dy + v — f(2) +50° + (Mol Zy — Xu) +|p— g
+8—r+fl2)- flx) 20 mROD.
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Setting {? = w® + (My|Zu — Xu| + |p — q| + 8 — r + f(2) — f(z))/8 we conclude that
—aNZn + |o| + o' + Dyl +r— ) +¢° =0

in the viscosity sense. By the comparison principle for (A.2) one obtains ¢¢ > 7 forall § > 0. Orin
other words

duw’® + Mo|Z1y — X+ [p— gl + 5 — r+f(2) — f(&) = 8n°.
Passing to the.limit as § — O in the above we gst

F(X,p,3,7)— F(Z,q,7,2) < Mo|Z11 — Xui| +|p—¢| +5— 7+ F(2) — F(x).
In particular,

F(X,p,52)—F(Z,q,7,2) < My|Z1 — X[+ lp— gl +|s — 7|+ L]z — 2|
and similarly,

F(Z,q.r.2)— F(X,p.8,7) < Mol Zus — Xu| +Ip—ql +[s — 7| + L}z — 5.

Thus we have (if).
If in (A4) we take Z = X, g = p and z =z we will bave

—a)Zy + || + o + Dypw?|+r— fD+d’ +a—r=0 nR®D
and therefore by uniqueness for (A.2) we have
w+s—r=dn

leading to the conclusion (jii). _
Assume that a(-) 2 o > 0. We again goback to (Ad) with X > Z, g=p, s =rand z =2 we get

—a)Zn +|@| + |¢ + Dyw?| +7 — fz) + 6w + (a)Zn — e@)IX11) =0 nR"V
and in particular since a(y) 21 — a(¥') X1 € a(Zy; — X11) we get

—a(yYZu + || + | + Dypv®| + 7 — f(2) + 6’ + a2y - X11) 20 inR™D,
So, by comparison,

s + ol Zy — Xu1) = 67°

and letting & — 0 we gef the second part of (iv). We obtain the first part as a special case.
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Letgz,z€ R™, § > 0andlet X, Z € S be such that
I O X 0 =
#(o %)< 2oL 7)
Note that X £ Z by the rightmost inequality. Take p = S(z — 2) = ¢, s = r in (A.4) to get

—a(y)Z0 + 1| + g’ + Dywl| + 7 — f(2) + 6u® + (alyVZn1 — oy ) X1) + F2) — f@) =0
in R#-D

which gives

—0@)Zu + |+ ¢ + Dy’ +7 - [+ 6u’ < Lig—z| mR™ D,
Again by comparison

duw® < Llz — 2| + 61°

and letting & —+0Ws get (v).
Let now 2” be the solution of (A.2) with X = 0, p =0 and 5= 0 that is

| Dy | - fl@)+ 6wl =0 inRO-D

which implies
|Dgiuf| +6u® >0 inROD,

Obviously 0 s a solution and in particular a subsolution to
|Dp¢d|+ 8¢5 =0 inROD,

choe,hycompanson,é'w" 2 0. Letting § — 0 we get (vi).
Similarly if w° is a solution to (A.2) with X = 0,p=0and 5 = C we gét

|Dywf| + O - f@)+ 6w’ =0 inR™D
which, since C 2 || f||oo, implies

|Dyw®|+6uf <O inR™D,
Aga(lll by comparison with 0, now considered as a supersolution, we get 6u° < 0 and letting 5 — 0 we
get (vii).

Let now & € £2 and let 2* be the solution of

~a(y)(D*u0(@)),, + | Dy vo()| + | Dprvo(z) + Dy®| + vo(z) — f@) + 6P =0 in RO,

T
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As before D?wy(z) is negative semi-definite and we obtain from this
MAie M3 (Dd(z)),| + |Mxe=**(Dd(z))’ + Dypw’| - f@) + 6w’ <O nR®D,

where (Dd(x)); and (Dd(z)y denste respectively the first and remaining components of Dd(z). On the
other hand, for A large, O is a supersolution of

MA@ (Dd(z)), | + [MAe™4®) (Dd(z)) + Dyw?| - fi)+6uf =0 in RN,
Indeed,

Mxe™|(Dd(e)), | + | MAe™ ) (Dd(@))'| - fz) >0 R
for A such that X 2> || f|lee /(3 ¢~ 1). Thus by the comparison principle

0> or 08

from which (viii) follows.
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