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OSCILLATION CRITERIA FOR
DIFFERENTIAL EQUATIONS OF SECOND ORDER

A. K. NANDAKUMARAN — S. PANIGRAHI

(Communicated by Michal Feckan)

ABSTRACT. In this article, we give sufficient condition in the form of integral
inequalities to establish the oscillatory nature of non linear homogeneous differ-
ential equations of the form

(r®y") +a)y" +pt)f(¥)gy) =0,  t>to,
where r, q,p, f and g are given data. We do this by separating the two cases f is
monotonous and non monotonous.
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1. Introduction

Comparison theorems for solution of ordinary differential equations, distribu-
tion of zeros of solutions for large time, oscillatory behavior of zeros of solutions
etc. have been extensively studied in the literature. These are very important
to understand the qualitative behavior of solutions specially in the non linear
equations. In this article, we wish to study the oscillatory behavior of non linear
homogeneous differential equations of the form

(r@®y") +at)y +p)f(y)g(y) =0,  t=>t, (1.1)
where 7, q,p, f and g satisfies various assumptions to be given later. In fact,
we give sufficient conditions to establish the oscillatory behavior. Coming to
the literature, Wong and Burton [28] have been investigated the oscillatory
behavior in connection with that of corresponding linear homogeneous equation

y" +p(t)y =0, (1.2)
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where p(t) is oscillatory.

In [5], Grace and Lalli have considered the behavior of solution of non-
linear differential equations

v +p@)fy(t)gy' (1) =0,  t=to, (1.3)

where p € C([tp,0),[0,00)) and f,g € C(R,R) with yf(y) > 0 for y # 0 and
g(y) > 0 for y # 0.
The stability, boundedness, and convergence to zero of all solutions of equa-

tion (1.3) have been investigated by Burton and Grimmer [1], Graef
and Spikes [6], [7], Lalli [13] and Wong and Burton [28].

Rogovchenko [22], established new sufficient conditions which ensure the
oscillatory character of equation (1.3). These are different from those of Grace
and Lalli [5] and applicable to other class of equations that are not covered
by the results of [5]. All the above mentioned oscillation results require the
information of p on the entire half-line [tg, 00).

However, from Sturm separation theorem, we see that oscillation is only an in-
terval property, that is, if there exist a sequence of subintervals [a;, b;] of [tg, o),
as a; — 00, such that for each i, there exists a solution of (1.2) that has at least
two zeros in [a;, b;], then every solution of (1.2) is oscillatory.

Ei-Sayed [4], established an interval criterion for oscillation of a forced
second-order equation but the result is not sharp because a comparison with
equation of constant co-efficient is used in the proof.

In [9], Huang established the following interval criteria for oscillation and
non oscillation of the second order linear differential equation (1.2), where
p(t) > 05 te {to,OO).

THEOREM 1.1. If there exists tg > 0 such that for every n € N,
2n+1t0

p(s)ds < &0

— 2n+1t07 (14)

2ntg

then every solution of equation (1.2) is non oscillatory, where ag = 3 — 2v/2.
(ii) If there exist to > 0 and o > o such that for every n € N,
2n+1t0

«
ds > 1.5
OLEE (15)
2"250

then every solution of equation (1.2) is oscillatory, where ag = 3 — 2v/2.

As an application, Huang [9] obtained the following corollary.

434



OSCILLATION CRITERIA FOR DIFFERENTIAL EQUATIONS OF SECOND ORDER

COROLLARY 1.2.

(i) If

2t

lim t/p(s)ds—a<

t—o0
t

Qo
27

then every solution of equation (1.2) is non oscillatory.
(i) If
2t
lim t/p(s) ds = a > ay,

t—o0
t

then every solution of equation (1.2) is oscillatory, where oy = 3 — 2v/2.

Huang’s result do not cover the interval (2331 to, on to), and can be seen by
the following example. Take, p(t) = v/t?, with, v > 0, a constant, then
2t
lim t/ 1 = W.
t—o00 S 2

t

This implies that Huan g’s result remains open for v € («ag, 2aq) = (3 —2V2,
6 — 4/ 2). and hence Huan g’s oscillation criterion is not sharp. In fact, the
Euler equation

y
y' ¥y =0

is oscillatory if v > }1, and non oscillatory if v < }1.

Liand Agarwal [16], [17], [18], [19] have established new interval oscilla-
tion criteria by use of integral average technique for equation (1.3). Moreover,
the mentioned oscillation results based on the information only on a sequence
of subintervals of [tg, c0), rather than on the whole half-line. They have shown
that the obtained results are sharper than some known results which are not
covered by known criteria.

We have motivated by the results of Ragovchenko [22], Kong [12] and
Li and Agarwal [18]. In this paper, we consider the oscillatory behavior of
nonlinear homogeneous differential equations of the form

(r(®)y") +a)y +p) f(y)gly') =0,  t=to,
where 7, q, p, f and g satisfies the following conditions.
(Cl) e Cl([to’ 00)7 (07 OO))7 qc C([to, OO),R)

(C3) p: [to,00) — [0,00) is continuous and p(t) # 0 on any ray [Tp, 0o) for some
Ty > to.
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(C3) f: R — R is continuous and yf(y) > 0 for y # 0.
(Cy4) g: R — [L,0) is continuous, where L > 0.

A function y: [tg,t1] — R, t; > to is called a solution of equation (1.1) on
[to, t1] if y(t) satisfies equation (1.1) for ¢ € [tg,t1). In the sequel, we assume
that the solution of equation (1.1) exists for any ¢ > 0. A solution y(t) of (1.1)
on [tg, 00) is called oscillatory if it has arbitrary large zeros, otherwise it is called
non oscillatory.

The outlay of this paper is as follows. In the next Section 2, we consider the
case when f is monotonous. We establish a sufficient criteria in the form of an
integral inequality for the oscillatory behavior of the solution of the equation
(1.1). We also write down the sufficient conditions in more simplified forms in
the special cases. In Section 3, we retrace all the results in Section 2, when
f is not necessarily monotonous. We present two examples and we prove the
oscillatory behavior of the solutions using the previously established results. We
also obtained oscillatory solutions of two examples numerically under different
initial conditions. In final Section 4, we introduce the concepts of disfocality and
disconjugacy and its connection to integral inequalities (sufficient conditions).
These concepts are already in the literature (see Parhi and Panigrahi [21])

2. Oscillation with monotonicity of f(z)

In this section, we assume that
(Cs) f is monotonous and satisfies the condition f'(y) > u > 0, where u is a
constant.

DEFINITION 2.1. A function H = H(t, s) belongs to a function class X, denoted
by H € X if H € C(D,R;), where D = {(t,s) : —o0 < s <t < oo}, which
satisfies

H(t,t) =0, H(t,s) >0 for t>s, (2.1)
and has partial derivatives %I;I and %{3 on D such that
0OH OH
5t = hy(t,s)H(t,s)"/? and 9s = —ha(t, s)H(t, s)"/?, (2.2)
s

where hi, hy € L}OC(D ®)-

THEOREM 2.2. Suppose that conditions (C1)—(Cs) hold.
(i) Let y be a positive solution of (1.1) on [e,b). For any k€ CY[tg, ), (0, 0)),
let

y'(t)

) T ““)}’ r=to (23)

ult) = v(yr() {
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on [c,b). Then for any H € X,
b

/H (b, 5)6(s) ds < H(b, c)u(c) + 41# C/r(s)v(s) {hg(b, 5)+ 28 VH(®, s)r ds.

(2.4)

(il) Similarly, let y be a positive solution of (1.1) on (a,c]. For any k €
C1([to, 00), (0,00)), define u as above, then for any H € X

c

/H(s,a)¢>(s) ds < —H(e,a)u(c)+

a

4ij$wg[mgmy-§@¢ﬂgmﬂim

Here v and ¢ are defined as

v(t) = exp (—2/1//@(5) ds)

to

and
o(t) = v(t){Lp(t) — q(O)k(t) + pr(t)s?(t) — (r(t)s(t))'}.

(
Proof. From the equations (1.1) and (2.3) for s € [¢,b), we have

u(t) = —2ps(t)v(t)r(t) {f(y((t))) + H(t)}

(oY PO
%@{ﬂwt Py(0) +<w<m}

)
By using f'(y) > p > 0 and ¢(y'(t)) > L > 0, we obtain from the above
inequality

Thus
o(t) < /() — "B a0 (2.6)
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Multiplying (2.6) by H (t s), integrating it with respect to s from ¢ to ¢ (¢ <
t< b), and using (2.1) and (2.2), we get

t

/ H(t, $)o(s) ds

- tH(t,s)u'(s)ds— th )““ ds — H(tsq(s) (s)ds
/ / r(s)v ()

= cuc—t s s)u(s Sq()us () s
—H(t u(c /{hﬂn>VH@7><>+H“’%<>(>+H“ ot } ¢

c

CH (L, u(c) — / {\/ :fg)(z’(j))u(s) + ;\/ ’"(S):(S) [hz(t,s) + 28 \/H(t,s)} } ds

+ 41M j r(s)u(s) [hg(t, 5) + 7‘{8 VH(, s)r ds

t
1 q(s) ’
<H(t, c)u(c) + " /r(s)v(s) [hz(t, s) + r(s) VH(t, s)} ds.
Taking t — b, in the above inequality, we obtain (2.4).

To get the second part, again multiply (2.6) by H(s,t), integrate with respect
to s from t to ¢ for t € (a,c]. Using (2.1) and (2.2), we get

c

c

/ H(s, £)6(s) ds

t
c

<- / (s, t)u(s)ds—/H(s ) () ()d —/H(stq(;u(s)ds

t

c

:—Hmww@+/{mww¢ﬂwwwﬁ H@ﬂE§<> H<”mgﬁ$}“

= — H(c, t)u(c) — / {\/ 5@(5{3““) _ ; \/ r(s);(s> [hl(s,t) - 7‘{23 \/H(s,t)” d

+ 41M / r(s)o(s) [hl(s,t) - 7‘{23 \/H(s,t)r ds

<~ H(e,tyu(e) + 41M / r(s)u(s) [hl(s,t) - 7‘{23 \/H(s,t)] ds.
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Taking ¢ — a™, in the above inequality, we obtain (2.5). The proof of the
theorem is complete. O

THEOREM 2.3. Suppose that (C1) — (C5) hold. Assume that for some c € (a,b),
there exist H € X, k € C1([tg, 00), (0,00)), the following inequality is satisfied

< b
1 1
Hie,a) a/H(s,a)¢(s) ds + Hb. o) C/H(b, $)p(s)ds

1 B q(s) » 2 )
> e / (6)0(s) o) = 1) VitGs.a)]
b
L q(s) ?
e [ T [h2<b,s>+r(s)m<b,s>} ds, (@)

c

where u,v, ¢, hi, ho are defined as earlier. Then every solution of (1.1) has at
least one zero in (a,b).

Proof. If not, then with out loss of generality we may assume that equation
(1.1) admits a solution y(t) such that y(t) > 0 for ¢ € (a,b). Let ¢ € (a,b). Then
by using Theorem 2.2, we conclude that (2.4) and (2.5) holds. By dividing (2.4)
and (2.5) by H(b,c) and H(c,a) respectively, and adding them, we have

b

1 )
Hie.a) a/H(s,a)¢(s) ds + Hb. o) C/H(b, s)o(s) ds

1 ~q(s) . u ? .
S / r(6)0(s) [ln(s.) = 10V,
b
1 q(s) °
+ AuH(b.0) / r(s)v(s) {hg(b,s)—f—r(s)\/H(b,s)} ds,

(&

which is a contradiction to (2.7). Hence the proof of the theorem is complete. [J

Theorems on oscillations

We now derive various oscillatory criteria using the earlier results.

THEOREM 2.4. Suppose that (C1) — (Cs) hold. If for each T > tg, there exist
H e X, k € CY([tg,00),(0,00)) and a,b,c € R such that T < a < ¢ < b and
(2.7) holds, then every solution of (1.1) is oscillatory.
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Proof. We consider a sequence {T;} C [ty,00) such that T; — oo as i — oo.
By the assumption, for each ¢ € N, there exists a;, b;, ¢; and such that T' < a; <
¢i < b; and (2.7) holds. From Theorem 2.3, every solution y(t) has at least one
zero in (a;, b;). As T; — oo, we see that every solution of (1.1) is oscillatory.
Hence the theorem. O

THEOREM 2.5. Suppose that conditions (C1)—(C5) hold. Assume there exist
He X, ke CY[ty,0), (0,00)) such that for any t; > to,

t

ligsc,gp/ {H(s,tl)(b(s) — 4167"(5)1)(5) {hl(s,tl) — zgz; \/H(s,t1)] } ds >0

(2.8)

and

t

h?isogp/ {H(t, s)p(s) — 427“(3)1)(3) [hQ(t, s)+ zgz; VH(t, s)] } ds >0,

(2.9)

where v(t) and ¢(t) are defined as in Theorem 2.1. Then every solution of (1.1)
1s oscillatory.

Proof. For any T > to, let a = T. In (2.8), take t; = a. Then there exists
¢ > a such that

/ {H(s,a)(;b(s) ~ L s)us) {hl(s,a) - q(S; \/H(s,a)] } ds>0. (2.10)

r(s

In (2.9), take t; = c. Then there exist b > ¢ such that

/ 1 q(s) ?
/ H(b,s)p(s) — 4Mr(s)v(s) {hg(b, s)+r(s) VH(b, s)] ds>0. (2.11)
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Dividing the equations (2.10) and (2.11), by H(c,a) and H (b, ¢), respectively,
and adding, we get

Hiea) /Hsa s)ds + (270)/1)H(b,s)¢(s)ds

e / rop(e) o)~ 20V, a)r as
+4ﬂi@@]“ﬁﬁﬁPM@$+%3VH&$rd&

Then it follows by Theorem 2.4, that every solution of (1.1) is oscillatory. [

Remark 2.6. If ¢(t) = 0, f(y) =y, 9(¥') = 1, k(t) = 0, then Theorems 2.3
and 2.5 reduces to [12, Corollaries 2.2, 2.4].

Consider the special case H(t,s) = H(t — s), then

0H 0H

ot s

Thus for H = H(t — s) € X, we have hi(t — s) = ha(t — s) and denote them

by h(t — s). The subclass containing such H(t — s) is denoted by Xy. Applying
Theorem 2.4 to Xy we have the following result:

= hy(t—s)H(t —s)/? and = hy(t — s)H(t — s)'/2.

THEOREM 2.7. Suppose that conditions (C1)—(C5) hold. If for each T > ty,
there exist H € Xo, k € C1([tg,>),(0,00)) and a,c € R such that T < a < ¢
and

/Hs—a + ¢(2¢ — s)]ds

1 2
>4M /[r(s)v(s) +7(2c — s)v(2¢ — s)|h*(s — a) ds
+ 21,u /[1)(2c —5)q(2¢ — s) — v(s)q(s)]h(s — a)\/H(s —a)ds
L [e(s)a(s) | vi2e—s)g(2e=9)] oo
* 4Ma/ [ r(s) r(2¢ — s) H(s - a)ds, (2.12)

where v(t) and ¢(t) are as defined in Theorem 2.1, then every solution of equa-
tion (1.1) is oscillatory.
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Proof. Let c= a;b, that is, b = 2¢ — a, then
Hb—-c¢)=H(c—a)=H((b—a)/2).

For any w € L!(a,b), we have
b c

/w(s) ds = /w(2c— s)ds

/b H(b— s)¢(s)ds = / H(s — a)$(2c — s) ds

b .
/v(s)q(s)h(b —s)VH(b—s)ds = /v(2c — 5)q(2¢ — 8)h(s — a)VH(s — a) ds
b c

/r(s)v(s)hQ(b —s)ds = /T(2c — 8)v(2¢ — s)h%(s — a)VH (s — a) ds.
It is easy to see that (2.12) implies that the inequality (2.7). Hence every solution
of (1.1) is oscillatory by Theorem 2.4.
For different choices of H(t,s), we will obtain different sufficient conditions
for oscillatory behavior of solutions of equation (1.1). Let

H(t,s)=(t—s)", t>s>1,

where A > 1 is a constant. Then the sufficient conditions (2.8) and (2.9), re-
spectively can be written as
t

i 2
limsup/(s —t)N | p(s) — ! r(s)v(s) <( AL q(s)) ] ds >0, (2.13)

t—o0
ty
and
t -

limsup/(t — ) |é(s) — 41 r(s)v(s) <( A + q(s)) ] ds >0. (2.14)

PRI t—s) r(s)
t L

0

COROLLARY 2.8. Suppose that (C1)—(Cs) hold. Assume for each t1 > to and
for some A > 1, k € C*([tg, >0), (0,00)), we have
t

Jimn sup til /(s—tl)/\ l({)(s)— ! 7“(3)1)(3)( AL ggﬂ ds > 0,

t—00 4p (s —t1)
ty
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and
t

lim sup tA1_1 /(t—s)’\ l(b(s)— ! r(s)v(s)( Ay ‘J(s)ﬂ ds > 0,

t—o0 4p
ty

then every solution of (1.1) is oscillatory.

The oscillatory nature of the solutions follows because, the above two condi-
tions implies the conditions (2.13) and (2.14). We, however use the above two
conditions to get the following result.

THEOREM 2.9. Suppose that (C1) — (Cs) hold. If for each ty >ty and for some
A > 1 satisfies the following conditions

liirisoljp t/\l_l tl/t(s — 1) [¢(5) - 41/1 <q2(5) - (25)\:1(:1)))] ds > 4,u(i\2— 1)’
(2.15)

and
t

. 1 1 2Xq(s) A2
1 —s)* — ° 2.1
s Ly (e o) (24 50 ass o)
t1
then (1.1) is oscillatory.
Proof. We may observe that
hi(t,s) = ha(t,s) = A(t — s)M?71,

Note that
t . t
. 2 o 2 A—2
h?i)soljp dptr—1 /h1(5_t1)d3h?i>soljp dptr—1 /)\ (s —t1)" “ds
tl tl

)\2

= 2.1
A1) 240
and
1 f 1 /
: 200 1 200 A2
hgs;ip dpth1 /hg(t s)ds hgsogp dptr—1 /)\ (t—s)""=ds
t1 tl
)\2
= . 2.1
- 1) (218)
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From (2.15) and (2.17), we have

h?isogp t/\1*1 /{H(s —t1)o(s) — 41/~L [hl(s —t1) —q(s)\/H(s—tl)r} ds

—%ﬁ?ﬂij@‘mkw$‘i(f@+é¥?0y“‘w&in>“

1

that is, (2.8) holds. Similarly, (2.16) and (2.18) implies that (2.9) holds. By
Theorem 2.5, every solution of (1.1) is oscillatory. Hence the theorem. g

More generally, one may consider
H(t,s) = [R(t) — R(s)]*,
t

where \ is a constant and R(t) = [ T(ls) ds and tlim R(t) =

ty

THEOREM 2.10. Suppose that (C1)—(C5) hold. If for each t; >ty and for some
A>1, ke CY[ty),00), (0,00)) such that

. v(s) A 2
limsup .\ t)/ — R(t1)] [sb(S) = (s) (R(s) _ R(t) —Q(5)> ] ds >0,

and

hm sup RA (1) / R(t) — R(s)]* [QS(S) 4/1158(1) (R(t) i\R(s) + q(s)) ] ds >0,

then every solution of (1.1) is oscillatory.

The proof is similar to that of Theorem 2.5 and hence omitted. We also have
the following theorem whose proof is similar to Theorem 2.9.

THEOREM 2.11. Suppose that (C1)—(C5) hold. If for each t; >ty and for some
A>1, ke CH[ty,0), (0,00)) such that

. 1 / 1 2Xq(s
l?ﬁ%%%wﬂM$_mmpp@_MM®Qﬂﬁ_MQ%&mﬂds
)\2
7 ap(xe - 1)
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and
1 / BT () — 1 2 27q(s) .
ISP iy / R(E) = R(s) {‘“) spr(s) (“”R(t)—ms))]d
)\2
>
Ap(N? = 1)

then every solution of (1.1) is oscillatory.

3. Oscillation without monotonicity of f(x)

We now consider non monotonous situation. But, we make the following
assumption

(Cs) f;y) > p1 > 0, where pq is a constant.

THEOREM 3.1. Suppose that conditions (C1)—(Cy) and (Cg) hold.
(i) Let y be a solution of (1.1) such that y(t) > 0 on [c,b). For any k €
Cl([th OO), (07 OO)); let
y'(#)

w() = vt {5

on [c,b). Then for any H € X, we have

+ Ii(t)}, t > to, (3.1)

/H (t,8)d(s) ds < H(b, c)w(c) + i /br(s)fu(s) [h2(b, o)+ 28 VH(b, c)r ds.

(i) Let y be a solution of (1.1) such that y(t) > 0 on (a,c| and w be as above.
Then for any H € X, we have

c

c

/ H(s, a)p(s) ds < —H(c, a)w (c)+41l / r(s)u(s) {hl(s,a) + 28 \/H(s,a)r ds,

a

v(t) = exp (—2//@(3) ds)

to

where

and

(t) = v(O{Lpp(t) — q(O)s(t) + r()s* (1) — (r(t)s(t))'}.
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Proof. From (1.1) and (3.1), we have

y'(t)

W'(t) = —2k(t)v(t)r(t) { o(t) + H(t)}

wo { T TOF X ot}

By using f(y)y > p1 > 0 and g(y'(t)) > L > 0, we obtain from the above
inequality

- y(t) y(t)
2
~ Ly (tplt) = (0o 1)+ o)D)
w?
= r<t>§<)t> B 38”(“ = o(O)[Lp(t) — q(R(t) + (D) (1) = (r()R (1))’
_ w2(t) B q(t)w B
ry() ~ o() O 00
that is,

The remaining part of the proof is the same as that of the proof of Theorem 2.1
and hence omitted. O

Once we have the above theorem, we obtain similar results as in Section 2.
For the sake of completeness, we present the results without proof.

THEOREM 3.2. Suppose that (C1)—(Cy) and (Cs) hold. Assume that for some
c€ (a,b), He X, k € C([tg,00), (0,00)), the following inequality is satisfied

< b
1 1
Hmwjﬂ@@M@®+Hm@ZH@@d@®

2
>4H(1¢7 a) /r(s)v(s) {M(s,a) — zgi \/H(s,a)] ds
b
! q(s) 2
+ LH(b. o) /r(s)v(s) |:h2(b, s) + (5) VH (b, S)] ds. (3.2)

c

Then every solution of (1.1) has at least one zero in (a,b).
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THEOREM 3.3. Suppose that conditions (C1)—(C4) and (Cgs) hold. If for each
T > to, there exist H € X, k € C([tp,0),(0,00)) and a,b,c € R such that
T <a<c<band (3.2) holds, then every solution of (1.1) is oscillatory.

THEOREM 3.4. Suppose that conditions (C1)-(Cy) and (Cs) hold. Assume there
exist H € X, k € C'([tg,00), (0,00)) such that for t; > to,
¢ 2
. 1 q(s)
limsup [ § H(s,t1)p(s) —  r(s)v(s) |hi(s,t1) — [ VH(s,t1)| p ds >0
{00 4 r(s)
ty

and
t

li?isolip/ {H(t, s)p(s) — ir(s)v(s) [hz(t, s)+ zg; VH(t, s)} } ds >0,

then every solution of (1.1) is oscillatory.

COROLLARY 3.5. Suppose that conditions (C1)—(Cy) and (Cg) hold. If for
each T > to and for some A\ > 1, then there exists a function H € X, k €
C'([to, 00), (0,00)), such that

t

Jimn sup tf_l /(s—tl)’\ -(;5(5) - ir(s)v(s)( AL ‘I(S)ﬂ ds > 0

t—o0
t1 -

and
t -

Jimn sup til /(t—s)’\ 6(s) — ir(s)v(s)( AL q(siﬂ ds >0

t—o0

tl -

Then every solution of (1.1) is oscillatory.

We complete this section by presenting two examples. We conclude the oscil-
latory nature of the solutions by employing the previous results.

Ezxample 3.6. Consider the nonlinear homogeneous differential equations

t2
2y — 2ty + 1+yH(1+y?) =0, t>1. (3.3
(t°y") — 2ty (1+Sin2t)(1+cos4t)y( y)(L+y7) > 1. (3.3)
2
Here r(t) = 1%, q(t) = =2, p(t) = (1 4qu t)(11cosity> J(¥) = y(1 +y?) and

g(y') = 1+ y'?. We may observe that
fy)=1+5y*>1=p, and g(y)=1+y*>1=1L.
t
If A = 2 and we choose v(t) = exp(—2,uf n(s)) ds =}, then ¢(t) = v(t){Lp(t)—
1
K(t)q(t) + pr(t)s®(t) — (FOE0)'} = (14 gnz (1 4eost o) T 2
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By use of Corollary 2.8, we may show that
t

2
lim sup t)\l_l /(5 —t)* l¢(3) N 41//«(5)@(5) (s —)\tl - zg;)

t1

t

2
1 1 1 1 1
=1i —t1)? 2 - d
liisogpt/(s ! (1 +sin? 5)(1 4 cos? s) - 2 <s—t1 * s) §
t1
1 / 1
: 2 2 _
Stimsup [ (=0 = L (25— 0+ 2] ds = o,
t1
and
1 1 A gl
I t—s)* - _ a8 d
imsup /( 5) l(ﬁ(S) 4MT(8)"U(8) (t_s r(s) s
t1
¢
1 1 1)
=1i t—s)? 2 ds = co.
lgscfipt/( s) (1+sin23)(1+cos4s)+ <t—s+s> ST

t1

Hence (3.3) is oscillatory by Corollary 1. Moreover, y = cost is an oscillatory
solution of (3.3).

Ezxample 3.7. Consider the nonlinear homogeneous differential equation

3t(1 + sin? 1) (1 1
ty') —y' + + 1+4y?) =0, t>1.
)~y (1+c082t)(4+sin2t)y 3 1+y? 1+y7) -
(3.4)

3t(1+4sin?
Here r(t) = t, g(t) = =1, p(t) = (. 5o i vema vy F(¥) = (}), + Hlyz) y, 9(y') =
1+y? >1=L. As earlier, we take A = 2 and v(¢) = . We may observe that

4 2
Yyt —y 44
flly) = o
(1+92)
fly) 1 1 1
= > =
3T 14273 M

gy)=1+y*>21=L
Thus
v(t)[Lpnp(t) — w(t)q(t) +r(t)s*(t) — (r(t)s(t))']
1 +sin®¢ 2
t(4 +sin®t)(1 4 cos? t) T

-
—~
~
=
I
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Clearly, Theorem 2.9 cannot be applied to equation (3.4). In this case Corol-
lary 3.5 is applicable. By Corollary 3.5, we obtain

t

fm sup tAl_l /(s—tl)’\ l¢(s) - ir(s)v(S) <S_At1 - iﬁi;) ] ds

t1
, 1 (1 + sin?s) 2 1 (35—751)2]
=1 —#1)? — ds =
liisogpt/(s ! [s(él—l—sin2 s)(1+ cos? s) +s3 453 (s —t1)? T
t1
and
1 [ 1 A %
li . A . . q(s
s [(0= 9% o6s) — yriennts) (1 - 40) ] ds

t1 -
t

I 1/(t )2 [ 1+sin?s . 2 1 <s+t)2
=limsu -5 _
ol s(4 +sin®s)(1+cos?s) 3 4s3 \t—s

ty

ds = .

Thus by Corollary 3.5, every solution of equation (3.4) is oscillatory. Moreover,
y = sint is an oscillatory solution of (3.4).

Numerical results

We have obtained oscillatory solutions of the above equations numerically
under different initial conditions. The first three figures represents the solutions
and its derivative of the first example and the solutions of the second example
is given in the last three figures.

4. Disfocality and disconjugacy

In this section, we assume that y(f) is a nontrivial solution of (1.1) with
y(a) =0 =y(b), y(t) # 0 for ¢t € (a,b). Then there exists a ¢ € (a,b) such that

y'(c) = 0.
DEFINITION 4.1. Equation (1.1) is said to be right-disfocal in [¢, b) if the solution
of (1.1) with y'(c¢) = 0, y(c) # 0 do not have zero in [c, b).

Equation (1.1) is said to be left-disfocal in (a, c] if the solution of (1.1) with
y'(c) =0, y(c) # 0, do not have zeros in (a, c].

Equation (1.1) is said to be disconjugate in (a,b), if no non trivial solution of
(1.1) has more than one zero in (a,b).
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Figure-1.1 Figure-1.2
2
—y®
1 - -y
_ ThETT { y(,)
° e
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o 1)/
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Ficure 1. Figure for oscillaton

THEOREM 4.2.
(i) Assume that equation(1.1) is right disfocal in [c,b). Then for any H € X
and C'([tg, 00), (0,00)), and r € C[ty,00)

| H(b,5)é(s) ds b
Hb, e)o(er(c)n 41M / . {hg(b 5)+ ig; VHG.s)| ds. (41)
where
o(t) = exp —2u/tﬁ( ) ds
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and
¢(t) = v(){Lp(t) — q(t)r(t) + pr(t)s?(t) — (rt)s(t))'}-

(ii) Assume that equation(1.1) is left disfocal in (a,c|. Then for any H € X
and K € Cl([to’ 00)7 (07 OO))7

/Hsa

— H(ce,a)v(e)r(c)k(c) +

/ r(s)u(s) [h1<s,a)—f§8)¢f1<s,a) ds. (4.2)

a

1
dp

(iii) Assume that equation (1.1) is disconjugate on (a,b). Then for any H € X
there exists ¢ € (a,b) such that (4.1) or (4.2) hold.

Proof.

(i) Let y be a solution of (1.1) satisfying y'(¢) = 0 and y(c) > 0. Since (1.1)
is right disfocal in [¢, ), then y(t) > 0 on [c,b). So that wu(t) defined by (2.3)
exists on [¢,b) and u(c) = v(c)r(c)k(c). Then required inequalities follows from
Theorem 2.2.

(ii) Let y be a solution of (1.1) satisfying y'(c) = 0 and y(c) > 0. Since (1.1)
is left disfocal in (a,c], then y(t) > 0 on (a,c]. So that u(t) defined by (2.3)
exists on (a,c] and u( ) = v(c)r(c)k(c). Then the required inequality follows
from Theorem 2.2.

(iii) Suppose that (1.1) is disconjugate on (a,b). Let y(¢) be a solution of
(1.1) with 3/(¢) = 0, y(c) # 0, where ¢ € (a,b). Then y(t) has at most one zero
in (a,c] or one zero in [c,b). Hence (1.1) is left disfocal in (a, ] or right disfocal
in [c,b). Hence (4.1) or (4.2) holds. O

Remark 4.3.
(i) If for some H € X and k € C*([tg, 00), (0,00)) such that

then (1.1) is not right disfocal in [c, b).
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(ii) If for some H € X and x € C1([tg, ), (0,00)) such that

/CH(s,a)¢>(s) ds
-

H(e,a)v(c)r(c)k(c) + " /r(s)v(s) {hl(s,a) _1

a

then (1.1) is not left disfocal in (a, ¢].
(iii) If for some H € X and x € C!([to, 00), (0,00)) such that

/H(s,a)d)(s) ds
> — H(e,a)v(c)r(c)k(c) + 41/1 /r(s)v(s) {hl(s,a) — 323 \/H(s,a)} ds,

a

and

b

/ H(b, $)(s) ds

c b 2
SHO. @) + [ r(s)uls) {hg(b, 5+ ig; VH®, s)] s,

holds. Then (1.1) is not disconjugate in (a,b).

THEOREM 4.4. Assume that for some H € X, there exists ¢ € (a,b) such that

/CH(s,a)¢>(s) ds

> — H(c,a)v(c)r(c)k(c) +
and

b
/H(b, s)p(s)ds

b

/ r(s)v(s) {hg(b, s) + 28 VH(b, s)r ds

then every solution of equation(1.1) has at least two zeros in (a,b).

1

>H(b, c)v(c)r(c)k(c) + s

c

Proof. If above two inequalities hold, then the equation (1.1) is not left disfocal
in (a, ] and the equation (1.1) is not right disfocal in [c, b), which implies that is
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not disconjugate in (a,b). Hence there exists a solution with two zeros in (a, b).
Hence the proof of the theorem is complete. O

Acknowledgement. The authors are grateful to the referees for their valuable
comments and suggestions.

(1]

(17]
(18]

(19]

REFERENCES

BURTON, T. A.—GRIMER, R.: Stability properties of (ru') +af(u)g(u') = 0, Monatsh.
Math. 74 (1970), 211-222.

CASSELL, J. S.: The assymptotic behaviour of a class of linear oscillatore, Quart. J.
Math. Oxford Ser. (3) 32 (1981), 287-302.

COPPEL, W. A.: Stability and Asymptotic Behaviour of Differential Equations, Heath,
Boston, 1965.

EL-SAYED, M. A. An oscillation criterion for a forced second order linear differential
equations, Proc. Amer. Math. Soc. 118 (1993), 813-817.

GRACE, S. R—LALLI, B. S.: An oscillation criterion for second order strongly sublinear
differential equations, J. Math. Anal. Appl. 123 (1987), 584-588.

GRAEF, J. R—SPIKES, P. W.: Asymptotic behaviour of solution of a second order
nonlinear differential equations, J. Differential Equations 17 (1975), 451-476.

GRAEF, J. R—SPIKES, P. W.: Boundedness and convergence to zero of solutions of
a forced second order nonlinear differential equations, J. Math. Anal. Appl. 62 (1978),
295-309.

HARDY, G. H—LITTLEWOOD, J. E—POLYA, G.: Inequalities, Cambridge University
Press, Cambridge, 1988.

HUANG, C. C.: Oscillation and nonoscillation for second order linear differential equa-
tions, J. Math. Anal. Appl. 210 (1997), 712-723.

KARTSATOUS, A. G.: Maintenance of oscillations under the effect of periodic forcing
term, Proc. Amer. Math. Soc. 33 (1972), 377-383.

KEENER, M. S.: Solutions of a certain linear homogeneous second order differential
equations, Appl. Anal. 1 (1971), 57-63.

KONG, Q.: Interval criteria for oscillation of second order linear ordinary differential
equations, J. Math. Anal. Appl. 229 (1999), 258-270.

LALLI, B. S.: On boundedness of solutions of certain second order differential equations,
J. Math. Anal. Appl. 25 (1969), 182-188.

LEIGHTON, W.: Comparison theorems for linear differential equations of second order,
Proc. Amer. Math. Soc. 13 (1962), 603—610.

LI, W. T.: Oscillation of certain second-order nonlinear differential equations, J. Math.
Anal. Appl. 217 (1998), 1-14.

LI, W. T.—AGARWAL, R. P.: Interval oscillation criteria related to integral averaging
technique for certain nonlinear differential equations, J. Math. Anal. Appl. 245 (2000),
171-188.

LI, W. T.—AGARWAL, R. P.: Interval oscillation criteria for second order nonlinear
differential equations with damping, Comput. Math. Appl. 40 (2000), 217-230.

LI, W. T.—AGARWAL, R. P.: Interval oscillation criteria for a forced nonlinear ordinary
differential equations, Appl. Anal. 75 (2000), 341-347.

LI, W. T.—AGARWAL, R. P.: Interval oscillation criteria for second order forced non-
linear differential equations with damping, Panamer. Math. J. 11 (2001), 109-117.

453



A. K. NANDAKUMARAN — S. PANIGRAHI

LI, W. T.—ZHANG, M. Y.—FEI, X. L.: Oscillation criteria for a second order non-
linear differential equation with damping term, Indian J. Pure Appl. Math. 30 (1999),
1017-1029.

PARHI, N.—PANIGRAHI, S.: Disfocality and Liapunov type inequalies for third order
equations, Appl. Math. Lett. 16 (2003), 227-233.

RAGOVCHENKO, Y. V.: Oscillation criteria for certain nonlinear differential equations,
J. Math. Anal. Appl. 229 (1999), 399-416.

RAINKEIN, S. M.: Oscillation theorems for second order nonhomogeneous linear differ-
ential equations, J. Math. Anal. Appl. 53 (1976), 550-553.

SKIDMORE, A.—LEIGHTON, W.: On the equation y" + p(z)y = f(x), J. Math. Anal.
Appl. 43 (1973), 46-55.

SKIDMORE, A.—BOWERS, J. J.: Oscillatory behaviour of solutions of y" + p(z)y =
f(z), J. Math. Anal. Appl. 49 (1975), 317-323.

TEUFEL, H.: Forced second order nonlinear oscillations, J. Math. Anal. Appl. 40 (1972),
148-152.

WONG, J. S.: Oscillation criteria for a forced second order linear differential eqations,
J. Math. Anal. Appl. 231 (1999), 235-240.

WONG, J. SS—BURTON, T. A.: Some properties of solution of u" + a(t) f(u)g(u") =0,
Monatsh. Math. 69 (1965), 364-374.

UTZ, W. R.: Properties of solutions of v’ + g(t)u?”~! = 0, Monatsh. Math. 66 (1962),
56-60.

Received 31. 7. 2007 Department of Mathematics

454

Indian Institute of Science

Bangalore 560 012

INDIA

E-mail: panigrahi2008@gmail.com
spsm@uohyd.ernet.in




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [498.898 708.661]
>> setpagedevice


