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Direct reconstruction of complex refractive index
distribution from boundary measurement of
intensity and normal derivative of intensity

Hari M. Varma,1 R. Mohan Vasu,1,* and A. K. Nandakumaran2

1Department of Instrumentation
2Department of Mathematics, Indian Institute of Science, Bangalore 560 012, India

*Corresponding author: vasu@isu.iisc.ernet.in

Received February 16, 2007; accepted June 5, 2007;
posted June 29, 2007 (Doc. ID 80160); published September 7, 2007

We present an optical tomographic reconstruction method to recover the complex refractive index distribution
from boundary measurements based on intensity, which are the logarithm of intensity and normal derivative
of intensity. The method, which is iterative, repeatedly implements the forward propagation equation for light
amplitude, the Helmholtz equation, and computes appropriate sensitivity matrices for these measurements.
The sensitivity matrices are computed by solving the forward propagation equation for light and its adjoint.
The results of numerical experiments show that the data types ln�I� and �I /�n reconstructed, respectively, the
imaginary and the real part of the object refractive index distribution. Moreover, the imaginary part of the
refractive index reconstructed from �I /�n and the real part from ln�I� failed to show the object’s inhomogeneity.
The value of the propagation constant, k, used in our simulations was 50, and this value resulted in smoothing
of the reconstructed inhomogeneities. Thus we have shown that it is possible to reconstruct the complex re-
fractive index distribution directly from the measured intensity without having to first find the light ampli-
tude, as is done in most of the currently available reconstruction algorithms of diffraction tomography. © 2007
Optical Society of America
OCIS codes: 050.1940, 110.6960, 290.3200.
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. INTRODUCTION
or the reconstruction of the complex refractive index of
bjects at a spatial resolution comparable with the wave-
ength of radiation used to interrogate the object, diffrac-
ion tomography is employed [1,2]. Diffraction tomogra-
hy provides inversion algorithms based on the Fourier
iffraction theorem, such as filtered backpropagation or
he direct Fourier method, under the assumption of weak
cattering. In addition to these noniterative methods,
here are also iterative methods employed for solving the
nverse problem, which have provisions to circumvent the
eak scattering approximation [3,4,6]. Under these

chemes, the Helmholtz equation is inverted either di-
ectly or indirectly, through repeated implementation of
he forward operator and its adjoint, for recovering the
omplex refractive index distribution [6]. In these two
ethods the data on the boundary constitute the complex

mplitude, which is the sum of the incident and the scat-
ered field, and a complete data set should have both the
ntensity and phase of the transmitted light. Whereas the
ntensity is easily detected by photodetectors or CCD ar-
ays, phase is not; phase detection requires indirect and
xperimentally complex measurement methods [7]. Phase
ecovery from the intensity measurement is also em-
loyed to retrieve the complex amplitude from the inten-
ity data [8–10], which in turn is used in the noniterative
iffraction tomographic algorithm to reconstruct the com-
lex refractive index distribution [11]. One of the methods
sed for phase recovery uses the transport of intensity
quation (TIE) [8], which is a partial differential equation
1084-7529/07/103089-11/$15.00 © 2
onnecting the wavefront (i.e., phase) to the axial trans-
ort of intensity (i.e., the normal derivative of the inten-
ity).

Since a complete recovery of the complex amplitude
ata is cumbersome, there have been many attempts to
econstruct the refractive index distribution directly from
he measured intensity data [12–14]. Under this category
alls the method that treats the intensity recorded at the
ar field as a Gabor hologram [15], the reconstruction
rom which yields the correct refractive index along with
ts twin image and a constant intensity term. In another
roposed method [13], which is close to the method pro-
osed here, the complex refractive index distribution of
he scattering objects with well-localized Fourier spectra
re reconstructed from a number of intensity measure-
ents on several planes. Here again the retrieval of the
ourier spectrum of the scattering object is dependent on

ts twin image’s being either separated or small. (Small-
ess is ensured when the distance between the planes
here the intensities are measured tends to zero).
In this work, we propose an iterative reconstruction

rocedure that successfully retrieves the real and imagi-
ary parts of the complex refractive index from the mea-
urement of the two data types derived from the complex
mplitude at the boundary. The data types are the loga-
ithm of intensity �ln�I�� and the normal derivative of the
ntensity ��I /�n�, which are intuitively selected keeping in

ind the following facts: (i) the intensity of the transmit-
ed light is affected primarily by the imaginary part of the
bject refractive index; (ii) the normal derivative of the in-
007 Optical Society of America
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ensity, which determines the intensity transport across
he wavefront, is controlled primarily by the curvature of
he wavefront, which in turn is dependent on the real part
f the refractive index of the object through which the
ight is propagated. The TIE itself has I and �I /�n as pa-
ameters from which the phase of the wave is often recon-
tructed [16].

Accurate measurement of the normal derivative of in-
ensity, �I /�n, is crucial in the practical application of TIE
or phase recovery. This has been addressed in a number
f recent publications [17–20]. The inverse problem ad-
ressed here, which is the direct recovery of the refractive
ndex from ln�I� and �I /�n, is also critically dependent on
ccurate measurement of �I /�n from I. For phase recon-
truction using TIE, �I /�z, the axial intensity transport,
hich is �I /�n for paraxial propagation of light along the
axis, is approximated by the finite-difference formula

I1�x ,y ,z+dz�−I2�x ,y ,z�� /dz. Here I1 and I2 are the inten-
ities captured by a CCD array at the transverse plane
+dz and z, respectively. For a more accurate estimation
f �I /�z in the context of application in the TIE, I�x ,y ,z� is
easured at a number of transverse planes across the z

xis from which I and �I /�z are approximated through in-
erpolation [20].

The reconstruction method presented here uses an it-
rative procedure similar to the so-called model-based it-
rative image reconstruction (MOBIIR) procedure of dif-
use optical tomography (DOT) [21,22]. In DOT one
akes use of different data types derived from the photon

ux at the boundary. The types of data used in DOT are
he intensity, expected time of arrival of a pulse, the am-
litude and phase of the detected photon flux from an
ntensity-modulated illumination, etc. The MOBIIR algo-
ithm repeatedly solves the forward problem and the per-
urbation equation connecting the change in the data to
he change in the optical property through the Jacobian
stimated for the particular data to be considered. In
dapting this technique for the diffraction tomography
roblem at hand, data from each view (or projection),
hich are either ln�I� or �I /�z, are handled separately for

econstructing the refractive index, similar to the
ropagation–backpropagation strategy proposed and used
n [6] in the context of ultrasound tomography. The com-
onents of the Jacobian here are the rate of the change of
easurements, ln�I� and �I /�z, with respect to the dis-

retized optical properties of the object in the pixels. The
etails of estimating the Jacobian are given in
ppendix A.
One interesting aspect of our procedure is that we do

ot solve two boundary value problems to reconstruct an
pdate vector, namely, the forward problem and the ad-

oint of the Frechet derivative of the forward operator as
s done in [6]. Instead the adjoint is used for a quick esti-

ation of the Jacobian of the forward operator, which is
sed in the perturbation equation of the forward operator
onnecting measurement changes to changes in the re-
ractive index. This perturbation equation is solved to up-
ate the initial distribution.
The organization of the rest of the paper is as follows:

n Section 2, we introduce the MOBIIR adapted to the re-
overy of the complex refractive index distribution from
he intensity-based measurements. In Section 3, we intro-
uce the forward propagation equation for light ampli-
ude, based on the Helmholtz equation. The Jacobian cal-
ulation for the two data types is explained in Section 4.
ection 5 describes the numerical experiments, where a
imulated refractive index distribution is reconstructed
y using the MOBIIR algorithm. Discussion of results and
oncluding remarks are in Section 6. The procedure used
o estimate the Jacobian for the two measurements that
mploy the adjoint of the Frechet derivative of the for-
ard propagation equation is described in Appendix A.

. ITERATIVE RECONSTRUCTION
LGORITHM

he proposed reconstruction algorithm is shown in the
lock diagram of Fig. 1. There are two iterations, an inner
nd an outer, in the usual inversion that involves basi-
ally two major steps. The first step involves the imple-
entation of the forward propagation equation, which

omputes an approximation to the experimental data
iven the optical properties (the complex refractive index)
f the object. The forward propagation equation, which is
ased on the Helmholtz equation, is further discussed in
ection 3. It computes the perturbation in the output
omplex amplitude us given the perturbation in the opti-
al properties of the object. From this perturbation we can
nd the total complex field at the boundary by adding the

nput amplitude u0, which is a plane wave. The data are
omputed from u=u0+us, the total field at the boundary,
nd are (i) the logarithm of intensity I, which is I
��u0+us�2�, and (ii) the normal derivative of the intensity,
I /�n.

The second major step is the calculation of Jacobian
atrix corresponding to the two data types of interest.
ne element of the Jacobian matrix for the data type

ig. 1. MOBIIR algorithm: the inputs are the experimental
easurement Me and the initial guess of the optical property f0.
he algorithm has two iterative loops, the outer and the inner. In
he outer loop, the perturbation equation is updated, and in the
nner loop the perturbation equation is solved for the optical
roperty distribution.
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I /�n is the rate of change of �I /�n with respect to the real
r imaginary part of the refractive index at a particular
ode under consideration. If the object is discretized by
sing the finite-element method to N nodal values of the
omplex refractive index, the Jacobian for one measure-
ent will have 2N elements consisting of derivatives with

espect to real and imaginary parts of the refractive index
t these nodes. The strategy of the inversion algorithm
escribed in Fig. 1, which uses only the forward propaga-
ion equation and the Jacobian (or sensitivity matrix), is
iven below.

Given a set of experimental measurements ln�I�
ln���u0+us�2�� or �I /�n corresponding to the different
ngles of illumination, the algorithm starts with an initial
uess of the optical properties, for example, the back-
round values. For these optical properties the measure-
ents Mc are computed and compared with their experi-
ental counterparts, Me, and the perturbations �M
Me−Mc are obtained. From the knowledge of the Jaco-
ian evaluated at the current estimate of the optical prop-
rties, a perturbation equation �M=J · ��f� is set up con-
ecting �M to a perturbation �f in optical properties. A
egularized and normalized version of the perturbation
quation JT�M=JT ·J · ��f+� ·Id�, where Id is the identity
atrix, is solved for �f by minimizing the norm �JT�M
JT ·J · ��f+� ·Id��2 with respect to f by using either a con-

ugate gradient scheme or a quasi-Newton algorithm.
ere � is the regularization parameter fixed by heuristic
ethods. This last iteration is represented by the inner

oop in the reconstruction algorithm of Fig. 1. The �fi ob-
ained from the inner loop is used to update the current
ptical properties as fi+1= fi+�fi, which are the inputs to
he forward operator to continue the outer iteration. The
acobian also needs to be recomputed, and the perturba-
ion equation is updated with the current Jacobian and
M.
In the implementation of the MOBIIR algorithm we fol-

ow the strategy of splitting the perturbation equation
nto those pertaining to data from each view. One angle of
nput illumination gives data for a particular view. Once
he perturbation equation for one view is solved for the re-
ractive index distribution, it is updated and used to form
he new perturbation equation pertaining to the data
rom the next view. When we have gone through the data
rom all views, the entire procedure is repeated, starting
rom the first view. The stopping criterion for the iteration
s ensuring that the mean square error between Me and

c, i.e., �Me−Mc�2, has reached a minimum.
As is seen from the above discussion, the two major is-

ues to be tackled are the implementation of the forward
perator and the calculation of the Jacobian for the two
ata types ln�I� and �I /�n. The implementation of these
wo steps is described in the following sections.

. IMPLEMENTATION OF THE FORWARD
PERATOR

he propagation of monochromatic wave of wavelength �0
hrough a medium of refractive index distribution n�r� is
overned by the Helmholtz equation
� · �u�r� + k2u�r� = 0. �1�

ere u�r� is the complex amplitude of the wave and k�r�
n�r��2� /�0� is the modulus of the propagation vector.
onsidering n�r�=1+n��r�, where n��r� is a small pertur-
ation to the background medium, which is air, whose re-
ractive index is 1, we can approximate Eq. (1) as

� · �u�r� + k0
2�1 − f�r��u�r� = 0, �2�

here f�r� is given by

f�r� = − 2n��r�, k0 = 2�/�0.

ere we point out that the approximation used does not
reclude refractive index distributions disallowed under
orn or Rytov approximations [5]. The approximation un-
er which the Jacobian is estimated, i.e, �u� � �u0 (see
ection 4) does not put any restriction on f�r� but only on
�r�, the perturbation in f�r�. This is easily justified for
eaching f�r� from f0�r� through a large number of itera-
ions.

The object, assumed to be 2D and square shaped with
oundaries L, L−, and L+, as shown in Fig. 2, is illumi-
ated with a plane wave eik0r·�. Here � is the unit vector

n the propagation direction given by

� = 	− sin �

cos �

 ,

here r�R2 and � is the angle of illumination. The total
eld u�r� at any point in the medium is given by the sum
f the incident wave eik0r·� and the scattered wave
�r�eik0r�; that is,

u�r� = eik0r·��1 + v�r��.

herefore Eq. (2) can be rewritten as an equation connect-
ng f�r�, the perturbation in the refractive index and v�r�:

ig. 2. Data collection geometry: the object, which is circular, is
nclosed in a square region bounded by L�L−�L+. The source is
monochromatic plane wave incident on L−, and the transmitted

ntensity is detected at L+. Data for different views are gathered
y rotating the circular region, which contains the inhomogene-
ty in refractive index.
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� · �v�r� + 2ik0� · �v�r� − k0
2v�r�f�r� = k0

2f�r�. �3�

quation (3) is the forward propagation equation with the
ollowing boundary conditions:

v�r� = g� on L, v�r� = 0 on L−, �4�

v�r� +
�v�r�

�n
= 0 on L+. �5�

ere �v�r� /�n is the normal derivative of v�r� on L+. The
obin boundary condition (5) on L+ indicates that there is
o boundary reflection of light allowed into the medium
rom L+. The significance of the Dirichlet boundary condi-
ion on L− is that backscattering is negligibly small, and
herefore the scattered amplitude v�r� reaching the
oundary from where the illumination is put is zero [6].
The Frechet derivative operator corresponding to for-

ard propagation equation (3) is obtained by substituting
he perturbed scattered field v�r�+v��r� and its cause, a
erturbed object function f�r�+d�r�, into Eq. (3), which
ives

� · �v��r� + 2ik0� · �v��r� − k0
2v��r�f�r� = k0

2�1 + v�r��d�r�.

�6�

he boundary conditions for the Frechet derivative of the
orward propagation equation are

v��r� = 0 on L � L−, v��r� +
�v��r�

�n
= 0 on L+. �7�

ormally, we call the above operator the Frechet deriva-
ive of the forward propagation equation even though it
olves for v��r�, the error in v�r� caused by d�r�, an error
n f�r�.

. CALCULATION OF JACOBIAN FOR THE
WO DATA TYPES
or implementing the MOBIIR algorithm for each itera-
ion, we need to update the computed data by solving the
orward propagation equation for the current estimate of
he refractive index and also the perturbation equation
onnecting the perturbation of the measurement to the
erturbation of the refractive index through a suitable
acobian (or sensitivity) matrix. As indicated earlier we
mploy two measurements derived from the total field
easured on L+ for various values of �. They are the loga-

ithm of intensity I�r� and normal derivative of intensity
I�r� /�n. In the following we describe how the Jacobians
re estimated for the two data types [23–26].

. For Logarithm of Intensity
he measurement obtained from u�r� is given by �I
ln�uū�. For evaluating the Jacobian one needs to arrive
t the change �I

� in the measurement brought about by
he change d�r� in f�r�, the refractive index distribution.
ssuming that u�r� becomes u�r�+u��r� when f�r� be-

omes f�r�+d�r�, we can write �� as
I
�I
� = ln�uū + uū� + u�ū + u�ū�� − ln�uū�

= ln	uū + uū� + u�ū + u�ū�

uū

 � ln	1 +

uū� + u�ū

uū

 .

ssuming ��uū�+u�ū� /uū � �1, we get

�I
� =

uū� + u�ū

uū
= 	 ū�

ū

 + 	u�

u 
 .

he relation connecting u� and v� is given by

u� = �1 + v + v��eik0r·� − �1 + v�eik0r·� = v�eik0r·�.

e notice that �I
� is real and has two terms (say �I,1

� and

I,2
� ), one being the complex conjugate of the other.
Contribution from �I,1

� = �1/u� ·v� ·eik0r·�. We have

v� = u�I,1
� e−ik0r·�. �8�

he Robin boundary condition on L+ gives

�v�

�n
= − u�I,1

� e−ik0r·�.

he adjoint operator of the Frechet derivative operator (6)
s given by [6]

� · ���r� + 2ik0� · ���r� − k0
2f̄�r���r� = 0 �9�

ith boundary conditions

���r�

�n
+ ��r��1 + 2ik0� · n� = q+ on L+,

��r� = 0 on L � L−. �10�

ere q+ is a Robin source on the boundary L+. Multiply-
ng Eq. (6) by �̄, integrating the product over the whole
omain 	, and using the Green’s theorem and Eq. (9), we
et the relation (after a short calculation)

�
L+
 ��̄

�n
+ �̄�1 − 2ik0� · n�� �v�

�n
dn−1r

=�
	

�k2�1 + v�r��d�r���̄�r�dnr.

hen for any Robin source q+, we have

�
L+
q̄+

�v��r�

�n �dn−1r

=�
	

k0
2�1 + v�r��d�r��̄�r�dnr. �11�

hen q+ is a point source on the boundary �	, the surface
ntegral on the left-hand side of Eq. (11) picks up a mea-
urement at that point only with strength given by
v� /�n, which is related to the first part of the measure-
ent through
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�I,1
� = −

1

u

�v�

�n
eik0r·�,

here r��	. Therefore

�I,1
� �m0� = −

eik0rm0

u�m0��
	

k0
2�1 + v�r���d�r��ḠR

� �r�,m0�dnr�.

�12�

ere rm0
�r ·� for r=m0�L+ and GR

� �r ,m0� is the Green’s
unction for the adjoint operator (9). But v� can be ob-
ained from the Frechet derivative operator (6), through
ts Green’s function as

v��m0� =�
	

�Gv�m0,r��k0
2�1 + v�r���d�r��dnr��.

herefore

�I,1
� �m0� =

eik0rm0

u�m0��
	

k0
2�1 + v�r���d�r��G�I,1

�
�m0,r��dnr�.

�13�

omparing Eqs. (12) and (13) and using the fact that the
obin source q+ at the boundary picks out only the mea-
urement at m0 on the boundary, we see that the solution
to Eq. (9) is an adjoint Green’s function GR

� �r� ,m0� with
he property

G�I,1
�

�m0,r�� = − ḠR
� �r�,m0�. �14�

his establishes the reciprocity relation that exists be-
ween the secondary sources at r� and the detector at m0,
hich is crucial in the quick estimation of the Jacobian.
Since �I,2

� is the complex conjugate of �I,1
� , the expres-

ions for �I,2
� are the complex conjugates of those given by

qs. (12) and (13). The reciprocity relation can also be de-
ived for �I,2

� , which is

Ḡ�I,2
�

�m0,r�� = − GR
� �r�,m0�. �15�

Therefore the sensitivity relation for �I
�=�I,1

� +�I,2
� is

iven by

��I�m0,r��

�d�r��
=

eik0rm0

u�m0�
k0

2�1 + v�r���G�I,1
�

�m0,r��

+
e−ik0rm0

ū�m0�
k0

2�1 + v̄�r���Ḡ�I,2
�

�m0,r��. �16�

The reciprocity relations in Eqs. (14) and (15) can be
sed to estimate the derivative ��I�m0 ,r�� /�d�r�� at all
oints r��	 simultaneously by estimating GR

� �r� ,m0�,
he Green’s function for the adjoint form of the Frechet
erivative operator for a Robin source at m0 and v�r��, the
olution of Eq. (3).

. Normal Derivative of Intensity
he second measurement obtained from u�r� is �N
�I /�n at L+ where n is the unit vector normal to L+. For
valuating the Jacobian, we need the change in measure-
ent �� due to the change d�r� in f�r�, which is given by
N
�N
� =

��uū� + u�ū + u�ū��

�n
.

ince u� is very small, u�ū� can be neglected compared
ith the other terms, which gives

�N
� =

��uū� + u�ū�

�n
.

xpanding and rearranging, we get

�N
� = ū

�u�

�n
+ ū�

�u

�n
+ u

�ū�

�n
+ u�

�ū

�n

=�N,1
� + �N,2

� + �N,3
� + �N,4

� . �17�

s �N,3
� = �̄N,1

� and �N,4
� = �̄N,2

� , the change in measurement

N
� is a real quantity.

. Contribution from the First Term �N,1
� and Pertinent

eciprocity Relation
sing the relation between u� and v�, it is easy to see that

�N,1
� = ū

��v�eik0r·��

�n
.

xpanding, rearranging, and using Eq. (7), we get

�v�

�n
=

�N,1
� − v�ū

��eik0r·��

�n

ūeik0r·�

=

�N,1
� +

�v�

�n
ū

��eik0r·��

�n

ūeik0r·�
. �18�

he term ��eik0r·�� /��n� can be evaluated as follows: con-
idering the normal direction at L+ along the y axis and
= �−sin � , cos ��, we have

��eik0r·��

�n
= eik0r·�ik0 cos �.

sing the above relation, �v� /�n restricted to L+ can be
btained as

� �v�

�n ��
L+

=
�N,1

�

ūeik0r·� 1

1 − ik0 cos �
� .

ubstituting into Eq. (11) and taking q+ as a point source
t m0, we have

�N,1
� �m0� = eik0rm0ū�m0��1 − ik0 cos ��


�
	

k0
2�1 + v�r���d�r��ḠR

� �r�,m0�dnr�.

�19�

ut v� can be expressed in terms of the Green’s function
olution for the equation for the Frechet derivative as
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v��m0� =�
	

�Gv�m0,r��k0
2�1 + v�r���d�r���dnr�.

herefore the change in the first term of measurement

N,1
� �m0�, in terms of the Green’s function, is

�N,1
� �m0� = ū�m0�eik0rm0�1 − ik0 cos ��


�
	

G�N,1�m0,r��k0
2�1 + v�r���d�r��dnr�.

�20�

omparing Eqs. (19) and (20), as above, we have the fol-
owing reciprocity relation with respect to �N,1

� :

ḠR
� �r�,m0� = G�N,1�m0,r��. �21�

. Contribution from the Second term �N,2
� and

eciprocity Relation
he second term in the measurement is

�N,2
� =

�u

�n
ū�.

sing the relation connecting u� and v�, we have

v� =
�̄N,2

� e−ik0r·�

�ū/�n
.

Following a procedure similar to the one adopted in the
revious subsection, we can derive the expressions for

N,2
� �m0� starting from Eqs. (9) and (10) (adjoint of the
rechet derivative) or Eqs. (3), (6), and (7) (the Frechet
erivative operator itself). They are

�N,2
� �m0� = − e−ik0rm0

�u�m0�

�n


�
	

k0
2�1 + v̄�r���d̄�r��GR

� �r�,m0�dnr�,

�22�

�N,2
� �m0� = −

�u�m0�

�n
e−ik0rm0


�
	

Ḡ�N,2�m0,r��k0
2�1 + v̄�r���d̄�r��dnr�.

�23�

omparing Eqs. (22) and (23), we arrive at the reciprocity
elation of the second term �N,2

� ,

GR
� �r�,m0� = Ḡ�N,2�m0,r��. �24�

The third part, given by �N,3
� �m0�=u��ū� /�n�, is the

omplex conjugate of the first part, and therefore the ex-
ression for change in the measurement, �N,3

� �m0�, is
iven by
�N,3
� �m0� = e−ik0rm0u�m0��1 + ik0 cos ��


�
	

k0
2�1 + v̄�r���d̄�r��GR

� �r�,m0�dnr�.

�25�

The reciprocity relation obtained here is

GR
� �r�,m0� = Ḡ�N,3�m0,r��. �26�

Similarly, the fourth term �N,4
� =u���ū /�n� is the com-

lex conjugate of the second term, and therefore the
hange in measurement, �N,4

� �m0�, is given by

�N,4
� �m0� = − eik0rm0

�ū�m0�

�n


�
	

k0
2�1 + v�r���d�r��ḠR

� �r�,m0�dnr�.

�27�

The reciprocity relation is

ḠR
� �r�,m0� = G�N,4�m0,r��. �28�

Combining Eqs. (20), (22), (25), and (27) and the reci-
rocity relations, the sensitivity relation for the measure-
ent �N is given by

��N�m0,r��

�d�r��
= eik0rm0ū�m0�k0

2�1 − ik0 cos ���1 + v�r���


G�N,1�m0,r�� − e−ik0rm0

�u�m0�

�n
k0

2�1 + v̄�r���


Ḡ�N,2�m0,r�� − eik0rm0

�ū�m0�

�n
k0

2�1 + v�r���


G�N,3�m0,r�� + u�m0�e−ik0rm0k0
2


�1 + ik0 cos ���1 + v̄�r���Ḡ�N,4�m0,r��. �29�

The Jacobian matrix that contains elements of type
�I�m0 ,r�� /�d�r�� and ��N�m0 ,r�� /�d�r�� for all nodal
oints r��	 can be estimated by using Eqs. (16) and (29).
n this, one can employ the reciprocity relations (21), (24),
26), and (28) and replace Green’s function G�m0 ,r�� by

R
� �r� ,m0�. The terms GR

� �r� ,m0� can be evaluated for all
odal points r��	 by solving the adjoint of the Frechet
erivative operator given by Eqs. (9) and (10) for a Robin
ource at m0. Apart from this, to compute Eqs. (16) and
29) we need v�r��, the solution of the forward propagation
quation at r�. Therefore the derivative estimation using
he adjoint of the Frechet derivative operator and the
eciprocity relation involves the following steps:

1. For a particular illumination angle �, solve the Fre-
het derivative operator given by Eqs. (6) and (7).

2. For a detector position m0�L+, solve the adjoint op-
rator, i.e., Eqs. (9) and (10).

3. Compute the derivatives by using Eqs. (16) and (29).
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. NUMERICAL EXPERIMENTS
he object is square shaped (Fig. 2) and of dimensions
.08
0.08 m. The background refractive index is 1+ i0
nd has two inhomogeneous inclusions at �x1 ,y1�
�0.025,0.04� and �x2 ,y2�= �0.055,0.04�. The first inhomo-
eneity is real and is of value 1.001+ j0, and the second is
maginary, which is 1+ j0.001. These are represented by a
erturbation f�x ,y� given by

f�x,y� = �
0.001 if ��x − 0.025�2 + �y − 0.04�2 � 0.008

0.001i if ��x − 0.055�2 + �y − 0.04�2 � 0.008

0 otherwise

.

he region of interest for reconstruction is a circle in-
cribed inside the square as shown in Fig. 2. The illumi-
ation direction � is changed by rotating the inscribed
ircle containing the inhomogeneities. The illumination is
plane wave always from the boundary L− and parallel to

he sides. The data ln�I� and �I /�n are generated for vari-
us angles of illumination by solving the forward propa-
ation equation (3) with boundary conditions (4) and (5)
or the total field u on L+.

As mentioned in Section 1, the iterative procedure used
ere employs a variant of the propagation–
ackpropagation strategy used in [6]. In [6] the adjoint of
he forward equation is implemented for backpropagating
he data. Under the assumption that �k � is very large the
0
djoint equation approximates the inverse of the forward
quation. Therefore in [6] one has a generalization of the
imultaneous algebraic reconstruction technique of x-ray
omography with the update for a particular view ob-
ained through solving the adjoint of the Frechet deriva-
ive. With the updated optical properties the computed
ata for the next view is generated, and the algorithm
roceeds by handling the data for this view to arrive at a
ew update vector. Here the spirit of propagation–
ackpropagation strategy is retained, but with a modifi-
ation. The modification is that the adjoint of the Frechet
erivative is used to compute the Jacobian of the forward
ropagation equation, which in turn is used to arrive at
he perturbation equation (see Fig. 1). The perturbation
quation is inverted, by using another iteration, to com-
ute the update vector. This update vector generates the
ew estimate of the object, which is used to continue the
lgorithm, with the data from the next view.
The MOBIIR algorithm shown in Fig. 1 is imple-
ented. The details are as follows: by the finite-element
ethod the object described above is discretized to 1089
odes and 2048 elements. The simulated experimental
ata is obtained by implementing the forward propaga-
ion equation with a finer mesh (4225 nodes, 8192 ele-
ents) for 36 views. The value of the modulus of the

ropagation vector k0 used when solving the propagation
quation, while either generating data or implementing
he MOBIIR algorithm, is 50. A 1% Gaussian noise is
dded to data from each view. Implementation of one full
ig. 3. (Color online) (a) Real part of the input object refractive index distribution. (b) Reconstructed image obtained from the normal
erivative of the measured intensity at the boundary. (c) Cross-sectional plots through the center of the reconstruction in (a), curve (2)
nd the original object, curve (1).



i
i
s
w
r

s
S
t


f

a
i
d
f
t
w
d
d
f
c

6
C
T
a
h

t
g
r
i
t

c
p
t
t

F
l
a

F
h
p
s
s

3096 J. Opt. Soc. Am. A/Vol. 24, No. 10 /October 2007 Varma et al.
teration i.e, inverting data from all 36 views, took 612 s
n a personal computer with a Pentium 4, 3 GHz proces-
or. The algorithm generally converged in 35 iterations,
ith convergence indicated by ��M � �, a small preset er-

or.
The Jacobians corresponding to ln�I� and �I /�n are con-

tructed by using the procedure described in Section 4.
ince the number of nodes is 1089 and the number of de-
ectors on L+ is 32, the Jacobians are of dimension 32
1089 for either the real or the imaginary part of the re-

ractive index.
The reconstructions, which are complex, for both ln�I�

nd �I /�n are predominantly biased toward either the
maginary part [for ln�I� data] or the real part [for �I /�n
ata] of the refractive index distribution. Reconstruction
rom ln�I� indeed had a real part, just as the reconstruc-
ion from �I /�n had an imaginary part, both of which
ere very small, less than 10% compared with their pre-
ominant counterpart. The real part of the refractive in-
ex obtained from �I /�n and the imaginary part obtained
rom ln�I� are shown in Figs. 3 and 4. The results are dis-
ussed further in the next section.

. RESULTS, DISCUSSION, AND
ONCLUSIONS
he reconstructions shown in Figs. 3 and 4 are the real
nd the imaginary parts of the object refractive index in-
omogeneity reconstructed from �I /�n and ln�I�, respec-

ig. 4. (Color online) (a) Imaginary part of the input object ref
ogarithm of the measured intensity at the boundary. (c) Cross-s
nd the original object, curve (1).
ively. The maximum value of the reconstructed inhomo-
eneity is within 15% of its actual value. The
econstructions are spread over a large area around the
nhomogeneity, and this due to the low value of k0 used in
he forward propagation equations.

Figure 5 shows the real part of the refractive index re-
onstructed from �I /�n and ln�I�, and Fig. 6 the imaginary
art reconstructed from these two data types. These show
hat the data �I /�n and ln�I� preferentially reconstruct
he real and the imaginary parts of the refractive index,

index distribution. (b) Reconstructed image obtained from the
l plots through the center of the reconstruction in (a), curve (2)

ig. 5. (Color online) Cross section through the center of the in-
omogeneity of the reconstructions from �I /�n. Curve (a), for real
art of the original object; curve (b), real part of the recon-
tructed refractive index; curve (c), imaginary part of the recon-
tructed refractive index.
ractive
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nd their spillover to imaginary and real parts, respec-
ively, is small (less than 10%). The MOBIIR algorithm
mployed here is computationally more expensive than
he propagation–backpropagation algorithm of [6]. How-
ver, since our data are related to the intensity, in the ab-
ence of a propagation equation for intensity this is the
est adaptation of the algorithm of [6] to implement a re-
onstruction from data based on intensity.

For practical application of this method for diffraction
omographic reconstruction of the refractive index from
ight intensity measurements, it is necessary to imple-

ent the forward propagation equation with large k0. The
mplementation of the Helmholtz equation for large k0
alues is difficult and was investigated by many in the
ast. The attempts include (i) the one-step Galerkin ap-
roximation employing generalized Jacobi approximation
esults (here explicit knowledge of continuous or dis-
retized Green’s function is not required) [27], (ii) a spe-
ially developed boundary element method in which the
pproximation space is designed to take care of the oscil-
ating behavior of the Helmholtz equation for large k0
28], (iii) employing an asymptotic decomposition of the
ave fields to arrive at the high-frequency solution [29],

iv) using appropriately designed marching schemes used
o solve wave and Maxwell’s equations [30], and (v)
avelet-based methods to decompose the high-frequency
roblems into low-frequency subproblems [31]. We are
urrently studying these methods to develop an efficient,
table, and accurate forward solver for use in the iterative
nversion procedure developed in this work. Since we use
isible or near-infrared light, a high-frequency solution
or the Helmholtz equation is necessary to reconstruct the
efractive index distribution of objects of practical inter-
st of dimensions 105–106 times the wavelength. We are
urrently attempting a wavelet-based multiscale decom-
osition of the forward problem into a number of subprob-
ems. Each of these subproblems effectively requires only

small wave number and therefore can be solved by one
f the methods mentioned above. With this modification
e believe that it is possible to have a scheme to recon-

truct the complex refractive index distribution from data
hat are dependent only on light intensity measurement.

ig. 6. (Color online) Cross section through the center of the in-
omogeneity of the reconstructions from ln�I�. Curve (a), imagi-
ary part of the original object; curve (b), imaginary part of the
econstructed refractive index; curve (c), real part of the recon-
tructed refractive index.
PPENDIX A: QUICK ESTIMATION OF THE
ACOBIAN WHEN THE MEASUREMENT
S THE SCATTERED FIELD v„r…
ere we put forth a method for the quick estimation of

he Jacobian when the measurement is v�r�. This is quick
ompared with the methods that rely on the forward
ropagation operator alone or those that make use of the
eynmann diagram, as is done in diffuse optical tomogra-
hy [23]. The method presented here uses the adjoint
orm of the Frechet derivative given by Eq. (A1), which is
erived here by using the same argument and methods
sed in [23] in the context of DOT.
As is seen in the main text the equation for estimating

he perturbation in the scattered field, v��r�, that is due to
perturbation d�r� in the object refractive index f�r� is

iven by

� · �v��r� + 2ik0� · �v��r� − k0
2v��r�f�r� = k0

2�1 + v�r��d�r�

�A1�

ith the boundary conditions

v��r� = 0 on L � L−, v��r� +
�v��r�

�n
= 0 on L+. �A2�

This equation is the Frechet derivative of the forward
perator (3), which describes the forward propagation of
ight through the object. If G��r ,r�� is the Green’s func-
ion associated with Eq. (A1), then the solution v� can be
ritten as

v��r� =�
	

�Gv�r,r��k0
2�1 + v�r���d�r���dnr�. �A3�

ultiplying Eq. (A1) by � belonging to the test function
pace and integrating over 	, we have

�
	

�̄�� · �v� + 2ik0� · �v� − k0
2v�f�dnr =�

	

�̄�k0
2�1 + v�d�dnr.

�A4�

he first term on the left-hand side of Eq. (A4), on appli-
ation of the divergence theorem, becomes

�
	

�̄�� · �v��dnr =�
	

v��� · ��̄�dnr −�
�	

v�
��̄

�n
dn−1r.

�A5�

he second term can be written as

�
	

�2ik0� · �v���̄dnr = −�
	

�2ik0� · ��̄�v�dnr

+�
�	

2ik0v��̄� · ndn−1r. �A6�

ence from Eq. (A4), we have



T

w

E

I
t
t
a

t
h
t
e
t
G
t
t
F
b

v
t
G
(
c
a
t
t
b
e
w
s

R

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

3098 J. Opt. Soc. Am. A/Vol. 24, No. 10 /October 2007 Varma et al.
�
	

�̄�k0
2�1 + v�d�dnr =�

	

v��� · ��̄ − 2ik0� · ��̄ − k0
2�̄f�dnr

−�
�	

��̄

�n
v�dn−1r +�

�	

�v�

�n
�̄dn−1r

+�
�	

�2ik0� · n�v��̄dn−1r. �A7�

hus, if we choose � such that

� · �� + 2ik0� · �� − k0
2�f = 0 on 	 �A8�

ith the boundary conditions

q+ �
���r�

�n
+ ��r��1 + 2ik0� · n� on L+,

��r� = 0 on L � L−, �A9�

q. (A7) can be written as

�
L+

q+̄v�drn−1 = −�
	

�̄�k0
2�1 + v�d�dnr. �A10�

f q+ is a delta function sitting on L+, the boundary where
he light is detected (and the light detector approximates
he � function), the left-hand side of Eq. (A10) picks out v�

t the location m0 in L+ of the � function.
Therefore Eq. (A10) becomes

�
	

�̄�k0
2�1 + v�d�dnr = − v��m0�, m0 � L+. �A11�

Equation (A11) tells us that v��r� is retrieved at the de-
ector location m0, with the help of the integral on its left-
and side. This can be compared with Eq. (A3), which is
he Green’s function solution to the Frechet derivative
quations (A1) and (A2). From this we see that �, which is
he solution of Eqs. (A9) and (A10), acts like an adjoint
reen’s function of Gv�r� in Eq. (A11) with the property

hat Ḡadj
�v� �r� ,m0�=G��m0 ,r��. In this sense Eq. (A9) with

he boundary condition in Eq. (A10) is the adjoint of the
rechet derivative given in Eqs. (A1) and (A2). The Jaco-
ian elements are estimated from Eq. (A3) as

�v�

�d�r��
= Ḡadj

�v� k0
2�1 + v�r���, ∀ r� � 	. �A12�

To implement Eq. (A12) for all r�, one needs to compute
�r�� and Gadj

�v� �r� ,m0�. First, v�r�� is obtained by solving
he equation for forward light propagation (3), and

adj
�v� �r� ,m0� is obtained by solving the adjoint equation

A8), with the Robin source q+ at m0. This helps one to
ompute the Jacobian for one view by solving two bound-
ry value problems. In [6] the solution of the adjoint equa-
ion resulted in an update vector under the assumption
hat k0 is large. This resulted in the propagation–
ackpropagation algorithm of [6]. But here the adjoint
quation helps us compute the Jacobian matrix, with
hich a perturbation equation is set up, whose iterative

olution results in the update vector.
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