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Abstract “In this article, we study the exact controllability of an abstract model de-
scnbedtby the mﬂuﬂed*gmmhzed Hammesstein type equation
#(8) = [h(t. s)u(s)ds + [ k{t,s,7) f(z2(s))ds; 0 St < T < oo,
] 2
0 <t £ T « o, where, thestate #(¢) lies in a Hilbert space X and control u(t)

lies another Hilbert space V. We establish the controllibility under suitable
assumptions on &, k and f ssing the monotone vperator theory.
1. Introduction

Let X and V be Hilbert spaces and I = [0,7], where 0 < 7" < oo. Let
Y = L%(0,T; X} be the salution space and U = L*(0,T; V) be the control
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function space. We consider the following nonlinear control problem:

i 4
z(t) = f h(t, s)u(s)ds. + f k(t,5,2) f(s,2(s))ds; 0<E<T <oo. (L1)

Here, the state of the system z(t) € X and u(t) € U is the control at time &,
The nonlinear function f : 7 x X + X and for each t,s € I,z € Y, the kernel
k{t,s,2) : X v X and &(t,8) : V = X are bounded linear operators. Since
the integrands in the above integrals are in the infinite dimensional Hilbert
space X, the integrands are understood in the sense of Bochner integrals.

Remark 1 Note that in equation- (1.1), the kernel k depends on the un-
known x, but not depends on pointwise. That is the system has to be treated
separately if we consider the kernel k(t, 5,2(s)).

Remark 2 The equation (1.1) satisfies the initial condition z(0) =0 €
X, but one can incorporate any initial state 2(0) = 5o which will not alter
thc resulls.

Definition 3 The system (1.1)is sgid to be exactly controllable over
the interval [0, 7], if for any given z) € X, there exists a control u € U such
that the corresponding solution = of (1.1) satisfles z(T) = 1.

A large amount of literature is available regarding the existence and
umquenessoftheabﬂvetypeofequa.tmnasweﬂasrelatedequatmm. See
W. Petry [10], Stuart [11], Leggelt [9], Backwinkel-Schilling [8], Srikant-Joshi
(12] to pame a few and the references therein.

The corresponding linear control system
t
z(t) = f h(t,s)u(s)ds; 01 < T < oo, (1.2)
0

is quite standard and one can give various conditions to ensure the exact con-
trollability of the linear system (1.2). 8o, throughout our article, we assume
that the linear system i3 exactly controllable.

The exact controllability of related nonlinear systems are also available.
See, for example, (2], [3], {4] and for approximate controllability of non-
autonomouys semi-linear system [7]. Joshi- George [5] have established the
exact controllability for nonlinear systems in finite dimensional settings using
the monotone operator theory and fixed point theorems. Our aim in this
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article s to generalize these results to infinite dimensional systems, In this
short article, we will only present some abstract results. The application of
abstract results to specific examples both from ordinary and partial differen-
tial equations and also other sufficient conditions are the topics of & future
article.

Tke outlay of the paper is as follows.. In section 2, we give assumptions
and some preliminary estimates and we transform the controllability problem
to thai of a solvability problem. An operator W corresponding to the linear
system will be introduced and controllability depends on the compactness of
this operator, We prove the compactness under various sufficient conditions
in Section 3. Finally in Section 4, we establish the exact controllability result.

2, Assumptions and Estimates
Define the following operators

(21) for z €Y, K(z): Y = Y by

]
(Kw)O) = [4t5,2)u(s)ds,
(i)

(22) H:U — Y by (Hu)(t) = jt' h(t, s)u(s)ds;
0

(2.3) N:Y s ¥ by (N2)(e) = £(¢,2(2)) and
(24) W : U = Y by Wu = f(.,z(.)), where z{.) is the solution of (1.1)
_ corresponding to u € U.

First, we reduce the controllability problem to a, solvability problem. The
results on solvability crucially depend on the compactness of W. We make
the following assumptions.

Assumptions [A]

A T J3 kG2, 5, )1 ds e} = k(z) < & < co.

[4a] {f5" J5 ht, 3)|[* ds i }3 = hy < oo

[A3] The function f satisfies Carathebdory conditions. e, t o f(t)
is measurable and z —+ f(.,z) is continuous.

[44] The function F satisfles the following growth condition:
1o < aoll] +b(2),



where g9 > 0 is a constant and b(t) > 0 and b € L2(Z).

Lemma 2.1 (Bstimates:) For each z, the operator K(z) and H are bounded
linear operators and N is a continuous non-linesr operator and they satisfy
the following estimates:

I&(=)ylly < kllylly VeyeX. (2.5)
Hull < hllully wel. (2.6)
| ¥z]ly < v2 (aplizlly +b0) Vo €Y, (2.7)

Proof: The estimate (2.5) follows from Cauchy-Schwartz inequality as:

K@l = ]I d
< ;fof [kt 5,2)] ByCo)le do)
-sof afllk(t 5.2 ds)(f 4P ds)t

<k2lylZ.
T}_;e inequa.hty (26} follows in a similar fashion. Now

Ielf, = f [Va(e) d = Gf e, NI e

<2 f[az =) P + 5t
<2(@ it + 8] < 2[allally +87.
Henee (2.7). "

Operator form of the equation: With the notations as earlier, we. may
write the equation (1.1) as

x(t) = (Hu)(t) + (K(z)(Nz)) () (28)

or, equivalently
z = Hu+ K(z)(Nz). (2.9)

The following theorem gives the existence of solution z of (2.9} for a given
v which can be proved slong the lines as in [5).
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Theorem 4 (Existence and Uniqueness:) Assume the following:

[AK1] There ezists a constant s > 0 such. that

T t ’ TH ¢ . 2
f ( f k(t, 8, 2)2()ds, 2(8) > ds > g f / k(t, o, 2)z(t)ds| dt
0 0 a flo
(2.10)
VzeY
[AF1] The function § is monotone in the sense that
< fz)-fty)hz-y><0VryeX,tel (2.11)
Then, given w € U, there ezisls o unigue solution z € Y of (2.9) and
% satisfies a growth condition
ey 2 (24 1) noly. (212

Lemma 2.2 Under the assumptions [AKIL._[AFIJ ond the assumptions [A],
the operator W is well-defined end continuous. Moregver it satisfies the fol-

Wulty <V3 (241) anto tuly +v3 (2 41) 0. a9
‘The proof follows from the assumptions and estimate (2.12).

3. Compactness of the operator W
Wemakethefoﬂnwingfurtherassumpﬁonsinthissectiontoguuantee
the compactness of W .
Assumptions [B)
[B1] There exists k > 0 such that

.
/ k(t, 7, z)z(r)dr < Et—s)|zlly, 0<s<t< T

X
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{B2] There exists & > 0 such that

< h{t—s) lelly, 0<s<t<T,

t
/ h(t, TYu(r)dr

x

(B3] The operators k and & satisfy the uniform continuity in the following
sense: Given £> ( there exists & > 0 small such that

"k(r + h!_ &y .1'.'] - k(_";& z)"BL{XJ <€

and
NG + b, 8) — h(r, o)l prexy <& 0ST<r+h<T.

[B4] There exists a space X such that X s X is a compact imbedding,
[Bs] Assume that f can be extended to Ix.X X such'that f is Caratheodory
and z —» f(.,2(.)) is continnous from Z2(I; X) — LA X)
Theorem 5. Under the assumptions (B), the operator W is compact.

Proof: Let {u,,} be a bounded sequence in U. We have to show that {Wu,} =
{¥(-,2n(.))} has a convergent subsequence. First of 511 {F(--za{-))} is bounded
in¥ by Lemma 2.2. Therefore there exists a constant M > 0 such that

T
- f 1F G, za(t)) I dt < M.
1]

We show that the family {;a_(.)} is equi-continnous in C(I; X}. Let t =r+hy.
We have

lan(®) = 2n(r)l < " [ 4t 2m) = By, 200} S, ()

+ “ [ #6720 £, sa(r))

+ +

F bt Yun(r)r

;,f {B(t,7) — hiry7)}un(r)dr

=L+L+T+ 1.

Now by (B3) and (B,;) respectively, we get
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r
I 58[ lfrza(r)lixdr< eriM< eMTH

and

L <EholfGmn(ly-

Similarly I3 and I can be estimated as

L < eThudlly and Ly < Bho funlly-
The above estimates shows that {z,(.)} is equi-continuous in C(J; X). Fur-
ther, {zx({.)} is also uniformly bounded in C{F; X). Now, using the compact’
inclusion X < X and applying general form of Arzela-Ascoli theorem [1],
we deduce that {zn(.)} is relatively compact in O{I; X). Thus along a sub-
sequence {x,,,‘}comargesmc(IX) and so converges in L2(0, T3 X). Then
from the assumption (Bj), it follows that f(.,oy,(.)) converges in Y. Thus
theaperatorxscompactandthepmot_'mcomplete. ]

Remark 6 If h(t,s) is a compact operator, then it is easy to show that
W is compact. In such situations, the czact controllability in the whole space
may be impossible: (see [13]).

Remark 7 It is possible to give various more specific conditions under
which the operator W is compeet, but we do not go into these details in this
short article.

‘We now move on to the exact controllability under the assumption that
the eperator W i8 compact.

4. Exact contrellability

We, first reduce the problem to a solvability problem. Define the control
operator O : U — X by

T
Cu= f hit, s) u(s) ds: (4.1)
0

The operator G is bounded linear and in fact, is a control operator for the
linear system

i
() = f h(t,s) uls) ds, (0) =0 . (4.2)
/
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Let N(C) = {u € U : Cu = 0} be the null space and Z = VO =
{uelU: (u,v) =0 Vv e N(O)}.

Definition 8 We call a bounded linear operator §: X v+ Z, a Steering
Operator if § steers the linear system (4.8) from 0 to z,. In other words,
fu=258mn, (z; € X), then

T
=(T) = / W(T, 8)(Sz:){s)ds = 2,
i)

Clearly C§ = I, identity operator on X. Thus, if there exists a steering
operator 8, ther u = S%; acts as 2 control and the Iinear system (4.2) is
controllable. Conversely, if the linear gystem is controllable, then for any
z; € X there exists u € U such that Oy = z; ie, C is onto. Thus, we can
define a generalized inverse 0% = (Clz)™' : X = Z and § = C* will be 2
steering operator. Thus, one gets the following result.

Theorem 9 The linear system ({.2) is exoctly controllable if and only if
there ezists a steering operator.

We now assume the controllability of the linear system and proveed to
Prove the exact controllability of the nonlinear system. Define an operator
F:Z— Xby

T

Fu= [ K20, 2)Wu)(s)as, (43)

]
where given u € U, let z € ¥ be the corresponding solution of (1.1). Let S be
the steering operator of the linear system. Let 7, € X and up = Sz be the
cantrol which steers the linear system from 0 to z;. The exact controllability
of (1.1) is equivalent to the existence of u € Z {let = be the corresponding
solution (1.1)) such that '

T T
21 =2(T) = [ K(T,0, ) Wua)de + [ #tt shutsyas.
0 i]

That is
L1 = g + Cﬁ'.
Applying S on both sides, we get.

tp = SFu+ .
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Thus, the problem of controllability reduces to solvability problem of the
aperator equation :

Solveuce Z o

{u+s‘m'u=uo. 4

We now state our controllability result. For the sake of generality, we state the

theorem by imposing indirect conditions on W and F. The explicit conditions

on k,k, f can be given to verify the conditions on W and F. This will be
doing in a future paper along with applications to explicit problems.

Theorem 10 Assume that the linear system (4.8) is ezactly controllable with
& steering operaior S and the non-linear operator W defined in Section 2 is
well defined and compact. Furiher, assume that the composition operator SF,
where F is defined by ({.8), satisfies:

NSFu| < ag|lu| + by, withap <1, bp>0.
Then the system ({.4) is solvable in Z.

Proof: We look for the solvability of the operator R : Z + U, where

Bu =[I+ SFlu.
(R, u) = (u,u) + (SFu,u)
> Jull® ~ ag fful] — by [luf,
which implies

im (Ru,u) _
full > ool —

Thus, R is coercive operator. Since W is compact and from the definition
{4.3), it follows that F is compact. ‘Thus the operator SF is compact as S is
Now, R is compact perturbaiion of the identity operator and hence R is

of type (M). See [6] for a definition of type(M). Since any coercive operator
of type(M) is onto [6], the proof of the theorem is complete. a

Corollery 11 Assume the kinear system is controllable with a sicering
operaior §. Assume the conditions [AK 1] and [AF1] and the assumptions
(B). Then the nonlinear system i3 contiollable if

18| kolbe + p)aphy < ps-
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Remark 12 As mentioned earlier, we have our main theorem in a gen-
eral form and it is possible to give various conditions in terms of the system
components to verify the seme. One can put nonlinear evolutions systems
with internal controls in the above frame fo siudy the conirollability. It is
also possible to use the above results to study exact conirollability problems.
associated with partial differential equations with boundary controls. .
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