FUNCTIONAL VOLUME 16
DIFFERENTIAL 2009, NO 3
EQUATIONS PP. 529-544

EXISTENCE, UNIQUENESS AND CONVERGENCE OF
APPROXIMATE SOLUTIONS OF IMPULSIVE NEUTRAL
DIFFERENTIAL EQUATIONS *
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Abstract. In this paper we shall study an impulsive neutral functional differential
equation in a separable Hilbert space. We shall use the analytic semigroup theory of linear
operators and fixed point technique to study the existence, uniqueness, and the conver-
gence of approximate solutions to the given problem. We will also prove the existence and
convergence of finite dimensional approximate solutions to the given problem. In the last
an example is also illustrated.
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1. Introduction. We consider the following impulsive neutral dif-
ferential equation in a separable Hilbert space (H, ||.||, {.,.)) :

Sl + gt ult =)+ Au(t) = f(tw), t€ O.T], 14
Au(tk) = Ik(u(tk)), k=1,2,...,p,
) u(t) = h(), t€ -0,
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where —A is the infinitesimal generator of an analytic semigroup {e 4 :
t>0L0<th <ty <...<t, <T<oo,peN, 7 >0,I's are some
operators defined from H into H and J = [0,T]. Au(ty) = u(t)) — u(ty),
where u(t;) and u(t;) are, respectively, the right and the left limits of u at
t = t;. The functions f : J xCy — H, ¢g:JxH — Hand h € Cy
satisfy certain conditions to be specified later. The space Cy consists of
functions 1 : [—7,0] — H such that 1 is continuous everywhere except for a
finite number of points s at which ¢(s) and 9(s*) exist. For any continuous
function u defined on the interval [—7, T\ {t1,ts, - ,t,} and any t € J, we
denote by u,; the elements of Cy defined by u(0) := u(t + ) for 6 € [—7,0].

For the initial work on existence, uniqueness and regularity of solutions
of impulsive differential equations under different conditions, we refer to Ben-
chohra et al [1], Benchohra and Ouahabi [2], Dhage et al [3], Lakshmikantham
et al [4], Ntouyas [5] and the references cited there.

Initial studies concerning existence, uniqueness and finite-time blow—up
of solutions to the equation

(2) u'(t) + Au(t) = g(u(t)), t=0,
u(0) = ¢,

have been made by Heinz and von Wahl [6], Murakami [7] and Segal [8].
Bazley [9, 10] has considered the following semilinear wave equation

3) (1) + Ault) = gu(t), >0,
u(0) = ¢, w(0) = .

and has established the uniform convergence of approximate solutions to
equation (3) by using the existence results of Heinz and von Wahl [6]. Goethel
[11] has proved the convergence of approximate solutions to the problem (2),
but assumed g to be defined on the whole of H. Based on the ideas of Bazley
[9, 10], Miletta [12] has proved the convergence of approximate solutions
of (2). Muslim [13] has proved the approximation of solutions of a history
valued neutral functional differential equations in a separable Hilbert space.

In this paper, we shall use some of the ideas of Miletta, the Banach
fixed point theorem, and analytic semigroup theory, to prove the existence,
uniqueness, and convergence of approximate solutions to the problem (1).
We shall also establish the existence and convergence of finite dimensional
approximate solutions for the problem (1). Finally, we shall illustrate an
example to show how easily our abstract results can be applied in practice.

2. Preliminaries and Assumptions. We note that if —A is the
infinitesimal generator of an analytic semigroup, then for ¢ > 0 large enough,
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—(A + cl) is invertible and generates a bounded analytic semigroup. This
allows us to reduce the general case in which — A is the infinitesimal generator
of an analytic semigroup to the case in which the semigroup is bounded and
the generator is invertible. Hence without loss of generality we suppose that

le7™|| < M forall ¢>0

and
0€e p(—A),

where p(—A) is the resolvent set of —A. It follows that for 0 < o < 1,
A can be defined as a closed linear invertible operator with domain D(A®)
being dense in H. We have H, — H, for 0 < a < k and the embedding
is continuous. For more details on the fractional powers of closed linear
operators we refer to Pazy [14]. It can be proved easily that H, := D(A%) is
a Banach space with norm ||z||, = ||A%z|| and it is equivalent to the graph
norm of A®.
For any t € [0, 7], we take

C::={u:uis a map from [—7,¢] into H such that u(s) is continuous at
s # 1, left continuous at s = ¢, and the right limit u (¢, ")
(4) exists for k =1,2,... ,p}.

It can be proved easily that C; is a Banach space with the norm

(5) [ulle = sup ||lu(0)]].
oc[—, ]

Also, we can see that

C;' := {u : uis a map from [—7,t] into H, such that u(s) is continuous at
s # ty, left continuous at s = ¢, and the right limit u(¢;")
(6) exists for k =1,2,... ,p}

is a Banach space with the norm

lulla = sup |u(8)]]a-
oe[—T,t]

The Banach space CJ is known as the history space.
We consider the following assumption on the operator A.
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(H1): A is a closed, positive definite, self-adjoint linear
operator from the domain D(A) C H of A into H such that
D(A) is dense in H, A has the pure point spectrum

O< <A <<

and a corresponding complete orthonormal system of eigen-
functions {¢;}, i.e.,

Agpi = N and (¢, ¢j) = by,

where 6;; =1 if ¢ = j and zero otherwise.

If (H1) is satisfied then —A generates an analytic semigroup {e™*4 :¢ > 0}

in H.
Further we need the following hypotheses on the maps ¢, I, g and f.

(H2): h € C§ is locally holder continuous on [—7,0].

Let us define

h(t), if te[-T,0],
h(t) =
h(0), if ¢t € [0,T].

(H3): All the maps I, : H, — H,, k=1,2,...,p satisfy
the following two conditions:

(i) o), < Ly, for all 5 € (0, 1),
(i1) [[Ze(u1) = Ii(u2)l|a < Pallur — uslla,

where o > 0, u, uy, us € B.(Hg, h(t)), by and L’s are
positive constants for all £ =1,2,3,---,p. For any separa-
ble Hilbert space (Z, ||.||z) and r > 0,

B.(Z, h(t) ={z € Z: ||z — h(t)|| < r}.

(H4): The nonlinear continuous map f is defined from
[0,T] x C§ into H and there exists a positive constant L;
such that

1F(tur) = f (s, ua)ll < Lyllt = s|™ + [lur — wallo, o,

for all ¢,s € [0, 7], n € (0,1] and uy, uy € B,,(CS, h).
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(H5): There exist positive constants 0 < o« < f < 1 and

r > 0 such that the function A?g is continuous for (¢,u) €
[0,Ty] x H, such that

1A%(t, 2) — APg(s, y)l| < Le{lt — s + Iz — ylla}
and
p
2| API|Ly +2M Y b <1,
k=1
for all t,s € [0,7], 0 < m < 1 and z,y € B,(Ha, X(9))

where —7 < 0 < T, L, is a positive constant and for z in a
Banach space (Z, ||.||z) and r > 0,

B,(Z,z) ={2€Z:||z— 2]z <r}

Definition 1. A function u € Cj is called a mild solution of (1) on [—T,T)
if it is a solution of the impulsive integral equation

h(t), t e [—1,0],

(1) u(t) = ¢ ¢ [A0) + 9(0, A(=))] - g(t, u(t — 7))
+ [, A= 4g(s, u(s — 7)) ds + |, g_(t_s)A]i(s, us)ds
D 0ct, <t € AL (u(tr)), t € 10,T], 0<T <T.

3. Existence and Convergence of Approximate Solutions. Let
H,, denote the finite dimensional subspace of H spanned by {¢g, ¢1,- -, én}
and let P* : H — H,, be the corresponding projection operator for n =
0,1,2,---.

Let R > 0 be such that

_ o - R
(8) sup |[(e™* — I)A*[R(0) + g(0, h(—7))]I| < 5
0<t<T
and
Ti-e i R
(9) L(R’aaﬁaT)+CaLf(R)1_a+M CkS?a

where C,, is a positive constant such that ||A% 4| < C,t @ for ¢t > 0,

L(R,0,8,T) = A" PIL,[T"™ + R+ 2||hl|r, o]
T8

(10) + Cl+a—ﬂLg(R)/B o
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(11) L{(R) = Ly(T™ + R+ |[hl|z, o) + || £(0,0)],
(12) Ly(R) = Ly(T™ + R+ [[fllr. o) + | 479(0,0)|
and

(13) Cr = hi[R+ [|hll7.a] + [ 1:(0)||a-

Also, we assume that

P
L,Ciin_ L:C

14) M h A8 T, Z9Zta=fpp-a | ZfFamploa o q

(14) ;wn 1L+ =525 i

Forn=0,1,2,---, we define,

fn:[O:T]XC(?—>H

such that
falt,u) = f(t, P"u)
and
gn 1 [0,T] x H, — Hp
such that

gn(t,y) = g(t, P"y),

forallt € [0,T], v € C¢, y € H and (P™u)(s) = P™(u(s)) for all s € [—,0].
Also, we define
Iyn:Hy, — H,

such that

It n(u) = Iy(P"u) forall ue H,, n=0,1,2--- andk=1,2,---,p.

Now we define a map F, on Bp(C%, k) as follows
h’(t):t € [_Ta 0]7

(Fau)(t) = § € [h(0) + ga(0, h(—T7))] — gu(t, u(t — 7))
+ fot Ae= (=94 (s,u(s — 7))ds + fot e t=)Af, (5 u,)ds
+ZO<tk<te_(t_tk)AIk,n(u(tk))’t € [07 T]a

for u € Br(C%, h).
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Theorem 1. Assume that the conditions (H1)-(H5) are satisfied and h(t) €
D(A) for all t € [—7,0]. Then, there exists a unique u, € Br(C%, h) such
that Fpu,, = u, for eachn =0, 1, 2, 3,---, i.e., u, satisfies the approximate
integral equation

( h(t), te[-1,0],

e 1(0) + gn (0, h(—T))] = gu(t, un(t — 7))
+ fot Ae 94 (s u,(s —7))ds
+ f()t 6_(t_S)Afn(S’ uns)ds

L+ 0ctcr € T (un (), tE[0,T).

(15)  un(?)

Proof. To prove this theorem, first we need to show that F, : Br(C%,h) —

Bgr(C%, h). Clearly, F, : C& — C% and F,, : Bgr(C%, h) — C2.
Now for t € [—,0], we have

(Fou)(t) — h(t) = 0.
For ¢t € (0, 7], we find

|(F)t) = Bl )
< I(e™ = DA(H(0) + ga 0, A(=)))]
+ AT 4 0 (0, F(=7) = A%gnt,ut = 7))

t
4 / AP e[| AP g, (s, u(s — 7)) |ds
0

t
+/O le™ A | fus, uwllds + Y e OAA L (ulte)]

0<tp<t
R Tl—a p
(16) <5 +L(R,8,T)+ Caly(R)7— + M Ci,

k=1

where L(R, «, 3,T), Ly(R), Ly(R) and C, are respectively given by the equa-
tions (10), (11), (12) and (13). Hence,

| Fow — Bl o« < R.

ThllS, fn : BR(C%, i_L) — BR(C%, i_L) .
For any u,v € Br(C$, h) and t € [—7,0], we have, F,u(t) — F,v(t) = 0.
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Thus, if ¢ € (0, 7] and u,v € Bg(C%, h) then

[ Fru(t) — Fnv ()|
< [ AP A gu(t, ult — 7)) — APgu(t, v(t — 7))

4
+ / le” DA A P APg, (s, u(s — 7)) — AP ga(s, v(s — 7))l|ds
0

+Awamﬁwm@wd—h@mW®
3 e WA A T (u(ts) — Ten(o())]

0<ty <t

t
< AN Lgllw = vlir, 0 + / Crva—p(t = 5)"" " Ly[lu = vll7, ads
0

t P
+/ Calt — )™ Lillus — vallo, ads + M Y hillu = vlir, o
0

k=1

p
<MY b+ ||AP||L, +

k=1

Lgcl—l—a—ﬂ _ LfCoz —
9 womPph-a | Tl mopl-al)l, o
A A 1

Therefore, taking the supremum with respect to ¢ over [—7, T, we get

[Fou — Favllr, o < |lu =21, q
Hence, there exists a unique u, € Bg(C%,h) such that F,u, = u,, which
satisfies the approximate integral equation (15). a

Corollary 1. Let the assumptions (H1)-(H5) are hold and h(t) € D(A), for
all t € [—7, 0]. Then, u,(t) € D(A”) for allt € [—7, T|, where 0 <v < @ <
1.

Proof. From Theorem 1, we have the existence of a unique u,, € Br(C%,h)
satisfying the integral equation (15). By Theorem 2.4 [ Chapter 1, Pazy [14]],
[y e *zds € D(A) for any = € H. Also for any = € H, ez € D(A")
for v > 0. The Corollary now follows from these facts and the fact that
D(A) C D(A”) for 0 <v < 1. 0

Corollary 2. Let the assumptions (H1)-(H5) are hold and h(t) € D(A), for
all t € [—71,0]. Then, there ezists a positive constant My, independent of n,
such that

[A%un ()] < Mo

forall =71 <t<Thand0<a<v<f<l.
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Proof. Applying A” on the both sides of the approximate integral equa-
tion (15), we get

[un (Ol < [[R@)]l, < lAllo, v, for all ¢ € [—7,0].
Also for t € (0,T], we find
lun@®ll < e NHAOL + 1Al g (0, A(=7))ll4]
+ 1147l gn(t, wa(t — T)lls
+

t
/ A4l (5, wn(s — 7))o
0

t
/ 1A4%e AL fuls, wne) | ds
0
Y e WA T (un )

O<t <t
M{[[Rllo, » + 114"l 9a (0, A(=7))l5] + | AP || Ly (R)
Ciyv-pLy(R)T7 " C,Ly(R)T*" -
+ + M Ly
(B—-v) (1-v) kz_;
= M, O
Theorem 2. Assume that the conditions (H1)-(H5) are satisfied and h(t) €

D(A) for all't € [-7,0]. Then, {un} C Bgr(Cg,h) is a Cauchy sequence, and
therefore converges to a unique function u € Br(C$, h).

_I_

IN

+

Proof. For n > m > ng where ng is large enough, n,m,ny € N, t € [—7,0],
we have

(17) [[tn(t) = tm(t)|loc = [|A(t) = B(t)[|a = O
Now for 0 < t;) <t <T,and n, m and ny as above, we find

n(®) = ()l )
< [le™ 44920, A(=7)) = g 0, (=)
A% P AP gt (£ — 7)) = A% gttt = 7))

t t
4 ( / 4 / ) | A8 | A8, (5, un(s — 7))
0 A

—Aﬁgm(s, um(s —7))||ds
n ( / " / ) e CDAA (5, (n)s) — Fon(5, (1))l s
(18) 3 e DA D (nt8)) = T (1))

0<ty <t
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Also, for 0 < a < v < 1, we have

||fn(5’ (un)s) - fm(s’ (U’M)s)” < ”fn(s’ (un)s) - fn(sa (um)s)”
+ ”fn(sa (um)s) - fm(sa (UM)s)”

M,
(19) < Lyllun = tmlls, 0 + 5]

AL
and
1AL g (8, un(t — 7)) — A% g (8, um (t — 7)) |

< ||Aﬁgn(t’ ’U,n(t - T)) - Aﬂgn(ta um(t - T))”
H AP gu(t, wm(t — 7)) — AP guu(t, w8 — 7))

(20) < Lyllun(t = 7) = t(t = 7)o + L0 .

V-«
)‘m

where M, is same as in Corollary (2).
Similarly, it follows that

17k (un (k) — T m(tm (tr)) o
< e (un(te)) = T (tm (E6) o + ([ Tk (m (t)) — Tem(tm ()] o
1) < helllwn — e, o+ o]

e

Thus from inequalities (19), (20) and (21), the inequality (18) after some
adjustment becomes

! C
|un(t) — um()|]la < C1+City+ /\5—_2(1 + |lun — um”t, o Cs

m

t
(22) + 04/(t—s)—anun—umns,ads,
%o

Cy = M||A* 7| Ly||(P" — P™)A*h(=7)],

O = 2010 (T — 19" Ly(R) +2Ca(T — 1) Ly(R),

C,T'—* E
e MY ] My,

Cilia—B g
Cy = [||[ A7) Ly + L oo
f—a k=1

1«
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p
Cy=||A*P||Ly+ M hyand Cy = Cria_pLy + CoLy.

k=1
Next we replace t by ¢+ 6 in inequality (22), where 8 € [t, —t,0], to get

Cy
Pl

m

ltn(t +0) —um(t +0)|la < Ci+Ciiy+

+ ||un - um”t, [} CS

t+6
+-cg/ (t+0 = )|t — tpn]]s, ads.
iy
We put s — # = in the above inequality, to obtain

, C
||un(t+0) _um(t+9)||a S Cl+Cf-t0+/\ﬂ—_2a+||un_um”t,a 03

m

t
+ oG / (t =)t — Ul atly
th—8
, C
CL+ Cty+ —2

e

m

IA

+ ||un - um”t, a CV3
t

4 Cu [ (¢ =)t =l o
tO

Thus, we have

sup  ||un(t +6) — um(t + 0)||a

1 —t<6<0
G
S Cl =+ Cl‘tO + F + ||un - um”t,a C’3
t
(23) e / (t = 1) lltn — o}, .
tO
Next, we find

sup |un(t +0) —um(@+0)la < sup |Jun(t +6) — um(t +0)|la
—7—1<0<0 0<0+t<t,

(24) +  sup  ||un(t+60) — Um(t + 0)||a-

!
th—t<6<0
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Using (23) and (18) in the above inequality, we get

sup  ||un(t +0) — up(t + 0)||a
—7<t+0<t
Cy + Cs
Moo

t
+C4/ (t— )" ten, — |
t

0

<20, + {CF 4 Cs}ty + + |t — |1, o 2C5

~, o,

where Cs and Cg are the other constants.

Finally, an application of Gronwall’s inequality, and the fact that ¢, is
arbitrary small, gives the required result. This completes the proof of the
Theorem. 0

Now we shall use Theorems 1 and 2 to prove the following existence and
convergence result.

Theorem 3. Assume that the conditions (H1)-(H5) are satisfied and h(t) €
D(A) for all t € [-7,0]. Then, u, given by equation (15) converges in
Bgr(C%, h) to a unique solution u € Bgr(CZ, h) of the equation (7).

Proof. The existence and uniqueness of u on [0, 7] is clear from Theorem 2.
We only need to prove that u is given by equation (15). We have the following
inequality

[t P uny)) = (& u)ll < Lyl Pty — willo,
(25) < Ly(Il0P™ = Dunello, o + llun = ullz, o

Hence, || f(t, P"un;)) — f(t,us)|| — 0 as n — oo. Similarly, we have
[k (un(te)) — I(u(te))]|la — 0 as n — oo.

and

lg(t, P un(t — 7)) — g(t, u(t — 7))lls
< Lg|| P un(t = 7) = u(t = 7)llo,
(26) < Lg[l(P™ = Dun(t = 7)o + Jun — ullz, o

Thus, it follows that
i
/ [ A e[| AP g (s, Pun(s — 7)) — A%g(s,u(s — 7))||ds
0

t
4 [ 1A I, ) = (s,
0

@D+ Y e Tk (un(t) = Ie(u(tr)lla — O when n — oo.

0<t <t
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Therefore, u is indeed given by equation (7). 0

4. Faedo-Galerkin Approximation of Solutions. From the pre-
vious sections it is clear that for any —7 <t < T, we have a unique v € C}
satisfying the integral equation (7). Also, there is a unique solution u,, € C%
of the approximate integral equation (15).

Now we shall consider a finite dimensional approximation given by u,, =
P"u,, satisfying

Prh(t),  te[-1,0],

n(t) = € AP[A(0) + (0, A(=T))] = P gu(t, un(t — 7))
+ fot Ae=(=9)APrg (s, u,(s — 7)) ds + fot e t=APnf (5, u,,)ds
+ ZO<tk<t ei(titk)APnIk,n(un(tk))a t€[0,T].

If the solution u(t) to equation (7) exits on —7 < ¢ < T then it has the
representation

(28) u(t) = Z a; (t) i,

where «;(t) = (u(t), ¢;) for all i = 0,1,2,3,--- and similarly

(29) Za )i

where o (t) = (4,(t), ¢;) for all i =0,1,2,--- |n

Note: The above solution @, (t) is known as the Faedo—Galerkin approz-
imate solution of equation (1).

As a consequence of Theorems 1 and 2, we have the following result.

Theorem 4. Suppose that the conditions (H1)-(H5) are satisfied and h(t) €
D(A) for allt € [—7,0]. Then, there exist functions u, € C([—7,T); Hy)
and u € C([—7,T); H) satisfying

Pon(t),  te -7 0],
Un(t) = ’”‘P"[h(o)w“gn(@ h(=7))] = P"ga(t, un(t — 7))

+ [y Ae=t=AP g, (5, u,(s — 7)) ds + [J e"CDAP £, (5, uy,)ds
+Zo<tk<te (= tk)APnIk (un(tr)), t€10,T]
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and
h(t), t e [-T,0],
u(t) = ¢ e h(0) + g(0, h(—7))] — g(t, u(t — 7))

+ [y Ao @ 94g(s u(s — 7)) ds + [, e A f(s, u,)ds
+ 2 o<t e L (u(ty)), t € [0, T

such that @, — u in C(|—1,T); H) as n — oo.
Finally, we shall prove the following result.

Theorem 5. Let the conditions (H1)-(H5) be satisfied and h(t) € D(A) for
all t € [—7,0]. Then, the following holds

nmswliymm@—¢@ﬂ=u

n—00 _r<¢<T o

Proof. We have

AClu(t) — an(t)] = A°

Z{O‘z }¢z]
- ZA?{m(t) — o} (D)}

where o' (t) = 0 for all 4 > n. Thus, it follows that

nwm@—mezzn%%@—wmﬁ

Hence as a consequence of Theorem 4 we get the required result. 0

5. Examples. Let H = L?*(0,1) and 7 > 0. Consider the following
problem

( afw(t,z) + G(t,w(t — 7,2))] — 2w(t, )
_F(taw( T, 7)), T ( 1), t >0,
O T S (A A )

w(t,O):w(t,l)_—O te€l0,T], 0<T < o0,
Aw(tk,x) :amlk(am'w(tk, )),
k0<t1<1§2<...<1,L1,§T<OO,pEN,
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where the functions F, G, I, k = 1,2,3,---,p, and hy are real valued
sufficiently smooth functions. Aw(tx, ) = w(t}, z)—w(t;, x), where w(t], x)
and w(t,,z) are respectively the right and the left limit of w at (¢,z) =
(tk,.T).

We define an operator A, as follows,

(31) Au = —u" with u € D(A)= H*(0,1)N Hy(0,1).

Here, clearly the operator A is self-adjoint, with compact resolvent and is
the infinitesimal generator of an analytic semigroup {e~*4 : ¢ > 0}.

The problem (30) can be written as the following abstract equation in
H = L*0,1):

Llu(t) + gt ut 1) + Au(t) = Fltw) 1> 0, 14 b,
wlt) = h(t), te[-r0,
(32) Au(te) = IL(u(te)), k=1,2,...,p,

where u(t) = w(t,.), that is u(t)(z) = w(t,z), w(0)(z) = w(t + 6,x),
t € [0,7], 0 € [-7,0], z € (0,1), the operator A is as in equation (31),
I(u(ty))(x) = 0,Ix(0w(ty, )), the function f : [0,7] x 03/2 — H, is given
by,

(33) [t 9)(x) = F(t, 0:9(=7)(2))

and g : [0,T] x Hy/; — Hyg, is given by,

(34) 9(t, ¥)(x) = G(t, atp(x)).

It can be verified that the assumptions (H1)-(H5) are satisfied, and there-
fore, our results can be employed to obtain approximate solutions and their
convergence.
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