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This article, essentially consists of two parts, even though it is not divided in this
fashion. In the beginning, we briefly introduce the notion of Homogenization
and recall some of the results developed in-thie last 20 to 30 years relaied to spec-
tral problems. We also introduce the various methods in homaogenization without
giving details as it is beyond the scope of this article. Then, we present some par-
tial results in homogenization of spéctral problems: namely, harmonic and Stokes
eigenvalue problems in periodically perforated domains, that Jeft unresolved and
still remains open.

1. Introduction to Homogenization

Homogenization is 2 mathematical procedure to understand heterogencous mate-
rials (or media) with bighly oscillating heterogenities (at the microscopic fevel) via
a homogeneous material. Mathematically, it is a limiting analysis. The physical
problems described on such materials leads tothe study of mathematical equations
like: differential or integral equations, optimization problems, spectral problems;
and 5o on, will ‘exhibit high oscillations in the coefficients present in the equa-
tion or in the domiain. This high frequency oscillations, in turn, will reflect in the
solutions, ‘Thus, even if the well posedness of the problems were guaranteed, a
numerical computation (to predict the behaviour of such heterogeneous media) of
such solutions will be highly non-trivial; in fact, it is almost impossible,

The homogenization deals with the study of asymptotic analysis of such so-
lutions and cbtain the equation satisfied by the lmit. This limit equation will
characterize the bulk/overall behaviour of the material, which doesn’t consists



148 A. K. Nandagkumaran

of microscopic heterogenities and can be solved or computed. This solved and
computed solution will then, be a good approximation, in a suitable sense, to the
original solution.

There are plenty of cxamples of such heterogeneous media in the literatre and
in ont-daily life. To cite few examples:

1. Composite Materials: These malerial are obtained by fine mixing of two
or more materials with different physical properties. The study of composite
material is an imporiant aspect in material science. The problems modeled
on such materials leads to homogenization problems.

2. Porous Media: These can be viewed as domains obtained by removing a
Targe number of tiny holes. Examples are fluid fiow through poreus media;
flow. of ground water or oil, fiow of resins in moulds in industries.

3. Layered materials; like plywood etc. This also can be viewed as a com-
posite with oscillations only in pue direction.

4, Micro-structure of phasé transition: The erystal structure of materials
changes at a critical temperature while cooling . This happens at the atomic
level and the structure moves from Austenite (high tmperamre) state 10
Martensite (low temperatare) state.

5. Analysis of vibrations of thin structares.

Fore more details, we refér the readers to the Titerature : [4], [8], [21], (6], (121,
[1, (151, [16), [23].

Now let us investigate some specific problems in the case of second -order
elliptic partial differential equation:

{ A'u; =finf C u
{ ‘ue =0ondq, S (1.1

where 4% = — 2 (af; (s)F) is:the elliptic operatdr with bounded coefficients

af;(z). In fact, we assume 1hat there exist constants ¢y, ¢, > 0 such'that

colél® < af;fsy < wrléP,VE € R™ (1.2)

Here f is a given source fumction and ) is. a bounded smooth domain in R™

occupying the material with boundary T' = 0. The equation (1.1) arise in plenty
of physical situations like heat transfers, magnetostatics, electrostatics and 5o on.

The coefficients af; (a:) represent the physical property of medium; for example
thermal conducumy in heat transfer, magnetic permeability in magnetostatics and.

N LT p—
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diclectric constant in elcctrostatics. The small parameter € > 0 represents the
heterogenities in the small scale which creates oscillations in af;(z).

Special case (Periodic structure) : Let Y = (0, 1)™ be the reference unit cell and
ai; + ¥ — R be a periodic function and extend ay; penod:caﬂy to all of R".
Then, define

a;;(z) = "w( =) (1.3)

Thus af;(z) is periedic with period £ and it is oscxllatmg rapidlyas £ — 0. Asa
pamwlarease, Jet us assume, a;; takes onily two values o, 8 > 0; Let T C Y be
a subdomain and

aifyeT _
=1 gty eyyr Mes) = o),

where.8y; is the Kronicker delta. In this case, we can view the material Q as a
fine mixing of two materials, when ¢ is small. That is, it is a composite of two-
materials. From the standard theory of differential equations, it is easy to see that
(1.1) has a unique solution i, for fixed € > 0 and y, — u weakly in Hi$),
for some 1. We use the standard Soboley space notations. The problem is to
characterize u as a solution of some differential equation. In the periodic case, we
farther know that
0 (3) ~ai = [ oyt

in L™ weak *. Dogs.u ﬁausfy
—Adu= 5

where A = — 2 (ay %}. In other words, does the bulk behaviour is the aver-
aged behaviour 7

‘The result 15 not rue even in one dimension. However, the analysis of one
dimensional case can easily carried out to obtain the limiting equation. We do
not do this here, except to point out that we get an additional imformation on
tie product a{Z)%k that it is bounded in L?, The mathematical difficulty in
general, is that weak convergence do not preserve non-linearities. In particular, if
Uy, and vy, converges weakly 10 u and.v, respectively, then it is notnecessarily true
Uy Un CORVErges to uv, but it may still converge to some other quantity, which one
would like to obm:n As an example uy, = v, = sinnz — 0 weakly in I?, but.
sinnz - sinng — 1.

A notion of H-convergence was introduced 1o understand the homogenization

H-convergence : Define, for ¢y, ¢, > 0, the class of matrix functions:

E(Q) = E(co,01,0) = {4 = [a] : A is symmetric and satisfies (1.2)}.
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Definition 1.1. We say a fomily {[a%;]}es0, H-convergesto fay;] ase = 0 if
) u, = uin Hj(Q) weak
Y. Iy . .
i) afx) 5z g Lﬂ% in L*(Q) weak.

Here-u® is the solution df {1.1) and u is the solution of

A =finQ

) . (1.4
u =0on84, )

where A.‘: = —i ¥ i

3o ,az)andwewme[aj]ﬁ lag;) or simply A° B A,

There is & very general compactness theorem (See [8), [121) which is given below.

Theorem 1.2. (Compactness Theorem) Let [af;)e>0, & — 0be anyfamilyfrom
E(Q2). Then there is a subsequence €, — 0 and a matrix [o3;] € E(2) such that

a5 2 fag]-

At first sight, from the above theorem, it may seem that the limiting analysis has
been over. But, it is far from complete in the sense that, in general, we do not
know the characterization of [a};]. However, there are some special cases, where
,j can be explicitly charactérized. For example, in the periodic case as well as
in composites of thin shiéets (Jayered materials), The other direction of study is
to obtain good bounds on a}; which has far reaching practical applications in the
construction of composite materials and hence it is more interesting for engineers
and scientists, This comes in the study of optimal bounds for homogenized coef-
ficients. We refer the readers to [9], [101,[11],[25]. )
We end this section by briefly introducing varions methods developed in the
last 30 years 10 handle homogenization and other non Iinear problems.

1. Formal asymptotic expansion : In any asymptotic problem, the first step is
to look for a suitable asymptotic expansion and try to guess the correct timit from
the formal analysis. Keeping the particular problem in mind one Jooks for :

ue(Z) = uo(z,y) +ewm(my) +-+,

where « is the slow variable and y = £ is the fast variable. Then, if possible, sce
that g is independent of ¥ and obtain the equation satisfied by ue (Ref : [4]).

2. Enargy method via test fanetions : The idéa is to construct saitable test
functions kaving same oscillations as the solutions to contro! the trouble creating

e o d s P o
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oscillating terms to pass to the limit. In the process, the energy of the original
system converges to the energy of the homogenized system (Ref : [4]).

3. Compensated Compactness : This method, actually, was introduced to pass
to the limit in non-linear problems under weak convergénce. We have already
remarked in general, we may not be.able to conclude the convergence of u,vy, 10
up from the weak convergence of uy, and v, . This may be due 1o the oscillations in
iy and v,; and its interactions. But if u,; and v, oscillates in transverse directions,
then the non linear functional u,v, behaves nicely. For example if u,, and vy,
are functions on complementary variables ie., n = ta(2') and v, = v, (z"),
where z = {z',2"), then the convergence of 41, vy, to uv can be concluded éasily:
i.e., one needs a sort of compensation 1o achieve the compactness. This is the
basic motivation of compensated compactness, though the theory is much more
involved (Ref: [51,[161,[24]).

4. Gamma Convergence : This is a variational convergence developed to study
oplimization problems, Gamma convergence is a very powerful notion introduced
in the seventies and have applications in several problems including homogeniza-
tion problems (Ref: [8]).

5. Two Scale (Multi-scale) Convergence : This was specially introduced for
studying homogenization problems. This makes the formal asymptotic analy-
sis mathematically rigorous (Ref: [1],{19]). We see more about this latér in
the article.

6. Fourier (Bloch wave) method : The latest addition is the Bloch wave method.
Initially, problems from fluid- solid interaction were studied using bloch wave
analysis (Ref: [7]). The basic idea is to work in phase space than in the physical
space represented by x variable. Essentially one diagoetialize the operator A® and
transform the equations Au® = f into a sequence of scalar equations withgut the
derivatives. The concept of Fourier decomposition when the medium is homoge-
neous is that the operator can be diagonalized in the basis of plane waves. In the
current periodic situation, one requires Bloch waves,

2. Spectral Problems
Now, we:come to the main topic of discussion of this article, ramely, the speziral
problems. Consider

Ay, = iﬂs nQ

o e
ve =00nd1,
where A is as in (1.1}, The problém (2.1 is equivalent to the study of the spec-
trum of the followirig operator:
Se : L3 () — I3(Q),

2.1
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where, S for § € L*(Q) is defined by S f = u, as.the unique solution of (1.1).
The spectrum a(S. ).is given by

o(Se) = {0} | {3,

- k).\
andpl >pl>epb > — 0ask — o0,

Theorem 2.3. (Homogenization) For each k, the eigenvalues pg converges ro
some y* ase — 0 and along a subsequence (normalized 'vk ), the eigenvectors vk
converges to v* in L*(Y). Further (p®,v*) satisfies A*v = tuinf,v=100n
851, where A* is the homogenized operator:

Thus we can write ) _
;1_1&) a(Se) = o(5),

where 5 is the operator associated with A*.

Initially, the above result was proved by S.Kesavan [13]. If'is, now, a conse-
quence of the more general result, Of ¢course, one required to show the conver-
gence of S 1o S.

Theorem 24, Ler 8¢, S be compact sélf adjoint operators in L3} and S, —
5 uniformly, i.e, ||8; — 8|| — 0. Then lim,., o(S:) = o(8).

Note that the set limit is undersiood in the sense that o() is the set of accu-
mudation points A of the sequences A, € (S, ) as € — 0. If S, d6 not converge
uniformly, we cannot conclude the theorem, However, if S, converges strongly
1o a limit operator § Gie., S.f — Sf in L2(Q), VF € L*()), not necessarily
‘compact, with spectrum o(S), (Ref: [3]), then

E_l'f{l)_ﬂ'(sg.). > o(5).

If S, converges to § weakly: i.e., 5, f — Sf weakly in LX(Q),Vf € L*(R), in
general, we cannot conclude anything about the limit spectrur,

However, regarding the analysis of #(5;} of our problem, there are more re-
cent results, using Bloch wave analysis. The spectral analysis which we have seen
is known as low frequency limit, where we fix k and 1ake £ — 0. Of course,

lim ,ug. ={.

£t koo

However, it does not say mugh about the rate at which u* — O ase — 0,k — oo.
This high frequency analysis was studied in [3] using Bloch wave method. In
fact, a complete analysis of lith,_,q 6 20(S;) was carried out. Ifa. —+ QB¢ such
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that lirge 40 % = 0 or +00, then, lim.n a7 20(S;) = Ry. When a, ~ 0(g),
then

ll—:b% 5_20(53.) = Cbloch U Tsoundory-

Here: Gutoen, cOnSists of spectral values coming via the bloch decomposition of
certain associated operators and apoyndar, CONSISts spectral values coming from a
boundary layer phenomena, Both multi-scale methods and bloch wave analysis
were:used to carry out this work. There are many open questions ik : we do not
know in general, the values In Fygundary arc the spectral values of some boundary
operators, whether there are gaps between ouscs, ad Taoundary-

Now, we move on 10 other spectral problem complicated due to the geometry
of the dommn

Perforated domain: Let (), = O\ JT.; be a periodically perforated domain
obtained from ) by removing a large number of holes of size z in a perfodic
fashion. Let ¥’ = (—3, 1)™ and T be an open setsuch that T C ¥ with boundary
S =8T. La ¥* —Y\TandY,g =Y+EY =Y +kk EZ"heallthc.
translated cells. Consider the index sets  ~

={k€Z":eY, C O}, J.={k € Z"c¥;nT £ ¢}.

So {7} : k € I} are the interior holes of size £ in Q and {7} : k € J. } are the
boundary holes. Thus {), is given by 0, = {1\ U,E,E‘r‘LJ 7, 6Tk .
We consider the eigenvalue problem

—Aug = kg-ug iﬂ Qs

The operator —A is elliptic in ), with a;; = &;; in Q),.. By defining a;; = 0 in the
holes, the problem can be viewed as a similar pmblcm considered carlier, but it is
no longer uniformly elliptic. In fact; for each %, the set {A%},~ ¢ is not bounded
(it was bounded in the carlier case). Itis proved in [28), that A¥ ~ O(e~2). More
precisely,

'\g =g 2\t + Pé’

where \! is the first eigenvalue of the Laplacian in the reference cell Y*, The set
{45} is the spectrum associated with an elliptic operator in e, but {1k} s is
bourided for each k and homogenization can be smdied. As a special case, we
have

£22F —s A as ¢ = 0, for any k.
This problem exhibits a strong interplay between the size of the perforations (e,

here) and period of the struckure, which is also £. One way 10 get bounded spec-
trum 15 to consider smaller perforations, namely the holes a, T.x instead of £7%. In
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fact, there exists a critical size of the holes-a, for which the spectrum is bounded.
A sirnilar resuit, with small holes for the elasticity system was carried out in [17].

Coming back to the first case; @, = Ofg), where period and perforations are
of the same order, we would like to remark that the proof in the Laplacian ¢ase
depends heavily on the simplicity of the first eigenvalue A' and the positivity of
the corresponding eigenvector,

These are nio longer teue for other systems like: bilaplacian, Stokes, elasticity
eigenvalue problems and so on. All these problems remains open till today. Of
course, whert the holes are small, in all these cases, one can show that the spectrum
{2} 0. for each k, is bounded and homogenization process can be carried out.

We, niow, present some partial results when @ "= O(g) in the case of bilapla-
cian and Stokes systems,

3. Bilaplacian eigenvalue problem

We consider the biharmonic problem in the periodically perforated domain e
namely, '
Aguz = Aeus in Qg

Ug = %’=oﬂnaﬂe

‘ fu&:l_.

Here 3% i the normal derivative at the boundary 8%);. For fixed e > 0, (3.1)
is a standard elliptic eigenvalue problem, which has a variational formulation in
H3(0,). Thus these is a sequence of solutions {A}, uf} € B x H3(Q) such that

(3.1

0<A €A <o rl---—ro0asl 2 00 © (32

and {u! } is an orthonorral sequence in L? (12, ). The eigenvalues AL can be char-
acterized using Rayleigh quiotient formulation as

A = min{max,es, Re(v) : 5 C HF(Q),dim Sy =1}

=min{R(v) : (v,8}) =0,Vi=1,---,I-1}, (3.3

where

ol
/ n‘_ el

We have the following results.
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Thearem 3.5. Let {Ml} be the spectrum of (3.1} satisfying (3.2). Then there
exist constants Cy > 0,Cy = Co{l) > 0, independent of €, such that

C<e <0y I=1,9,-- (3.4)

Theorein 3.6. Let {u(, M.} be the entire spectrum of (3.1) and i be the ex-
tension of ul by zerm o qll of 1. Then there m,m a subsequence of € again
denoted by €, such that there exist a functions uwy, € L*(Q, LZ(Y')) and scalars
M0 < N < o0 such that
P VS 3.5)
and
@ = / wb(z,y)dy in LA(Q) weak 3.6)
YU

Moreover X, u, satisfy
Ajug = dugin Q1 x ¥*
o= %‘T‘” =0onS | 3.7
ug, Vug are Y — periodic.

Remark 3.7. The Theorem 3.5. does not provide a complete answer, because
it is not proved that wy 2 0. So the first result 1o be proved in this direction.is
ug # 0 and we believe that Jaxys vidzdy = 1. Ifthis is proved, then from
(3.7), itfollows that g can be represented as ug(z, y) = &(x)p(y), where pisan
eigenvector of the following problem (3.8). In this case ) is an ¢igenvalue,

[ A%$=ApinY*

99
p=-"=0omS |
v 3.8)

Thus, we have the follt)wmg theorem,

Thecrem 3.8. Let {ul, \},up be as in Theorem 3.6, andaxsumetkamo #£0.
Then along a subseguence of =, we have

543, — Xase— 0,

where X is some eigenvalue of (3.8). If ¢ is the corresponding eigenvector, then
Uo(z,y) = ﬁ(z]¢(y),

Jor some function fi{xz).
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Proof of Theorem 3.1: The first inequality in (3.2) follows from the following
lemma.

Lernma 3.9. There exists a constant C, independent of €, such that
f W < C&t [ I8P, Vo € HEQ.)-
Q. 0,

PROOF: Take any u € HZ(f),) and consider the restriction uex = uley; for
k € I, U J;. Using the homothetic mapping & € £¥; — ¢y = T2 € ¥, define
Ver (1) = tiex(2) = Uenley + zx). where z3 15 the center of £¥y. Now using the.
standard Poincare incquality, since vex € H2(Y*) and v = 2 =0 on 5, we
get

f vhdy < C [ | Aveg [*dy,
b ad Yﬂo
- where € is independent of £. Hence
[ vharsoet|  |Auan
L3 o

Y
¥

Summing overall k € I, |J J; and observing that € can be covered by m{Q)e~",
g— periodic cells, it follows that

[ w2 < Z f Ul dz < Ot Z f [Auex|?da < Ce* [ |Au..
a. rer s’ S APEAR e

This complete the proof of Lemma 3.9..
From the lemema and (3.3) it follows that.

el zdalza>o

To prove the second inequality in (3.4), miroduce the following eigenvalue prob-
lem in T3\T', where T3 is an open set with -smooth boundary 8;, such that T' C

hnchicYy: _
A2 = pepin TH\T

=2 —oms|Js 39

g By 1l (%;9)

Deéfine 9 = 0 in Y\T} and extend periodically to all of RY. Corresponding to
the efgenvectors ¥y, s, - - -, define
$i(EZh) ifz € ey fork el

vi(=) = { Oifz € ¥x 19, fork € Je.
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Then, obvieusly, ¥§ € Hg(f);). We would like to remark that if we introduce the
problem (3.9) in the domain ¥* with a periodicity condition, then we will not get
4 = 0 on 90, which is one of the crucial point {6 be noted.

Caim: Fix [ > 1, let 8f = span{¢)i;---,¥{}. Then Sf is an I-dimensional
subspace of H3(f),) and it is L?-orthogonal.

Proof of the claim : X0 = 1, ei¢f in O, then b, et = 0 inelz
forany & € I, which shows that E:‘,—_—l ey =0 T;\T. Hence ¢; = 0
Vi=1,---,lbecause {4, -, t} is independent. The L?-orthogenality follows
from the orthogonality of {1, - - - , 40} and since:

.[ ns"b‘gw; =3 / Gyﬁ"f’fﬂbf =2 Eﬂ/‘n\i‘%‘bj =0

kel £EI¢.-
Thus the ¢lair.
Now it is easy o see that
185 12,y ~ Ml 2y = m(Q)
and

1A% (iE2g,) ~ m(De*|Adi]|Zacys) = m{Q)e ™ ps.
Now from (3.3), we have _
X, < max Re(v), (3.10)

where 5f is defined as above. For any v € 8f,v = Y5, ¢s#f, and using L?
orthogonality, we get

! :
IvlZa,y = Z AV PN o4 Z &
' i=1 =1
and } !
I1Av|[Fa0,) < € FlAY Fagm,y < Cme™ Y -
=1 =1

Substituting these éstimates in (3.10), we get the second imequality in (3.4). This
completes the proof of the Theorem 3.5..

Now we slale 4 two-scalé: convergence theorem due to Nguetseng [19] (see
also Allaire {1] and Nandakumaran [18]).

Lemma 3.10, (Nguetseng [19]) Let {us} be a uniformiy bounded sequence in
I?(QY). Then. there is @ subsequence of s, denoted again by £, and

ug =ug(z, ¥} € LHQ, LE(Y))
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Such that _ .
- j elz)lm, 2) - [ ol vl y)dedy @.10)
o) € axy

as& —» 0, forall - C;(§}, CplY)). Moreover

[ wpae@ - [ it 612
o} € 4 QxY

ase = 0,Yv € Co(S) and Vw € LA(Y). Further, if u is the L2 weak limit of vy,
then by taking w = lin (3.12} we get

ufz) = f uolz, ¥)dy. (3.13)

Here L3(Y) denotes the space of L?- periodic functions and Cp(Y') denotes.
the space of continuous periodic functionson Y.

Proof of Theorem3,6.; From Theorem 3.5., it follows that there is asubsequence
of &, such that

_ X o X
ase — 0and C) < M < Ca(l) < o0. Also, we have
it leaqy =
Multiply (3.1) by uc, integrate by parts and putting £ = £”Aug, we get
118150y =€*2 < C2l) <00,

where £ is the exténsion of & by zero outside €2, Using Leroma 3.9,, one can

associate uh(z,y), &(z,y) € L3O, L2(Y)) to &, £, respectively, satisfying
properties (3.11)-(3.13). Thus, we have '

7

we) = /  uolev)dy,
where &t — wf in L?(£) weak. We, now, prove that X, ul, will satisfy (3.7). For

simplicity, we skip the superscript 1. Toke ¢ € D{Q),w € D(Y™*). Use the test
fonctions v = ¢w® = ¢(z}w(Z) in the equations (3.1) to get:

*Aef Uel® = A, f pw |
A f w5(a, )@ wly)dzdy
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and
et f AucA(guf) = &t /  Aue(Adus +2VH.VUF + pAuF).
i ﬂ" . ‘nz

The first two terms on the right hand side go -t zero and the third term converges
to / oz, )¢ () Ayw(y)dedy. Thus, we have
axy

/. [fr.,sn(z, v)Agw(y-)dy] sao=2f_ [ [ y)w(y)dy] Hla)de,

which holds for all ¢ € P(Q),w € D(Y*). Thercfore:

‘ A,go(g,-,_y). = dup(z, ¥} in Q x ¥*. (3.19)
Claim: &(z, y) = Ayug(z,y) in 2 x Y.
Once the claim is proved, we get
Ajtio(z,¥) = Mug(z,¥) inQ x Y. (3.15)

Proof of the Claim: Observe that the claim is in £} X ¥, not justin £2 x Y*, but
(3.14) and hence (3.15) holds only in @ x ¥'*. Take v € D(2), w € D(Y), then

[ & [ aalauert)dsdy.
2 Oxy
Using the boundary coaditions of 4., we get
] Evuf = f Lont =g f Aupw® =& / g A(vw?)
1] 2, 2 Q,
=g / 1e(Avef +2Vy.Vuf + vAwS).
Q.

Agdin the first' two -terms. go to zero and the third term converges to
uo(a:, y)v(x}Ayw(y)dzdy. Combining, we get (3.14) and this completes
ax
tha pmof of the claim end hence (3. 15).

Now, since-up(2,.) € H*(Y), to prove the boundary conditions on §, itis -

enough to prove that ug = 0 in T'. This is quite easy; for consider w € D(¥) such
that supp(w) € T and v € D(S)). Then, we have

0= / nﬁeﬂtﬂ‘ —}. / nxyﬂg(:ﬁ,.y)‘u(z).w(y)&dy.
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Sincew = 0'in Y'\T', we get

f;-z .[[T't!n(f«-', y:)W(y')dg,:r] v{z)dz =0,

forall v € D(02) and for all w € D(T}. This shows that us = 0 in T. The proof
of the Theorem 3.6. is complete.

W complete this section by stating the following questions.

1. Isup £ 07

2. Is ), the first eigenvalue of the problem (3.8)?

3. What can we say about the further coefficients in the expansion of A.. In
particular, study the bekaviour of A, — g X'. We conjecture that Xl —e*) =
O(e~2).

In the next section, we study the Stokes eigenvalue problem and obtain, some-

what similar results-as in this section. We only sketch the results.

4. Stokes Eigenvalue Problem

Here, we asseme-due to technical reasons that the holes do notintersect the bound-
ary I of . Thatis Qs = @\ ;¢ €T. Considér the following system:
—Au. + Vp. = A_g‘us nQ,
divu, = 0in Qe 4.1)
WU — 0 ilJ. a_.ﬂg.

The above sysiem is a mathematical model that describes. the vibrations of an
clastic body occupying a region §.. To stndy (4.1), we introduce the following
spaces: o

| V=V(@Q)={ve H(MY : dive =0in 0}
and V; = V(f)). Then the variational formulition of (4.1) is given by: find
1 = V. such that

Ve Vg = A, / Uextly, VU € VL, / t_;.ﬁ' = / [re |3 =1. (4.2)
2 4 Q0 S 2,

This, again is a standard elliptic eigenvalue problem in the variational formulation:
and it has a sequence of solutions u, AL, The pressure torm is absent in (4.2), but
the existence.of pl satisfying (4.1) is-well known in the literature. One can refer to
Payne [20], Temam [26), Serrin {22] ¢tc. For the homogenization of Stokes prob-
lem in perforated domains, one can see Tartar [26], -Allaire [2], Nandakumaran
[18].

We have the following estinvate on the eigenvalues.



Homogenization of Ceriain Speciral Problems 161

Theorem 4,11, There exist constants Gy > 0,C2(l) > 0, indspendent of =,
such that
Ci<eX<Cfl), 1=1,2,. (4.3)

-PROOF: The first inequality follows from the following lemma which is similar
10 Lemma 3.9,. See Tartar [26].

Lemma 4.12. There exists a consiant C, independent of €, such that
ljul[pm‘) < CE“V‘L&”L'&(Q‘), YuE H&(ﬂg).

To prove the sécond. inequality, we use the same technique as in the progf of
Theorem 3.5.. Introduée the following eigenvalue problem:

—Ay+Vg=pupinTi \T
divgy =0inTH\T
$p=00on8 {5, f@bz =1L

Now consider the eigenvalues {1, -, } and follow similar steps in the proof
of Theorem 3.5. to obtain the result.

@4)

Discussion: Let &, be the extension by zero in the holes, We have the following
estimates
IViie || gy < ce L

Using the technique of Tartar [26], one can obtain an extension p. of p. such that

WV Bl g2y < Ce™ and ||| L2y e < Ce™2.
Moreover, their exists p € L2(0)/R such that

2V, — Vpin H~' () strong
&*f, — p in L*(QY) strong .
Now usinig convergence result of Nguetseng [15], we can deduce the following
" result (we. omit thie proaf).

Theorem 4.13. There exist ug, p, 1 Sikch that
o€ LR, L2(Y)), Vyno € LS, LE(Y)), p € LA(Q) /R, pr:00 — HA(Y*) b
saiisfying the following system :

—Aytig+ Vyp + Vap = Mg in I x ¥*

divyup=0inY* ug=00n 8

tg, Pt are Y — perindic {4.5)

divy f uy=0in,u- / ua(z,y)dy = 0on .
Yi . Y‘
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Moreover,
g2xl -
= ulz) = / ug(z, y)dy in L2(Q) weak {4.6)
g2 =+ pin L’(ﬂ)/]Rsmmg
The systern (4.5) can, also, be obtairied using a formal asymptotic expansion. It
is. an open problem to smdy the system (4.5). The steady system (4.5) withi a
function f € L2(Q, L*(Y*)V), instead of hup in (4.5), has been studied in Lions
[14] in the following way. Let
V(Y*) ={we (H'T*)Y : divw=0@Y*,w =005, wis periodic}

and define the space
W = {v € L3Q, V(Y*)):div, ﬁcsc, y)dy = 0in R,v- [u;o(z, y)dy =0onT}
Y Yo

with the norm
oty = [ _lioe
For any %,v € W, define

oy (u,v) = f Vgt - Vyvand a{u,v) = / ays (u, v)ds.
Yy /a

Then (4.5) with f € L3(§), L*(Y*)Y), instead of Auq; has the variational formu-
lation:

a(uo, v) = f axy_.f.-v.-. Vv e W, 4.7

The problem (4.7) has a unique solution u, arid existence of p and p;, follow as
m Lions. [14]. :
On the other hand, (4.5) is equivalentto : find (A, np) € BRxW such that

(g, v} = Alug;v), Yo € W. A.8)

Here obsérve that there is no ellipticity in the » variable and hence we cannot apply
the compact operator theory to get the spectrum. We, also would like to remark
that unlike in the case of biLaplacian, in the present limit system, the variable % is.
also present explicitly, Itis an open problem to study the spectrum of the System.

Is it possible 1o obiain a systern which is only défined in the unit cell ¥ dnd
is A the first eigenvalue? Under the following assurnption, we answer the former
question.
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Assumption(A): ;5: constant and u(z)} = / ug(z, y}dy =0.
Y'

The assumption (A} is equivalent to :

Assumption(B) : f '(—% +pr -v)ds =0,
5 Ov
To see this, integrate (4.5) with respect to y to obtain
[ G2+ [ meo s Vaple) = u
& S
So cbviously (Ay=>(B). On the other hand, if we assume (B), then
[¥*[Vep = duinQ,

$0 that by taking divergence on both sides and using div- u = 0in (), we get
Ap = 01in Q2. Moreover,

dp A o
B0 =¢-Vap= Fl-u #=0onT.

Thus, we have a Neurnann elliptic problem for the pressure p and hence p =
constant by uniqueness which-in turm implies © = Q.
Now to derive a system in Y*, under the above assumption, first put dg(y) =

[ otez, 1) = [ o1z ). Then o 1 sacsty
Q J o

—Ayiig + Vyfy = Mg in ¥™*
divy ig=0in¥Y™,
fip =00n &, #igis Y — peériodic.
This is a standard stokes eigenvalue problem in the unit cell Y.

So under the assumption (A) or (B), we have a situation similar to Laplacian
and biLaplacian and one can ask similar question as carlier.
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