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ABSTRACT

In this paper, we obtain the exact controllability of a semi-linear thermo-elastic
system described by the partial differential equations:

ott � gDott þ D2oþ aDyþ fðyÞ ¼ 0 in OT

yt � Dyþ sy� aDot þ gðoÞ ¼ u in OT

�

with Dirichlet boundary conditions when the Lipschitz constants of the
non-linearities f and g are small.
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1. INTRODUCTION

In this article, we are concerned with the study of exact controllability of a
semi-linear thermo-elastic system described by the partial differential equations:

ott � gDott þ D2oþ aDyþ fðyÞ ¼ 0 in OT

yt � Dyþ sy� aD ot þ gðoÞ ¼ u in OT

�
ð1:1Þ

with the boundary and initial conditions:

o ¼ @o
@n ¼ 0; y ¼ 0 on GT

oð0Þ ¼ o0; otð0Þ ¼ o1; yð0Þ ¼ y0 on O.

(
ð1:2Þ

Here, u is the control function which acts only on the second equation in (1.1)
satisfied by the thermal component y and O is a bounded open subset of R2 with
smooth boundary G and OT ¼ O� ð0;TÞ and GT ¼ G� ð0;TÞ, where T > 0 is the
terminal time at which we would like to achieve the controllability and a > 0;
g � 0; s � 0 are the given parameters. The non-linearity was introduced through
the non-linear functions f and g.

The exact controllability question is as follows: given initial data fo0;o1; y0g
and terminal data foT

0 ;o
T
1 ; y

T
0 g at desired time T , in a suitable space (known as

controllability space) does there exist a control u in an appropriate space (control
space), so that the solution fo; yg of the system (1.1), (1.2) satisfies oðTÞ ¼ oT

0 ;
otðTÞ ¼ oT

1 ; yðTÞ ¼ yT0 .
The linear system corresponding to (1.1), (1.2), (that is, f � 0; g � 0) has been

recently studied by Avalos (2000) and has the following theorem.

Theorem 1.1 (Avalos, 2000). For all g � 0, the linear system corresponding to
(1.1)(1.2), that is, f � 0; g � 0 is exactly controllable for any arbitrary time
T > 0 with the controllable space H2

0ðOÞ � H1
0;gðOÞ � L2ðOÞ and control space

L2ð0;T : H�1ðOÞÞ.

Here and in the sequel we use, the standard Sobolev spaces and

H1
0;g ¼

H1
0ðOÞ if g > 0

L2ðOÞ if g ¼ 0.

(

The inner product in H1
0;g is given by

ðo1;o2ÞH1
0;g
¼ ðo1;o2ÞL2 þ gðHo1;Ho2ÞL2 :

Define Hg :¼ H2
0 �H1

0;g � L2ðOÞ which is a Hilbert space with the standard norm.
The linear system without the control is a PDE model which describes a

Kirchhoff plate subjected to a thermal damping (see Lagnese, 1989). Here o is the
displacement and y is the temperature of the plate.
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There is a vast amount of literature with various types of controllability
results for the linear system with the controls acting either as distributed controls
or through the boundary. We refer the reader to Avalos (2000) and the articles
by Lagnese (1990), Avalos and Lasiecka (1998a,b), de Teresa and Zuazua (1996),
Hansen and Zhang (1997), Lasiecka and Triggiani (1991, 1998a,b).

Regarding other semi-linear and linear systems, we refer the reader to the article
by Nandakumaran and George (1995a,b) and there are more literature in these
directions which we skip here.

In this paper, we wish to prove exact controllability results for the semilinear
system under various assumptions on f and g and using the fact that the linear
system is exactly controllable due to Avalos (2000).

Let f ; g : R�!R be Lipschitz continuous with Lipschitz constants b1 and b2
respectively, that is,

jfðxÞ � fðyÞj � b1jx� yj; 8x; y 2 R ð1:3Þ

jgðxÞ � gðyÞj � b2jx� yj; 8x; y 2 R ð1:4Þ

fð0Þ ¼ gð0Þ ¼ 0: ð1:5Þ

It is easy to see that, for any v 2 L2ðOÞ, the composition functions fov and gov are in
L2ðOÞ. Moreover, kfovkL2 � b1kvkL2 and kgovkL2 � b2kvkL2 :

We have the following result regarding the existence and uniqueness of solution
of (1.1)–(1.2).

Theorem 1.2 (Existence and Uniqueness). Suppose that g � 0 and linear functions
f ; g satisfy (1.3)–(1.5) and u 2 L2ð0;T ;H�1ðOÞÞ, be a given function. Let the initial
data fo0;o1; yÞ 2 Hg. Then the non-linear system (1.1)–(1.2) has a unique solution
ðo; yÞ such that ðo;ot; yÞ 2 Cð½0;T �;HgÞ.

We are unable to prove the exact controllability without further assumptions on
the nonlinearities. We now state two controllability results.

Theorem 1.3. Suppose that f and g satisfy (1.3)–(1.4) and further assume that
the Lipschitz constants b1 and b2 are sufficiently small. Then the system
(1.1)–(1.2) is exactly controllable with the controllable space Hg and with a control
u 2 L2ð0;T : H�1ðOÞÞ.

Remark 1.4. In the context of the above theorem, one can view the semi-linear
system (1.1)–(1.2) as a non-linear perturbation of the linear system. This is the
motivation of the present article.

We can relax the assumption that b1; b2 are small, but with a boundedness
condition on f and g and is given in the following theorem.
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Theorem 1.5. Let g > 0. Suppose f and g satisfy (1.3)–(1.4) and assume that f and
g are uniformly bounded i.e., there is a constant M > 0 such that

jfðxÞj � M; jgðxÞj � M; 8x 2 R:

Further, assume that fðynÞ * fðyÞ weakly in L2ðOÞ, whenever yn * y weakly in
L2ðOÞ. Then the system (1.1)–(1.2) is exactly controllable as in Theorem 1.3.

Remark 1.6. The above theorem is also true for the case g ¼ 0, but then one
needs the assumption that fðynÞ ! fðyÞ strongly in L2ðOÞ, whenever yn * y
weakly in L2ðOÞ. This is not reasonable to expect for any class of non-linear
functions f .

We organize the paper as follows. In Sec. 2, we present the operator formulation
of the problem (1.1)–(1.2) as in Avalos and prove Theorem 1.2. In Secs. 3 and 4, we
prove Theorems 1.3 and 1.5, respectively. The basic techniques of the proofs are the
Fixed Point Method and Monotone Operator Theory.

2. EXISTENCE AND UNIQUENESS

We use the same notations and definitions as in Avalos (2000). Let Å¼ 42

and AD ¼ �4 be the linear operators on L2ðOÞ�!L2ðOÞ with the domains given
by

Dð�AAÞ ¼ H4ðOÞ \ H2
0ðOÞ and DðADÞ ¼ H2ðOÞ \ H1

0ðOÞ:

Let Pg : H
1
0;g �!H�1

0;g be the elliptic operator given by Pg ¼ I þ gAD with
Dirichelet boundary condition for g > 0 which has a bounded inverse P�1

g ; i.e.,
P�1
g 2 LðH�1

0;g ;H
1
0;gÞ. Let Ag : DðAgÞ � Hg �!Hg be a bounded linear operator

defined by

Ag ¼
0 I 0

�P�1
g Å 0 aP�1

g AD

0 �aAD �AD � sI

0
@

1
A

with

DðAgÞ ¼ fðo0;o1; y0Þ 2 H2
0 � H2

0 �DðADÞ : Åo0 2 H�1
0;g g:

Then system (1.1), (1.2) can be written as

d

dt

o
ot

y

0
@

1
A ¼ Ag

o
ot

y

0
@

1
Aþ Buþ F

o
ot

y

0
@

1
A: ð2:1Þ
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Here, B : H�1ðOÞ�!H2
0ðOÞ � L2ðOÞ � H�1ðOÞ is the control operator (bounded linear)

defined by

Bu ¼
0
0
u

0
@

1
A ð2:2Þ

i.e., B 2 LðH�1;H2
0 � L2 � H�1Þ. Further F : Hg �!Hg is a non-linear operator

given by

F

o
Z
y

0
@

1
A ¼

0

�P�1
g fðyÞ

�gðoÞ

0
B@

1
CA: ð2:3Þ

Following the definition of Pg, we get P�1
g fðyÞ 2 H1

0;g for any y 2 L2ðOÞ. In fact, we
have kP�1

g fðyÞkH1
0;g
� kfðyÞkL2 . More generally, we have for any y; ~yy 2 L2ðOÞ,

kP�1
g fðyÞ � P�1

g fð~yyÞkH1
0;g
� kfðyÞ � fð~yyÞkL2 � b1ky� ~yykL2 :

Similarly,

kgðoÞ � gð~ooÞkL2 � b2ko� ~ookL2 :

Thus, we have the following lemma.

Lemma 2.1. Let f and g satisfy the Lipschitz conditions as in (1.3)–(1.4). Then
F : Hg �!Hg defined by (2.3) is Lipschitz continuous with constant b ¼ maxfb1; b2g.

As in Avalos (2000), Avalos and Lasiecka (1998a), for g � 0;Ag generates a
C0-semi group of contractions, denoted by feAgtgt�0 on the Hilbert space Hg.
Hence, a mild solution of (2.1) can be represented by means of the non-linear integral
equation:

oðtÞ
otðtÞ
yðtÞ

0
B@

1
CA ¼ eAgt

o0

o1

y0

0
B@

1
CAþ

Z t

0

eAgðt�sÞBuðsÞdsþ
Z t

0

eAgðt�sÞF
oðsÞ
otðsÞ
yðsÞ

0
B@

1
CAds: ð2:4Þ

To study the solvability of (2.4), we introduce the operator N : Cð½0;T �;HgÞ�!
Cð½0;T � : HgÞ defined by

N

o

Z

y

0
B@

1
CAðtÞ ¼ eAgt

o0

o1

y0

0
B@

1
CAþ

Z t

0

eAgðt�sÞBuðsÞ þ
Z t

0

eAgðt�sÞF
oðsÞ
ZðsÞ
yðsÞ

0
B@

1
CAds; ð2:5Þ
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for a fixed u 2 L2ð0;T ;H�1ðOÞÞ and an initial condition

o0

o1

y0

0
@

1
A 2 Hg:

Here, one needs certain justification as apriori, it is not clear that the solution
ðoðtÞ;otðtÞ; yðtÞÞ 2 Hg. This is due to the presence of the second term on the right
in the above equations. Hence, initially we only have (Avalos, 2000) that the solution
of the corresponding linear system ðo;ot; yÞ, is in Cð½0;T �; ðDðA�

gÞÞ0Þ. Of course this
solution is represented by the first two terms in the above equation. So, one must
check the well-definedness of N . This is related to the regularity question and we
briefly sketch some steps for the sake of completeness as it can be derived as in
Avalos (2000) following Avalos and Lasiecka (1998a), Lagnese (1989), Zabczyk
(1992). Denote

LT ðuÞ ¼
Z T

0

eAgðT�sÞBuðsÞds:

We only need to show that LT is a bounded linear operator from
L2ð0;T ;H�1ðOÞÞ�!Hg as the nonlinear term causes no problem. A priori, we have

LT 2 LðL2ð0;T ;H�1ðOÞÞ;DðA�
gÞ0Þ;

where ðDðA�
gÞÞ0 	 Hg. This shows that L�

T 2 LðDðA�
gÞ;L2ð0;T ;H1

0ðOÞÞÞ. The
interesting point is that one can explicitly compute the adjoint. One has

L�
T

f0

f1

c0

0
@

1
A ¼ B�eA

�
g ðT�:Þ

f0

f1

c0

0
@

1
A:

A straight forward computation yields

A�
g ¼

0 �I 0

P�1
g Å 0 �aP�1

g AD

0 aAD �AD � sI

0
B@

1
CA;

and DðA�
gÞ ¼ DðAgÞ. With a further computation of B�, one obtains that

L�
T

f0

f1

c0

0
@

1
AðtÞ ¼ cðtÞ;

where cðtÞ is obtained by solving the adjoint linear system

ftt � gDftt þ D2fþ aDc ¼ 0 in OT

ct þ Dc� sc� aDft ¼ 0 in OT

(
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with the boundary and terminal conditions:

f ¼ @f
@n

¼ 0; c ¼ 0 on GT

fðTÞ ¼ f0; ftðTÞ ¼ f1; cðTÞ ¼ c0 on O:

8><
>:

One has the following proposition (see Avalos, 2000; Avalos and Lasiecka, 1998a;
Lagnese, 1989).

Proposition 2.2. The component c of the solution to the above adjoint system
satisfies c 2 L2ð0;1;H1

0ðOÞÞ. In fact, the following estimates hold for all
ðf0;f1;c0Þ 2 Hg and for all 0 � t � T;

EgðtÞ þ
Z T

t

½kr cðtÞk22 þ kcðtÞk22�dt ¼ EgðTÞ;

where

EgðtÞ ¼ 1

2
eA

�
gðT�tÞ

f0

f1

c0

0
@

1
A

������
������
2

Hg

:

The above proposition shows that L�
T can be extended as a bounded linear

operator from Hg into L2ð0;T ;H1
0ðOÞÞ. Thus by duality LT is a bounded linear

operator from L2ð0;T ;H�1ðOÞÞ into Hg. The above argument shows that we
indeed have

N

o
Z
y

0
@

1
AðtÞ 2 Hg:

Proof of Theorem 1:2. Step 1. We prove that Nk is a contraction for some integer
k > 0. Since eAgt is contraction and F is Lipschitz, it follows that

N

o

Z

y

0
B@

1
CAðtÞ � N

~oo

~ZZ
~yy

0
B@

1
CAðtÞ

�������
�������
2

Hg

� b2
Z t

0

oðsÞ
ZðsÞ
yðsÞ

0
B@

1
CA�

~ooðsÞ
~ZZðsÞ
~yyðsÞ

0
B@

1
CA

�������
�������
2

Hg

ds

� b2t

o

Z

y

0
B@

1
CA�

~oo

~ZZ
~yy

0
B@

1
CA

�������
�������
2

Cð½0;T �;HgÞ

: ð2:6Þ
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Iterating (2.6) once again, we get

N 2

co

Z

y

0
B@

1
CAðtÞ � N 2

~oo

~ZZ
~yy

0
B@

1
CAðtÞ

�������
�������
2

Hg

� b2
Z t

0

N

o

Z

y

0
B@

1
CAðsÞ � N

~oo

~ZZ
~yy

0
B@

1
CAðsÞ

�������
�������
2

Hg

ds

� b2
Z t

0

b2s

o

Z

y

0
B@

1
CA�

~oo

~ZZ
~yy

0
B@

1
CA

�������
�������
2

Cð½0;T �;HgÞ

¼ b4t2

2

o

Z

y

0
B@

1
CA�

~oo

~ZZ
~yy

0
B@

1
CA

�������
�������
2

Cð½0;T �;HgÞ

:

Repeating similarly, we can see that

Nk

co

Z

y

0
B@

1
CA� Nk

~oo

~ZZ
~yy

0
B@

1
CA

�������
�������
Cð½0;T �;HgÞ

� b2kTk

k!

o

Z

y

0
B@

1
CA�

~oo

~ZZ
~yy

0
B@

1
CA

�������
�������
Cð½0;T �;HgÞ

:

For sufficiently large k, we can make the constant ðb2TÞk=k! less than 1, which proves
that Nk is a contraction.

Step 2. By the generalized Banach Contraction Principle (Joshi and Bose,
1984), it follows that N has a unique fixed point ðo; Z; yÞ 2 Cð½0;T � : HgÞ. Then from
the system of equations (2.1) (first equation), we get Z ¼ ot. Hence the theorem.

&

Remark 2.3. Observe that the existence and uniqueness do not require the smallness
of the Lipschitz constants b1; b2.

Following Theorem (1.2), we define a solution operator S : L2ð0;T : H�1ðOÞÞ�!
L2ð0;T : HgÞ by

Su ¼
o

ot

y

0
B@

1
CA; ð2:7Þ

where ðo;ot; yÞ is the unique solution of (2.1) corresponding to the control
function u.
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Lemma 2.4. Under the assumptions (1.3)–(1.4), the solution operator S is
well-defined and Lipschitz continuous.

Proof. Well-definedness of S follows from the existence and uniqueness theorem.
Now, let u; ~uu 2 L2ð0;T ;H�1ðOÞÞ and ðo;ot; yÞ; ð~oo; ~oot; ~yyÞ be the corresponding solu-
tions. Since eAgt is a contraction, it follows from the integral representation (2.4), that

kSuðtÞ � S~uuðtÞkHg
�

Z t

0

eAgðt�sÞBðuðsÞ � ~uuðsÞÞds

þ
Z t

0

F

oðsÞ
otðsÞ
yðsÞ

0
B@

1
CA� F

~ooðsÞ
~ooðsÞ
yðsÞ

0
B@

1
CA

�������
�������
Hg

ds

� kBk
Z t

0

kuðsÞ � ~uuðsÞkH�1ðOÞ

þ b
Z t

0

oðsÞ
otðsÞ
yðsÞ

0
B@

1
CA�

~ooðsÞ
~ooðsÞ
yðsÞ

0
B@

1
CA

�������
�������
Hg

ds

� kBk
Z t

0

kuðsÞ � ~uuðsÞkH�1ðOÞ þ b
Z t

0

kSuðsÞ � S~uuðsÞkHg
ds:

Hence, from the Grownwall’s inequality, we get

kSuðtÞ � S~uuðtÞkHg
� kBkebt

Z t

0

kuðsÞ � ~uuðsÞkH�1ðOÞ ds

� kBkebTku� ~uukL2ð0;T ;H�1ðOÞÞ 
 t1=2

Thus, by squaring and integrating, we get

kSu� S~uukL2ð0;T ;HgÞ �
Tffiffiffi
2

p kBkebTku� ~uukL2ð0;T ;H�1ðOÞÞ:

Hence, S is Lipschitz continuous. &

3. PROOF OF THEOREM 1.3

From Eq. (2.4), it follows that the system (1.1), (1.2) is exactly controllable in Hg

if and only if, for given any initial data fo0;o1; y0g, and final state foT
0 ;o

T
1 ; y

T
0 g in

Hg, there exists a control u 2 L2ð0;T ;H�1ðOÞÞ such that

oT
0

oT
1

yT0

0
B@

1
CA ¼ N

o

ot

y

0
B@

1
CAðTÞ; ð3:1Þ
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where, N is defined as in (2.5). Here, ðo;ot; yÞ is the unique solution of the system
(1.1), (1.2) corresponding to a control u, i.e., ðo;ot; yÞ ¼ Su.

We may use the following notations and definitions. Let

h ¼
oT

0

oT
1

yT0

0
B@

1
CA� eAgT

o0

o1

y0

0
B@

1
CA: ð3:2Þ

Let LT : L2ð0;T ;H�1ðOÞÞ�!Hg be the linear operator defined by

LTu ¼
Z T

0

eAgðT�sÞBuðsÞds: ð3:3Þ

Let K : L2ð0;T ;H�1ðOÞÞ�!Hg be the non-linear operator given by

Ku ¼
Z T

0

eAgðT�sÞFððSuÞðsÞÞds: ð3:4Þ

With these notations, (3.1) can be written as

h ¼ LTuþ Ku: ð3:5Þ

It was shown in Avalos (2000) that LT is a bounded linear operator. The controll-
ability of the linear system is equivalent to the onto-ness of LT . This was shown
by proving an observability inequality for the adjoint operator L�

T 2 LðHg;
L2ð0;T ;H1

0ðOÞÞÞ,

kL�
Tvk � CTkvk; 8v 2 Hg; ð3:6Þ

for some CT > 0. Thus, L�
T is 1� 1. We, now, look for a control u in (3.5) of the

form

u ¼ L�
Tv

for some v 2 Hg. Then (3.5) becomes

h ¼ LTL
�
Tvþ KL�

Tv

That is,

h ¼ Rv;

where, R ¼ LTL
�
T þ KL�

T is an operator from Hg �!Hg. Now

hRv; vi ¼ hLTL
�
Tv; vi þ hKL�

Tv; vi
¼ hL�

Tv;L
�
Tvi þ hKL�

Tv; vi: ð3:7Þ

280 Nandakumaran and George

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

120039613_NFA25_03&04_R2_052704



Claim. The operator R is strongly monotone if b1; b2 are sufficiently small.

Assuming the claim is true, the proof of Theorem 1.3 is complete because, then
R is onto (see Joshi and Bose, 1984).

Proof of the Claim. First we see that K is Lipschitz continuous. For,

kKu� K~uuk2Hg
� bkSu� S~uukL2ð0;T ;HgÞ

� bebTkBk Tffiffiffi
2

p ku� ~uuk; ð3:8Þ

thanks to the Lipschitz continuity of S.
Now,

hRv� R~vv; v� ~vvi ¼ hL�
T ðv� ~vvÞ;L�

T ðv� ~vvÞi þ hKL�
Tv� KL�

T~vv; v� ~vvi:

We estimate the second term as:

jhKL�
Tv� KL�

T~vv; v� ~vvij � dkL�
Tv�L�

T~vvkkv� ~vvk � dkL�
Tkkv� ~vvk2;

where,

d ¼ bebTkBk Tffiffiffi
2

p :

Therefore, from the observability inequality (3.6), it follows that

hRv�R~vv; v� ~vvi � ðCT � dkL�
TkÞkv� ~vvk2:

Thus, R is strongly monotone if CT � dkL�
Tk > 0 which can be achieved if we

choose d small enough, i.e., b is small enough. Hence the claim and the theorem.
&

An Alternate Approach to Theorem 1.3. In the earlier approach, we have trans-
formed the problem to the solvability of an operator equation for the control. As
a complement to the above approach, one can introduce an explicit control and then
the problem will become a fixed point problem for the solution.

It follows from the controllability of the linear system that the operator LT has
a generalized inverse. In fact, due to the onto-ness of LT , we see that ðLTL

�
T Þ�1 is a

bounded linear operator by open mapping theorem. Thus, the generalized inverse is
given by the bounded linear operator

W ¼ L�
T ðLTL

�
TÞ�1: ð3:9Þ
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Define a control u implicitly as:

u ¼ W h�
Z T

0

eAgðT�sÞF
oðsÞ
otðsÞ
yðsÞ

0
B@

1
CAds

8><
>:

9>=
>;; ð3:10Þ

where, ðo;ot; yÞ is the solution of (2.4) corresponding to the control u and h is as in
(3.2). Substituting this in (2.4), we get

o

ot

y

0
B@

1
CAðtÞ ¼ eAgt

o0

o1

y0

0
B@

1
CAþ

Z t

0

eAgðt�sÞBW h�
Z T

0

eAgðT�tÞF
oðtÞ
otðtÞ
yðtÞ

0
B@

1
CAdt

8><
>:

9>=
>;ds

þ
Z t

0

eAgðt�sÞF
oðsÞ
otðsÞ
yðsÞ

0
B@

1
CAds: ð3:11Þ

Obviously, ðoð0Þ;otð0Þ; yð0ÞÞ ¼ ðo0;o1; y0Þ and ðoðTÞ;otðTÞ; yðTÞÞ ¼ ðoT
0 ;o

T
1 ; y

T
0 Þ.

Hence the non-linear system is exactly controllable with the control defined by
(3.10) provided Eq. (3.11) has a solution.

We employ the method of fixed point theory. Define a nonlinear operator
K : Cð½0;T �;HgÞ�!Cð½0;T �;HgÞ, where

K

o
Z
y

0
@

1
A

represents the right hand side of (3.11) with

o
ot

y

0
@

1
A

replaced by

o
Z
y

0
@

1
A:

It can be seen that K is a contraction provided b1; b2 are small enough. Then K has a
fixed point and we can recover Z ¼ ot. We skip the details.

4. PROOF OF THEOREM 1.5

As in the proof of Theorem 1.3 (second or alternate approach), we show that
(3.11) has a solution without the smallness of b1; b2, but with uniform boundedness
of f and g.
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Let K be as above. It is easy to see, with the boundedness of f and g, that there
exists a constant M1 > 0 such that

K

o
ot

y

0
@

1
A

������
������
Cð½0;T �;HgÞ

� M1:

Let B be the closed convex set defined by

B ¼
o
ot

y

0
@

1
A 2 Cð½0;T �;HgÞ :

o
ot

y

0
@

1
A

������
������ � M1

8<
:

9=
;:

Then K maps B into itself. We have the following claim.

Claim. The family F ¼ KB is equi-continuous and, for each t;Ft ¼ fKðwÞðtÞ :
w 2 Bg is pre-compact in Hg

Proof. Step 1 (Equi-continuity). Let G ¼ KðwÞ be any element in F, where

w ¼
o
ot

y

0
@

1
A 2 B

be arbitrary. We have to estimate kKðwÞðtÞ � KðwÞðt�ÞkHg
. Write

KðwÞðtÞ � KðwÞðt�Þ ¼ ðeAgt � eAgt
� Þw0 þ I1 þ I2

where

I1 ¼
Z T

0

�
eAgðt�sÞBB�eA

�
g ðT�tÞ � eAgðt��sÞBB�eA

�
g ðT�t�Þ�

� ðLTL
�
T Þ�1

wT
0 � eAgTw0 �

Z T

0

eAgðT�tÞFðwðtÞÞdt
� �

ds

and

I2 ¼
Z t

0

eAgðt�sÞFðwðsÞÞds�
Z t�

0

eAgðt��sÞFðwðsÞÞds:

The term I1 can be estimated and can make arbitrarily small, independent of w 2 B,
when t� in close to t. In fact, one can make precise estimates which we do not work
out here. The second term I2 can be written as, for t > t�,

I2 ¼
Z t�

0

�
eAgðt�sÞ � eAgðt��sÞ	FðwðsÞÞdsþ Z t

t�
eAgðt�sÞFðwðsÞÞds;
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which can be made small as t� goes to t, independent of w under the boundedness of
f and g. Thus F is equi-continuous.

Step 2 (Pre-compactness). Let t > 0 be fixed and fKðwnÞðtÞ : wn 2 Bg be a
bounded sequence in Hg. Since w

n 2 B; fwng is a bounded sequence in Cð½0;T �;HgÞ.
Thus, for any t 2 ½0;T �, the sequence fwnðtÞg is bounded in Hg and hence it has a
weakly convergent subsequence (represent by the same sequence) such that

wnðtÞ * wðtÞ in Hg weak:

Now

kFðwnÞðtÞ � FðwðtÞÞk2Hg
¼

0

�P�1
g ðfðynÞ � fðyÞÞðtÞ

�ðgðonÞ � gðoÞðtÞÞ

0
B@

1
CA

�������
�������
2

Hg

� kP�1
g ðfðynÞ � fðyÞÞk2H1

0;g
þ kgðonÞ � gðoÞk2L2 ð4:1Þ

By Lipschitz continuity of g, we get

kgðonðtÞÞ � gðoðtÞÞk2L2 � CkonðtÞ � oðtÞk2L2 ! 0;

as n ! 1: Now for g > 0,

kP�1
g ðfðynÞ � fðyÞÞk2H1

0;g
� kP�1

g ðfðynÞ � fðyÞÞk2H1
0
;

which goes to zero by assumption in the theorem as Pg is then a uniformly elliptic
operator for g > 0.

Using bounded convergence theorem, it can be seen that

KðwnÞðtÞ�!KðwÞðtÞ strongly in Hg:

This proves the pre-compactness and hence the claim.
From the claim, it follows that K is a compact operator and is a self map from

B�!B (see Royden, 1995). Thus, from the Schauder’s fixed point theorem (Joshi
and Bose, 1984), K has a fixed point in B which is the solution of (3.11). Hence
the theorem. &

Remark 4.1. When g ¼ 0, we have Pg is the identity operator on L2. Hence, we have
to show that kfðynðtÞÞ � fðyðtÞÞkL2 goes to zero, which is not reasonable for weakly
convergent sequences yn. Hence, we are unable to substantiate the Theorem 1.5 when
g ¼ 0.

Remark 4.2. Without the boundedness of f ; g and smallness of b1; b2, the problem
remains open.
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