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Abstract

We study a zero sum differential game of fixed duration in a separable Hilbert space. We prove
a minimax principle and establish the equivalence between the dynamic programming principle and
the existence of a saddle point equilibrium. We also prove sufficient conditions for optimality.
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1. Introduction

In this paper, we study a zero sum differential game of fixed duration involving con-
trolled semilinear evolution equations in a separable Hilbert space. The theory of zero sum
differential games in Euclidean space was initiated by Isaacs [7]. He extended the notion
of value, optimal strategies, saddle point equilibrium, etc. from static games to a dynamic
situation. Using some formal arguments, he showed that the value function is a solution of
certain nonlinear partial differential equation, now known as Hamilton—Jacobi-Isaacs (HJI
for short) equation. Under the assumption that the HJI equation has a smooth solution and
certain other assumptions, he proved the existence of optimal strategies and saddle point
equilibrium. But the existence of a smooth solution of HJI equation is more of an exception
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than a rule as pointed out in Fleming and Soner [6]. To circumvent this difficulty, various
approaches to differential games were carried out. Notable contributions were made by
Fleming, Friedman, Roxin, Varaiya, Lin, Elliott, Kalton, Krasovski, Subbotin, Berkovitz,
and others; see Chapter 4 in [1] and references therein. Evans and Souganidis [4] followed
Elliott—Kalton approach to differential games and showed that the upper and lower val-
ues of the game were viscosity solutions to HJI equations. Many results along these lines
have been carried out by many authors; see [1] and references therein. Kocan et al. [8]
have studied zero sum differential games in infinite dimensional spaces and have charac-
terized the upper and lower values in the sense of Elliott—Kalton as viscosity solution of
HJI equation in infinite dimensions. Though Elliott—Kalton approach to differential games
is indeed a very powerful one, certain important concepts like saddle point equilibrium,
minimax principle, etc. are not well suited in this framework. In this paper, we follow the
original formulation of differential games by Isaacs. We study the differential game in the
framework of (open loop) relaxed strategies. In this setup, we first establish a minimax
principle to characterize a saddle point equilibrium. Then we establish the equivalence be-
tween the dynamic programming principle (DPP for short) and the existence of a saddle
point equilibrium via the theory of viscosity solutions introduced in [3]. Finally we estab-
lish a connection between the minimax principle and DPP via sub and super-differentials
of value function and then prove sufficient conditions for optimality. We now describe the
problem.

Let U;, i = 1,2, be compact metric spaces and Jet; be the space of probability
measures of/;. Let H be a real and separable Hilbert space and’'ldte the duration
of the game. Letd be a possibly unbounded linear operator generating a semigroup of
contractionsS(z), 0 < ¢t < T. Note that there exist constanis, » > 0 such that

[so] < me
forallr > 0. Let
b:[0,T]x H x Uy x Up — H.

We make the following assumption én

(A1) b is continuous and there exisfg > 0 such that
|o@t, x, ut, uz) — b(s, y,uz, u2)| < C1(lt — sl + llx — yll),
Yu; eU;, t,s €[0,T], x,ye H.
Define
b:[0,T]x Hx M1 x My—H
by

b(t,x, p1, Mz)=//E(I,x,ul,uz)uz(duz)ul(dul)-
Uy Up

Fort € [0, T], a measurable function(-) : [, T] — M; is called an open loop relaxed
strategy for playet, i = 1,2, at timez. Let Al denote the set of all (open loop) relaxed
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strategies for player, i =1, 2, at time:. If the players choose (open loop) relaxed strate-
gies(ui(-), n2(-) € Aj x A}, then the state of the system evolves according to

{ LX(s)+ AX(s)=b(s, X (5), pa(s), pa(s)), se Tl
X()=x.

Under assumptions (A1) and (A2), there is a unique mild solution for (1.1) (see [9]).
Let

(1.1)

ri[0,T]x Hx U1 xUy;—> R
be the running payoff function and let

g:H—-R
be the terminal payoff function. We assume that
(A2) (i) The functionsr andg are continuous.

(i) There are constants,, C3 > 0 forallz,s € [0, T], x, y € H, u; € U; satisfying
|F (2, x, un, u2) = F(s, y, uz, uz)| < Co(|r — sl + lx = yl),
lg(x) — g(»)] < Callx = yll.

Let
r:[0,T]x Hx M1 x M>— R

be defined by

Pt . pi2) = / / Pt x. g, uz) po(duz) py(dur).
Uy Us

When the state of the system isaatat times and players use (open loop) relaxed
strategiesu1(-), u2() € Aj x A5, then payoff to player 1 by player 2 is given by
T
R(t,x,m('),uz('))=/r(s,X(S),m(S),Mz(S))ds+g(X(T)),

t

whereX (-) is the solution of (1.1). The upper and lower valies and VvV~ are defined as
follows:

Vie,x)= inf - sup R(r,x, pa(), u2(), (1.2)
u2()eA, pa()eAl

V7 (@,x)= sup inf tR(t,x,p,l(-),p,z(-)). (1.3)
pa()edl r2()eA;

A relaxed strategy.;(-) € Aj is said to be optimal for player 1 &, x) if

R(t’x’ I’LT(L I’LZ()) 2 V+(t7x)
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for any uo(-) € A5. Similarly a relaxed strategy’() € A} is said to be optimal for
player 2 af(¢, x) if

R(r,x, pu1(), u3()) < V7 (1, x)

for any u1() € Aj. Thus a pair of optimal relaxed strategies constitutes a saddle point
equilibrium. The game is said to have value in relaxed strateglesf, x) = V= (¢, x) :=
V(t,x). In such a caséy is referred to as the value function of the game.

We endow.A! with the L1-weak-topology. Using Banach—Alaoglu theorem, we can
verify that A} is a compact metric space; see [11] for more details. Under this topol-
ogy, (A1) and (A2) imply thatR(¢, x, n1(-), u2(+)) is continuous inu1(-) for fixed z, x,
andu2(+). Similarly it is continuous inu2(+) for fixedz, x, andu1(-). Thus ‘inf’ and ‘sup’
in (1.2) and (1.3) may be replaced by ‘min’ and ‘max,’ respectively.

We use the following notation in the sequél* denotes the dual off, A* denotes the
adjoint of a linear operatot on H, (-, -)g and(-, -) g+ stands for the inner products #
andH*, respectively, whereas, -) g+ stands for the duality pairing.

The rest of our paper is organized as follows. In Section 2, we establish a minimax
principle to characterize a saddle point equilibrium. In Section 3, we establish the equiv-
alence between DPP and saddle point equilibrium. We also prove the existence of saddle
point equilibrium in a specific case. Finally we establish the connection between minimax
principle and DPP. Section 4 contains some concluding remarks.

2. Minimax principle
In this section, we derive a minimax principle. We make the following assumption:

(A3) For(r,u1,up) €[0,T] x U1 x U, b(t, -, u1,uz), 7 (t,-,u1, uz), g are continuously
Fréchet differentiable.

Let the Hamiltonian
G:[0,T]x Hx H* x M1 x Mz - R
be defined by
G(t,x, p, i1, 12) = (b(t, x, 11, 42), P)py o + 7 (1, X, 11, 12). (2.1)

Let (1] (), u3(-)) be a pair of optimal relaxed strategies andXé{-) be the correspond-
ing state process witlk*(0) = x. Considerp(t) = U*(T, t)g.(X*(T)), whereU is the
solution operator of

{ e+ AU (s.1) = bi(s. X (), 1i(5). 15U (s.1), 2.2)

ui,t)y=1.

We now prove the following minimax principle.
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Theorem 2.1. For a.e. r € [0, T], we have the following minimax principle:

min - max G(t, X*(t), p(t), p1, u2) = max G(t, X*(¢), p(t), 1, u5()
H2eMa e My ( ) n1eMs ( 2 )

= max min G(t, X*@), p(t), n1, = min G(t, X* (1), p(t), ui (1), u2).
Jmax min G, X", p(t), u1 pu2) = min G(t, X7, p0) ui0), 1i2)
(2.3)

Proof. We prove the theorem for the case= 0. The general case can be done in a stan-
dard manner by augmenting an extra space variable under our assumptions (see [2]). Now
onwards, we assume= 0.

Fix u1 € M1 and letZ be the set of all Lebesgue points of the functian, X*(-), u1,
wu5() —b(-, X*(-), u1(), u5(-)). ThenZ is of full measure. Fix € Z. Lete > 0. Define

{Mi(S) if s ¢[t—etl]
if se[t—e,t].
Let X¢(-) be the trajectory under the contralg(-), u5(-)) with the initial condition

X(0) =x. Letz(s) = U(s, 1)(D(t, X* (1), ua, p5(t)) —b(t, X*(1), p1(@), n5(1))), i.e.,z()
is the unique mild solution of

{ 2(s) + Az(s) = by (s, X*(5), uy(s), u5()z(s), s=>1,
2(t) =b(t, X*(1), pa, u3(1)) — b(t, X*(1), 1 (1), u5(0)).

We claim that(X€ (s) — X*(s))/e — z(s) ase | 0 uniformly in [¢, T]. We now prove the
claim. Lets > . Then

ui(s) =

X€(s) — X*(s)
= / S¢s = O)[b(r, X(0), 11 (0), u3(v)) = b(r, X*(v), ui(v), u3(v))] dt
0

N

= / S(s — )[b(r, X (), u1, 1u3(1)) — b(z, X*(v), ui (), us(r))]dr
e

= / S(s = O[b(r, X°(0), 1, u3(0)) = b(r, X* (1), 1, n3(v)) ] dv
I—e
+ / S(s — t)[b(t, X*(1), n1, ug(r)) — b(r, X* (1), pi(1), /L;('C))]d‘[.

t—e

Now

X(s) — X*(s)

N

- / S(s = )[b(r, X* (1), u1, n5(1)) — b(r, X*(0), ui(v), ub(v))]dr

t—e
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N

f S(s — D) [b(z. X6(0). pa. wy(0)) — b(r, X* (1), pa. (1)) ] d

t—e

<

S
< CMeT / |X€(r) — X*(v)|dt
t—e

N

<CMe“T /

t—e

X¢(r) — X*(7)

T

— / S(t — U)[b(a, X*(0), u1, /L;(O’)) — b(a, X*(0), ni(o), /L;(O’))] do|dt

t—e
N T
+CM2€2M/ /‘b(avX*(G),,U«lv,U«;(G))
t—et—e

— b(cr, X*(0), pi(o), M;(a))| dodt.

Sincet € 7,
S T

/ |b(o, X*(0), n1. n3(0)) — b(o, X*(0), ui(0), us(0))| do dr <o(e)
I—€et—e

forall s € [t —e€,t]. Thus

XE(s) — X*(5)

N

—/S(s—r)[b(r, X* (1), p1, w5(0)) — bz, X* (1), i (0), us(v))]dr| < ole).

I—e
Note that under assumptions (A1) and (A3), bath(-) and X*(-) are differentiable with
respect to the initial conditioix € () = x, X*(tr) = x. Now divide the above expression
by € and lete | 0. Then it follows that(X€(s) — X*(s))/e — z(s) ase | 0 uniformly in
[z, T].
Since(u3(-), u5(+)) is a saddle point equilibrium, we have

1

“[e(X“(M) —g(x*(D)] <0. (2.4)
Using the claim, we now obtain

(p.2(D))<0.
Thus

(P, UT, 0)b(t, X* (1), 1, pu3(0) = b(r, X* (1), n3 (1), u3())) <0,
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and hence

{(p@), b(t, X*(0), 1, u3(0) = b(r, X* (1), u3 (1), n3())) < 0.

Thus for a.et,

G (1, X*(1), p(0), 1, m3(®)) < G (8, X* (@), p(0), 1 0), 150)).

Note that hereges is arbitrary. Similarly we can show that for areand for all 2,

G(r, X*(0), p(0), ui (), u2) = G(t, X* (1), p(1), ui(0), u5(1)).

Using these two inequalities we obtain (2.3}

3. Dynamic programming and saddle point equilibrium

In this section, we prove the equivalence between DPP and the existence of saddle point
equilibrium. We first state a lemma whose proof is omitted (see [2] for a proof of this result
in the case of control problem).
Lemma 3.1. Assume (A1) and (A2). Then the value functions V™ and vV~ are continuous
and Lipschitz continuousin the space variable. Furthermore, if the operator A isanalytic,
then they are jointly Lipschitz continuous.

We now prove the DPP under the assumption that a saddle point equilibrium exists.

Theorem 3.2. Assume (A1) and (A2) and that a saddle point equilibrium exists for (z, x).
ThenforO<r<t+A<T,

t+A
VT, x)= min  max /r(s,X(s),;Ll(s),p,z(s))ds

p2()eAy u1(HeA]
+V+(I+A,X(I+A))], (3.1)

where X (-) issolution of (1.1) under (u1(-), u2(-)) with X (¢) = x. Smilarly,

t+A
V7 (t,x)= max min / r(s, X (s), ni(s), ,uz(s)) ds
p1()eA] na()eA, J

+v—(t+A,X(t+A))]. (3.2)

Proof. Let (uf(-), u3(-) € A} x A} be a saddle point equilibrium far, x). Denote the
right-hand side of (3.1) by (¢, x). For anyuz(-) € A%, we have
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t+A
W(t,x) < max |:/r(s,X(s),,u,l(s),;Lz(s))ds+V+(t+A,X(t+A)):|,
n1(eA] J

(3.3)

whereX () is the solution of (1.1) undéje1(-), u2(-)) with X () = x. Let(t, x) € [0, T] x
H andji, € A5. DefineV; by

T

vl_jz(r,)z)z max [/r(s,X(s),ul(s),,zz(s))ds+g(5((T))],

n1(-)eAj
where X (-) is the solution of (1.1) undefu1(-), ii2(-)) with X (r) = . Now using DPP
for optimal control (see [10]), we have

T+A

Vi (@, %) = Mmgﬁg[ / r(s, X(s), ua(s), i2(s)) ds + Vi (t+ A, X (v + A))]
' (3.4)

foranyt <7+ A < T. Also, we have
V@, B) <V (T, 0. (3.5)

From (3.3)—(3.5), we obtain

t+A
W, x) < max [/r(s,X(s),m(s),M(s))dHv;(t+A,X(r+A))]
n1()eA] J

_y+
=Vt x).

Sinceus(+) is arbitrary, we get
W, x) < VT, x).

We now prove the reverse inequality. Sing€ (), 15()) is a saddle point atr, x), we
have
T

VE(,x) < min [/r(s,x*(s),uj(s),m(s))ds+g(x*(T))}, (3.6)
t

u2(-)eAs
where X*(-) is the solution of (1.1) undefui(-), u2(-)) with X*(r) = x. Let (z,x) €
[0, 7] x H andjiy € A}. Define\7l-j1 by
T

Vi(@H= min [/r(s, X(s), fa(9), na(s)) ds +g(5f(T>)],

n2(-)eAj

whereX (-) is the solution of (1.1) undeiii1(-), u2(-)) with X () = x. We have,

vt (7 % +(r i
Vﬁl(r,x) < VT (z,X).
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Again by DPP for optimal control, we have foraay< 7+ A < T,

T+A
Vi@ 3= M{gi&é[ / r(s, X(s), 1(s), p2(s)) ds + Vi (t+ A, X (x + A))]

T+A
< min [ / r(s. X (), 1(s), po())ds + VI (r + A, X (x + A))]
u2()eAs

T+A
< min max / r(s, X(s), u1(s), u2(s)) ds
= u2()eAs ul(-)eAi|: ( )

+VHr+Ax(t+ A))]

=W(r, x),

where X () is the solution of (1.1) unde1(-), u2(-)) with X (r) = x. Plugging these
into (3.6) withfi1(-) = u3 (), we obtain

V@) SV x) S W, x).
1

Hence (3.1) holds. Similarly (3.2) can be proved:

Assuming that DPP holds, it is easy to see that the lower and upper value functions are
the viscosity solutions of the HJI equations given by

t,x)—(A@®)x, vy (t, . su inf  G(t,x, Dv(t, x), u1, =0,
v (8, 1) = (A@x, vet, )y +M16AE)11M26M2 (t,x, Dv(t,x), p1, p2) -

t,x)—(A)x, Du(t, + inf  sup G(t,x, Dv(t, x), u1, =0.
vy (2, x) (()x v( )C))H,,Lbk MzeMzme/\al (x v(t,x), t1 /Lz) e

Note that in infinite-dimensional spaces there are several definitions of viscosity solutions.
Here we use the definition of viscosity solutions in the sense of [3,8]. We refer to [8] for
more details about this. Note that Egs. (3.7) and (3.8) are the same in view of Fan’s mini-
max theorem [5]. Thus if we have the uniqueness of viscosity solutions of these equations,
the lower and upper value functions are the same and thus the game has value. We now
show the equivalence between the existence of saddle point equilibrium and DPP assum-
ing the uniqueness of viscosity solutions of (3.7) and (3.8). Note that in order to have the
unigueness, we need more conditions and we refer to [3] for these detalils.

Theorem 3.3. Assume (Al) and (A2) and that Egs. (3.7) and (3.8) have unique viscosity
solutions. Then the following are eguivalent:

(i) Thereexists a saddle point equilibriumin relaxed strategies;
(i) DPP holds, i.e., (3.1) and (3.2) aretrue.
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Proof. In view of Theorem 3.2, it suffices to prove that (ii) implies (i). We prove this for
t = 0. The proof is analogous for amyWe have by continuity,

inf  sup R(O,x,u1(-), u2())= min  max R(0,x, u1(-), u2(-))
12()EA 111 () A? p2()eAR i () A

and

sup inf  R(0,x,p1(-), u2())= max_ min R(O,x, u1(), u2(-)).
p1(eAd p2()eA 1A pa()eAd

By the uniqueness assumption and Fan's minimax theorémy,x) = V= (¢t,x) =
V(t,x). Hence

min  max R(0,x,u1(-), u2())= max min R(0,x, u1(-), n2(-).
p2( V€AY 1 (e Al 11 (€A (e A

Choose(u}(-), u3()) € A9 x A9 such that

min_ max R(0,x,u1(), u2()) = max R(0,x, ni(-), u3(-))
n2()eAJ 1 ()eA? n1()eAs

and

max  min R(0,x, u1(-), u2()) = min R(0,x, ui(), u2(-)).
p1()eAY pa()e A p2()e A

Clearly (13 (-), u5(-)) is a pair of saddle point strategies @ x). O

In the next theorem, we prove the existence of a saddle point equilibrium in a special
case. We make the following assumption:

(A4) Letb, 7 be independent of and letg be a bounded linear functional d.

Theorem 3.4. Assume (A1), (A2), and (A4). Then there exists a saddle point equilibrium
in (open loop) relaxed strategies.
Proof. For a fixedx € H, u1(-) € A%, the map
p2(-) = R(0, x, u1(), p2(-))
is continuous in wedktopology. Similarly the map
p1() > R(0, x, u1(), pu2()
is continuous in wedktopology. Now under (A4), it is easy to see that the sets
{ma() € A3 R(0.x, 11 (). pa()) > 1},
{na() € AY: R(0,x, na(), fiz()) > 1}

are convex for all € R, 11(-) € A, ;18 € Ag. Hence by Fan’s minimax theorem [5], the
desiring result follows. O

We now prove sufficient condition under some smoothness assumptions.
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Theorem 3.5. Assume (A1)—(A3) and let A be generator of analytic semigroup. Let DPP
hold. Suppose the equation

U[(t,.x)_(A(t)x,vx(t,x)>H)H* + inf Sup G(tv-xvvx(ts-x)v M, MZ)

M2€EM2 e My
=v(t,x) —{A@®)x, v (2, x .+ su inf  G(t,x,ve(t,x), 1, =0
((1,2) = (A@x, ve (1, )y L ( (t,x), ju1. (12)
(3.9)
has a bounded smooth solution satisfying
v(T, x) = g(x). (3.10)

(i) Suppose ui(-) € A? is such that for any u2(-) € A% if X*(.) denotesthe correspond-
ing state process with X*(0) = x and if
max min G(t, X*(@), W, (t, X* (1)), n1,
 max  min_ (£, X*(0), Wa (1, X* (1)), pa, p2)

= min G(r, X*(1), Wi (t, X* (1)), i (1), 2) (3.11)
n2eM>

for a.e. ¢, then 7 (-) isoptimal for player 1 for (O, x).
(ii) Suppose u3(:) € Ag is such that for any u1(-) € A%, if X*(-) denotes the correspond-
ing state process with X*(0) = x and if

min  max G(t, X*(t), W, (t, X* (1)), n1,
UG (1, X*(1), Wi (1, X*(1)), p1, p2)

= max G(r, X*(1), W (t, X* (1)), 1, u5(1)) (3.12)

u1eMy

for a.e. ¢, then 3 (-) is optimal for player 2 for (0, x).

Proof. We prove only part (i). Part (ii) can be proved in an analogous way. First note that
by Proposition 6.3 in [8], a classical solution of (3.8) is a viscosity solution of (3.8). From
the uniqueness of viscosity solution, we haVe= V. Now X*(¢) is Lipschitz on[e, T']
foranye > 0 [9]. Thus for any > 0, we have for a.e. in[e, T1,

d
—V(t, X*0)) = Vi(r, X* (1)) — (A X* (1), Vi (1, X*(1)))

dt
+b(t, X* (1), ui (@), w2(0)) Vi (£, X*(1))
=V, (t, X*(0) + G(r, X*(0), Vo (1, X*(1)), n3(0), p2())
—r(t, X*(1), ui(0), pa(r))
> Vi(t, X*()) + min G(t,x*(1), Vi(t, X*(1)), ni(0), n2)
oMy

—r(t, X*(1), ni(@), p2(0))

=Vi(t, X* in G(r, X*(1), Vi (1, X*(1)), p1,
ot (t))+ﬂ£2%<w£2ﬂ2 (1. X7 (0, Ve (1, X* (1)), 11, 1)

=—r(t, X* (1), p3 (1), p2(1)). (3.13)

H,H*
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Integrating (3.13) frone to T and rearranging, we have

R(e, X (e), u1(), u2()) = V (e, X(e)).
Now lettinge — 0, we get

R(0, x, ui(), u2(-)) = V(0,x).
Thusuj(-) is optimal for player 1 fox0, x). O

4, Conclusions

We have studied a differential game of fixed duration where the state equation is gov-
erned by a semilinear controlled evolution equation in a separable Hilbert space. We have
established necessary conditions for optimality by proving a minimax theorem. We have
established the equivalence between dynamic programming principle and existence of a
saddle point equilibrium. Finally we have derived some sufficient conditions for optimality.
Throughout our paper, we have assumed that the opefatacurring in the state equa-
tion is time independent. We would like to point out that the minimax principle proved in
Section 2 can be extended in a routine manner even if the operdias time dependence.
Viscosity solutions, however, run into difficultiesAfis dependent on time. Thus a result of
Section 3, viz., the dynamic programming principle implies the existence of saddle point
equilibrium, established via viscosity solutions, cannot easily be extended to the case of
time dependend. This needs further investigation.
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