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Abstract

We discuss the regularity of the oscillator semigroup eitH , where H = −� + |x|2 is the11
n-dimensional Hermite operator. The main result is a Strichartz-type estimate for the oscillatory
semigroup eitH in terms of the mixed Lp spaces. The result can be interpreted as the regularity13
of solution to the Schrödinger equation with potential V (x) = |x|2.
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1. Introduction

Associated to any self-adjoint differential operator L on Rn, one can formally define19
an oscillatory semigroup e−itL, using the spectral theory for L. Assume that L has the
spectral representation21

Lf =
∫

E

� dP�(f ), f ∈ L2(Rn),
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where P� is a projection valued measure supported on the spectrum E of L. Then the1
operator e−itL can be defined by

e−itLf =
∫

E

e−it� dP�(f )3

for f ∈ L2(Rn). Notice that the spectrum E may be continuous, discrete or a combi-
nation of both.5

Consider the differential operator i �
�t

− L and the associated initial value problem
for the Schrödinger equation for L:7

i�t u(x, t) − Lu(x, t) = 0, x ∈ Rn, t ∈ R, (1.1)

u(x, 0) = f (x). (1.2)9

Assuming f ∈ L2(Rn), the solution u can be represented by

u(x, t) = e−itLf (x). (1.3)11

We thus call e−itL, the Schrödinger semigroup for L. The special case when L =
−�, the Laplacian on Rn, is the usual Schrödinger equation, which has been studied13
extensively by many authors. An important feature of the solution operator eit� is that
it is unitary on L2(Rn) and hence (−�)su cannot be in L2(Rn) for any s > 0. A15
fortiory the solution fails to have any regularity in terms of Hs Sobolev spaces on
Rn.17

Having failed to be in any Hs , one can look for the solution to be in higher order
Lp spaces. In this context, the following theorem of Strichrtz [St] is significant. Let19
u(x, t) be the solution to the inhomogeneous equation

i�t u(x, t) + �u(x, t) = g(x, t), x ∈ Rn, t ∈ R,21

u(x, 0) = f (x).

Theorem (Strichartz). Let f ∈ L2(Rn), g ∈ L
2(n+2)
n+4 (Rn × R), and u be the solution to23

the above equation. Then u ∈ L
2(n+2)

n (Rn × R) and satisfies the inequality

(∫ ∞

−∞

∫
Rn

|u(x, t)| 2(n+2)
n dx dt

) n
2(n+2)

�C(‖f ‖2 + ‖g‖ 2(n+2)
n+4

).
25

This result may be interpreted as follows: If g ∈ L
2(n+2)
n+4 (Rn × R) and f ∈ L2(Rn),

then for almost all t ∈ R the solution u(·, t) lies in a higher Lp space, namely for27
p = 2(n+2)

n
. This may be thought of as a regularity for the solution u(·, t).
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In the same paper, he has also posed the problem of regularity of the Schrödinger1
equation of the form

i�t u(x, t) + �xu(x, t) − V (x)u(x, t) = 0, (1.4)3

u(x, 0) = f (x)

for a general potential V (x).5
For the case of bounded potential the problem has been studied extensively by many

authors. See for instance [JSS,SS]. In [JSS], the authors have studied the dispersive7
nature of the solution for the Schrödinger equation for L = −�+V , where the potential
V is assumed to be pointwise bounded and satisfies certain decay condition near infinity.9
They also prove an analogue of Strichartz’s theorem in this set up. Where as in [SS],
the authors considered smooth potentials having bounded derivatives of all orders. In11
this case, they studied the local regularity of solutions, in terms of mixed sobolev
spaces on Rn × R for initial data from some sobolev space W 2,s(Rn).13

Traditionally, the initial value problems with general potential were attempted using
Fourier analysis, i.e., the spectral theory of Laplacian. Instead we propose the idea15
of looking at the equation as the Schrödinger equation for the operator −� + V (x)

and exploit the spectral analysis of −� + V (x). This approach becomes significant,17
especially when the potential V (x) is unbounded near infinity, say for instance when
V (x) is a polynomial in x. Spectral properties of −�+V for such potentials have been19
studied by Titchmarsh [Ti], see also [RS, Theorem XIII.81].

Of specific interest is the case when V (x) = |x|2. In this case, the operator −�+V (x)21
is the Hermite operator and the harmonic analysis of Hermite functions comes into
play. Thus when V (x) = |x|2, the initial value problem (1.4) reduces to an initial23
value problem for the Schrödinger equation, associated to the Hermite operator H =
−� + |x|2:25

i�t u(x, t) − Hu(x, t) = 0 x ∈ Rn, t > 0, (1.5)

u(x, 0) = f (x). (1.6)27

For higher order elliptic differential operators P of constant coefficients, the regularity
properties of eitP has been studied by Kenig et al. [KPV]. They gave an improvement29
of the Strichartz result by establishing an inequality in terms of the mixed Lp spaces
given by31

Lp,q(Rn × R) = {u : u is measurable on Rn × R, ‖u‖Lq(R;Lp(Rn)) < ∞},

where ‖u‖L
q
(R;Lp

(Rn)) = (
∫

R ‖u(·, t)‖q
p dt)

1
q is the norm in Lp,q(Rn × R). In fact33

they considered more general operators of the form P([−�] 1
2 ), where P is an element
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from a class of functions of a real variable that includes polynomials. In this case they1
showed that the solution u even possesses some space derivatives lying in Lp,q(Rn×R)

for “suitable” p and q when the degree of P is greater than 2, see [KPV].3
A natural way to measure regularity of eitH is in terms of the Hermite–Sobolev

spaces5

W
2,s
H (Rn) = {f ∈ L2(Rn) : Hsf ∈ L2(Rn)}.

Analogous to the property, that the Schrödinger semigroup eit� is unitary on L2, one7
can easily see, using the spectral theory of H, that the semigroup eitH is also unitary
on L2(Rn). Consequently, HseitH f fails to be in L2(Rn) when f ∈ L2, for any s > 0.9
In other words, we cannot expect any better regularity for e−itH f (x) as a function
of x, in terms of W

2,s
H Sobolev spaces. This is a general feature of the oscillatory11

semigroups. We now state our main regularity result in terms of higher Lp spaces.

Theorem 1.1. Let f ∈ L2(Rn) and let u(x, t) = eitH f (x) be the solution of the initial13
value problem (1.5), (1.6). Then u is periodic in t and u ∈ Lq([−�,�]; Lp(Rn)), 1 <

q < ∞, 2�p < �, where � = ∞ for n = 1 and � = 2n
n−2 for n�2. Further u15

satisfies the inequality

‖u‖Lq([−�,�]; Lp(Rn)) �Cn‖f ‖2 (1.7)17

for 1 < q < ∞, 2�p < �.

We remark that L2 is the natural space to consider for the initial data, as the wave19
function in quantum mechanics, defining the probability density of finding a particle
in a given region, is supposed to be an L2 function.21

An interesting contrast between the regularity of solution for the usual Schrödinger
equation and the Schrödinger equation associated to Hermite operator is in order. It is23
observed in [St], that for initial data f ∈ L2(Rn), the solution u(·, ·) = eit�f ∈ Lp(Rn×
R) for p = 2(n+2)

n
and hence for almost all t ∈ R, u(·, t) ∈ L

2(n+2)
n (Rn). Since u(·, t)25

is also in L2(Rn) for each t, it follows that for almost all t ∈ R, u(·, t) ∈ Lp(Rn) for
2�p� 2(n+2)

n
.27

However for the case of the Schrödinger equation for the Hermite operator, our result
shows that for almost all t ∈ R, the solution u(·, t) ∈ Lp(Rn) for a wider range of p,29
namely 2�p < �, where � is as in Theorem 1.1. Notice that � >

2(n+2)
n

, the index
in Strichartz estimate. This also indicates extra regularity in this situation.31

Further, the solution exhibits periodicity in the time variable with period 2� (see
Section 2), a feature solely a consequence of the discreteness of the spectrum of the33
Hermite operator. So the natural space to consider in this situation is the mixed Lp

space Lq(S1; Lp(Rn)), where S1 is the unit circle.35
We also consider the inhomogeneous problem with a nonzero function g(x, t) thrown

in on the RHS of (1.5). In this case we show that the solution has the same regularity37
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i.e., u ∈ Lq(S1; Lp(Rn), if f ∈ L2(Rn) and g ∈ Lq ′
(S1; Lp′

(Rn)), 1
p

+ 1
p′ = 1, 1

q
+ 1

q ′ =1
1, 1 < q < ∞, 2�p < �.

Our approach relies on a simple regularization technique. We establish the above3
theorem first for regular initial data and then deduce the same result for the general
L2 function by suitable limiting arguments.5

The layout of the paper is as follows. In Section 2, we recall the spectral theory
of the Hermite operator. We represent the solution as an integral operator with an7
appropriate Kernel using Mehler’s formula. An estimate for the kernel is provided in
Section 3, where we also prove our main theorem as well as the regularity result for9
the nonhomogeneous equation.

A good reference for a general discussion of Schrödinger operators is the book11
by Reed and Simon [RS]. Also a somewhat recent survey of results on Schrödinger
operators can be seen in [Si].13

2. Spectral theory for the Hermite operator and the kernel estimate

Recall that for each nonnegative integer k, the Hermite polynomials Hk(x) on R are15

defined by Hk(x)e−x2 = (−1)k dk

dxk (e−x2
). Then the functions hk given by

hk(x) = (−1)k√
2kk!√�

(
dk

dxk
e−x2

)
e

x2
2

17

are in L2(Rn) and ‖hk‖2 = 1 for k = 0, 1, 2, . . . . Now for each multiindex � =
(�1, . . . , �1), �i �0, we define the n-dimensional Hermite functions by tensor product19
: h�(x) = �n

i=1h�i
(xi). Then the functions h�, �∈ (Z+ ∪ {0})n are eigenfunctions for

the Hermite operator with eigenvalue 2|�| + n and they form a complete orthonormal21
system in L2(Rn).

Thus every f ∈ L2(Rn) has the Hermite expansion23

f =
∑
�

〈f, h�〉h� =
∞∑

k=0

Pkf,

where Pk denotes the Hermite projection operator given by25

Pkf (x) =
∑
|�|=k

〈f, h�〉h�(x).

Setting �k(x, y) = ∑
|�|=k h�(x)h�(y), the Hermite projection may be written as27

Pkf (x) =
∫

Rn
�k(x, y)f (y) dy.
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The function �k(x, y) can be obtained by the following generating function identity:1

∞∑
k=0

�k�k(x, y) = �− n
2 (1 − �2)−

n
2 e

− 1
2

1+�2

1−�2 (|x|2+|y|2)+ 2�
1−�2 x·y

, (2.1)
3

for |�| < 1. This identity is known as the Mehler’s formula (see [T, p. 2]) for the
n-dimensional Hermite functions h� and is the key identity in our analysis. For more5
details about the harmonic analysis of the Hermite functions, we refer the reader to
the beautiful monograph by Thangavelu [T].7

The solution to the initial value problem (1.5), (1.6), is given by

u(x, t) = e−itH f (x) =
∞∑

k=0

e−it (2k+n)Pkf (x). (2.2)
9

Clearly u(x, t) given by (2.2) converges in L2(Rn) for all fixed t ∈ R whenever
f ∈ L2(Rn). It is also easy to see that u(x, t) → f (x) in L2(Rn) as t → 0. This follows11
from a dominated convergence argument since |e−it (2k+n) −1|�2. Thus (2.2) gives the
solution to the initial value problem (1.5), (1.6) in the L2 sense.13

The solution given by (2.2) can be formally expressed as an integral operator with
kernel15

Kt(x, y) =
∞∑

k=0

e−it (2k+n)�k(x, y) (2.3)

which converges in the distribution sense. Clearly, Kt+2�(x, y) = Kt(x, y) and hence17
the solution is periodic in t with period 2�.

For z = r + it, r > 0, t ∈ R, we consider the kernel19

Kz(x, y) =
∞∑

k=0

e−z(2k+n)�k(x, y) (2.4)

which is the kernel associated to the semigroup e−zH . Clearly, the semigroup e−zH is21
also periodic in t with period 2�.

The above series can be re-written as23

Kz(x, y) = e−n(r+it)
∞∑

k=0

�k�k(x, y)
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with � = e−2(r+it). Using Mehler’s formula (2.1), we get1

Kz(x, y) = �− n
2 e−n(r+it)(1 − �2)−

n
2 e

− 1
2

1+�2

1−�2 (|x|2+|y|2)+ 2�
1−�2 x·y

. (2.5)

Now we prove the following kernel estimate.3

Lemma 2.1. Let Kz(x, y) be as before with z = r + it, r > 0, 0 < |t |��. Then

|Kz(x, y)|� e−nr

|sin 2t |n/2 .5

Proof. We use formula (2.5). Since � = e−2(r+it), we have

1 − �2 = 2e−2(r+it) sinh[2(r + it)].7

It follows that

e−n(r+it)(1 − �2)−
n
2 = (2 sinh[2(r + it)])− n

2 .9

Also since

sinh(2z) = cos 2t sinh 2r + i sin 2t cosh 2r,11

we have

|sinh 2z|� |sin 2t cosh 2r|.13

Thus we get

|sinh 2z|− n
2 � e−nr

|sin 2t | n
2
.

15

Thus to complete the proof of the lemma, it is enough to show that the last expo-
nential term in (2.5) is bounded by 1. This amounts to showing that17

�
(

−1

2

1 + �2

1 − �2 (|x|2 + |y|2) + 2�
1 − �2 x · y

)
�0, (2.6)

where � denotes the real part.19
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A simple computation shows that1

�
(

1 + �2

1 − �2

)
= 1 − e−8r

1 + e−8r − 2e−4r cos 4t

and3

�
(

�
1 − �2

)
= e−2r (1 − e−4r ) cos 2t

1 + e−8r − 2e−4r cos 4t
.

Using these and the fact that5

x · y cos 2t � |x · y|� |x|2 + |y|2
2

,

we see that7

�
(

−1

2

1 + �2

1 − �2 (|x|2 + |y|2) + 2�
1 − �2 x · y

)

�
− 1

2 [(1 − e−8r ) − 2e−2r (1 − e−4r )](|x|2 + |y|2)
1 + e−8r − 2e−4r cos 4t

� −
1
2 (|x|2 + |y|2)(1 − e−4r )

1 + e−8r − 2e−4r cos 4t
[1 − e−2r ]2.

Since r > 0 and the denominator is nonnegative, the above expression is nonpositive
for r > 0. This completes the proof. �9

3. Schrödinger equation for the Hermite operator

We consider the initial value problem for the inhomogeneous equation11

i�t u(x, t) − Hu(x, t) = g(x, t), x ∈ Rn, 0 < t �2�, (3.1)

u(x, 0) = f (x). (3.2)13

We first consider the homogeneous case, namely g(·, ·) ≡ 0. The solution is given
by u(x, t) = e−itH f (x), which is an integral operator with kernel Kt(x, y) given by15
(2.3). As series (2.3) representing the kernel Kt(x, y) does not have ‘nice’ convergence17
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properties, for the given f, we first look at the regularized problem1

i�t u(x, t) − Hu(x, t) = 0, x ∈ Rn, 0 < t �2�, (3.3)

u(x, 0) = fr(x), (3.4)3

where fr = e−rH f . Notice that for a given f ∈ L2(Rn) and r > 0, fr ∈ W
2,s
H (Rn) for

all s�0. The solution in this case is given by5

ur(x, t) = e−itH e−rH f (x) =
∞∑

k=0

e−(r+it)(2k+n)Pkf (x).

The above solution ur can be represented by the integral operator7

ur(x, t) =
∫

Rn
Kz(x, y)f (y) dy, z = r + it (3.5)

with kernel Kz(x, y) given by (2.4).9
The following proposition is a simple application of the estimate of the previous

Lemma 2.1 and the Riesz–Thorin interpolation theorem.11

Proposition 3.1. For each r > 0, the solution ur to the regularized problem satisfies
the inequality13

‖ur(·, t)‖p � |sin 2t |−n( 1
p′ − 1

2 ) ‖f ‖p′ ,

for |t | > 0, where 1�p′ �2, 1
p

+ 1
p′ = 1.15

Proof. Using Eq. (3.5) and the uniform estimate for Kz(x, y) given by Lemma 2.1,
we get the obvious L1 − L∞ estimate17

‖ur(·, t)‖∞ � e−nr

|sin 2t |n/2 ‖f ‖1

valid for every t such that |t | > 0. Also since e−zH is a bounded on L2(Rn) for r > 0,19
we have for each fixed t, |t | > 0,

‖ur(·, t)‖2 < ‖f ‖2.21

Interpolating these two inequalities, we get

‖ur(·, t)‖p �Cn(�)‖f ‖p′ , (3.6)23
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where 1
p

= �
∞ + 1−�

2 , 1
p′ = �

1 + 1−�
2 for 0 < � < 1 and1

Cn(�) =
(

e−nr

|sin 2t | n
2

)�

� 1

|sin 2t | n�
2

.

This completes the proof since �
2 = 1

p′ − 1
2 . �3

Proposition 3.2. Let h(·, ·) ∈ Lq ′
(S1; Lp′

(Rn)∩L2(Rn)), 1�q ′ �∞, max(1, 2n
n+2 ) <

p′ �2. Then5

∥∥∥∥
∫

S1
e−itH h(·, t) dt

∥∥∥∥
2

�C‖h‖
Lq′

(S1;Lp′
(Rn))

.

Proof. For each � > 0, let h�(·, t) = e−�H h(·, t). Then h�(·, t) ∈ Lp′ ∩ L2(Rn), since7
e−�H is bounded on Lp(Rn), for 1 < p < ∞ for � > 0, see [T, Theorem 4.2.1].

The proof basically relies on an idea of Tomas [To], originally used in the proof of9
the restriction theorem for the Fourier transform on Rn, applied to h�(·, t). We have

∥∥∥∥
∫

S1
e−itH h�(·, t) dt

∥∥∥∥
2

2
=
∫

Rn

(∫
S1

e−itH h�(·, t) dt

∫
S1

e−isH h�(·, s) ds

)
dx

=
∫

Rn

∫
S1

(∫
S1

ei(t−s)H h�(·, s) ds

)
h�(·, t) dt dx.

Notice that the second equality follows, by simple manipulations using the expansions11
for e−itH h�(·, t) and e−isH h�(·, s). The double sum occurring there reduces to a single
sum because of the orthogonality of the spectral projections. Now using the Hölder’s13
inequality for the mixed Lp spaces we get

∥∥∥∥
∫

S1
e−itH h�(·, t) dt

∥∥∥∥
2

2

�‖h�(x, t)‖
Lq′

(S1; Lp′
(Rn))

∥∥∥∥
∫

S1
ei(t−s)H h�(·, s) ds

∥∥∥∥
Lq(S1; Lp(Rn))

. (3.7)

15
Now we establish the inequality

∥∥∥∥
∫

S1
ei(t−s)H h�(·, s) ds

∥∥∥∥
Lq(S1; Lp(Rn))

�‖h(·, ·)‖
Lq′

(S1; Lp′
(Rn))

.
17
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By using Proposition 3.1, we see that for 2�p�∞,1

∥∥∥∥
∫

S1
ei(t−s)H h�(·, s) ds

∥∥∥∥
p

�
∫ �

−�
‖ei(t−s)H h�(·, s) ds‖p ds

�
∫ �

−�

‖h(·, s)‖p′

|sin(2[t − s])|n( 1
p′ − 1

2 )
ds.

Notice that since p′ > max(1, 2n
n+2 ), n( 1

p′ − 1
2 ) < 1 and hence |sin 2s|−n( 1

p′ − 1
2 ) ∈3

L1(S1 ds). Since ‖h(·, s)‖p′ ∈ Lq ′
(S1 ds) for 1�q ′ �∞, by Young’s inequality the

Lq ′
(S1 ds) norm of RHS of the above integral is at most a constant times5

(∫ �

−�
‖h(·, s)‖q ′

p′ ds

) 1
q′

which is nothing but ‖h‖
Lq′

(S1; Lp′
(Rn))

.7

Since the operator e−�H is bounded on Lp′
(Rn), for 1 < p′ < ∞, for � > 0, it

follows that e−�H is bounded on Lq ′
(S1; Lp′

(Rn)). Using this fact, from (3.7) we9
conclude that

∥∥∥∥
∫

S1
e−itH h�(·, t) dt

∥∥∥∥
2

�C‖h‖
Lq′

(S1; Lp′
(Rn))

.
11

Since h�(·, t) → h(·, t) in L2(Rn), as �→ 0, for a.e., t ∈ S1, a simple domi-
nated convergence argument will show that

∫
S1 e−itH h�(·, t) dt converges to13 ∫

S1 e−itH h(·, t) dt in L2(Rn). Therefore letting �→ 0 in the above inequality, we get
the required estimate. �15

Remark. The condition p′ > max{1, 2n
n+2 } distinguishes the two cases namely n = 1

and n�2 arising in the main theorem.17

Now we establish the estimate for the regularized problem.

Proposition 3.3. Let f ∈ L2(Rn) and let ur be the solution to the regularized problem19
(3.3), (3.4). Then for each r > 0, ur satisfies the inequality

‖ur‖Lq(S1; Lp(Rn))
�Cn‖fr‖2 (3.8)21

for 1 < q < ∞, 2�p < 2n
n−2 with a constant Cn independent of r and f.
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Proof. Let h ∈ Lq ′
(S1; Lp′

(Rn) ∩ L2(Rn)). Since the operator e−itH is unitary, we1
have

∫
S1

∫
Rn

[e−itH fr ](x)h(x, t) dx dt =
∫

S1

∫
Rn

fr (x)eitH h(x, t) dx dt.3

An interchange of integrals followed by Cauchy–Schwarz inequality gives

∣∣∣∣
∫

S1

∫
Rn

[e−itH fr ](x)h(x, t) dx dt

∣∣∣∣=
∣∣∣∣∣
∫

Rn
fr (x)

(∫
S1

eitH h(x, t) dt

)
dx

∣∣∣∣∣
�‖fr‖2

∥∥∥∥
∫

S1
eitH h(·, t) dt

∥∥∥∥
2
.

Now from the estimate for ‖ ∫S1 eitH h(·, t) dt‖2 given by Proposition 3.2, it follows5
that

∣∣∣∣
∫

S1

∫
Rn

e−itH fr(x)h(x, t) dx dt

∣∣∣∣ �C‖fr‖2‖h‖
Lq′

(S1; Lp′
(Rn))

.7

By density of Lq ′
(S1; Lp′

(Rn) ∩ L2(Rn)) in Lq ′
(S1; Lp′

(Rn)) the required estimate
follows by duality. �9

Now we deduce the regularity result for the original problem as stated in
Theorem 1.1.11

Proof of Theorem 1.1. For r > 0, e−rH is a bounded operator on L2(Rn), and we
have ‖fr‖2 �‖f ‖2. Therefore by previous proposition we get13

‖ur‖Lq(S1; Lp(Rn))
�Cn‖f ‖2 (3.9)

for some constant Cn independent of r. From this we deduce the corresponding in-15
equality for u.

First we show that there is a subsequence urn that converges to u almost every-17
where. Notice that since f ∈ L2(Rn), for each fixed t > 0 and r > 0, ur(·, t) =
e−rH e−itH f ∈ L2(Rn). Moreover19

‖ur(·, t) − u(·, t)‖2
2=
∥∥∥∑ [e−r(2k+n) − 1]eit (2k+n)Pkf

∥∥∥2

2

=
∞∑
0

[e−r(2k+n) − 1]2‖Pkf ‖2
2
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which converges to zero as r → 0, by a dominated convergence argument applied1
to the summation. Thus ur(·, t) converges to u(·, t) in L2(Rn) for each fixed t >

0 as r → 0. By periodicity of u in t, we need to consider only 0 < t �2�. Since3
‖ur(·, t) − u(·, t)‖2

2 → 0 as r → 0, and since

‖ur(·, t) − u(·, t)‖2
2 �(2 ‖u(·, t)‖2)

2 = 4‖f ‖2
25

by dominated convergence theorem, it follows that

lim
r → 0

∫ 2�

0
‖ur(·, t) − u(·, t)‖2

2 dt → 0.7

Thus ur converges to u in L2(Rn×S1). Hence we get a subsequence urm that converges
to u for a.e.(x, t) ∈ Rn × S1 as rm → 0.9

Now by Fatou’s lemma

‖u(·, t)‖p
p =

∫
Rn

|u(x, t)|p dx� lim inf
rm → 0

∫
Rn

|urm(x, t)|p dx.11

Applying Fatou’s lemma once again, we get

∫ 2 �

0
‖u(·, t)‖q

p dt �
∫ 2�

0

(
lim inf
rm → 0

∫
Rn

|urm(x, t)|p dx

)q/p

dt

� lim inf
rm → 0

∫ 2�

0

(∫
Rn

|urm(x, t)|p dx

)q/p

dt

�(Cn‖f ‖2)
q,

where the last inequality follows from (3.9) since the constant Cn is independent or13
rm. Taking the qth root on both sides, we get the required inequality. �

Now we consider the inhomogeneous equation (3.1) and (3.2). By Duhamel’s prin-15
ciple, the solution can be written as

u(x, t) = eitH f (x) +
∫ t

0
ei(t−s)H g(x, s) ds. (3.10)17

In this case the solution need not be periodic in the t variable, unless g is periodic
in the t variable. For the inhomogeneous equation in the periodic case we prove the19
following:
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Theorem 3.4. Let f ∈ L2(Rn) and g ∈ Lq ′
(S1; Lp′

(Rn)) then the solution u(x, t) to1
the problem (3.1), (3.2) lies in Lq(S1; Lp(Rn)), for 1 < q < ∞, 2�p < �, 1

p
+ 1

p′ =
1 = 1

q
+ 1

q ′ and satisfies the inequality3

‖u‖
Lq(S1; Lp(Rn))

�Cn

(
‖f ‖2 + ‖g‖

Lq′
(S1; Lp′

(Rn))

)
,

where � = ∞ for n = 1 and � = 2n
n−2 for n > 1.5

Proof. By previous theorem, we have ‖eitH f (x)‖
Lq(S1; L

p
(Rn))

�C‖f ‖2. Therefore by
(3.10), it is enough to show that7

∥∥∥∥
∫ t

0
ei(t−s)H g(·, s) ds

∥∥∥∥
Lq(S1; Lp(Rn))

�Cn‖g‖
Lq′

(S1; Lp′
(Rn))

.

We have9

∥∥∥∥
∫ t

0
ei(t−s)H g(·, s) ds

∥∥∥∥
p

�
∫ t

0

∥∥∥ei(t−s)H g(·, s)
∥∥∥

p
ds

�Cn

∫ 2�

0

‖g(·, s)‖p′

|sin 2(t − s)|n( 1
p′ − 1

2 )
ds

in view of Proposition 3.1. Since g(·, ·) ∈ Lq ′
(S1; Lp′

(Rn)), we have ‖g(·, s)‖p′ ∈
Lq ′

(S1) as a function of s. Now by an application of the Young’s inequality as before,11
we see that the Lq′(S ds) norm of the above is at most a constant times

(∫
S1

‖g(·, s)‖q ′
p′ ds

) 1
q′

= ‖g‖
Lq′

(S1; Lp′
(Rn))

.13

This completes the proof of the theorem. �
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