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Abstract

The Cahn-Hilliard equation plays an important role in the phase separation in a binary mixture. This is a fourth order
nonlinear partial differential equation. In this paper, we study the behaviour of the solution by using orthogonal cubic
spline collocation method and derive optimal order error estimates. We discuss some computational experiments by using
monomial basis functions in the spatial direction and RADAU 5 time integrator. The method we present here is better in
terms of stability, efficiency and conditioning of the resulting matrix. Since no integrals to be evaluated or approximated, it
behaves better than finite element method.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

We consider the one spatial dimensional Cahn-Hilliard equation:

u  d'u_ ¢(u)

E @— 2 5 (x,t)EIX(O,T] (11)
with the initial condition
u(x,0) = uy(x), xe€l, (1.2)

and boundary conditions
u(0,) =u(l,t) =0, ¢€(0,7],
ou u (1.3)
@(Oat)_@(lat)_(k IE(O,T],

where y > 0, ¢(u) = you° + yu + pou, 72> 0, I=(0,1) and 0 < T < oc.
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Eq. (1.1) arises in a variety of applications such as phase transition in material science. We refer the
reader to [5] and the references there in. In this paper, we use second—order splitting procedure combined
with orthogonal spline collocation method for Eq. (1.1) and derive optimal error estimates. Since this
method is much superior to B-splines in terms of stability, efficiency and conditioning of the resulting
matrix. Compared to finite element method (FEM) the calculation of the coefficients of the mass and stiff-
ness matrices determining the approximate solution is very fast since no integrals need to be evaluated or
approximated. We discuss numerical experiments using monomial basis functions and RADAU 5 time
integrator.

Earlier, mixed methods in combination with orthogonal spline collocation methods used to fourth order
evolution equations by Li et al. [9], Manickam et al. [12,13], Danumjaya and Pani [3]. In the context of
Cahn—Hilliard equation, Elliott et al. [6] discussed a second order splitting combined with lumped mass finite
element method and derived optimal error estimates.

We split Eq. (1.1) by setting v = yu,, — ¢(u) then we obtain the following system:

U+ v, =0, (x,1)elx(0,7], (1.4)

Y —v— d(u) =0, (x,7) €1 x(0,T] (1.5)
with initial condition

u(x,0) =up(x), xel, (1.6)
and the boundary conditions

u(0,6) =u(l,t) =0, e (0,7], (.7
v(0,7) =v(1,¢) =0, r€(0,T].

We use orthogonal cubic spline collocation method for the system (1.4)—(1.7) in the spatial direction to com-
N+

pute the approximate solutions using monomial basis functions. Let {xi}i:I1 denote a partition of 7 = [0, 1]
with

O=x1<x < - <xyp =1,

Iy = xm1), hj=xp—x,  j=1,23,...,N
and

h = max h;.
I<j<N

Assume that the partition is quasi-uniform, i.e., there exists a finite positive constant ¢ such that

h
v\,

We define a finite dimensional subspace 5 as

Hy={reC'(): i, € Py, j=1,2,...,N and z(0) = x(1) = 0},

N

ag.

where Pz denotes the set of all cubic polynomials. Let {/Ik}i:l denote the roots of the Legendre polynomial of
degree 2 i.e., (/11 =1 (1 — J%) Ja=1 (l + \/%)) These are the nodes of the 2-point Gaussian quadrature rule
on the interval I with corresponding weights w, = 1/2, k = 1,2. Now, we define the collocation point

/"ij:xj"f'hj/’{k, j:1,2,..‘,N, k:1,2

Below, we define discrete innerproduct and its induced norm. For any ¢,y € C°(7), the discrete innerproduct
is defined as

N

() = (0. ¥);,

j=1
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where

2
P ¥); Ej Z A )W (),

k=1
and its induced discrete norm by
1/2
lolp = (@, )"

Lemma 1.1. For w,z € #3,

—(w'z) = lOSOZW z —{Z",w),

where w (respectwely, 3y, is the third derivative of w; (respectively, z;) which is constant on each subinterval I
Note that when z=w wzth w € A3, we have

W72 < (W, w).

For a proof of Lemma 1.1, we refer to Douglas and Dupont [4].

The outline of the paper is as follows. In Section 1, we introduce some notations and preliminaries. Section
2 deals with continuous-time orthogonal cubic spline collocation method for the solution of (1.4)—(1.7). We
establish optimal error estimates. Finally, Section 3 is devoted to numerical experiments. Here, we show that
both theoretical order of convergence and numerically computed order of convergence are same.

Throughout this paper, C denotes a generic positive constant which is independent of the discretization
parameter 4 which may have different values at different places.

2. Continuous-time orthogonal cubic spline collocation method
The continuous-time orthogonal cubic spline collocation approximation to the solution {u,v} of (1.4,1.5) is
a pair of differentiable maps {U,V'} : [0,T] — 3 x 5 such that for j=1,2,...,Nand k=1,2
Ui(Zjg, t) + Vi(Ajst) =0, 1€ (0,T], (2.1)
VUxx(i/ka ) ()‘jka ) - d)(U(ijkat)) = 07 te (07 T] (22)

with appropriate initial approximation U(0) = U(x,0), which we shall define later. The corresponding discrete
Galerkin formulation is written as

<UI7X>+<VXX7X> :07 16%3; (23)

V<Uxxalp> - <Va lp> - <¢(U)7‘//> = Oa 'ﬁ € W3 (24)
The consistent initial condition /(0) can be determined from (2.4) by putting ¢ =0, i.e., V{(:,0) satisfies

<V()C, 0)7 ‘//> = V<Uxx(xa O)a lﬂ> - <¢(U(xv 0))a W’ l// € As. (25)

Since 45 is a finite dimensional space, the problem (2.3,2.4) leads to a system of nonlinear differential alge-
braic equations (DAE’s) of index one. The system is solvable [2,8], therefore, the unique solution exists locally.
For global existence, i.e., existence of a unique solution on the interval (0, 00), we need the following a priori
bounds.

Theorem 2.1. Let U and V be the solutions of (2.3,2.4). Then there exists a positive constant C such that the
following inequality holds:

Ul < C(IUlly), > 0. (2.6)

Moreover, for t >0

U@~ < C([[Uoll,)- (2.7)
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Proof. We consider the Lyapunov functional

Y
F(U) =5 |Udp + (H(U), 1), (2.8)
where H (") = ¢("). Differentiating (2.8) with respect to ¢, we obtain
dF (U
Wy, + 0(w). 0. 29
Choosing y = U, in (2.4), we obtain the following expression:
_V<Uxxa Ut> + <V7 Ut> + <¢(U)7 Ut> =0. (210)

We note that from Lemma 1.1
—~(Ues Up) = Uy, Un) + 7505 UP USRS (2.11)
and
1 N
<Ux7 Uxt> = (Uxa Uxt) ~ 7AN0 Z U(a) U(3>h5 (212)
Using Egs. (2.11) and (2.12) we find that

4322U . (2.13)

Substituting Eq. (2.13) in (2.10), we arrive at

_y<Uxxa Ut> = y<Ux> UM

W{Us, Us) 4322" W+ (VU + (6(U), U) =0. (2.14)

Using Eq. (2.9) in (2.14), we obtain

d7F (U
F 4322U Y+ (v,u) =o. (2.15)

For completing the proof, we need to evaluate the estimate for (V, U,). Setting y = V in (2.3) implies that

(U, VY+ (V,V)=0. (2.16)
Substituting Eq. (2.16) in (2.15) and using Lemma 1.1 to obtain
d%(U) Y d N 5 3) 1 N (3)\2,5 2

a seaa 2O g 200 = Wil (217

Integrating the above Eq. (2.17), we get the following expression:

N
P i 5 (3) T 5 3
,/’(U)+—864 jE:l hj(Uj < F(Uy) +864 E h; U (2.18)

Note that |U§3)(0)| < C||U(0)]] 3y and using the inverse inequality (for a proof see [1])
H¢||W3'°C(1) < Ch73/2”q§”H2(1)7
we find that

ZhSIU 0)[* < CU(0)]|,- (2.19)
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Substituting (2.19) in (2.18) and using the definition of Z (-), we finally obtain
U5 < C(|Ually).

Using Poincaré inequality, we find that
1U1l < €U < C(|Uolly)-

An application of Sobolev imbedding theorem yields
1Ul|~ < C(1Uoll,)-

This completes the rest of the proof. [

2.1. Error estimates

_For deriving optimal order error estimates, we construct the intermediate projections as differentiable maps
{U,V}:]0,T] = #5 x A5 satistying

(v=V)1) =0, y€ s, (2.20)
V<(u - fj)xx7 l//> = 07 lp € %} (221)

Let n=u— U and p = v — V, then the estimates for 5 and p can be easily estimated. For a proof see [14].
Below, we state the estimates for # and p without proof.

Lemma 2.1. Let u,v € C! (I) be such that u,v € Hﬁ([,),j= 1,2,...,N. Further, let U and V be the solutions of
(2.21) and (2.20), respectively. Then, for t € (0, T]

Il + 1l < Wl ey + 1l ay < Ch* (Ul s gy + el ) (2.22)

and
1ol + lpulp < ol + loull iy < CH* ol sy + 1oz s))- (2.23)
We now split the error ey =u — U and e; =v — V as
e =w-0)—(U-T)=n-0,
and
a=@-V)-(V-")=p-¢
We now state and prove the optimal error estimates.

Theorem 2.2. Let u € L¥(H®), u, € L*(H®), uy € H*(I) and let U,V be the solutions of (2.3) and (2.4). Assume
that U(0) = U(0), then the following estimate holds:

e = Ulleey + 1o =V llwgzzy < (Il + el sy + otz ) - (2.24)

Proof. We know the estimates of #, p from Lemma 2.1 and for completing the proof, we need to estimate 6
and & We take the discrete innerproduct between (1.4) and (1.5) by y and y, respectively and the resulting
equations, we subtract from (2.3) and (2.4), respectively and using (2.20) and (2.21), we obtain

(O 1) + (Coe ) = iy 20), X € H> (2.25)
V<9xxa l//> - <£a 'ﬁ) = <¢(U) - ¢(M), lp> + <P, l//>7 ‘70 € e%3- (226)



P. Danumjaya, A.K. Nandakumaran | Applied Mathematics and Computation 182 (2006) 1316-1329 1321

Setting y = 0 and = £ in (2.25) and (2.26), respectively, we obtain
<9t7 9> + <éxx7 0) :<17[7 0>7 (227)
0w, &) = |, =((U) = $(w), &) + {p, ). (2.28)

Multiplying Eq. (2.27) by 7, using Lemma 1.1 for second term on the left hand side and the resulting equation
we subtract from (2.28), we arrive at

210, + 125 = 700 0) — (B(U) — 6. &) — {9, &) (229)

We evaluate the nonlinear term

{(U) = D), &) = [(n(U* =) +9,(U* =) +90(U — u), &)
= [(12((U = u)(U? + Uu+ ) + 9, (U = u)(U +u) +35(U = u), &) (2.30)

Using the boundedness of ||u||,~ and ||U||,~, the above Eq. (2.30) implies that
(D(U) = ¢(u), &) < Cl(n - 6,8)].
Using Cauchy-Schwarz inequality and Young’s inequality, we find that
1
(p(U) = p(u), &)] < C(|ﬂ|§+l9li)+zléli~ (2.31)

Substituting Eq. (2.31) in (2.29) and again using the Cauchy-Schwarz inequality, Young’s inequality, we
obtain

2108, + 512l < COnfy + Iy + o) + €l (232)
Integrating (2.32) with respect to ¢, it gives the following expression:
2 fp 2 L 2 2 .
05+ [ 135 < CO00)+ [ -+l +1oP)d) + [ 105 (233)

If U(0) = U(0) then 6(0) = 0 and using the Gronwall’s inequality, we obtain the estimate for |0, ()~ For
completing the proof, we need to estimate ||~ @2~ We now differentiate Eq. (2.26) with respect to t, we
obtain

PO, ¥) = (b)) = ((@(U) = @), ) + (pi, ¥).- (2.34)
Setting y = 0, and y = & in (2.25) and (2.34) respectively, we obtain

10,15 + <€m 0,) = (n,,0,) (2.35)

KOs — 3 12l = (D) — 6(0),, ) + (0, 0) (236)

Using Lemma 1.1 in (2.36), multiplying Eq. (2.35) by y and subtract the resulting equation from (2.36), we
arrive at

l d 3
0 +5 1€l = 701, 0) = (B(U) = (), &) = (6,1 &) 237)
Using Cauchy—Schwarz inequality in (2.37), we obtain
’/|9t|§) 2 dr |‘f|D Ypl0:lp + ((P(U) = (), lp + | p)IEl (2.38)

We evaluate the nonlinear term

(($(U) = ¢(w)),|p = 1" (V)U, — ¢ (w)ul . (2.39)
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Using the boundedness of ||u||;~ and ||U]|;~ in (2.39), we find that

[(D(U) = ¢w)),lp < CI(0—n),[p < CU0p + [1:p)- (2.40)
Substituting (2.40) in (2.38) and using Young’s inequality, we obtain

1d,, v
710:]5 + T lp < CONInlp + ledp + 1€5) + §|9tlfg +elo. (2.41)
Integrating (2.41) with respect to ¢, we get the following expression:
t t t
(r— 26)/ 10,15 de + |€[5 < 1E0)] + C/ (I3 + loddp) de + C/ &[5 dx. (2.42)
0 0 0
In order to estimate |£(0)|p, we take t = 0 in (2.26) and using 0(0) = 0, we find
1£00)], < 1p(0), < Ch{looll e < Ch*Ju| s

Choose € appropriately so that (y — 2¢) > 0 and substituting the estimate |&| 22 in (2.42), we finally obtain the
estimate for ||« 2. This completes the proof. [

3. Numerical experiments

In this section, we use orthogonal cubic spline collocation method to approximate the problem (1.4)—(1.7)
and we discuss some numerical results. The approximate solution is defined as a pair of differentiable maps
{U,V}:[0,T] — #5 x A5 satisfying (2.1) and (2.2). As in Robinson and Fairweather [14], we use the mono-
mial basis functions to represent U and V, respectively, as

Ulx, 1) = lz:: U,.J(t)%, xel, (3.1)
and

V(x,1) = 12:: Vjﬁ,(z)%, xel, (32)
where,

U./',l(t) = U(x.ht)’ U,/',Z(t) = UX(xjvt)a

=1,2,...,N, 3.3
Uj,3(t) = Uxx(xjvt)v Uj,4(t) = Uxxx(xj7 t)v ] ( )

and similarly for V;,. In order to accommodate the boundary conditions, we define

Un1,1(t) = Ulxygr, ), Vivara () = V(xysr, 1),

3.4
Uni12(t) = Uy, 1), Vv o(t) = Vilxngr,2). 34)

Using (3.1) and (3.2) in (2.1) and (2.2), we obtain the following system of differential algebraic equations
(DAEs):

A (haE] 4
ZUj’li(([]_k)l)l = —(Vj13 —|-thij‘4), (35)
=1 :

4 N 4 L NI-1
A () W)
P(Ujs + hi2iUja) = 12—1: Vjﬁz(;_ikl)! —¢ 12—1: Uj,z(l’_ikl)! =0, (3.6)

forj=1,2,...,N, k= 1,2, where U;,(t) = £ U;,(¢). For computation, we take ¢(y) = 15> — . The ° and '
continuity conditions on U and V require that for j=1,2,...,N
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2 3

h- X
Uipig=Uj1 +hU;» +2—'/!Uj,3 +3_J!Uj,47

2 3
Vipia=Vii+hVr+ 2—1, Vis+ 3—1, Via,

2

h
Uiip=Ujp +hU;3 +2—1!Uj,47

"
Vj+l,2 = Vj,z + thj,3 + 2—/' Vj,4.
The boundary conditions (1.7), in view of (3.4) yields
Ui =0,Uys11 =0,
Vig =0,Vys11 =0.

Rewriting Egs. (3.5)—3.8) in matrix form, we obtain
MW = F(t, W),
which is of order 8N + 4 with

w=w w2 wlt w2t wl et wetwe T

N+l
where
W= (U, Vi Upn Vi, Wo=[Ujs, Vs, Upa, Vil )
Wy = [Uniit, Vs, Unsio, Vol

and the singular constant mass matrix M is of the form

04
A B
044
Ay B
M= 044
Ay By 0y
045 Oy
024

I
—

1323

(3.10)

Here A; and B; are 4 x 4 matrices corresponding to the coefficients of the derivative terms in (3.5) and (3.6) and

are of the form

1 0 hi 0 Wit g Gal g
A= 1 0 hjiz 0 B, — (hj;!z)z 0 (h/;!z)B 0
00 0 0 o 0 0 0
00 0 0 6 0 o0 0

and 0,4 and 044 are 2 x 4 and 4 x 4 zero matrices, respectively. The initial value W(0) is found from the inter-
mediate projection (2.21) at r = 0 and the consistency condition (2.5). Since U(0) = U (0) from the assumption

of the Theorem 2.2, it follows from (2.21) that:
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Uxx()ujk,o):uoxx<)b]’k)’ j: 1,...,N, k:1,2

Now along with the continuity conditions at the interior nodal points x; and the boundary conditions, we ob-
tain a linear system of 4N + 2 equations

RU = U, (3.11)
where R is (4N + 2) x (4N + 2) block diagonal nonsingular matrix of the form
ot ;
XiYr 0y
CD, Ipn
XoY, 0p
R= GD, In
XXy 02
CyDy I
L L
Here,
> 3
- [o 0} v _ {1 h,-)q} ¢ - {—1 —h,.]’ b, - _4 _2]
0 0 1 hids 0 -1 —h _%

I, is the identity matrix of order 2 X 2, 0, is the zero matrix of order 2 X 2 and I; = (1, 0). Further, the vectors
Uy and U are of the form

Uy = [0, UOxx()~11)7 qur( »12) 0,0 u0xx(/L21) UOxx(;tzz), sy qux(;“Nl)a MOxx()»Nz),O,O, O]T
and
U=[U,U,,...,Uy,Uy,q|" € RV

with Uj = [l]j,h Uvj’z, (]j,3) l]j,4], ] = 1, ... N and Uyt = [UN+1,1, UN+1’2:|. Slmllarly for V(X,O), we obtain from
(2.5)

V(4j,0) = yUse(4,0) — p(U(A4,0)), j=1,....N, k=12
Along with continuity and boundary conditions yield a system of 4N + 2 equations
RV =V,, (3.12)

where

Vo=

. 1 hi)? hi)’
OyV(U1‘3+h1A1U1,4)—§ U1‘1+h1)»1U1‘2+( ]21) U1,3+( 16]) U1,4>

hiq hil
<U11+h)1U12+(1 i U1¢3+( 161) U14> YUz + haUss)
h J )\-
U11+h1A2U12+( 2) Uis +( 162) Uig
hi 2 hi A
<U11+h) U12+( 122) U113+( 62) U14>,0,0,V(U2,3+h2)~1U2,4)
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1 hyiy) i)
—= | U2 +h2/11U2‘2+(2—1)U213—|—@U2‘4
3 2 6
Y% hyoy)?
- <U241 + hy /Uy +( 221) Uss +< 261) U2,4>a)’(U2,3 + hy/2Us4)

3
1 hyly) hya)’
—3 U2,1+h2/12U2,2+( 22) Uz,g—i-( 242) Usa
3 2 6
hys)’ hyls)?
-~ (Ul1 + haialUs + 0222) Uss ) UzA),(),o,...,y(UM3 + hy A Uya)

2 6

';
1 hy i) hyia)? )
3<UNA1+hN}~1UN,2+( Nzl) UN,3+( N61) UN,4>

n i)’ i)’ )
- (UN,1 + hy2q Uy + %Um + ( N61) UN,4> V(Uns + hy2aUya)
3
1 (hy’a)? (hy’a)’
3 Uni+hy2aUys + 3 Uns + ¢ Una

T
) hy i) hyia)
- (UN,1+hN/L2UN‘2+%UN‘3 +%UN,4>505050‘| )

and all the submatrices in R are similar to R in (3.11) except for

, 1) i)’}

X — 1 hj/bl v — (hjzll) (h/;l)

/ 1 hj/lz ’ / (hi22)*  (hha)?
2! 3!

We have solved the Cahn—Hilliard equation mainly to validate the theoretical results. For this purpose, we
have used the software packages that are freely available from the web sites.

For the solution of almost block diagonal linear systems (3.11) and (3.12), we have employed the code
ABDPACK [10,11]. This code has been especially developed for the solution of the system which arises from
the orthogonal spline collocation methods using the monomial basis functions.

Note that the index of the system (3.5) and (3.6) is one. We have used RADAU 5, a software package that is
based on a three stage implicit Runge-Kutta scheme of RADAU-IIA (see [7]). This numerical scheme is self
starting and stiffly accurate. The solution obtained using RADAU 5 has order of convergence five in every
component. RADAU 5 can also solve DAEs of index upto 3.

Now we describe the numerical experiments that has been conducted for the Cahn—Hilliard equation. For
computational convenience, we have considered the space in x direction as [—1, 1]instead of [0, 1]. The numer-
ical experiments are carried out for (1.4)—(1.7) with ¢(u) = %u3 — u and using the initial function

u(x,0) = —sin(n’x), x e (=1,1). (3.13)
We divide the domain into N; = 10,20,40,80 with each of equal intervals /,;, where
2
h,‘ = ﬁi, 1= 1, . 74.

For computational convenience, we assume U = U, and V' = V. We note that the exact solution of Cahn-
Hilliard equation is not known and we replace it by numerical solution U, with N =160 and treat this U,
as our exact solution. The order of convergence for the numerical method has been computed by the
formula
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Table 1
The order of convergence for Uj(x,?) at t =0.05
i N; Uy = Upll,2 Order Uy — Up|| = Order
1 10 0.1199346780776978E—01 0.2265095710754395E—02
2 20 0.1012027263641357E—02 3.5669 0.1476407051086426E—03 3.9394
3 40 0.6222724914550781E—04 4.0236 0.9857118129730225E—05 3.9048
4 80 0.3695487976074219E—05 4.0737 0.6016343832015991E—06 4.0342
Table 2
The order of convergence for Vj(x,t) at t = 0.05
i N; WVh =Vl Order 1Vn =Vl Order
1 10 0.1743271946907043E—02 0.1607790589332581E—02
2 20 0.1445934176445007E—03 3.5917 0.9499490261077881E—04 4.0811
3 40 0.9037554264068604E—05 3.9999 0.6260350346565247E—05 3.9235
4 80 0.5289912223815918E—06 4.0946 0.3650784492492676E—06 4.1000
1Un=Unlli
log [H_Uh—vm HU-] . .
order = i=1,2, j=2 00, (3.14)

log(2)

where U, is the numerical solution with step size /; and h;; = %
All the codes have been written in FORTRAN with double precision. The experiments have been con-
ducted with the following parameter values for RADAU 5: RTOL = 107°, ATOL = 10" and the initial step

size k = 107>, RADAU 5 uses the variable step size method. The maximum step size used in all calculations is

3e-07 T T T T T T T T

=06 ——
t=0.7 ------
1=0.9 ------
t=1.3
t=1.5 ———
t=2.0 -~ -
2e-07 |- -
1e-07 - -
A T
= o fhe= B -
X S~ i
Z e I
-1e-07 |- B
2607 |- _
-36-07 1 1 1 1 1 1 1 1 1
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 06 0.8 1

X--->

Fig. 1. The profile of U(x,?) for y =0.3.
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Fig. 2. The profile of U(x,?) for y=0.2.
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0.02 } i

001 7 X -
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-0.03 . 5. -
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Fig. 3. The profile of U(x,?) for y=0.1.

kmax = 0.087880501. The numerical solution is carried out for several /; with y = 0.02. In the following Tables
1 and 2, we observe that the order of convergence estimated numerically is approximately equal to 4. This
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Fig. 4. The profile of U(x,t) for y =0.02.
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Fig. 5. The profile of U(x,t) for y =0.005.
confirms the theoretical order of convergence found in Theorem 2.2 and hence is equivalent to the numerically

computed order of convergence.
For the initial condition (3.13), we show the Figs. 1-5 of computed solutions of U at various time level.
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