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We present an optical tomographic reconstruction method to recover the complex refractive index distribution
from boundary measurements based on intensity, which are the logarithm of intensity and normal derivative
of intensity. The method, which is iterative, repeatedly implements the forward propagation equation for light
amplitude, the Helmholtz equation, and computes appropriate sensitivity matrices for these measurements.
The sensitivity matrices are computed by solving the forward propagation equation for light and its adjoint.
The results of numerical experiments show that the data types In(I) and JI/dn reconstructed, respectively, the
imaginary and the real part of the object refractive index distribution. Moreover, the imaginary part of the
refractive index reconstructed from 9I/dn and the real part from In(Z) failed to show the object’s inhomogeneity.
The value of the propagation constant, &, used in our simulations was 50, and this value resulted in smoothing
of the reconstructed inhomogeneities. Thus we have shown that it is possible to reconstruct the complex re-
fractive index distribution directly from the measured intensity without having to first find the light ampli-
tude, as is done in most of the currently available reconstruction algorithms of diffraction tomography. © 2007

Optical Society of America
OCIS codes: 050.1940, 110.6960, 290.3200.

1. INTRODUCTION

For the reconstruction of the complex refractive index of
objects at a spatial resolution comparable with the wave-
length of radiation used to interrogate the object, diffrac-
tion tomography is employed [1,2]. Diffraction tomogra-
phy provides inversion algorithms based on the Fourier
diffraction theorem, such as filtered backpropagation or
the direct Fourier method, under the assumption of weak
scattering. In addition to these noniterative methods,
there are also iterative methods employed for solving the
inverse problem, which have provisions to circumvent the
weak scattering approximation [3,4,6]. Under these
schemes, the Helmholtz equation is inverted either di-
rectly or indirectly, through repeated implementation of
the forward operator and its adjoint, for recovering the
complex refractive index distribution [6]. In these two
methods the data on the boundary constitute the complex
amplitude, which is the sum of the incident and the scat-
tered field, and a complete data set should have both the
intensity and phase of the transmitted light. Whereas the
intensity is easily detected by photodetectors or CCD ar-
rays, phase is not; phase detection requires indirect and
experimentally complex measurement methods [7]. Phase
recovery from the intensity measurement is also em-
ployed to retrieve the complex amplitude from the inten-
sity data [8-10], which in turn is used in the noniterative
diffraction tomographic algorithm to reconstruct the com-
plex refractive index distribution [11]. One of the methods
used for phase recovery uses the transport of intensity
equation (TIE) [8], which is a partial differential equation
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connecting the wavefront (i.e., phase) to the axial trans-
port of intensity (i.e., the normal derivative of the inten-
sity).

Since a complete recovery of the complex amplitude
data is cumbersome, there have been many attempts to
reconstruct the refractive index distribution directly from
the measured intensity data [12—14]. Under this category
falls the method that treats the intensity recorded at the
far field as a Gabor hologram [15], the reconstruction
from which yields the correct refractive index along with
its twin image and a constant intensity term. In another
proposed method [13], which is close to the method pro-
posed here, the complex refractive index distribution of
the scattering objects with well-localized Fourier spectra
are reconstructed from a number of intensity measure-
ments on several planes. Here again the retrieval of the
Fourier spectrum of the scattering object is dependent on
its twin image’s being either separated or small. (Small-
ness is ensured when the distance between the planes
where the intensities are measured tends to zero).

In this work, we propose an iterative reconstruction
procedure that successfully retrieves the real and imagi-
nary parts of the complex refractive index from the mea-
surement of the two data types derived from the complex
amplitude at the boundary. The data types are the loga-
rithm of intensity [In(I)] and the normal derivative of the
intensity (dI/dn), which are intuitively selected keeping in
mind the following facts: (i) the intensity of the transmit-
ted light is affected primarily by the imaginary part of the
object refractive index; (ii) the normal derivative of the in-
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tensity, which determines the intensity transport across
the wavefront, is controlled primarily by the curvature of
the wavefront, which in turn is dependent on the real part
of the refractive index of the object through which the
light is propagated. The TIE itself has I and dI/dn as pa-
rameters from which the phase of the wave is often recon-
structed [16].

Accurate measurement of the normal derivative of in-
tensity, dI/dn, is crucial in the practical application of TTE
for phase recovery. This has been addressed in a number
of recent publications [17-20]. The inverse problem ad-
dressed here, which is the direct recovery of the refractive
index from In(I) and dI/dn, is also critically dependent on
accurate measurement of 9I/dn from I. For phase recon-
struction using TIE, JI/dz, the axial intensity transport,
which is dI/dn for paraxial propagation of light along the
z axis, is approximated by the finite-difference formula
[I1(x,y,z+dz)-I5(x,y,z)]/dz. Here I; and I are the inten-
sities captured by a CCD array at the transverse plane
z+dz and z, respectively. For a more accurate estimation
of I/ dz in the context of application in the TIE, I(x,y,z) is
measured at a number of transverse planes across the z
axis from which I and dI/dz are approximated through in-
terpolation [20].

The reconstruction method presented here uses an it-
erative procedure similar to the so-called model-based it-
erative image reconstruction (MOBIIR) procedure of dif-
fuse optical tomography (DOT) [21,22]. In DOT one
makes use of different data types derived from the photon
flux at the boundary. The types of data used in DOT are
the intensity, expected time of arrival of a pulse, the am-
plitude and phase of the detected photon flux from an
intensity-modulated illumination, etc. The MOBIIR algo-
rithm repeatedly solves the forward problem and the per-
turbation equation connecting the change in the data to
the change in the optical property through the Jacobian
estimated for the particular data to be considered. In
adapting this technique for the diffraction tomography
problem at hand, data from each view (or projection),
which are either In(I) or dI/dz, are handled separately for
reconstructing the refractive index, similar to the
propagation—backpropagation strategy proposed and used
in [6] in the context of ultrasound tomography. The com-
ponents of the Jacobian here are the rate of the change of
measurements, In() and JI/dz, with respect to the dis-
cretized optical properties of the object in the pixels. The
details of estimating the Jacobian are given in
Appendix A.

One interesting aspect of our procedure is that we do
not solve two boundary value problems to reconstruct an
update vector, namely, the forward problem and the ad-
joint of the Frechet derivative of the forward operator as
is done in [6]. Instead the adjoint is used for a quick esti-
mation of the Jacobian of the forward operator, which is
used in the perturbation equation of the forward operator
connecting measurement changes to changes in the re-
fractive index. This perturbation equation is solved to up-
date the initial distribution.

The organization of the rest of the paper is as follows:
in Section 2, we introduce the MOBIIR adapted to the re-
covery of the complex refractive index distribution from
the intensity-based measurements. In Section 3, we intro-
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duce the forward propagation equation for light ampli-
tude, based on the Helmholtz equation. The Jacobian cal-
culation for the two data types is explained in Section 4.
Section 5 describes the numerical experiments, where a
simulated refractive index distribution is reconstructed
by using the MOBIIR algorithm. Discussion of results and
concluding remarks are in Section 6. The procedure used
to estimate the Jacobian for the two measurements that
employ the adjoint of the Frechet derivative of the for-
ward propagation equation is described in Appendix A.

2. ITERATIVE RECONSTRUCTION
ALGORITHM

The proposed reconstruction algorithm is shown in the
block diagram of Fig. 1. There are two iterations, an inner
and an outer, in the usual inversion that involves basi-
cally two major steps. The first step involves the imple-
mentation of the forward propagation equation, which
computes an approximation to the experimental data
given the optical properties (the complex refractive index)
of the object. The forward propagation equation, which is
based on the Helmholtz equation, is further discussed in
Section 3. It computes the perturbation in the output
complex amplitude u, given the perturbation in the opti-
cal properties of the object. From this perturbation we can
find the total complex field at the boundary by adding the
input amplitude u(, which is a plane wave. The data are
computed from u=uq+u,, the total field at the boundary,
and are (i) the logarithm of intensity I, which is [
=(|lug+uy|?), and (ii) the normal derivative of the intensity,
allon.

The second major step is the calculation of Jacobian
matrix corresponding to the two data types of interest.
One element of the Jacobian matrix for the data type

FORWARD MODEL INITIAL GUESS
FIfl ' fe
']
ESTIMATED MEASUREMENT
M =JF[ 7]
! EXPERIMENTAL
_ DATA {One view
aM‘I"’ie'Mc k_ at a time} M
¥es
NEW GUESS d STOP
f'i+1 —_ fz' + d
MNao
TAYLOR EXPANSION
=, - M, = d FFO
¥
’ CALCULATE GRADIENT J ‘
INNER ITERATION

Min |1 - 1[d] |

Fig. 1. MOBIIR algorithm: the inputs are the experimental
measurement M, and the initial guess of the optical property f°.
The algorithm has two iterative loops, the outer and the inner. In
the outer loop, the perturbation equation is updated, and in the
inner loop the perturbation equation is solved for the optical
property distribution.



Varma et al.

dl/dn is the rate of change of dI/dn with respect to the real
or imaginary part of the refractive index at a particular
node under consideration. If the object is discretized by
using the finite-element method to N nodal values of the
complex refractive index, the Jacobian for one measure-
ment will have 2N elements consisting of derivatives with
respect to real and imaginary parts of the refractive index
at these nodes. The strategy of the inversion algorithm
described in Fig. 1, which uses only the forward propaga-
tion equation and the Jacobian (or sensitivity matrix), is
given below.

Given a set of experimental measurements In([)
=In[{|ug+us®] or dl/dn corresponding to the different
angles of illumination, the algorithm starts with an initial
guess of the optical properties, for example, the back-
ground values. For these optical properties the measure-
ments M, are computed and compared with their experi-
mental counterparts, M,, and the perturbations AM
=M,-M, are obtained. From the knowledge of the Jaco-
bian evaluated at the current estimate of the optical prop-
erties, a perturbation equation AM=J-[Af] is set up con-
necting AM to a perturbation Af in optical properties. A
regularized and normalized version of the perturbation
equation JTAM =JT-J-[Af+\-1,;], where I, is the identity
matrix, is solved for Af by minimizing the norm |JTAM
—JT-J-[Af+\-1,]I? with respect to f by using either a con-
jugate gradient scheme or a quasi-Newton algorithm.
Here \ is the regularization parameter fixed by heuristic
methods. This last iteration is represented by the inner
loop in the reconstruction algorithm of Fig. 1. The Af; ob-
tained from the inner loop is used to update the current
optical properties as f*!=f +Af, which are the inputs to
the forward operator to continue the outer iteration. The
Jacobian also needs to be recomputed, and the perturba-
tion equation is updated with the current Jacobian and
AM.

In the implementation of the MOBIIR algorithm we fol-
low the strategy of splitting the perturbation equation
into those pertaining to data from each view. One angle of
input illumination gives data for a particular view. Once
the perturbation equation for one view is solved for the re-
fractive index distribution, it is updated and used to form
the new perturbation equation pertaining to the data
from the next view. When we have gone through the data
from all views, the entire procedure is repeated, starting
from the first view. The stopping criterion for the iteration
is ensuring that the mean square error between M, and
M., i.e., |M,-M,_? has reached a minimum.

As is seen from the above discussion, the two major is-
sues to be tackled are the implementation of the forward
operator and the calculation of the Jacobian for the two
data types In(I) and dI/dn. The implementation of these
two steps is described in the following sections.

3. IMPLEMENTATION OF THE FORWARD
OPERATOR

The propagation of monochromatic wave of wavelength \
through a medium of refractive index distribution n(r) is
governed by the Helmholtz equation
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V- Vu(r) + k%u(r) =0. (1)

Here u(r) is the complex amplitude of the wave and k(r)
=n(r)(2m/\y) is the modulus of the propagation vector.
Considering n(r)=1+n4r), where n4r) is a small pertur-
bation to the background medium, which is air, whose re-
fractive index is 1, we can approximate Eq. (1) as

V- Vu(r) + k(1 - f(r))u(r) =0, (2)
where f(r) is given by
f(r)=—2n5(r), k0=277/)\0.

Here we point out that the approximation used does not
preclude refractive index distributions disallowed under
Born or Rytov approximations [5]. The approximation un-
der which the Jacobian is estimated, i.e, |[u°] <u, (see
Section 4) does not put any restriction on f(r) but only on
d(r), the perturbation in f(r). This is easily justified for
reaching f(r) from f°(r) through a large number of itera-
tions.

The object, assumed to be 2D and square shaped with
boundaries L, L™, and L*, as shown in Fig. 2, is illumi-
nated with a plane wave e**0"?. Here 6 is the unit vector
in the propagation direction given by

—sin ¢
0=
cos¢p )’
where r € R? and ¢ is the angle of illumination. The total
field u(r) at any point in the medium is given by the sum

of the incident wave e*or? and the scattered wave
v(r)etkor?; that is,

u(r) = e i1 + v(r)).

Therefore Eq. (2) can be rewritten as an equation connect-
ing f(r), the perturbation in the refractive index and v(r):

V' X

L* L

Detectar
Array

Source

L

Fig. 2. Data collection geometry: the object, which is circular, is
enclosed in a square region bounded by L UL~ UL*. The source is
a monochromatic plane wave incident on L~, and the transmitted
intensity is detected at L*. Data for different views are gathered
by rotating the circular region, which contains the inhomogene-
ity in refractive index.
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V- Vo(r) + 2ik0- Vo(r) - Ko (@)f(r) = k2f(r).  (3)

Equation (3) is the forward propagation equation with the
following boundary conditions:

v(ir)=goonL, v(r)=0onlL", (4)

dv(r)

v(r) + =0onL*. (5)

Here dv(r)/dn is the normal derivative of v(r) on L*. The
Robin boundary condition (5) on L* indicates that there is
no boundary reflection of light allowed into the medium
from L*. The significance of the Dirichlet boundary condi-
tion on L~ is that backscattering is negligibly small, and
therefore the scattered amplitude v(r) reaching the
boundary from where the illumination is put is zero [6].

The Frechet derivative operator corresponding to for-
ward propagation equation (3) is obtained by substituting
the perturbed scattered field v(r)+v%r) and its cause, a
perturbed object function f(r)+d(r), into Eq. (3), which
gives

V- Voi(r) + 2iko0- Voi(r) — k5uo(r)f(r) = k2 oL +v(r))d(r).

(6)

The boundary conditions for the Frechet derivative of the
forward propagation equation are

vi(r)

vr)=0onLUL", vir)+ =0onL*. (7)

Formally, we call the above operator the Frechet deriva-
tive of the forward propagation equation even though it
solves for v¥(r), the error in v(r) caused by d(r), an error

in f(r).

4. CALCULATION OF JACOBIAN FOR THE
TWO DATA TYPES

For implementing the MOBIIR algorithm for each itera-
tion, we need to update the computed data by solving the
forward propagation equation for the current estimate of
the refractive index and also the perturbation equation
connecting the perturbation of the measurement to the
perturbation of the refractive index through a suitable
Jacobian (or sensitivity) matrix. As indicated earlier we
employ two measurements derived from the total field
measured on L* for various values of 6. They are the loga-
rithm of intensity /(r) and normal derivative of intensity
ol(r)/dn. In the following we describe how the Jacobians
are estimated for the two data types [23-26].

A. For Logarithm of Intensity

The measurement obtained from u(r) is given by I}
=In(uu). For evaluating the Jacobian one needs to arrive
at the change F}s in the measurement brought about by
the change d(r) in f(r), the refractive index distribution.
Assuming that u(r) becomes u(r)+u%r) when f(r) be-
comes f(r)+d(r), we can write F}S as
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FI =In(ui + ut’ + u’u + u’u’® - In(uit)

uit + utt’ + ulu + u’u’ ut’+u’n
=In =~ In 1+—_ .

uu uu

Assuming |(uiz’+uu)/ui| <1, we get

s uii’ + u’u u° u®
[f=———=| =]+ |
uu u u

The relation connecting 1 and v? is given by
u5= (1 +U+ Uﬁ)eikor-ﬂ_ (1 + U)eikor 6_ v elkol‘ 0

We notice that I'] is real and has two terms (say I'}; and
re 12), one being the complex conjugate of the other.
Contribution from FI 1=1/u)-v 9.¢thord We have

vo= uF}ile“kOM. (8)
The Robin boundary condition on L* gives

o’
- _ urﬁ —zkor-f)'
on

The adjoint operator of the Frechet derivative operator (6)
is given by [6]

V- Vir) + 2iky0- Vij(r) — kof(r Ur)=0 9)

with boundary conditions

A(r)
an

+ (r)(1 +2iky6-n)=q* on L™,

y(ry=0onLUL". (10)

Here g* is a Robin source on the boundary L*. Multiply-

ing Eq. (6) by ¢, integrating the product over the whole
domain (), and using the Green’s theorem and Eq. (9), we
get the relation (after a short calculation)

W _ " avﬁdn_l
fL+ £+lﬂ(1—2l Oe-n) E r
=f [£2(1 + v(r))d(r))y(r)d r.
Q

Then for any Robin source ¢g*, we have

_+(9v5(r) -
JU q P d"'r

= f kX1 +v(r))d(r)y(r)d r. (11)
Q

When ¢* is a point source on the boundary (), the surface
integral on the left-hand side of Eq. (11) picks up a mea-
surement at that point only with strength given by
dv®/dn, which is related to the first part of the measure-
ment through
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5 10v°
rl,l - — ezkorﬂ

u dn

where r e 9Q). Therefore

eikormo

Fil(mo) =-

f EX(1+v(x)d(®) G4’ me)d"r’
Q

u(my)

(12)

Here ry, =r-6for r=mg e L* and G4(r,m,) is the Green’s
function for the adjoint operator (9). But v’ can be ob-
tained from the Frechet derivative operator (6), through
its Green’s function as

vi(my) = f [Gv(mo,r’)kg(l +v(r’))d(x")d™r'].
Q

Therefore

eikormo

u(my)

Fil(mo) = f k(z,(l + v(1"))d(r’)Grf,l(mO,r’)d"r’
Q

(13)

Comparing Egs. (12) and (13) and using the fact that the
Robin source ¢* at the boundary picks out only the mea-
surement at m, on the boundary, we see that the solution
¢ to Eq. (9) is an adjoint Green’s function G%(r’ ,mg) with
the property

Gli(mg,r') = — GL(r',my). (14)

This establishes the reciprocity relation that exists be-
tween the secondary sources at r’ and the detector at m,,
which is crucial in the quick estimation of the Jacobian.

Since l"I2 is the complex conjugate of FI 1> the expres-
sions for FI , are the complex conjugates of those given by
Eqgs. (12) and (13). The reciprocity relation can also be de-
rived for I'? 12 which is

C_;FI&,Z(mO,r’) =-GH(r',my). (15)

Therefore the sensitivity relation for Ff=F21+I‘f’2 is
given by

ﬁrl(mo,r,) eikormo

od(x’)  u(my)

e—ikormo

EX(1 +v(r'))G 1(mg,r")

E2(1+0(r")G 72(mg,r'). (16)

+
ﬁ(mo

The reciprocity relations in Eqs. (14) and (15) can be
used to estimate the derivative dl';(mg,r’)/dd(r’) at all
points r’' € O simultaneously by estimating Gy(r',m),
the Green’s function for the adjoint form of the Frechet
derivative operator for a Robin source at m and v(r’), the

solution of Eq. (3).

B. Normal Derivative of Intensity

The second measurement obtained from u(r) is 'y
=0dl/dn at L* where n is the unit vector normal to L*. For
evaluating the Jacobian, we need the change in measure-
ment I‘fv due to the change d(r) in f(r), which is given by
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utt’ + u’n +u’n?)

F:
N an

é 3

Since u? is very small, ©°z?% can be neglected compared
with the other terms, which gives

lui’ +u’u)
N= an
Expanding and rearranging, we get

ou®  ou  ou’  ou
My=t— +u°—+u— +u’—
on on on on

=R+ TR+ TRs+ Tg (17)

As FNS_FN 1 and I‘N4_FN 9, the change in measurement
FN is a real quantity.

1. Contribution from the First Term Fl‘z,’l and Pertinent
Reciprocity Relation
Using the relation between 1 and v?, it is easy to see that

8,ikgr:
5oz J[vet*or ]
N1 on

Expanding, rearranging, and using Eq. (7), we get
5_

1_‘5 a[eikor'g]
L p—
v’ N1 on

on wetor?

av(s_ a[eikor-ﬂ]

on on
= — . (18)

The term dJ[e***"%/dn] can be evaluated as follows: con-
sidering the normal direction at L* along the y axis and
6= (-sin ¢, cos ¢), we have

a[eikor-ﬁ]

= ™%k cos .
an

Using the above relation, dv% dn restricted to L* can be

obtained as
v’ ij,,l 1
n ||, " gettor?| 1-jkgcos ¢ |

Substituting into Eq. (11) and taking ¢* as a point source
at m,, we have

rzfl,l(mo) = etkormogi (m)[1 - ik cos ¢]

Xf k(z,(l + v(r’))d(r’)é%(r’,mo)d"r’
Q

(19)

But v? can be expressed in terms of the Green’s function
solution for the equation for the Frechet derivative as
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vg(mo) = J [Gv(mo,r’)kg(l +vu(r')d(x’)]d"r’.
Q

Therefore the change in the first term of measurement
Fg,’l(mo), in terms of the Green’s function, is

% 1(mg) = Z(mg)e™o™my(1 - ik cos ¢)
X J G™Va(mg,r')E3(1 +v(r')d(x))d .
)

(20)

Comparing Eqgs. (19) and (20), as above, we have the fol-
lowing reciprocity relation with respect to Flfm:

Gh(r';mg) = G™¥i(mg,r"). (21)

2. Contribution from the Second term 1"]5\,,2 and
Reciprocity Relation
The second term in the measurement is

5 _ =5
FNo=—u’.
on

Using the relation connecting »° and v?, we have

79 -tkor-6
FN72€ o

dulon

Following a procedure similar to the one adopted in the
previous subsection, we can derive the expressions for
Fz{r,z(mo) starting from Egs. (9) and (10) (adjoint of the
Frechet derivative) or Eqgs. (3), (6), and (7) (the Frechet
derivative operator itself). They are

du(my)

Fl‘zm(mo) = — ¢ thorm,
an

XJ k%(l+ﬂ(r’))(_i(r’)G%(r’,mo)d”r’,
Q

(22)
Ju(my)
Fgm(mo) - _ " e~ tkotm,,
% f G"N2(mg, v k(1 +D(r")d(x')d"r'.
Q
(23)

Comparing Egs. (22) and (23), we arrive at the reciprocity
relation of the second term Fl‘f,z,

Gp(r',;mg) = G™V2(my,r'). (24)

The third part, given by ij,ﬁ(mo):u(ﬁﬁ‘s/ﬁn), is the
complex conjugate of the first part, and therefore the ex-
pression for change in the measurement, F]‘f,,s(mo), is
given by
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rzév,s(mo) = e~ hommoy (m)[ 1 + ikg cos @]
XJ kg(l + l_)(r’))c_l(r’)G%(r’,mO)d”r’.
Q

(25)

The reciprocity relation obtained here is

G%(r’,mo) = GFN’S(m&r’) . (26)

Similarly, the fourth term I’I‘z,A:u‘s(éﬁ/ on) is the com-
plex conjugate of the second term, and therefore the
change in measurement, F]‘f,, 4(my), is given by

du(my)

F]‘z,A(mO) = — etkorm,
on

XJ kg(l + v(r’))d(r’)é%(r’,mo)d”r’.
Q

(27)

The reciprocity relation is

Gi(r',;mg) = G'™V4(my,r). (28)

Combining Egs. (20), (22), (25), and (27) and the reci-
procity relations, the sensitivity relation for the measure-
ment ['y is given by

aFN(m(br,)

e = mo (1~ ko cos G)(1+v(x)

m,)

XGN1(mg,r") — e Form,

k21 +0(x"))

- . du(my) 9
XG'N2(mg,r') — e"*0'm, ko(1+v(r'))

X G'N3(mg,r") + u(mg)e Formok?

X (1 +ikgcos ¢)(1+0(x")G Na(my,x'). (29)

The Jacobian matrix that contains elements of type
rmg,r')/ad(r’) and o' n(mg,r’)/dd(xr’) for all nodal
points r’ € () can be estimated by using Eqgs. (16) and (29).
In this, one can employ the reciprocity relations (21), (24),
(26), and (28) and replace Green’s function G(mg,r’) by
G}@(r’ ,mg). The terms G}’é(r’ ,m) can be evaluated for all
nodal points r’ € ) by solving the adjoint of the Frechet
derivative operator given by Eqs. (9) and (10) for a Robin
source at m,. Apart from this, to compute Eqgs. (16) and
(29) we need v(r’), the solution of the forward propagation
equation at r’. Therefore the derivative estimation using
the adjoint of the Frechet derivative operator and the
reciprocity relation involves the following steps:

1. For a particular illumination angle 6, solve the Fre-
chet derivative operator given by Eqgs. (6) and (7).

2. For a detector position m( € L*, solve the adjoint op-
erator, i.e., Egs. (9) and (10).

3. Compute the derivatives by using Eqgs. (16) and (29).
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5. NUMERICAL EXPERIMENTS

The object is square shaped (Fig. 2) and of dimensions
0.08X0.08 m. The background refractive index is 1+i0
and has two inhomogeneous inclusions at (x;,y;)
=(0.025,0.04) and (x9,y2)=(0.055,0.04). The first inhomo-
geneity is real and is of value 1.001+,0, and the second is
imaginary, which is 1+;0.001. These are represented by a
perturbation f(x,y) given by

0.001 if \/(x - 0.025)% + (y — 0.04)> = 0.008
fla,y)=10.001i  if \/(x — 0.055)* + (y — 0.04)? = 0.008.

0 otherwise

The region of interest for reconstruction is a circle in-
scribed inside the square as shown in Fig. 2. The illumi-
nation direction 6 is changed by rotating the inscribed
circle containing the inhomogeneities. The illumination is
a plane wave always from the boundary L~ and parallel to
the sides. The data In(/) and dI/dn are generated for vari-
ous angles of illumination by solving the forward propa-
gation equation (3) with boundary conditions (4) and (5)
for the total field v on L*.

As mentioned in Section 1, the iterative procedure used
here employs a variant of the propagation—
backpropagation strategy used in [6]. In [6] the adjoint of
the forward equation is implemented for backpropagating
the data. Under the assumption that || is very large the

0.08;

0.06

0.04 .

0.02

0 002 004 006 008
(a)

--=(1)

0 0.02 0.04 0.06 0.08
Detector p?s)ition (meters)
C
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adjoint equation approximates the inverse of the forward
equation. Therefore in [6] one has a generalization of the
simultaneous algebraic reconstruction technique of x-ray
tomography with the update for a particular view ob-
tained through solving the adjoint of the Frechet deriva-
tive. With the updated optical properties the computed
data for the next view is generated, and the algorithm
proceeds by handling the data for this view to arrive at a
new update vector. Here the spirit of propagation—
backpropagation strategy is retained, but with a modifi-
cation. The modification is that the adjoint of the Frechet
derivative is used to compute the Jacobian of the forward
propagation equation, which in turn is used to arrive at
the perturbation equation (see Fig. 1). The perturbation
equation is inverted, by using another iteration, to com-
pute the update vector. This update vector generates the
new estimate of the object, which is used to continue the
algorithm, with the data from the next view.

The MOBIIR algorithm shown in Fig. 1 is imple-
mented. The details are as follows: by the finite-element
method the object described above is discretized to 1089
nodes and 2048 elements. The simulated experimental
data is obtained by implementing the forward propaga-
tion equation with a finer mesh (4225 nodes, 8192 ele-
ments) for 36 views. The value of the modulus of the
propagation vector %, used when solving the propagation
equation, while either generating data or implementing
the MOBIIR algorithm, is 50. A 1% Gaussian noise is
added to data from each view. Implementation of one full

0.08
0.06
0.04
0.02
00

0.02 0.04 0.06 0.08
(b)

x 107

Fig. 3. (Color online) (a) Real part of the input object refractive index distribution. (b) Reconstructed image obtained from the normal
derivative of the measured intensity at the boundary. (¢) Cross-sectional plots through the center of the reconstruction in (a), curve (2)

and the original object, curve (1).
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Fig. 4. (Color online) (a) Imaginary part of the input object refractive index distribution. (b) Reconstructed image obtained from the
logarithm of the measured intensity at the boundary. (c) Cross-sectional plots through the center of the reconstruction in (a), curve (2)

and the original object, curve (1).

iteration i.e, inverting data from all 36 views, took 612s
in a personal computer with a Pentium 4, 3 GHz proces-
sor. The algorithm generally converged in 35 iterations,
with convergence indicated by ||M|| <, a small preset er-
TOT.

The Jacobians corresponding to In(Z) and dI/Jn are con-
structed by using the procedure described in Section 4.
Since the number of nodes is 1089 and the number of de-
tectors on L* is 32, the Jacobians are of dimension 32
X 1089 for either the real or the imaginary part of the re-
fractive index.

The reconstructions, which are complex, for both In(I)
and dl/dn are predominantly biased toward either the
imaginary part [for In(/) data] or the real part [for dI/dn
data] of the refractive index distribution. Reconstruction
from In(/) indeed had a real part, just as the reconstruc-
tion from dI/dn had an imaginary part, both of which
were very small, less than 10% compared with their pre-
dominant counterpart. The real part of the refractive in-
dex obtained from JI/dn and the imaginary part obtained
from In(Z) are shown in Figs. 3 and 4. The results are dis-
cussed further in the next section.

6. RESULTS, DISCUSSION, AND
CONCLUSIONS

The reconstructions shown in Figs. 3 and 4 are the real
and the imaginary parts of the object refractive index in-
homogeneity reconstructed from dI/dn and In(I), respec-

tively. The maximum value of the reconstructed inhomo-
geneity is within 15% of its actual value. The
reconstructions are spread over a large area around the
inhomogeneity, and this due to the low value of £, used in
the forward propagation equations.

Figure 5 shows the real part of the refractive index re-
constructed from 0I/dn and In(I), and Fig. 6 the imaginary
part reconstructed from these two data types. These show
that the data dI/dn and In(I) preferentially reconstruct
the real and the imaginary parts of the refractive index,

---(a)
()
msm(e)

Relf(r)]

0 0.02 0.04 0.06 0.08
Detector position (meters)

Fig. 5. (Color online) Cross section through the center of the in-
homogeneity of the reconstructions from dI/dn. Curve (a), for real
part of the original object; curve (b), real part of the recon-
structed refractive index; curve (c), imaginary part of the recon-
structed refractive index.
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Fig. 6. (Color online) Cross section through the center of the in-
homogeneity of the reconstructions from In(Z). Curve (a), imagi-
nary part of the original object; curve (b), imaginary part of the
reconstructed refractive index; curve (c), real part of the recon-
structed refractive index.

and their spillover to imaginary and real parts, respec-
tively, is small (less than 10%). The MOBIIR algorithm
employed here is computationally more expensive than
the propagation—backpropagation algorithm of [6]. How-
ever, since our data are related to the intensity, in the ab-
sence of a propagation equation for intensity this is the
best adaptation of the algorithm of [6] to implement a re-
construction from data based on intensity.

For practical application of this method for diffraction
tomographic reconstruction of the refractive index from
light intensity measurements, it is necessary to imple-
ment the forward propagation equation with large k(. The
implementation of the Helmholtz equation for large &
values is difficult and was investigated by many in the
past. The attempts include (i) the one-step Galerkin ap-
proximation employing generalized Jacobi approximation
results (here explicit knowledge of continuous or dis-
cretized Green’s function is not required) [27], (ii) a spe-
cially developed boundary element method in which the
approximation space is designed to take care of the oscil-
lating behavior of the Helmholtz equation for large %
[28], (iii) employing an asymptotic decomposition of the
wave fields to arrive at the high-frequency solution [29],
(iv) using appropriately designed marching schemes used
to solve wave and Maxwell’s equations [30], and (v)
wavelet-based methods to decompose the high-frequency
problems into low-frequency subproblems [31]. We are
currently studying these methods to develop an efficient,
stable, and accurate forward solver for use in the iterative
inversion procedure developed in this work. Since we use
visible or near-infrared light, a high-frequency solution
for the Helmholtz equation is necessary to reconstruct the
refractive index distribution of objects of practical inter-
est of dimensions 10°—10°% times the wavelength. We are
currently attempting a wavelet-based multiscale decom-
position of the forward problem into a number of subprob-
lems. Each of these subproblems effectively requires only
a small wave number and therefore can be solved by one
of the methods mentioned above. With this modification
we believe that it is possible to have a scheme to recon-
struct the complex refractive index distribution from data
that are dependent only on light intensity measurement.
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APPENDIX A: QUICK ESTIMATION OF THE
JACOBIAN WHEN THE MEASUREMENT

IS THE SCATTERED FIELD v(r)

Here we put forth a method for the quick estimation of
the Jacobian when the measurement is v(r). This is quick
compared with the methods that rely on the forward
propagation operator alone or those that make use of the
Feynmann diagram, as is done in diffuse optical tomogra-
phy [23]. The method presented here uses the adjoint
form of the Frechet derivative given by Eq. (A1), which is
derived here by using the same argument and methods
used in [23] in the context of DOT.

As is seen in the main text the equation for estimating
the perturbation in the scattered field, v%r), that is due to
a perturbation d(r) in the object refractive index f(r) is
given by

V- Vol(r) + 2iko6- Voo(r) - k2vi(xr)f(r) = k2(1 + v(r))d(r)
(A1)

with the boundary conditions

v (r)
vir)=0on LUL™, vir)+

=0onL*. (A2)

This equation is the Frechet derivative of the forward
operator (3), which describes the forward propagation of
light through the object. If G(r,r’) is the Green’s func-
tion associated with Eq. (A1), then the solution v° can be
written as

vo(r) =f [G(r,x kL1 +v(x'))d(x")]d"r".  (A3)
Q

Multiplying Eq. (A1) by ¢ belonging to the test function
space and integrating over (), we have

j@[V-Vu5+2ik00~Vu5—kgu5ﬂdﬂr=f YR +v)d]d r.
Q )
(A4)

The first term on the left-hand side of Eq. (A4), on appli-
cation of the divergence theorem, becomes

i
f WV - Voold™r = f vV - Vyld'r - f v‘s—wd"‘lr.
a Q on

9]

(A5)

The second term can be written as
f (2ik o6~ Voo)yd™r = — f (2iko6- Vi)vod"r
Q Q
+ f 2ikqv’y6-nd*'r. (A6)
0]

Hence from Eq. (A4), we have
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f:,_//[kg(1+v)d]d”r=f vV - V= 2iko0- V- kZyfld"r
QO QO

Y w’_
_f —U(Sdn_ll‘+f —lﬂdn_ll‘
a0 o a0 N
+ J (2iko60- n)vyd" r. (A7)
a0

Thus, if we choose ¢ such that
V- Vip+2iko0- Vip—k2yf=0 on Q (A8)
with the boundary conditions
IY(r)

i
qt= p +(r)(1 + 2iko6-n) on L*,
n

y(ry=0on LUL", (A9)

Eq. (A7) can be written as

f gvodrl=— f HEX1+v)dldr.  (A10)
L Q

If ¢* is a delta function sitting on L*, the boundary where
the light is detected (and the light detector approximates
the & function), the left-hand side of Eq. (A10) picks out v?
at the location m in L* of the & function.

Therefore Eq. (A10) becomes

f k(1 +v)d]d"r =-v%m,), myeL*. (All)
Q

Equation (A11) tells us that v¥r) is retrieved at the de-
tector location mg, with the help of the integral on its left-
hand side. This can be compared with Eq. (A3), which is
the Green’s function solution to the Frechet derivative
equations (Al) and (A2). From this we see that ¢, which is
the solution of Egs. (A9) and (A10), acts like an adjoint
Green’s function of G¥(r) in Eq. (A1l) with the property

that G;‘gj(r’,mth‘f’(mo,r’). In this sense Eq. (A9) with
the boundary condition in Eq. (A10) is the adjoint of the
Frechet derivative given in Eqgs. (A1) and (A2). The Jaco-

bian elements are estimated from Eq. (A3) as
s
v

=GYRI1+v(r)],

. Vr' e Q.
ad(r) e v

(A12)

To implement Eq. (A12) for all r’, one needs to compute
v(r’) and Gé’i}j(r’,mo). First, v(r’) is obtained by solving
the equation for forward light propagation (3), and
G;’gj(r’,mo) is obtained by solving the adjoint equation
(A8), with the Robin source q* at mg. This helps one to
compute the Jacobian for one view by solving two bound-
ary value problems. In [6] the solution of the adjoint equa-
tion resulted in an update vector under the assumption
that %, is large. This resulted in the propagation—
backpropagation algorithm of [6]. But here the adjoint
equation helps us compute the Jacobian matrix, with
which a perturbation equation is set up, whose iterative
solution results in the update vector.
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