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We discuss the inverse problem associated with the propagation of the field autocorrelation of light through a
highly scattering object like tissue. In the first part of the work, we reconstruct the optical absorption coeffi-
cient u, and particle diffusion coefficient Dy from simulated measurements which are integrals of a quantity
computed from the measured intensity and intensity autocorrelation go(7) at the boundary. In the second part
we recover the mean square displacement (MSD) distribution of particles in an inhomogeneous object from the
sampled go(7) measured on the boundary. From the MSD, we compute the storage and loss moduli distribu-
tions in the object. We have devised computationally easy methods to construct the sensitivity matrices which
are used in the iterative reconstruction algorithms for recovering these parameters from the measurements.
The results of the reconstruction of w,, Dg, MSD and the viscoelastic parameters, which are presented, show
reasonably good position and quantitative accuracy. © 2009 Optical Society of America
OCIS codes: 170.3880, 170.3660, 170.3010, 170.4580, 100.3190, 350.5500.

1. INTRODUCTION

Temporal fluctuations of multiply scattered light in a tur-
bid scattering medium have been used in the past to re-
cover quantitative information on the dynamics of par-
ticles in the medium [1-3]. In a thick multiply scattering
medium, light transport is essentially diffusive, and light
emerging from such a medium presents a diffuse speckle
field. Measurement of the intensity autocorrelation go(7)
of the exiting diffusive light and the extraction of the in-
formation regarding the dynamics of the medium through
study of the propagation of the field correlation have re-
sulted in the establishment of the technique of diffusing-
wave spectroscopy (DWS). Measurement of the time de-
pendence of g5(7) has been employed to study the types of
movements the scattering particles undergo, such as
temperature-induced Brownian motion [3], short-
impulsive movement [4], sheer-flow [5], and movement in-
troduced by external means such as ultrasound pressure
[6,7]. The mean-square displacement (MSD) of scatterers
(Ar?(7)) undergoing Brownian motion is measured and
made use of to extract the viscoelastic properties of the
medium, which is either the background liquid in which
tracer particles are added or a jellylike medium such as
cross-linked polymers with aggregates acting as scatter-
ing particles. One of the advantages of DWS in this con-
text is its ability to measure the individual movements of
particles at shorter length and time scales than is consid-
ered possible by other means.

Application of diffuse light to probe a multiply scatter-
ing medium like tissue to recover spatially varying optical
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properties such as absorption coefficient u, and scattering
coefficients u, is well established [8,9]. In this area,
known as diffuse optical tomography (DOT), one makes
multiple measurements of the photon flux of the emerging
diffusive light to recover spatial distributions of u, and u,
(reduced scattering coefficient) employing a diffusion
equation to model light propagation through the turbid
medium. Over the years many have also successfully em-
ployed light to probe heterogeneous turbid media where
the heterogeneity is in the movement or dynamics of the
particles of the medium [10-12]. Here the multiple
boundary measurements of go(7) are made use of in con-
junction with a propagation model for the basic field au-
tocorrelation of light. This method has been used to image
(or measure) shear flow through a capillary immersed in a
turbid medium without flow [13] and to visualize or mea-
sure differential Brownian motion in a heterogeneous me-
dium. In [11] a set of measurements of go(7) has been em-
ployed to locate and reconstruct the particle diffusion
coefficient Dp heterogeneity buried deep inside a multiply
scattering object.

The MSD of particles in a medium has been used to
study the rheological properties of the medium, for ex-
ample, to measure the storage and the loss moduli of the
medium in which the beads are embedded [14]. In a cross-
linked polymer like polyvinyl alcohol, the MSD of the
polymer aggregate has been used to recover the elastic
and viscous moduli of the polymer itself [15]. Thus DWS
has given us a localized probe for quantitative assessment
of viscoelastic properties of turbid media confined to di-
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mensions of the probe (millimeters or even micrometers),
which saw the arrival of the applications of DWS for mi-
crorheology measurements [16].

The aim of the present work is the study of heterog-
enous turbid media—heterogeneous in optical absorption
coefficient and viscoelastic properties—with the help of a
coherent light probe. The ultimate goal is medical diag-
nostic imaging of soft-tissue organs for cancer, where the
cancerous region presents itself as an inhomogeneity in
absorption coefficient and storage modulus. While recon-
structing the viscoelastic properties of the medium
through so-called diffuse correlation tomography (DCT)
[17,18], we cannot claim the spatial resolution of mi-
crorheology, limited only by the dimensions of the probe
beam. The diffusive propagation of light (and its field cor-
relation) in the media precludes this, and the spatial res-
olution of the properties is restricted to typically the
transport mean path /* of the medium, which is of the or-
der of 5—10 mm.

DCT has been tried and proven in the context of bio-
medical imaging. For example it has been employed to
map blood flow in rat brain to study cortical spreading de-
pression [17] and blood flow in the human brain [19] and
in breast tumors [20]. However, to the best of our knowl-
edge there has been no attempt to employ DCT to map the
viscoelastic properties of soft tissue organs. Also, to the
best of our knowledge the reconstruction methods
adopted in earlier work [11,17] in this direction relied on
the Rytov approximation with the underlying assumption
that the heterogeneous distribution of the property to be
reconstructed is only a small perturbation in its homoge-
neous background value. The data used in the recovery
was either the full set of go(7) versus 7 distribution at
various observation points or a single go(7) value selected
at 7 when the effect of noise is minimal [17]. There was no
proper development or analysis of an iterative reconstruc-
tion procedure involving the forward propagation of the
basic quantity, namely, the field autocorrelation denoted
by g1(7), nor computation of suitable Jacobians for the dif-
ferent measurement types derived from the measured
go(7), which could possibly recover both the mechanical
[represented by Dg(r), the particle diffusion coefficient, or
the MSD itself] and optical property [represented by
4o (r)] distributions. We also show that from the measured
g9(7) versus 7 distribution it is possible to reconstruct
(Ar?(r, ) of a heterogenous object.

Therefore one of the major aims of the present work is
the development and testing of an iterative reconstruc-
tion algorithm similar to the iterative reconstruction al-
gorithm of DOT [21] for use in the context of DCT. In the
first part of this development we consider two measure-
ments derived from go(7) which are integrals of T'(7) com-
puted from go(7) (see Subsection 3.A) over intervals of 7.
The first, denoted by M, is over the early part of 7, typi-
cally from =107 s to 7=10"" s, and the second, My, is
over the later part of 7, typically from 7=10%sto r
=102 s. When (Ar?(r, 7)) can be approximated by 6Dg7
with a time independent particle diffusion coefficient (i.e.,
the medium is assumed purely viscous), we show that the
measurement M, is sensitively dependent on Dg and can
be recovered from M, without being affected by u,. Simi-
larly M is seen to be more sensitive to changes in u,(r)
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and can be used to recover u,(r). In the second part we
recover the time variation of the spatial distribution of
(Ar%(r,7) from the measured go(7) versus 7 distributions
(and the intensity), assuming that the (Ar?(r,7) has a
nonlinear dependence on 7. The recovered (Ar?(r, 7)) dis-
tributions at the inhomogeneities are also employed to
compute the storage and loss moduli, denoted by G'(w)
and G"'(w), respectively, in those inhomogeneities [22].

Since the ultimate goal of the present work is the de-
velopment of a medical imaging modality, we also suggest
the limitations of this imaging method in the context of
an experimental realization. We point out limits in noise
in measurement which will allow a proper recovery of the
properties of interest, touch upon spatial resolution of in-
homogeneous inclusions recovered, and suggest practical
data gathering geometry in a possible instrument.

A summary of the rest of the paper is as follows. In Sec-
tion 2 we give a brief description of the forward propaga-
tion model used for G(r, 7), the unnormalized field corre-
lation. We also study the sensitivity of the measurements
M, and M, with respect to the parameters Dp and u,. In
Section 3, we describe the construction of the Jacobians
(or the sensitivity matrices) for M; and My with respect to
Dp and pu, and gy(7) with respect to (Ar?(r, 7)). The inver-
sion algorithms for the recovery of Dg, u,, and (Ar?(r, 7))
are described in Section 4. The numerical experiments re-
vealing the ability of the inversion algorithm to recon-
struct these parameters and their limitations, such as
handling of noisy data, spatial resolution, and contrast re-
covery in the reconstruction, are described in Section 5.
Section 6 contains a few suggestions on experimental lay-
out for data gathering and possible limitations of the ex-
periment and its effect on the ultimate recovery of the
properties of the medium. The final Section 7, gives the
conclusions drawn from this study.

2. FORWARD PROPAGATION EQUATION
FOR THE FIELD AUTOCORRELATION
THROUGH A TISSUELIKE MEDIUM

The basic quantity of interest to be propagated is the spe-
cific intensity I(r,$,7) (which is time independent under
some assumptions [23,24]) related to the mutual coher-
ence function of the electric field components E,(r,,¢) and
Ey(ry,t+7), denoted by (Ea(ra,t)EZ(rb,H 7)). We note that
I(r,s,7) is obtained from the mutual coherence function
expressed using the center of gravity coordinates r=(r,
+rp)/2 and Ar=r,-r, after a Fourier transform with re-
spect to Ar (§ is the conjugate variable to Ar). The specific
intensity obeys the correlation transport equation

§-VI(r,8,7) = — u,(r)I(x,8,7

+ ,u,s(r)fl(r,é’,f)gsl(é,é’,r)dé’ +S(r,8).
1)

Here u,=u,+ ps, and S(r, 8) is the source at the location r.
Also g7(§,8', 7) is the incremental specific intensity added
in the direction § owing to a single scattering event from
direction §’ to S.
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To get the diffusion approximation of the above trans-
port equation, we expand I(r,§,7) as I(r,$,7)=G(r,7)
+3§-J(r,7) /4w, where G(r,7) and J(r,7) are obtained
from I(r,8,7) through G(r,7)=[I(r,s,7ds and J(r,7)
=[8I(r,s, 7)ds. The field autocorrelation G(r, 7) is related
to the power spectrum of light through a Fourier trans-
form with respect to 7. The diffusion approximation to Eq.
(1) is obtained as (under the assumption that wu,>pu,)
[12,24]

V-D(x) V G(r,7 - (a(r) + 3(Ar*(x, D)k (x) ) G(x,7)
=-So(r-ro), 2)

where %k is the modulus of propagation vector of light;
te=(1-g)us, g being the anisotropic factor of scattering,
and D=1/3(u,+pu,) is the optical diffusion coefficient. In
the above model, we assume that the scattering is isotro-
pic with a length scale [*=1/u.. The term Sqo(r-ro) is the
isotropic source located at r=r;. We use the mixed bound-
ary condition to solve the propagation Eq. (2) for G(r, 7),

dG(r,7)
Dlr)— —=-Glr,7), 3)

on the boundary Q). Here n is the unit outward normal
on /) where measurement is made. This implies that the
light input is from the source at r( only.

If we assume the medium is purely viscous, so that the
scattering particles are pictured to diffuse through the
medium, the MSD, (Ar%(r, 7)), at a particular r has a lin-
ear time evolution given by (Ar2(r,7)=6Dg(r)r [17],
where Dg(r) is the time independent particle diffusion co-
efficient related to the viscosity 7 of the medium. If the
medium is viscoelastic, (Ar%(r,7) has a nonlinear 7 de-
pendence. For the viscoelastic medium used in our simu-
lations, we have assumed [25]

(Ar¥(r, 7)) = r(z](r){l —exp[(- T/Td)“]}ll”‘(l + 6D17'/r(2)),

the recovery of which leads to the reconstruction of the
complex elastic modulus of the medium.

This model has the flexibility to incorporate three dif-
ferent types of movement of a particle trapped in a vis-
coelastic network. In the first phase when 7 is small the
particle follows a diffusive motion with an MSD varying
linearly with 7 as 6Dg7. When 7 increases the Ar?(r,7)
versus 7 behavior becomes nonlinear, and at intermediate
times it displays a plateau where the MSD becomes con-
stant at r3. At still larger values of 7 the movement of the
particles becomes diffusive again, showing a linear behav-
ior of MSD with 7.

For the two cases of a purely viscous medium as well as
the soft tissue-like viscoelastic medium, we solve Egs. (2)
and (3) using the finite element (FE) discretization
scheme. A 2-D circular object is assumed and discretized
to 1933 nodes with 3723 elements. The typical solution of
G(r,7 for =10 s to =102 s is shown in Fig. 1. We
mention here in passing that G(r,7) is not our measure-
ment, but go(7) and the intensity I(r)=G(r,0) are. From
these measurements we derive a quantity I'(r,7) as dis-
cussed in Subsection 3.A. We have assumed the optical
parameters D and u, are uniform with values given by
0.0417 cm and 8 cm™!, respectively. Optical absorption co-
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Fig. 1. (Color online) Typical plot of the modulus of field auto-
correlation with 7 at a boundary node for a homogeneous object:
u2=0.001 cm™!, /=8 em™!, and Dp=0.1x 10-8cm?/s.

efficient u, has a background value of 103 cm~1. Particle
diffusion coefficient Dp has a background value 0.1
X 1078 cm?/s. The forward operator is used to compute
G(r, ) everywhere, especially on the boundary Q).

The intensity autocorrelation, one of the measurements
made on ), is given by

(I(x,DI(r,t+ 7)) = go(7) = 1 + Blg:(x, 7% (4)
G(r, .
Here |g1(r,7-)|=|m|, and 3 is a constant dependent on
the collection optics used in the experiments. Since
G(r,0) is the intensity I(r), which is also experimentally
measured, we can arrive at go(n)=1+8|G(r,n/G(r,0)?
from the computed G(r, 7).

3. MEASUREMENTS DERIVED FROM g,(7)
AND THE VERIFICATION OF THEIR
SENSITIVITIES WITH RESPECT TO Dz AND

Maq

A. Numerical Study of the Variation of the
Measurements Derived from g,(7) with Absorption and
Particle Diffusion Coefficients

First we consider the case of a purely viscous medium in
which the approximation (Ar2(r,7))=6Dg(r)7 holds. In
this case the propagation equation for G(r, ) has coeffi-
cients dependent on optical absorption coefficient u,, par-
ticle diffusion coefficient Dp and reduced scattering coef-
ficient .. Of these, we assume u, is known and uniform
throughout the object, leaving us with two unknowns
ue(r) and Dpg(r). Since our measurement is gqo(7)=M=1
+B/G(m,7)/G(m,0)|?, and the propagation equation is for
G(r,7) we define a measurement operator M as

M
M{G(m,7)} = G2(m,0)<7) =I'(m,7). (5)

Here m is the detector location on () the boundary. As in-
dicated earlier I'(m,7) can be computed from boundary
measurements. From I'(m, 7) we derive a scalar measure-
ment
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M= J I'(m,ndr, (6)

where 71 and 7, define an interval on the 7 axis within the
support of g9(7). By numerical experiments we have se-
lected two intervals, one in the neighborhood of 7=0 (rela-
tively small values of 7) and the other in the neighborhood
of 7=107%s (i.e., for larger values of 7), and used these
measurements M; and Ms, respectively, to explore the
possibility of reconstructing u, and Dy separately. As in-
dicated in Section 1, we found that M; (where 7, and
are, respectively, 107 s and 1077 s, and these values are
fixed through repeated numerical simulations) is very
sensitive to changes in w, and insensitive to changes in
Dp, while My, (where 7, and 7, are, respectively, 106 s and
1073 s) is very sensitive to changes in Dg and insensitive
to changes in w,.

These factors were established using the following nu-
merical experiments. We have considered a circular 2-D
object of diameter 8 cm and homogeneous properties of
#=0.001 cm™! and x/=8 ecm™! and Dp=0.1X10"8 cm?/s.
After finite element discretization of Eq. (2) and Eq. (3)
with 1933 nodes and 3723 elements we have solved for
G(r,7) everywhere in ) and computed I'(m,7) on the
boundary from which M; and My were calculated. The
measurements ['(m,7) evaluated at a typical detector
point on the boundary when the homogeneous value of u,
is varied from 0.001 to 0.01 cm~! are shown in Fig. 2(a)
(Dg is held constant at 0.1x 1078 cm?/s). Similar curves
showing G(m,7) versus 7 as Dp is varied from 0.1
X 1078 em?/s to 1X1078 em?/s  (u, held constant at
0.001 cm™1) are shown in Fig. 2(b).

It is clear from these figures that when 7 is small (in
the range of 10 s to 1077 s), whereas Dy did not have
any noticeable effect on I'(m, 7), u, did have. The opposite
is found to be true for larger values of 7. From these nu-
merical trial runs we fix the values of 7; and 7, to arrive
at the two intervals indicated earlier to compute the two
measurements M; and M, using Eq. (6). The behavior of
M, and My with u, and Dg are shown in Figs. 3(a)-3(d).
The earlier observations of the sensitivity of M; and M, to

I(r;t)

(a)
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parameters u, and Dp are once again confirmed through
the above results, and these measurements are subse-
quently used to reconstruct u, and Dp.

In Subsection 3.B we derive the sensitivity relations for
measurements M; and My with respect to u, and Dg. For
the viscoelastic medium, the set of measurements
{I'(m, 7;)} at a number of points on the boundary of the ob-
ject sampled in 7 starting from 7=10° to 7=10"2 s is used
as data for the recovery of (Ar2(r,7)). The sensitivity of
I'(r,7) with respect to (Ar%(r, 7)) is established quantita-
tively, and the corresponding sensitivity matrix is also
computed.

B. Construction of the Jacobian for the Measurements
M, and M, with Respect to u, and Dg

We intend to employ a forward-propagation-model-based
iterative reconstruction algorithm to recover w, and Dp,
which requires repeated computation of the derivative
(sensitivity or Jacobian matrix) of the measurements with
respect to the parameters to be reconstructed. To this end
we describe here a method for the quick evaluation of
these Jacobian matrices [26,27]. The iterative reconstruc-
tion procedure essentially involves comparison of the ex-
perimental measurements with the computed measure-
ments obtained via the forward operator and perturbing
the material properties, guided by the Jacobians.

1. Jacobian with Respect to Absorption Coefficient

Using Eq. (2), which is the forward propagation equation
for the basic quantity G(r,7), one can compute a pertur-
bation in G(r,7), by say G%xr,7), by perturbing u,(r) by
,ug(r). Substituting these in Eq. (2), after simplification
we get the equation connecting G¥r, 7) to ,u,g(r, 7), which
we call the Frechet derivative of the forward propagation
equation:

VDV Gr,7) - (4 + 2Dprhip)) Gx, ) = uG(x, 7).
(7

The boundary condition for G¥(r, 7) is

T (sec)

(b)

Fig. 2. (Color online) Plots of I'(r, 7) versus 7 when: (a) background u, is varied from (1) 0.001 cm™! to (2) 0.005 cm™1, (3) 0.01 cm™!, Dy
remaining constant at 0.1 X 10~8 em?/s; (b) background Dy is varied from (1) 0.1 X 10-8 cm?/s to (2) 0.5 X 1078 cm?/s, (3) 1 X 1078 cm?/s, u,
remaining constant at 0.001 cm™!. The source—detector separation used in the simulation was 8 cm.
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Fig. 3. (Color online) Variations of M; and M, with u, and Dg. (a) M; versus u,, (b) M, versus Dp, (¢c) M, versus u,, (d) My versus Dp.
It is seen that M; and M, have larger variations with respect to x, and Djg, respectively

dG%(m, 7)

G’m,n +D
an

0, m e /. (8)

Solution of Eqgs. (7) and (8) gives G%(r, 7), in particular on
the boundary, for u, perturbation, say at a node. On
G%m,7) we apply the measurement operator M [Eq. (5)]
to obtain I'’(m,7), from which the change in measure-
ment M?is computed as M5=f;21“5(m, 7)d7. We use this to
compute the derivative, the rate of change of a measure-
ment with respect to u, at a node, which is an element of
the Jacobian matrix with respect to u,. The whole matrix
can be evaluated by continuing these calculations for all
nodes and for all detectors.

This rather computation-intensive procedure can be
avoided by employing the adjoint of the Frechet deriva-
tive operator [Eqgs. (7) and (8)], as is done in the context of
DOT [26,27]. With this, one can get a row of the Jacobian
matrix (i.e., the derivative for a single measurement with
respect to the parameter at all the nodes) by solving two
forward propagation operators, one, Eqs. (7) and (8), and
the other its adjoint.

The adjoint of Eqgs. (7) and (8) can be easily found as

V-DV v, - (u, + 2Dg7hiul)(r,7) =0, 9)

with the boundary condition

d ’
(r,7)+D e, =q*. (10)
an

Here g* is the so-called “Robin source” at the boundary
where the detector is located [26].

Multiplying Eq. (7) by ¢ and Eq. (9) by G%r,7), inte-
grating over the whole domain (), and applying Green’s
theorem, we get

f Gg(m,T)qJ'd"'lr:f Mg(r)G(r,T)zp(r,T)d”r. (11)
a0

Q

If g* is a delta source at the detector on the boundary, the
left hand side of Eq. (11) picks up a G%m, 7) at the detec-
tor. In that sense Egs. (9) and (10) together represent the
adjoint of Eqgs. (7) and (8).

We make use of Eq. (11) and Eq. (7) to arrive at an ex-
pression for dI'%(m,7)/du, for um, at every node. Here
I'(m, 7), as noted in Subsection 3.A, is related to the mea-
surement M=gq(7) through ((M-1)/8)G*(m,0), which is
|G(m, 7)|2. Therefore we have

I'(m, 7 =[G(m, ) + Gm, D][G(m, ) + G%m, 7]
- G(m,nG(m,7) ~ Gm,G(m, 7

+G(m,nG%m,7) =T'{(m,7) +T5(m,7), (12)
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where I'%m,7) is real. Substituting G%m,7)

=T'Y(m,7n/G(m,7) in Eq. (11) we get

F](m}T)
f — q*d”‘1r=f wo(®)G(r,)y(r,nd"r. (13)
0 G(m,7) Q

Similarly

I'5(m,7) o
J G, ! ¥ f Ha® G, Dylr, d"r. (14)
a0 J a

Therefore using the fact that ¢*=38m-m;), where m;
gives the ith detector location, we can write [by combining
Eqgs. (13) and (14)]

I'(m;,7) = Re C_;(mi,f)f ,u,g(r’)G(r’,T)G%(r’,mi,f)d”r’ ,
Q

(15)

where G4(r,m;, ) is the Green’s function for the adjoint
equation given by Egs. (9) and (10). Here Re denotes “real
part of.”

Both G%(m;,7) and I'’(m;,7) can also be obtained by
solving the Frechet derivative operator [Eqgs. (7) and (8)].
Through this route we obtain I'%(m;, 7) as

I'(m;,7) =Re G(mi,r)f ,u,{f(r’)G(r’,T)Gr(mi,r’,f)dnr’
Q

(16)
Comparing Egs. (15) and (16) we get
G%(rl7mi77.) = Gr(miyr,)T)' (17)

Equation (17) is a reciprocity relation which asserts that
the measurement made at m; with source at r’' [i.e.,
G'(m;,r’,7)] is equal to the measurement made at r’ with
the source at m; [i.e., G}Jé(r’ ,m;, 7)]. Using Eq. (17) in Eq.
(15) we get
' (m;, 7) _
——— =Re{G(m;, )G(r, nGH(x' ,m;,n}.  (18)
Iy (r')

2. Jacobian with Respect to Dy
The Frechet derivative of the forward propagation equa-
tion [Egs. (2) and (3)] with respect to Dp is

V-DV Gr,7) - (uq + 2 k2D DG (r, 7) = 2u. koD 5 7Gx, 7),
(19)

with the boundary condition

dG(r,7)

G%r,n+D (20)

Following a similar procedure as in Subsection 3.B.1 we
can easily see that the Jacobian of I'(m;, 7) with respect to
D B iS

Vol. 26, No. 6/June 2009/J. Opt. Soc. Am. A 1477

' (m;, 7) _
DI Re[2u k576G (m;, )GR(x',m;, NG(x', 7).

(21)

Here Gg solves the adjoint of Egs. (19) and (20), which is

VoDV $(x,7) - (o + 2pkiDpn)plr, ) =0, (22)

with the boundary condition

dg(r,7)
=q*. (23)
an

¢(r,7)+D

C. Jacobian for the Two Measurements M, and M,
Derived from I'(m, 7)

Since M, and M, are obtained from I'(m, 7) by integrating
over different intervals of 7, the procedure to obtain either
IM;/dp, or dM;/3Dpg is similar. We denote the perturba-
tion equation connecting E(m,7), the perturbation in
I'(m, 7), to the perturbation in p, the property of which is
either u, or Dp, as

N or(my,7)
> ——Ap;=E(m,,7), k=1,...m. (24)
=1 9P

Here m gives the number of measurements, N is the num-
ber of nodes in the domain , and E(m,, 7) is the pertur-
bation in the measurement I';(m,,7). We integrate Eq.
(24) with respect to 7, take the integral inside the deriva-
tive operator, use M; to denote [ :fl"(mk ,7)d7(wherei=1 or
2 depending on whether 71 or 7, defines the first or the
second interval of integration) and obtain

" oM,
>

J=1 9%Fj

Ap% = AM, (25)

where Apf" is the mean value of Ap;. In Eq. (25), the ma-
trix [dM;/ dp;] is the Jacobian for measurement M; (either
M or M) with respect to the property p (either u, or Dp).
This Jacobian is constructed by integrating the deriva-
tives given by Eqs. (18) and (21). It is seen that for the
measurement M, the values of the derivative with re-
spect to u, are larger; and for M, the same is true for de-
rivatives with respect to Dp.

D. Jacobian for the Measurement I'(r, 7) with Respect to
(Ar%(r, 7))
We compute the Jacobian for the measurement I'(r, 7;) for
=1, a typical value of time 7. This Jacobian can be used
to reconstruct (Ar%(r,;)) using the inversion procedure
discussed in Section 4. From the measurement vector
{I'(r, r;)} for a range of 7 values and r € Q) and using this
Jacobian we recover the time varying (Ar%(r, 7)) for r € Q.
The Frechet derivative of the forward propagation
equation [Eq. (2)] with respect to a perturbation in
(Ar%(r,7) denoted by (Ar?(r, 7,))° is

V-DVGr,7) - (1q + 5(Ar%(r, 7)kGu! ) Gx, 7)
= sk3ul(Ar¥ (e, 7))°G(x, T;), (26)

with the boundary condition
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IG(r, 7;)
p——"

+G%r,7)=0. 27
an

The adjoint of the above equation is

VDV - (g + 5Ar%w, 7))kl ) =0, (28)
with the boundary condition
81//(1‘, Ti)
D p + (e, ) =q*. (29)
n

With the procedure used in Subsection 3.B.1 we can easily
compute the derivative of I'(m,7;) with respect to
(Ar%(r,7) as

ol'(my, 7;)

m=Re{ OMsG(mL,T)G(I‘ 7,)GR (r/7mia7'i)}-

(30)

Here G%(r’ ,m;, ;) is the Green’s function for the adjoint
system given by Eqs. (28) and (29).

4. ITERATIVE RECONSTRUCTION
ALGORITHM

Figure 4 gives the block diagram of the proposed recon-
struction algorithm. To start, the initial guesses of the
properties of the medium such as u,(r), u.(r), and Dp(r)
are given as inputs which are used in the forward propa-
gation equation [Egs. (2) and (3) discretized using the
FEM] to compute G(r, 7). From G(m,7) one can compute
the measurements I'(m,7) and M by using Egs. (5) and
(6). The algorithm is also supplied with the experimental
measurements M¢ (specifically M5 and M¢) and {I"*(m,, 7;)}
for a set of 7; values for each detector position m;. In our
work the experimental data are numerically simulated
using a finer mesh. As indicated in Subsection 3.A, the ex-

4{ Forward model F(p;) }'; Initial guess py
!

(-ompute(l measurement
M

!

. Nre Experimental data
‘ OM; = M7 — M; "7 M

Stop

Pir1 = pi + Ap;

Calculate Jacobian J(p;)
v
OM = My — Mg
= J(p:)Ap;

Inner iteration
Solve the minimization
problem

|7 (ps) Ap; — J;’\[J»“Q <€

Fig. 4. TIterative reconstruction algorithm: The inputs to the al-
gorithm are the initial guess of the property p, (either u, or Dp)
and the experimental measurement M (either M7 or Mj). The al-
gorithm has an outer and inner loop. In the inner loop the per-
turbation equation is solved to update the property p;. In the
outer loop the perturbation equation is itself updated.
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periments give the normalized intensity autocorrelation
which should be supplemented by a set of intensity mea-
surements to compute I'(m, 7) and M.

From measurements M; and M, we reconstruct u, and
Dg, respectively. Denoting by AM; and AMy the differ-
ences M7-M] and M- M5, where M{ and M, are the com-
puted measurements obtained from the current guess of
the properties, we set up the perturbation equations
J, Aug=AM; and Jp ADp=AMj. These perturbation
equatlons are normahzed by premultiplying by J7, and af-
ter adding a suitable regularization parameter \, they are
written as

(JTJ MDA, =), AM;, (31)

(JgBJDB +NoI)ADp = JgBAM2. (32)

These are solved for Au, and ADg by recasting them as
minimization problems, where [(J7J+\)Ap-JTAM|?=e¢
is minimized by adjusting the parameter Ap. This is done
in the inner loop of the iteration algorithm. The outputs
from the inner iteration, either Ay, or ADp, are used to
update these properties to continue the algorithm in the
outer loop, which requires updating Eqgs. (31) and (32) by
recomputing the Jacobians and AM; and AM,. The algo-
rithm is stopped when ||[AM|| goes below a certain preset
small value.

We sort the boundary measurements {I'(m;,7;)} into
sets {I'(m;, 7)}—,. Each set is used to set up the regular-
ized perturbatiojn equation similar to Eq. (31) and (32) as

s 2e, T w2,z + NDAAP (e, 7)) = T (o AT (m, 7).
(33)

Equation (33) is inverted for A(Ar%(r, 7,)) which is used to
update the current value of (Ar2(r, 7 5)). On convergence,
we reconstruct the distribution of (Arz(r, 7)) for r=7;. By
repeating the above iteration for all values of 7=r7 1n the
range of measurement of gy(m,7), we recover the com-
plete time variation of (Ar?(r, 7)) for all r € .

5. NUMERICAL SIMULATIONS, RESULTS,
AND DISCUSSION

A. Recovery of u, and Dy from Measurements M; and
M.

Tl’fe object used in our numerical simulations is circular,
taken as the cross-section of a cylinder of diameter 8 cm.
The background optical and mechanical properties are
kept as w’=0.001cm™, w/°=8cm™!, and D%=0.1
X 1078 cm?/s. There are two circular inhomogeneous in-
clusions in this object of diameter 1.8 cm, one an absorp-
tion inhomogeneity of value 0.004 cm™! centered at
(=2.5 ¢cm, 0 cm) and the other a Dg-inhomogeneity of 0.4
X 1078 ecm?/s at (2.5 cm, 0 cm). (The object is assumed to
be centered at the origin of the coordinate axes.) There-
fore the inclusions in the background are

Qe o o F2 . 02
Ua(x,y) =0.004 em™Lif \/(x + 2.5)% + (y)2 < 0.9,

—_——

Dp(x,y) = 0.4 X 1078 em¥/s if \/(x — 2.5)% + (y)? < 0.9.
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To generate numerically the experimental data, Egs.
(2) and (3) are discretized using the FEM with 1933 nodes
and 3723 triangular linear elements. For a collimated
source on the boundary (which effectively means a point
source inside the object at a distance of one transport
mean free path from the boundary) 40 detectors are
placed equi-angularly on either side of the diametrically
opposite point to the source location, to cover an overall
angle of 320°. The discretized forward equation is solved
for G(r,7) for 7 ranging from r=10"? s to 7=10"3 5. From
these, I'(r, 7) are calculated for r € JQ) at all the detector
locations, and the experimental data sets are generated
by adding 1% Gaussian noise to I'(m, 7). Particular mea-
surements M; and M, are computed from the noisy
I'(m, 7). The above procedure is repeated by rotating the
source—detector combination in unison by steps of 10° to
gather 36 sets of 40 readings each.

For inversion of data we use a coarser mesh, discretiz-
ing the domain with 1243 nodal points and 2376 triangu-
lar elements. We start the reconstruction algorithm (see
Fig. 4) with an initial guess of the properties w, and Dp,
which are their background values. As mentioned before,
the measurement M, is used to recover u, and My to re-
cover Dg. The Jacobians dM}/du), and oM,/ 6D) are con-
structed for use in the iterative algorithm described in
Section 4. Compared to these, the Jacobians {&Mé/ o"/w{l}
and {&Mil/ aD{g} are found to be very small, proving that
M, and M, are not sensitive to changes in Dy and pu,, re-
spectively. The whole set of data, which is the number of
detector readings from all the views, is input to the recon-
struction algorithm along with the initial guess of the
properties and the Jacobians. The updates for u, and Dp
are computed using the inner iteration. The algorithm
converges in about 20 iterations of the outer loop when
|AM;|| is reduced to less than 10712,

Gray level plots of the original u, and Dp distributions
are shown in Figs. 5(a) and 5(b), respectively. The recov-
ered u,(r) from M, is shown in Fig. 6 [the gray level plot
in (a) and the cross-sections through the center of the in-
homogeneity of the original and the recovered distribu-
tions in (b)]. Similarly the recovered Dp(r) distribution
from M, is shown in Fig. 7. It is seen that the quantitative
accuracy of the inhomogeneous inclusions recovered in-
cluding their locations is very good, even though the spa-
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(b)
Fig. 6. (Color online) Reconstructed absorption coefficient dis-
tribution (cm™) (a) gray-level plot; (b) cross-sectional plots
through the centers of the inhomogeneities in (a) as well as the
original inhomogeneous object of Fig. 6(a).

tial resolution of the recovered inclusion seems to be poor.
The loss of spatial resolution is due primarily to the dif-
fusion of light.

Figures 8(a) and 8(b) show the recovered Dg(r) and
Mo (r) from measurements M; and M, respectively. The
Jacobians used here are (1) {dMy/du,} for recovering u,
from M, and (2) {dM/dDg} for recovering Dp from M.
The reconstructed Dg and p, are positioned at the u, and
Dpg inhomogeneities, respectively, of the original object. In
this sense these reconstructions show the residuals of the
insensitive parameters recovered from these measure-

4 )&10
5 3.5
2
3
1
-1 B
-2
1.5
-3
-4 1
-4 -2 0 2 4

(b)

Fig. 5. (Color online) Original object used in the simulations: (a) absorption coefficient (cm™!) distribution; (b) particle diffusion coeffi-

cient distribution (cm?/sec).
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(b)
Fig. 7. (Color online) Reconstructed particle diffusion coefficient
distribution (cm?/sec) (a) gray-level plot; (b) cross-sectional plots
through the centers of the inhomogeneities in (a) (dashed curve)
as well as the original inhomogeneous object of Fig. 6(b) (solid
curve).

ment types. We refer to them as cross-talks in the original
reconstructions. It is seen that the cross-talk terms are
very small compared with the actual reconstructions.

We observe that when the noise in the measurement is
increased beyond 1%, the recovery is noisy, and therefore
quantitative accuracy and position of the inhomogeneities
cannot be guaranteed. Further, it is seen that the possible
spatial resolution in the reconstruction is affected by
noise in data. In addition it is noted that noise pushes up
the minimum contrast needed in the inhomogeneity for it
to be discernible in the reconstruction.

B. Recovery of (Ar?(r, 7)) from the Measurement I'(m, 7)
The object used here is similar to the one employed ear-
lier. The background optical properties are the same as
before (1,=0.01 cm™! and x/=8 cm™!) and the mechanical
property is defined using (Ar?(r,7)) as explained below.
Here (Ar¥(r, 7)) is assumed to have a nonlinear variation
with 7 which is assumed to follow the relation [25]

(Ar?(r,7)) = r%(r){l —exp[(- 7)Y 1 + 6D17-/rg).
(34)

Here ry(r) is a constant for a particular spatial location
inside the object which defines the mechanical stiffness at
location r (which defines the first plateau of the (Ar2(r, 7))
versus 7 map), and 7, is the time constant for the growth
of (Ar%(r, 7)) with 7, which is given by szrg/GDB. The val-
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Fig. 8. (Color online) These reconstructions give the cross-talk
in the reconstructions and are seen to be less than 1% of the cor-
rectly recovered Dp and pu,. (a) The cross-sectional plot through
the recovered change in absorption coefficient (Au,= ,ua(r)—/,cZ)
from measurement M, using the Jacobian {dMy/du,}.(b) The
cross-sectional plot through the recovered change in particle dif-
fusion coefficient [ADB=DB(r)—D%] from measurement M, using
the Jacobian {9M/dDg}.

ues of D; and « are taken to be 1012 cm?/s and 0.28, re-
spectively.

The background mechanical property is also fixed by
defining ry(r) and 7;. In the simulations r( for the back-
ground tissue is fixed at 7o=7 X 10~7 em and 7, is varied
from 8.33 X 1075 to 8.33 X 1076 s by selecting Dy appropri-
ately.

The object used in the simulations has two circular in-
homogeneous inclusions of diameter 1.4 cm each. The
constants ry and 7; for these regions are kept as

1.5811 X 1077 em if \[(x + 2.5)% + (y)2 < 0.7
5Xx 1077 cm if (x-2.5)2+(y)?<0.7

(35)

rolx,y) =

The corresponding values of 7; for Dg=1x 1072 cm?/s are
given by

4.1667 X 10%s if \[(x +2.5)% + ()2 < 0.7
4.1667 x 107 s if \[(x - 2.5)% + (y)2< 0.7
(36)

Td(X,y) =

We denote the relatively high stiffness region centered
at (-2.5,0) as inhomogeneity 1 and the region centered at
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(2.5,0) with stiffness close to that of background as inho-
mogeneity 2. A typical variation of (Ar2(r, 7)) with respect
to 7is shown in Fig. 9 with r a point in the homogeneous
background medium of the object.

As before the experimental data are generated by first
numerically solving Egs. (2) and (3) using FEM discreti-
zation with 1933 nodes and 3723 elements for G(r, 7) and
then computing I'(r,7) from G(r, 7). The measurement is
I'*(m,7)=I'(m, 7) +noise, where noise is 1% Gaussian. At
each detector 7 is varied from 7,,;,=107%s to 7,,,,=10s,
giving a total of 40 samples of I'*(m, 7).

For inversion, we use a coarser mesh than in the pre-
vious case (1243 nodal points and 2376 triangular ele-
ments). We use the same reconstruction algorithm as
used earlier, and the initial values used for the unknown
(Ar%(r, 7)) correspond to its assumed background values.
The required sensitivity matrices oI'(m,7;)/XAr3(r, 7))
are calculated for each value of 7; (for each 7; we get one
Jacobian matrix), and the reconstruction proceeds using
the steps described in the algorithm of Fig. 4. For a typi-
cal value of 7; (say 7;=107% s) the algorithm takes 30 it-
erations to converge, giving a reconstruction of (Ar?(r, 7))
at 7=7; s, which is a spatial distribution of the parameter
at the time selected. Repeating this we generate sets of
(Ar?(r, 7)) reconstructions for r going from 7=10"%sto 7
=10s.

A typical reconstruction of (Ar?(r,7)) at 7=6 X107° s is
shown in Fig. 10(a) (contour plot) with a cross-section
through the inhomogeneity shown in Fig. 10(b). It is seen
that the reconstruction is fairly accurate in both the inho-
mogeneities. However, we find that if the contrast in the
inhomogeneity decreases below 50% of the background
value [in (Ar2(r, 7))] the algorithm fails to reconstruct the
inhomogeneity. Spatial resolution of the recovery is once
again poor due to the diffusive propagation of light
through the object. Figure 11 shows the plot of variation
of the recovered (Ar?(r, 7)) with respect to 7 at r inside the
inhomogeneities. For comparison the original variations
at those typical points are also shown. It is seen that the
quantitative accuracy of reconstruction is reasonably

<A rz(r,r)> (sz)

107 107 107 10° 10?
T (sec)

Fig. 9. (Color online) Typical variation of (Ar%(r, 7)) with 7 for a

homogeneous object (ry=7.0711X10"7 cm, Dg=10"° cm?/s, D,

=10712 cm?/s, u,=0.01 cm™1, 4/=8 cm™).
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(b)
Fig. 10. (Color online) (a) Gray-level plot of reconstructed
(Ar%(r, 7)) (cm?) at 7=6X 1075 s. (b) Cross-sectional plots through
the centers of the inhomogeneities for the original (solid curve)
and the reconstructed (dotted curves) (Ar?(r,7)). The inhomoge-
neity at the left is designated as inhomogeneity 1 and the one at
the right as inhomogeneity 2.

good. From the recovered (Ar%(r, 7)) we compute the stor-
age modulus G'(w) and loss modulus G"(w) in the inclu-
sions as [22]

ma(w)
G'(w) = |G*(w)|COS( 2 >, (37)

[ ma(w)
G'(0) = |G*(w)|sin B , (38)

where G*(w) is given by

KyT

Gl = T * @)

(39)

Here a(w) is the logarithmic slope of (A(r?,7)) at 7=1/w
and I' is the gamma function.

The recovered storage and loss moduli in the first and
the second inclusions are shown in Figs. 12(a) and 12(b),
respectively.
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Fig. 11. (Color online) Reconstructed and original (Ar%(r, 7)) ver-
sus 7 for the inhomogeneities 1 [(1) and (2), respectively] and 2
[(8) and (4), respectively].

6. TOWARD THE EXPERIMENTAL
REALIZATION OF AN IMAGING SYSTEM

Since tissue is a highly scattering medium, the number of
photons transmitted through an organ such as a breast
being examined will be extremely small [28]. With this in-
significantly small number of photons, to achieve suffi-
ciently large SNRs in the measured intensity correlation
is a challenging task. One should use a speckle averaging
technique [29,30], employing a detector bundle consisting
of an array of single mode fibers with each fiber capturing
a single speckle to obtain an averaged gs(7) with an en-
hanced SNR. As noted earlier, in our simulations when
the noise increased beyond 1% the quantitative accuracy
of the recovery was greatly affected.

In DCT, the transmission geometry is seldom used, a
backscattering geometry being prefered. With light input
from a fiber at a particular position, the backscattered
light is detected at a number of locations around the input
such that the diffusive path of light in the object maps a
certain volume of the object at a certain depth determined
by the distance between the input and detector fibers.

Since the tissue is not an ergodic medium [31], the time
autocorrelation estimate of go(7) cannot be equated to the
ensemble-averaged autocorrelation. In the literature [31]
it is suggested that an ergodic medium consisting of beads
suspended in water be sandwiched to the nonergodic me-
dium studied to make a composite object which is ergodic.
From the measured go(7) for the sandwiched composite
object, the contribution from the tissuelike object which is
nonergodic is separated out.

In spite of the difficulties encountered in the measure-
ment of go(7) [32], DCT is currently demonstrated by
many as a useful tool for in vivo blood flow measurement
with potential medical diagnostic applications.

7. CONCLUSION

The study of propagation of field correlation of light
through tissue and the corresponding inverse problem
has the potential to provide noninvasive maps of the op-
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Fig. 12. (Color online) Reconstructed G’ (dotted curve) and G”
(solid curve) for (a) inhomogeneity 1, (b) inhomogeneity 2.

tical as well as mechanical properties of the tissue. This
has obvious medical diagnostic applications, such as de-
tecting the changes associated with the onset of cancer or
other diseases. The objective of this work, proven through
simulations, is the separate recovery of mechanical (rep-
resented by Dp, the particle diffusion coefficient) and op-
tical (the absorption coefficient) properties from the mea-
surements derived from the boundary intensity
autocorrelation go(7). We have devised two measurements
M, and M5 which are integrals of a function derived from
the measured go(7), the first going from 7=10"sto 7
=10"" s (smaller values of 7) and the second going from
7=10%s to 7=103 s (relatively larger values of 7).
Through numerical simulations we confirmed that M; is
sensitive to u, variations and insensitive to Dp variations
and vice versa for My. We have constructed the Jacobian
matrix for these measurements with respect to u, and Dp
and used these in the recovery of these parameters. We
have shown that u, and Dp can be separately recon-
structed from measurements M; and M, employing the
forward propagation operator for the amplitude autocor-
relation in the reconstruction algorithm. The cross-talk
(as defined earlier) in these reconstructions is negligible.
The reconstructed accuracy of the inhomogeneities recov-
ered is >90% for both u, and Dp. The location of the in-
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homogeneity is accurately recovered, so long as the noise
in the data is below 1%, even though the spatial reso-
lution is affected by the diffusive nature of the Gi(7)
propagation in turbid media.

In addition, we have verified the possibility of a space-
resolved recovery of (Ar?(r,7)) from the boundary mea-
surements of complete sets of go(7) for all 7, in the case
where the behavior of (Ar?(r, 7)) with 7 is nonlinear, rep-
resenting a viscoelastic tissuelike medium. At any inho-
mogeneous location in the object, the variation of
(Ar?(r,7) with 7 is recovered, from which G'(w) and
G"(w), the storage and loss moduli, respectively, are ex-
tracted. This opens up the possibility of diagnosing re-
gions with pathology on the basis of changes in G’ (w).
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