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Abstract

In this paper we shall study the existence of local and global solutions of the frac-
tional order integral equations in an arbitrary Banach space by using the semigroup
theory of linear operators and Schauder’s fixed point theorem. We also give some ex-
amples to illustrate the applications of the abstract results.
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1 Introduction

We consider the following fractional order integral equations in a Banach space (X, ‖.‖) :

u(t) = u0 +
1

Γ(β)

∫ t

0

(t− θ)β−1(−Au(θ))dθ

+
1

Γ(β)

∫ t

0

(t− θ)β−1f1(θ, u(θ))dθ, t ∈ (0, T ] (1.1)

and

u(t) = u0 +
1

Γ(β)

∫ t

0

(t− θ)β−1(−Au(θ))dθ

+
1

Γ(β)

∫ t

0

(t − θ)β−1f2(θ, u(θ), u(a(θ)))dθ, t ∈ (0, T ], (1.2)

where A is a closed linear operator defined on a dense set and 0 < β < 1, 0 < T < ∞. We
assume −A is the infinitesimal generator of a compact analytic semigroup {S(t) : t ≥ 0} in
X and u0 ∈ D(A). The given functions f1, f2 and a are satisfying certain conditions to be
specified later.

Regarding initial studies on existence and uniqueness of different type of solutions to
fractional order differential equations, we refer to [1, 3, 10, 11, 12, 14] and references cited
in these papers.

For the earlier works on existence, uniqueness and stability of various types of solutions
of differential and functional differential equations, we refer to Balachandran and Chan-
drasekaran [6], Byszewski [7], Byszewski and Akca [8], Byszewski and Lakshmikantham [9],
Lin and Liu [17] and references cited in these papers.

In this paper, we use the Schauder’s fixed point theorem and semigroup theory to prove
the existence and uniqueness of mild solutions to the given problems (1.1) and (1.2).

The plan of the paper is as follows. Introduction and preliminaries are given respectively,
in the first two sections. In Section 3, we prove the existence and uniqueness of local solution
and in Section 4, the existence of global solution for the problems (1.1) and (1.2) is given.
In the last section, we have given some examples

2 Preliminaries

We note that if −A is the infinitesimal generator of a compact analytic semigroup, then for
c > 0 large enough, −(A + cI) is invertible and generates a bounded analytic semigroup.
This allows us to reduce the general case in which −A is the infinitesimal generator of an
analytic semigroup to the case in which the semigroup is bounded and the generator is
invertible. Hence without loss of generality, we suppose that

‖S(t)‖ ≤ M for t ≥ 0

and
0 ∈ ρ(−A),
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where ρ(−A) is the resolvent set of −A. It follows that for 0 ≤ α ≤ 1, Aα can be defined
as a closed linear invertible operator with domain D(Aα) being dense in X. We have
Xκ ↪→ Xα for 0 < α < κ and the embedding is continuous. For more details on the
fractional powers of closed linear operators we refer to Pazy [2]. It can be proved easily that
Xα := D(Aα) is a Banach space with norm ‖x‖α = ‖Aαx‖ and it is equivalent to the graph
norm of Aα.

We notice that CT = C([0, T ], X), the set of all continuous functions from [0, T ] into X
is a Banach space under the supremum norm given by

‖ψ‖T := sup
0≤η≤T

‖ψ(η)‖, ψ ∈ CT .

Throughout this paper, we shall assume the following assumptions:

(A1) −A is the infinitesimal generator of a compact analytic semigroup S(t).

(A2) The nonlinear map f1 is defined from [0, T ]×X into X and there exists a
nondecreasing function fR : [0,∞) → [0,∞) depending on R > 0 such that
‖f1(t, u) − f1(s, v)‖ ≤ fR(t)[|t− s|ν + ‖u− v‖] for all t, s ∈ [0, T ], a fixed ν,
0 < ν ≤ 1 and u, v ∈ BR(X), where BR(X) = {z ∈ X, ‖z‖ ≤ R}.

(A3) The nonlinear map f2 : [0, T ]×X ×X → X satisfies:
‖f2(t, x1, x2) − f2(s, y1, y2)‖ ≤ Lr(t)[|t− s|ν +

∑2
i=1 ‖xi − yi‖],

for all t, s ∈ [0, T ], a fixed ν, 0 < ν ≤ 1, and xi, yi ∈ Br(X) for all i = 1, 2.
Here Lr : R+ → R+ is a nondecreasing function.

(A4) The function a : [0, T ] → [0, T ] satisfies the following two conditions:
(i) a satisfies the delay property a(t) ≤ t for all t ∈ [0, T ];
(ii) The function a is Lipschitz continuous; that is, there exists a positive
constant La such that |a(t) − a(s)| ≤ La|t− s| for all t, s ∈ [0, T ].

We define the Riemann-Liouville integral of order β > 0 as follows:

Iβg(t) =
1

Γ(β)

∫ t

0

(t− θ)β−1g(θ)dθ.

3 Existence of Local Solutions

3.1 Existence of local solution to the fractional order integral equa-
tion

Definition 3.1. By a mild solution to the problem (1.1), we mean a continuous solution u
of the following integral equation given below

u(t) =
∫ ∞

0

ζβ(θ)S(tβθ)u0dθ

+β
∫ t

0

∫ ∞

0

θ(t − s)β−1ζβ(θ)S((t − s)βθ)f(s, u(s))dθds, (3.1)
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where ζβ(θ) is the probability density function [15, 16]. For the further detail on mild
solution, we refer to [10, 11, 13].

Theorem 3.1. Assume the conditions (A1)-(A2) are satisfied and u0 ∈ D(A). Then,
there exists a t0, 0 < t0 < T such that the equation (1.1) has a local solution on [0, t0].

Proof. Let R > 0 be such that M‖u0‖ ≤ R
2
.

Let,

N1 :=
∫ ∞

0

θζβ(θ)dθ, (3.2)

N2 :=
∫ ∞

0

θ1−αζβ(θ)dθ (3.3)

and

N3 := ‖f1(0, 0)‖. (3.4)

Choose t0, 0 < t0 ≤ T such that

t0 <

[
R

2
{N1M{fR(T )[T ν +R] +N3}}−1

] 1
β

. (3.5)

We set,
Y = {u ∈ Ct0 : u(0) = u0, ‖u(t)‖ ≤ R, for 0 ≤ t ≤ to}. (3.6)

Clearly, Y is a bounded, closed and convex subset of Ct0 .
For any 0 < T̃ ≤ T , we define a mapping F from CT̃ into CT̃ given by,

(Fψ)(t) =
∫ ∞

0

ζβ(θ)S(tβθ)u0dθ

+ β

∫ t

0

∫ ∞

0

θ(t − s)β−1ζβ(θ)S((t − s)βθ)f1(s, ψ(s))dθds. (3.7)

Clearly, F is well defined.
To prove the theorem, first we need to show that F : Y → Y . For any ψ ∈ Y, we have

(Fψ)(0) = u0. If t ∈ [0, t0], then we have,

‖(Fψ)(t)‖ ≤
∫ ∞

0

ζβ(θ)‖S(tβθ)‖‖u0‖dθ

+ β

∫ t

0

∫ ∞

0

θ(t − s)β−1ζβ(θ)‖S((t − s)βθ)‖‖f1(s, ψ(s)) − f1(0, 0)‖dθds

+ β

∫ t

0

∫ ∞

0

θ(t − s)β−1ζβ(θ)‖S((t − s)βθ)‖‖f1(0, 0)‖dθds

≤ M‖u0‖ +N1M{fR(T )[T ν +R] + N3}tβ0
≤ R. (3.8)
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Hence, F : Y → Y.
Now we will show that F maps Y into a precompact subset F (Y ) of Y. For this we will

show that for fixed t ∈ [0, t0], Y (t) = {(Fψ)(t) : ψ ∈ Y } is precompact in E and F (Y ) is an
uniformly equicontinuous family of functions. Here, for t = 0, Y (0) = {u0} is precompact
in X.

Let t > 0 be fixed. For an arbitrary ε ∈ (0, t), define a mapping Fε on Y by the formula,

(Fεψ)(t) =
∫ ∞

0

ζβ(θ)S(tβθ)u0dθ

+ β

∫ t−ε

0

∫ ∞

0

θ(t − s)β−1ζβ(θ)S((t − s)βθ)f1(s, ψ(s))dθds

= S(ε)
∫ ∞

0

ζβ(θ)S(tβθ − ε)u0dθ

+ S(ε)β
∫ t−ε

0

∫ ∞

0

θ(t − s)β−1ζβ(θ)S((t − s)βθ − ε)f1(s, ψ(s))dθds. (3.9)

Since S(ε) is compact for every ε > 0, hence the set Yε(t) = {(Fεψ)(t) : ψ ∈ Y } is precompact
in X for every ε ∈ (0, t), where t ∈ (0, t0].

Also, we have

‖(Fψ)(t) − (Fεψ)(t)‖ = ‖β
∫ t

t−ε

θ(t − s)β−1ζβ(θ)S((t − s)βθ)f1(s, ψ(s))ds‖

≤ εβR1, (3.10)

for all t ∈ (0, t0], ψ ∈ Y and R1 = N1M{fR(T )[T ν +R] +N3}. Consequently, the set Y (t),
where t ≥ 0 is precompact in X.

For any t1, t2 ∈ (0, t0] with t1 < t2 and ψ ∈ Y, we have

(Fψ)(t2) − (Fψ)(t1) =
∫ ∞

0

ζβ(θ)[S(tβ2 θ) − S(tβ1 θ)]u0dθ

+β
∫ t2

t1

∫ ∞

0

θ(t2 − s)β−1ζβ(θ)S((t2 − s)βθ)f1(s, ψ(s))dθds

+(−β)
∫ t1

0

∫ ∞

0

θ[(t1 − s)β−1 − (t2 − s)β−1]ζβ(θ)S((t2 − s)βθ)f1(s, ψ(s))dθds

+β
∫ t1

0

∫ ∞

0

θ(t1 − s)β−1ζβ(θ)[S((t2 − s)βθ) − S((t1 − s)βθ)]f1(s, ψ(s))dθds

= I1 + I2 + I3 + I4.

Hence,

‖(Fψ)(t2) − (Fψ)(t1)‖ ≤ ‖I1‖ + ‖I2‖ + ‖I3‖ + ‖I4‖. (3.11)

We have

I1 =
∫ ∞

0

ζβ(θ)[S(tβ2 θ) − S(tβ1 θ)]u0dθ

=
∫ ∞

0

ζβ(θ)[
∫ t2

t1

βθtβ−1AS(tβθ)u0dt]dθ.
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Therefore,

‖I1‖ ≤
∫ ∞

0

ζβ(θ)
∫ t2

t1

βθtβ−1‖A−α‖‖AαS(tβθ)‖‖Au0‖dtdθ

≤ C∗Cαβ

∫ ∞

0

θ1−αζβ(θ)
∫ t2

t1

tβ(1−α)−1‖Au0‖dtdθ.

Hence,

‖I1‖ ≤ C∗ N2

(1 − α)
Cα‖Au0‖(tβ(1−α)

2 − t
β(1−α)
1 )

≤ C∗Cα‖Au0‖N2β(t1 + δ(t2 − t1))β(1−α)−1(t2 − t1)
≤ C∗Cα‖Au0‖N2βδ

β(1−α)−1(t2 − t1)β(1−α), (3.12)

where Cα is some positive constant satisfying ‖AαS(t)‖ ≤ Cαt
−α for all t ≥ 0, C∗ = ‖A−α‖

and 0 < δ < 1.
Also,

‖I2‖ ≤ Lf (R)
(1 − α)

C∗CαN2(t2 − t1)β(1−α) (3.13)

and

‖I3‖ ≤ βN2Lf (R)C∗Cα

∫ t1

0

(t1 − s)λ−1[(t1 − s)−λµ − (t2 − s)−λµ]ds, (3.14)

where Lf (R) = {fR(T )[T ν +R] +N3}, λ = 1 − βα and µ = 1−β
1−βα

.
After some calculation, we get

‖I3‖ ≤ βN2Lf (R)C∗Cαµδ1
µ−1(1 − c)−λ(1−µ)−1(t2 − t1)λ(1−µ), (3.15)

where c = (1 − (µ
λ )

1
λµ ) and 0 < δ1 ≤ 1.

Similarly, we get

‖I4‖ ≤ βN2C
∗Lf (R)

C1+α

α

∫ t1

0

(t1 − s)β−1[(t1 − s)−βα − (t2 − s)−βα]ds

≤ βN2Lf (R)C∗C1+α

α
δ2

α−1(1 − c1)−β(1−α)−1(t2 − t1)β(1−α),

where c1 = (1 − (α
β
)

1
αβ ), 0 < δ2 ≤ 1 and C1+α is some positive constant satisfying

‖Aα+1S(t)‖ ≤ C1+αt
−1−α for all t ≥ 0.

Thus from the above calculations we observe that the right hand side of the inequal-
ity (3.11) tends to zero when t2−t1 → 0.Hence, F (Y ) is a family of equicontinuous functions.
Also, F (Y ) is bounded. Thus from the Arzela-Ascoli theorem (cf. see Dieudonne [5]), F (Y )
is precompact. The existence of a fixed point of F in Y is the consequence of Schauder,s
fixed point theorem.
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Hence, there exists u ∈ Y, such that for all t ∈ [0, t0], we have

u(t) =
∫ ∞

0

ζβ(θ)S(tβθ)u0dθ + β

∫ t

0

∫ ∞

0

θ(t − s)β−1ζβ(θ)S((t − s)βθ)f1(s, u(s))dθds,(3.16)

where u(0) = u0.

Applying the similar arguments as above, we see that the function u given by equa-
tion (3.16) is uniformly Hölder continuous on [0, t0]. With the help of the condition (A2),
we can show that the map t 7−→ f1(t, u(t)) is Hölder continuous on [0, t0]. This completes
the proof of the theorem.

3.2 Existence of local solution to the fractional order functional
integral equation

Definition 3.2. By a mild solution of the problem (1.2), we mean a continuous solution u
of the following integral equation given below

u(t) =
∫ ∞

0

ζβ(θ)S(tβθ)u0dθ

+β
∫ t

0

∫ ∞

0

θ(t − s)β−1ζβ(θ)S((t − s)βθ)f(s, u(s), u(a(θ)))dθds, (3.17)

where ζβ(θ) is the probability density function [15, 16]. For the further detail on mild
solution, we refer to [10, 11, 13].

Applying the similar arguments to those in the proof of Theorem 3.1 from this paper,
we obtain the following.

Theorem 3.2. Assume the conditions (A1), (A3)-(A4) are satisfied and u0 ∈ D(A).
Then, there exists a t0, 0 < t0 < T such that the equation (1.2) has a local solution on
[0, t0].

4 Existence of Global Solutions

4.1 Existence of global solution to the fractional order integral
equation

Theorem 4.1. Suppose that 0 ∈ ρ(−A) and −A generates a compact analytic semigroup
S(t) with ‖S(t)‖ ≤ M , for t ≥ 0, u0 ∈ D(A) and the function f1 : [0,∞)×X → X satisfies
the condition (A2). If there is a continuous nondecreasing real valued function k(t) such
that

‖f1(t, x)‖ ≤ k(t)(1 + ‖x‖) for t ≥ 0, x ∈ X, (4.1)

then the equation (1.1) has a unique solution u which exists for all t ≥ 0.
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Proof. By Theorem 3.1, we can continue the solution of equation (1.1) as long as ‖u(t)‖
stays bounded. It is therefore sufficient to show that if u exists on [0, T ), then ‖u(t)‖ is
bounded as t ↑ T.

For t ∈ [0, T ), we have

u(t) =
∫ ∞

0

ζβ(θ)S(tβ θ)u0dθ

+ β

∫ t

0

∫ ∞

0

θ(t − s)β−1ζβ(θ)S((t − s)βθ)f1(s, u(s))dθds. (4.2)

From the above equation, we get

‖u(t)‖ ≤ M‖u0‖ + β

∫ t

0

∫ ∞

0

θ(t − s)β−1ζβ(θ)‖S((t − s)βθ)‖‖f1(s, u(s))‖dθds.

Hence

‖u(t)‖ ≤ C1 +C2

∫ t

0

(t− s)(β−1)‖u(s)‖ds, (4.3)

where C1 = M‖u0‖ + N1Mk(T )T β and C2 = βN1Mk(T ). Hence from Lemma 6.7 [Chap-
ter 5 in Pazy [2]], u is a global solution.

To complete the proof of the theorem we only need to show that u is unique on the whole
interval.

Let u1 and u2 be two solutions of the given fractional integral equation (1.1). Then, by
a similar argument as above, we see that

‖u1(t) − u2(t)‖ ≤ fR(T )βN1M

∫ t

0

(t − s)(β−1)‖u1(s) − u2(s)‖ds.

Hence from Lemma 6.7 [Chapter 5, Pazy [2]], the solution u is unique. This completes the
proof of the theorem.

4.2 Existence of global solution to the fractional order functional
integral equation

Applying the similar arguments to those in the proof of Theorem 4.1 from this paper, we
obtain the following

Theorem 4.2. Suppose that 0 ∈ ρ(−A) and −A generates a compact analytic semigroup
S(t) with ‖S(t)‖ ≤ M , for t ≥ 0, u0 ∈ D(A) and the function f2 : [0,∞) × X × X →
X satisfies the conditions (A3)-(A4). If there is a continuous nondecreasing real valued
function k(t) such that

‖f2(t, x, y)‖ ≤ k(t)(1 + ‖x‖ + ‖y‖) for t ≥ 0, x, y ∈ X, (4.4)

then the fractional order functional integral equation (1.2) has a unique solution u which
exists for all t ≥ 0.
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5 Examples

Let X = L2((0, 1); R). We consider the following fractional order integro-differential equa-
tion,

w(t, x) = w(0, x) +
1

Γ(β)

∫ t

0

(t − θ)β−1(∂2
xw(θ, x))dθ

+
1

Γ(β)

∫ t

0

(t− θ)β−1F (θ, w(θ, x))dθ,

w(t, 0) = w(t, 1) = 0, t ∈ [0, T ], 0 < T < ∞,

w(0, x) = u0, (5.1)

where F is a given sufficiently smooth function satisfies the Hölder condition.
We define an operator A : D(A) → X as follows,

Au = −u′′,

where the domain of A is given by

D(A) = H2(0, 1) ∩H1
0 (0, 1). (5.2)

Then, −A is the infinitesimal generators of an strongly continuous semigroup S(t) which is
compact and analytic.

The equation (5.1) can be reformulated as the following abstract equation in X =
L2((0, 1); R):

u(t) = u0 +
1

Γ(β)

∫ t

0

(t− θ)β−1(−Au(θ))dθ

+
1

Γ(β)

∫ t

0

(t − θ)β−1f1(θ, u(θ))dθ, t ∈ (0, T ], (5.3)

where u(t) = w(t, .) that is u(t)(x) = w(t, x), t ∈ [0, T ], x ∈ (0, 1) and the function
f1 : [0, T ]×X → X is given by

f1(t, u(t))(x) = F (t, w(t, x)). (5.4)

We can take f1(t, u) = h(t)g(u), where h is Hölder continuous and g : X → X is Lipschitz
continuous onX. We can take g(u) = sinu, g(u) = ξu, g(u) = arctanu,where ξ is constant.

In the case of functional integral equation, we can take

f2(t, u(t), u(a(t)))(x) = F2(t, w(t, x), w(a(t), x)), (5.5)

where F2 is a sufficiently smooth given function satisfies the Hölder condition in the first
variable.

In particular we can take

f2(t, u1, u2) = f0(t) + b(t)
2∑

i=1

‖ui‖ui,
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where the functions f0 : [0, T ] → X and b : [0, T ] → R are Hölder continuous.
For the function a we can take

(i) a(t) = kt, where t ∈ [0, T ] and 0 < k ≤ 1.

(ii) a(t) = ktn for t ∈ I = [0, 1] k ∈ (0, 1] and n ∈ N;

(iii) a(t) = k sin t for t ∈ I = [0, π
2 ], and k ∈ (0, 1].

It may be verified that all the assumptions of Theorem 3.1 are satisfied which ensures
the existence of solutions of (5.3) as well as that of (5.1). Thus, all the results of the sections
3 and 4 can be apply to the problems (5.3) and (5.1).
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