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We propose a self-regularized pseudo-time marching 
strategy for ill-posed, nonlinear inverse problems  
involving recovery of system parameters given partial 
and noisy measurements of system response. While 
various regularized Newton methods are popularly 
employed to solve these problems, resulting solutions 
are known to sensitively depend upon the noise inten-
sity in the data and on regularization parameters, an 
optimal choice for which remains a tricky issue. 
Through limited numerical experiments on a couple of 
parameter re-construction problems, one involving 
the identification of a truss bridge and the other re-
lated to imaging soft-tissue organs for early detection 
of cancer, we demonstrate the superior features of the 
pseudo-time marching schemes. 
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Introduction 

RECOVERY of parameter distributions from a set of noisy 
measurements, often over a small subset of the domain of 
interest is the main concern in the area of research deal-
ing with the so-called inverse problems. It is usually the 
case that the solution of a partial differential equation 
(PDE), referred to as the forward problem, connects the 
parameters in question to the (partial) measurements of 
some response variables. Following a discretization of the 
forward problem, the inverse problem of current interest 
is one of solving for the discretized parameter vector μ 
through an inversion of the discretized (and possibly 
nonlinear) system u = F(μ), where u denotes partial and 
noisy data and F a bounded operator (derivable through 
the discretized forward operator). Given that the Frechet 
derivative of F is ill-conditioned, a ‘weak’ solution is 
sought, which minimizes ||u – F(μ)||2. Oftentimes, vari-
ants of the Newton algorithm are used to arrive at a local 
minimum. In order to render the ill-posed parameter re-
covery problem tractable, a regularization term is added 
to the mean-square error which has the effect of making 

the generalized inverse of Fréchet derivative of F con-
tinuous. An optimal choice of the regularization operator 
(and the associated regularization parameter) is very  
important so that the Newton iteration leads to meaning-
ful and smooth solutions to the inverse problem. A num-
ber of approaches have been proposed to choose an 
appropriate regularization operator1. The experience has 
been that none of the approaches work quite satisfacto-
rily, even though all are computationally quite expen-
sive2. Another limitation of the standard deterministic 
approach is its inability to accommodate measurement  
error as white noise, within the finite dimensional Hilbert 
space setting used to describe the problem. 
 In order to overcome some of the limitations of the 
usual Newton iteration, a stochastic filtering approach, 
which provides a rigorous probabilistic framework to 
solve inverse problems has been adopted in the past. For 
a dynamically evolving state, a stochastic filter provides 
the route to compute the conditional probability density 
function (PDF) of the model parameters, given the obser-
vation up to the current instant, from which an estimate of 
the parameter distribution can be had. Examples include the 
Kalman filter for linear inverse problems or its sub-
optimal extensions such as the extended Kalman filter 
(EKF) and ensemble Kalman filter (EnKF) for nonlinear 
inverse problems and the posse of optimal particle filters. 
A catch in the filtering approach is the need of a dynami-
cal model for the evolution of the state, which precludes a 
number of important applications wherein the measure-
ments are static and the system does not naturally have 
place for the time variable to benefit from a filtering  
approach for reconstruction. 
 One way out of this difficulty, which would bring 
static problems under the ambit of stochastic filtering is 
to introduce a pseudo-time under which the parameter is 
modelled to evolve. This has led to the development of 
pseudo-dynamic EKF and EnKF (PD-EKF and PD-EnKF 
respectively) to solve, for example, the elasticity imaging 
problem from static displacement measurements3. The 
basic idea is to consider μ (t), evolving over pseudo-time, 
as the solution of a Cauchy problem ( )tμ = F(μ (t)) – u(t) 
with μ (0) = μ 0 and t > 0 and reconstruct μ as a finite-
time solution of the above. The PD strategy thus opens up 
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a more general approach to solve the inverse problem 
leading to various time-recursive methods, including 
those which use stochastic filtering. For example, a direct 
time integration, explicit or implicit, of the ordinary dif-
ferential equation (ODE) leads to self-regularized solu-
tions of the original system of algebraic equations 
without the need for an inversion of the system matrix. 
The PD approach, using both stochastic filtering and  
explicit time integration, has been applied in the recent 
past to solve inverse problems connected with elastogra-
phy and diffuse optical tomography4,5. It has been ob-
served that the PD algorithm results in robust and self-
regularizing procedures leading to recovery of parameter 
distributions from noisy measurements. When noise is 
large, typically more than 3%, the PD algorithm is able to 
reconstruct the parameter distribution with quantitative 
accuracy, whereas the usual Gauss–Newton method fails. 
 The aim of the present work is to prove the general  
applicability and advantages of the PD time marching 
strategy by solving typical inverse problems in two  
diverse application areas, structural health assessment  
involving bridge structures under purely static observa-
tions of displacements and medical imaging which aims 
to recover mechanical property distribution of soft tissue 
organs from light autocorrelation measurements. These 
problems are presently tackled by explicit Euler integration 
of the associated normal equation of the Newton iteration. 
It is observed through limited comparison with the regu-
larized Gauss–Newton approach that the present approach 
is less sensitive to measurement noise and performs 
robustly over a large range of time steps of integration. 

Inversions through pseudo-time marching 
schemes 

In this section, we briefly describe the pseudo-dynamical 
form of the linearized Gauss–Newton equation for self-
regularized recursion over finite time in the reconstruc-
tion procedure. For more details, we refer to (ref. 3). 
Consider the problem of reconstructing the parameter 
vector μ ∈ Vμ ⊂ Rn, which denotes the finite-dimensional 
(nodal) discretization of associated scalar field μ (x) via 
finite element shape functions with x ∈ Rq denoting the 
spatial variable. A similar discretization of the response 
function u(μ (x)) (probably governed by partial differen-
tial equations or PDEs) yields the nodal vector 
U ∈ VU ⊂ Rd. Assuming, without loss of generality, that 
the elements of the (noisy) measurement vector um ∈ Rm 
correspond to certain nodal locations, we define u ∈ Vu to 
be the subset of U corresponding to um; m ≤ d. For most 
applications, we have m << d resulting in very large null 
spaces and the associated numerical difficulties including 
multiplicity of solutions. A common regularization tech-
nique is to penalize the optimization functional with some 
extra terms, broadly known as Tikhonov regularization, 
leading to the following optimization problem. 
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where u(μ) is computed using 
 
 K(μ)U = f. (2) 
 
Here L denotes the penalization operator on μ, λ the regu-
larization parameter, || || the L2 norm and S is the number 
of load (source) cases. Moreover, K denotes the para-
meter dependent system (stiffness) matrix and f the non-
parametric source (force) vector. Subscript ‘i’ refers to 
the response corresponding to the ith source case. The es-
sential optimality condition (normal equation) for the 
problem is 
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where Ji(μ) = (∂ui(μ)/∂μ) is the Jacobian matrix and 
L′(μ) = (∂L(μ)/∂μ). The above nonlinear equation is gene-
rally solved using successive linearizations with the  
Hessian approximated as 1 ( ) ( )S T

iiiH J Jμ μ== Σ  (Gauss–
Newton approximation). This leads to the following lin-
ear equation in the increment Δμ. 
 
 (H + λL′′(μ))Δμ + G(μ) = 0 (4) 
 
with μ being the linearization point and G to be defined 
here. Note that the addition of a regularization term in the 
optimization functional leads to a different minimization 
problem from the one originally envisaged. The closeness 
of solutions of the regularized and original problems is 
greatly influenced by the penalization terms and, in parti-
cular, by the parameter λ. The operator L′′ is helpful in 
tackling the numerical difficulties owing to the null space 
of the linearized operator. Moreover, it should be so cho-
sen as to account for any available a priori knowledge on 
spatial distributions of the parameters to be recovered. 
While an appropriate choice of regularization terms could 
lead to useful solutions, small variations in these terms 
could as well lead to severe degradation of solutions. 
 One way of obtaining an iterative solution to a nonlin-
ear inverse problem, as above, whilst avoiding an explicit 
inversion of the linearized operator would be to introduce 
artificial dynamics and consider the solution to be the re-
sponse of the artificially evolving dynamical system after 
some finite time (before the solution diverges). This may 
be thought of as a special case of continuation or homo-
topy-based approaches. For instance, the solution of a 
system of algebraic equations (with positive semi-definite 
coefficient matrix following linearization) may be 
thought of as the steady-state solution of a system of  
ODEs. In this context, ‘time’ is a pseudo-variable and re-
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cursion over a chosen step size through numerical inte-
gration plays the role of iterations. Moreover, this artifi-
cial dynamics may evolve on an invariant manifold (a Lie 
manifold) and thus enable development of robust numeri-
cal schemes that may not diverge. It is of interest to note 
that Landweber iterations, which correspond to an  
explicit Euler time discretization of a system of ODEs 
describing the artificial dynamics of an inverse prob-
lem2,6, have a self-regularized character depending upon 
the time-step. Keeping these in mind we form a pseudo-
dynamical counterpart of the Gauss–Newton iterative  
update equation. In particular, by adding a fictitious time 
derivative term in eq. (4) with λ = 0, we obtain the  
linearized ODE in (t, t + Δt]. 
 
 ( *)( ( ) *) ( *) 0,H t Gμ μ μ μ μ+ − + =  (5) 
 
where 1( *) : ( *) ( ( *) ).S i mT

i iiG Jμ μ μ== ∑ −u u  The over-dot 
represents the time derivative and μ* is the linearization 
point in the n-dimensional vector space Vμ. Note that we 
have removed the regularization term while forming the 
dynamical system and that the ODE contains um, which is 
noisy. Upon integration over indefinite time intervals,  
solutions may diverge. In order to avoid such blow-off of 
solutions, we intend to use a stopping criterion and thus 
integrate only over a finite time interval. The stopping 
criterion may be arrived at through the discrepancy prin-
ciple or any other suitable scheme depending upon the 
user requirement.  
 The solution of the linearized ODE (5) may be written 
as 
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where f = H(μ*)μ* – G(μ*) is a constant forcing. Follow-
ing the concept of local linearization, the linearization 
point t* (such that μ*:= μ(t*)) could be chosen anywhere 
in the closed interval [t, t + Δt] without affecting the for-
mal error order. While choosing t* = t yields the explicit 
phase space linearization (PSL)7, t* = t + Δt results in the 
implicit locally transversal linearization (LTL)8. Denoting 
h = tk+1 – tk to be the time step and μk:= μ(tk), the explicit 
PSL map corresponding to the continuous update eq. (6) 
is written as 
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with  
 
 ( ) ( ).k k k kH Gμ μ μ= −f  (8) 

We thus bypass computing the inverse of the Hessian 
(JTJ) or its modifications, used with the regularization 
terms. The fact that exponentiation is being used whilst 
obtaining the time stepping algorithm should enable a 
geometrically consistent progression on the associated 
(nonlinear) Lie manifold and thus provide a ‘natural’ sta-
bilization for the inverse problem at hand. In this sense, a 
connection with the Tikhonov type approach could also 
be brought out. While a detailed theoretical exploration 
of such issues is outside the present scope, the following 
argument, proposed in ref. 9 and adapted for the present 
case, provides useful insight. Consider the singular value 
decomposition of the Jacobian J(μk) := Jk = Uk[diag(ωi)] × 

,T
kV  valid over t ∈ (tk, tk+1]. Then, the explicitly lineari-

zed solution, given by eq. (7), may be recast as 
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Thus, the effect of recursion with a step size h is to  
appropriately modify (regularize) the terms containing 
the inverse 1

iω−  of the singular values ωi, especially near 
the lower end of the spectrum. Hence, while the terms 
containing small ωi’s get damped over finite recursions, 
the ones containing larger ωi’s remain nearly unaffected. 
 From the numerical standpoint, the computation of  
matrix exponentials is the key cost that might limit the 
viability of the method for higher dimensional problems. 
In such cases, one may exploit the sparse structure of J 
along with a Krylov subspace projection to speed up 
computations10. Both the Gauss–Newton method (that  
requires matrix inversion and hence O(n3) operations) and 
the pseudo-dynamical strategy (that employs matrix  
exponentiation, again involving O(n3) operations)11 have 
similar computational overheads over a single iteration. 
Thus a possible difference in the cost of computation 
should depend on the number of iterations needed for 
convergence, given a tolerance, in each method. Our lim-
ited numerical exploration suggests that the pseudo-
dynamical approach typically needs marginally higher 
number of iterations vis-à-vis its Gauss–Newton counter-
part. However an adaptive strategy for choosing the time 
step in the pseudo-dynamical approach could reduce the 
number of iterations, making it as efficient as the Gauss–
Newton method. 

Applications 

To illustrate the universal applicability of the pseudo-time 
marching schemes, we take a couple of nonlinear inverse 
problems that are typically encountered in two diverse 
disciplines, viz. structural system identification and non-
invasive mechanical property assessment in soft-tissue 
organs. 
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System identification of bridges 

Before presenting the numerical results, a word about the 
stopping rule for the time marching schemes. Due to the 
unbounded nature of the operator governing the inverse 
problem, an improper stopping criterion may lead to 
blow-offs. We define the measure of misfit as 
 

 
1

|| ||
|| ||

S i i

i
i

M
=

−=∑ u z
z

 (10) 

 
U ∈ Rm is the computed response and z ∈ Rm the stati-
cally measured response. We stop iterations when M goes 
below a specified tolerance. 
 We choose a multi-span truss as taken in ref. 12. The 
structure is modelled via linear truss element with trans-
verse and axial displacement degrees of freedom per 
node. A four-span bridge with 105 truss elements and 44 
nodes subjected to static loading is considered. The c/s 
area selected for each truss element is 2500 mm2 and the 
Young’s modulus of the material is 200 GPa. Five dam-
aged elements localized in the first left bay are introduced 
in the structure (Figure 1 b). The skeletal structure model 
is adopted with element-wise constant material property 
distributions. Denoting α as the damage index vector, the 
discrete forward problem is: 
 
 K(α)U = f. (11) 
 
 

 
 

 
 

 
 
Figure 1. a, Multi-span truss structure and damaged members. b, 
Enlarged view of the damaged members. c, Three different loading 
cases considered. 

The element damage index (αe) is defined as damaged
eK = 

(1 – αe) undamaged ,eK  0 ≤ αe ≤ 1, with ‘e’ referring to the 
eth element. The goal is to determine the discontinuous 
damage index profile with a partial measurement of the 
deformation quantities. We now intend to validate the 
proposed schemes without taking recourse to any experi-
mentally procured data. For generating the simulated 
measurements, one way is to solve the discretized  
forward problem and then additively perturb the targeted 
(‘measured’) displacement components at the measure-
ment nodes with noise, generated as a set of independent 
and identically distributed (IID) random variables of a 
specified intensity. Presently, we assume that the set of 
measurements contains only the transversal displacement 
components at a few nodes. Identification of the isolated 
damage locations and magnitudes typically needs meas-
urements corresponding to multiple load cases. We con- 
 
 

 
 

Figure 2. Results via the GN method with 1% measurement noise. 
 
 

 
 
Figure 3. Results via the pseudo-dynamic method with 1% measure-
ment noise. 
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Figure 4. Sensitivity with time step for pseudo-dynamic method for 1% measurement noise. a, Time step ú 10. b, Time step ñ 1. 
 

sider three specific load cases as shown in Figure 1 c. We 
first use the conventional regularized Gauss–Newton 
method (GNM) to bring out the sensitivity of reconstruc-
tions to the regularization parameter. Results via the 
GNM for different regularization parameters are shown in 
Figure 2. It is observed that the best regularization para-
meter is 0.01. Nevertheless, as shown in Figure 2, a small 
variation about this optimal value drastically affects  
the reconstruction. Results via the deterministic time-
marching approach, shown in Figure 3, demonstrate that 
the damage profile is well reproduced and quantified. 
Sensitivity of the reconstruction to time steps is shown in 
Figure 4. We observe that, even with a very high step size 
(e.g. 103), the algorithm is able to correctly identify the 
damage zones in the structure. 

Recovery of particle diffusion coefficient from light 
intensity autocorrelation 

Here we consider the propagation of coherent light, 
through a tissue-like object, whose amplitude autocorre-
lation is affected by properties both the optical (for  
example, absorption and scattering coefficients) and  
mechanical (for example, the mean-square displacement, 
MSD, of particles undergoing temperature-induced 
Brownian motion, which in a linear visco-elastic medium 
is assumed to have a linear time dependence 6DBτ; DB  
being the particle diffusion coefficient). The propagation 
of the un-normalized field autocorrelation G(r, τ) is gov-
erned by the PDE 
 
 2

0 00
. ( ) ( , ) ( 2 ) ( , ) ( )a s Br G r k D G r q r rκ τ μ μ τ τ′∇ ∇ − + = − −  

 (12) 
 
for r ∈ Ω, with the boundary condition, 

 ( , )( ) ( , ) 0,
ˆ

G mm G m
n
τκ τ∂ + =

∂
 (13) 

 
where m ∈ ∂Ω. Here k0 is the modulus of the propagation 
vector of light, μa and sμ′  are respectively the absorption 
and reduced scattering coefficients of the object, κ(r) is 
the optical diffusion coefficient and q0(r – r0) is the point 
source at r0. We intend to recover DB from a set of 
boundary measurements of a quantity related to G(r, τ), 
which is the intensity autocorrelation  
 

 g2(m, τ)
2

( , )1 .
( ,0)

G m
G m

τ= +  

 
For this, we discretize eqs (12) and (13) using FEM and 
obtain a set of algebraic equations K(DB)G = q. The de-
terministic method seeking the minimization of an error 
functional, as explained in the previous section, leads to 
Levenberg–Marquardt (LM) update equation (a variation 
of the GNM). 
 
 1

1 1( ) [ (( ) ) (( ) ) ]T
B i B i B i iD J D J D Iλ −

+ +Δ = +  
( )

22( ) )( (( ) )).mT
B i B iJ D g g D× −  (14) 

 
Here ( )

2
mg  is the experimentally measured intensity auto-

correlation (on the boundary nodes) and g2((DB)i) is its 
computed counterpart for the current DB. 
 The Jacobian J(DB) has to be evaluated for the meas-
urement g2(m, τ), which is obtained from G(m, τ) using 
the measurement operator M: 
 

 M(G(m, τ)) 
2

( , )1 .
( ,0)

G m
G m

τ= +  (15) 
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Figure 5. a, Reference profile. b, Comparison of original cross-sectional profile (i) with those reconstructed via LM method (ii) and pseudo-time 
marching scheme (iii) from data with 1% noise. 
 
 

 
 

Figure 6. Cross-sectional profiles, reconstructed via (ii) LM algorithm and 
(iii) pseudo-time marching scheme, from data with 2% noise compared with the 
original profile (i). 

 
 
For quick computation of the Jacobian, the adjoint 
method that makes use of the reciprocity relation of light 
propagation is made use of. For details, we refer to ref. 
13. 
 The LM algorithm is used to recover DB from simu-
lated intensity autocorrelation data. The circular object 
used in the simulation is of 8 cm diameter with the  
following optical and mechanical properties: b

aμ  = 
0.001 cm–1, b

Sμ′  = 8 cm–1 and b
BD  = 0.0 cm2/s. The object 

has two circular inhomogeneous inclusions in DB, one at 
(–2.5 cm, 0 cm) of in

BD  = 0.1 × 10–8 cm2/s and the other 
at (2.5 cm, 0 cm) of in

BD  = 0.4 × 10–8 cm2/s. The experi-
mental data set is generated by solving the forward equa-

tion for G(r, τ) using a finer mesh than used in the 
inversion and corrupting the solution with Gaussian noise. 
 The reconstruction using the pseudo-time marching 
method, based on data with 1% noise, is shown in Figure 
5 b. For this case, the LM algorithm also produces nearly 
identical reconstruction. When noise is increased to 2%, 
the LM algorithm fails to appropriately recover the DB 
field whereas the pseudo-time marching method works 
quite satisfactorily. This is shown in the cross-sectional 
profiles of Figure 6, where (i) is for the reference DB 
field, and (ii) and (iii) are obtained from the LM and the 
pseudo-time marching methods respectively. It is obser-
ved that the quantitative accuracy and the contrast recov-
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ery, as obtained through the pseudo-dynamic approach, 
are distinctively superior vis-a-vis the LM algorithm,  
especially for 2% and still higher data noise levels. 

Concluding remarks 

We have shown through limited numerical simulations 
that the proposed pseudo-time marching scheme is self-
regularized (in that it does not need an explicit specifica-
tion of any regularization parameter) and works more 
robustly in respect of handling data noise in comparison 
with regularized Gauss–Newton methods, popularly used 
for nonlinear inverse problems involving reconstruction 
of system parameters. The two illustrative system identi-
fication problems we have discussed, one concerning a 
bridge structure and the other involving soft tissue organs 
for medical diagnosis, help bring forth these advantages 
with the pseudo-dynamic scheme. 
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