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We discuss the inverse problem associated with the propagation of the field autocorrelation of light through a
highly scattering object like tissue. In the first part of the work, we reconstruct the optical absorption coeffi-
cient �a and particle diffusion coefficient DB from simulated measurements which are integrals of a quantity
computed from the measured intensity and intensity autocorrelation g2��� at the boundary. In the second part
we recover the mean square displacement (MSD) distribution of particles in an inhomogeneous object from the
sampled g2��� measured on the boundary. From the MSD, we compute the storage and loss moduli distribu-
tions in the object. We have devised computationally easy methods to construct the sensitivity matrices which
are used in the iterative reconstruction algorithms for recovering these parameters from the measurements.
The results of the reconstruction of �a, DB, MSD and the viscoelastic parameters, which are presented, show
reasonably good position and quantitative accuracy. © 2009 Optical Society of America
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. INTRODUCTION
emporal fluctuations of multiply scattered light in a tur-
id scattering medium have been used in the past to re-
over quantitative information on the dynamics of par-
icles in the medium [1–3]. In a thick multiply scattering
edium, light transport is essentially diffusive, and light

merging from such a medium presents a diffuse speckle
eld. Measurement of the intensity autocorrelation g2���
f the exiting diffusive light and the extraction of the in-
ormation regarding the dynamics of the medium through
tudy of the propagation of the field correlation have re-
ulted in the establishment of the technique of diffusing-
ave spectroscopy (DWS). Measurement of the time de-
endence of g2��� has been employed to study the types of
ovements the scattering particles undergo, such as

emperature-induced Brownian motion [3], short-
mpulsive movement [4], sheer-flow [5], and movement in-
roduced by external means such as ultrasound pressure
6,7]. The mean-square displacement (MSD) of scatterers
�r2���� undergoing Brownian motion is measured and
ade use of to extract the viscoelastic properties of the
edium, which is either the background liquid in which

racer particles are added or a jellylike medium such as
ross-linked polymers with aggregates acting as scatter-
ng particles. One of the advantages of DWS in this con-
ext is its ability to measure the individual movements of
articles at shorter length and time scales than is consid-
red possible by other means.

Application of diffuse light to probe a multiply scatter-
ng medium like tissue to recover spatially varying optical
1084-7529/09/061472-12/$15.00 © 2
roperties such as absorption coefficient �a and scattering
oefficients �s is well established [8,9]. In this area,
nown as diffuse optical tomography (DOT), one makes
ultiple measurements of the photon flux of the emerging

iffusive light to recover spatial distributions of �a and �s�
reduced scattering coefficient) employing a diffusion
quation to model light propagation through the turbid
edium. Over the years many have also successfully em-

loyed light to probe heterogeneous turbid media where
he heterogeneity is in the movement or dynamics of the
articles of the medium [10–12]. Here the multiple
oundary measurements of g2��� are made use of in con-
unction with a propagation model for the basic field au-
ocorrelation of light. This method has been used to image
or measure) shear flow through a capillary immersed in a
urbid medium without flow [13] and to visualize or mea-
ure differential Brownian motion in a heterogeneous me-
ium. In [11] a set of measurements of g2��� has been em-
loyed to locate and reconstruct the particle diffusion
oefficient DB heterogeneity buried deep inside a multiply
cattering object.

The MSD of particles in a medium has been used to
tudy the rheological properties of the medium, for ex-
mple, to measure the storage and the loss moduli of the
edium in which the beads are embedded [14]. In a cross-

inked polymer like polyvinyl alcohol, the MSD of the
olymer aggregate has been used to recover the elastic
nd viscous moduli of the polymer itself [15]. Thus DWS
as given us a localized probe for quantitative assessment
f viscoelastic properties of turbid media confined to di-
009 Optical Society of America
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ensions of the probe (millimeters or even micrometers),
hich saw the arrival of the applications of DWS for mi-

rorheology measurements [16].
The aim of the present work is the study of heterog-

nous turbid media—heterogeneous in optical absorption
oefficient and viscoelastic properties—with the help of a
oherent light probe. The ultimate goal is medical diag-
ostic imaging of soft-tissue organs for cancer, where the
ancerous region presents itself as an inhomogeneity in
bsorption coefficient and storage modulus. While recon-
tructing the viscoelastic properties of the medium
hrough so-called diffuse correlation tomography (DCT)
17,18], we cannot claim the spatial resolution of mi-
rorheology, limited only by the dimensions of the probe
eam. The diffusive propagation of light (and its field cor-
elation) in the media precludes this, and the spatial res-
lution of the properties is restricted to typically the
ransport mean path l* of the medium, which is of the or-
er of 5–10 mm.
DCT has been tried and proven in the context of bio-
edical imaging. For example it has been employed to
ap blood flow in rat brain to study cortical spreading de-

ression [17] and blood flow in the human brain [19] and
n breast tumors [20]. However, to the best of our knowl-
dge there has been no attempt to employ DCT to map the
iscoelastic properties of soft tissue organs. Also, to the
est of our knowledge the reconstruction methods
dopted in earlier work [11,17] in this direction relied on
he Rytov approximation with the underlying assumption
hat the heterogeneous distribution of the property to be
econstructed is only a small perturbation in its homoge-
eous background value. The data used in the recovery
as either the full set of g2��� versus � distribution at
arious observation points or a single g2��� value selected
t � when the effect of noise is minimal [17]. There was no
roper development or analysis of an iterative reconstruc-
ion procedure involving the forward propagation of the
asic quantity, namely, the field autocorrelation denoted
y g1���, nor computation of suitable Jacobians for the dif-
erent measurement types derived from the measured
2���, which could possibly recover both the mechanical
represented by DB�r�, the particle diffusion coefficient, or
he MSD itself] and optical property [represented by
a�r�] distributions. We also show that from the measured
2��� versus � distribution it is possible to reconstruct
�r2�r ,��� of a heterogenous object.

Therefore one of the major aims of the present work is
he development and testing of an iterative reconstruc-
ion algorithm similar to the iterative reconstruction al-
orithm of DOT [21] for use in the context of DCT. In the
rst part of this development we consider two measure-
ents derived from g2��� which are integrals of ���� com-

uted from g2��� (see Subsection 3.A) over intervals of �.
he first, denoted by M1, is over the early part of �, typi-
ally from �=10−9 s to �=10−7 s, and the second, M2, is
ver the later part of �, typically from �=10−6 s to �
10−3 s. When ��r2�r ,��� can be approximated by 6DB�
ith a time independent particle diffusion coefficient (i.e.,

he medium is assumed purely viscous), we show that the
easurement M2 is sensitively dependent on DB and can

e recovered from M2 without being affected by �a. Simi-
arly M is seen to be more sensitive to changes in � �r�
1 a
nd can be used to recover �a�r�. In the second part we
ecover the time variation of the spatial distribution of
�r2�r ,��� from the measured g2��� versus � distributions
and the intensity), assuming that the ��r2�r ,��� has a
onlinear dependence on �. The recovered ��r2�r ,��� dis-
ributions at the inhomogeneities are also employed to
ompute the storage and loss moduli, denoted by G����
nd G����, respectively, in those inhomogeneities [22].
Since the ultimate goal of the present work is the de-

elopment of a medical imaging modality, we also suggest
he limitations of this imaging method in the context of
n experimental realization. We point out limits in noise
n measurement which will allow a proper recovery of the
roperties of interest, touch upon spatial resolution of in-
omogeneous inclusions recovered, and suggest practical
ata gathering geometry in a possible instrument.
A summary of the rest of the paper is as follows. In Sec-

ion 2 we give a brief description of the forward propaga-
ion model used for G�r ,��, the unnormalized field corre-
ation. We also study the sensitivity of the measurements

1 and M2 with respect to the parameters DB and �a. In
ection 3, we describe the construction of the Jacobians

or the sensitivity matrices) for M1 and M2 with respect to
B and �a and g2��� with respect to ��r2�r ,���. The inver-

ion algorithms for the recovery of DB, �a, and ��r2�r ,���
re described in Section 4. The numerical experiments re-
ealing the ability of the inversion algorithm to recon-
truct these parameters and their limitations, such as
andling of noisy data, spatial resolution, and contrast re-
overy in the reconstruction, are described in Section 5.
ection 6 contains a few suggestions on experimental lay-
ut for data gathering and possible limitations of the ex-
eriment and its effect on the ultimate recovery of the
roperties of the medium. The final Section 7, gives the
onclusions drawn from this study.

. FORWARD PROPAGATION EQUATION
OR THE FIELD AUTOCORRELATION
HROUGH A TISSUELIKE MEDIUM
he basic quantity of interest to be propagated is the spe-
ific intensity I�r , ŝ ,�� (which is time independent under
ome assumptions [23,24]) related to the mutual coher-
nce function of the electric field components Ea�ra , t� and
b�rb , t+��, denoted by �Ea�ra , t�Eb

*�rb , t+���. We note that
�r , ŝ ,�� is obtained from the mutual coherence function
xpressed using the center of gravity coordinates r= �ra
rb� /2 and �r=rb−ra after a Fourier transform with re-
pect to �r (ŝ is the conjugate variable to �r). The specific
ntensity obeys the correlation transport equation

ŝ · �I�r, ŝ,�� = − �t�r�I�r, ŝ,��

+ �s�r� � I�r, ŝ�,��g1
s�ŝ, ŝ�,��dŝ� + S�r, ŝ�.

�1�

ere �t=�a+�s, and S�r , ŝ� is the source at the location r.
lso g1

s�ŝ , ŝ� ,�� is the incremental specific intensity added
n the direction ŝ owing to a single scattering event from
irection ŝ to ŝ.
�
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To get the diffusion approximation of the above trans-
ort equation, we expand I�r , ŝ ,�� as I�r , ŝ ,���G�r ,��
3ŝ ·J�r ,�� /4�, where G�r ,�� and J�r ,�� are obtained

rom I�r , ŝ ,�� through G�r ,��=�I�r , ŝ ,��dŝ and J�r ,��
�ŝI�r , ŝ ,��dŝ. The field autocorrelation G�r ,�� is related

o the power spectrum of light through a Fourier trans-
orm with respect to �. The diffusion approximation to Eq.
1) is obtained as (under the assumption that �s��a)
12,24]

� · D�r� � G�r,�� − ��a�r� + 1
3 ��r2�r,���k0

2�s��r��G�r,��

= − S0�r − r0�, �2�

here k0 is the modulus of propagation vector of light;

s�= �1−g��s, g being the anisotropic factor of scattering,
nd D=1/3��a+�s�� is the optical diffusion coefficient. In
he above model, we assume that the scattering is isotro-
ic with a length scale l*=1/�s�. The term S0�r−r0� is the
sotropic source located at r=r0. We use the mixed bound-
ry condition to solve the propagation Eq. (2) for G�r ,��,

D�r�
�G�r,��

�n
= − G�r,��, �3�

n the boundary ��. Here n is the unit outward normal
n �� where measurement is made. This implies that the
ight input is from the source at r0 only.

If we assume the medium is purely viscous, so that the
cattering particles are pictured to diffuse through the
edium, the MSD, ��r2�r ,���, at a particular r has a lin-

ar time evolution given by ��r2�r ,���=6DB�r�� [17],
here DB�r� is the time independent particle diffusion co-
fficient related to the viscosity 	 of the medium. If the
edium is viscoelastic, ��r2�r ,��� has a nonlinear � de-

endence. For the viscoelastic medium used in our simu-
ations, we have assumed [25]

��r2�r,��� = r0
2�r��1 − exp	�− �/�d�

�1/
�1 + 6D1�/r0

2�,

he recovery of which leads to the reconstruction of the
omplex elastic modulus of the medium.

This model has the flexibility to incorporate three dif-
erent types of movement of a particle trapped in a vis-
oelastic network. In the first phase when � is small the
article follows a diffusive motion with an MSD varying
inearly with � as 6DB�. When � increases the �r2�r ,��
ersus � behavior becomes nonlinear, and at intermediate
imes it displays a plateau where the MSD becomes con-
tant at r0

2. At still larger values of � the movement of the
articles becomes diffusive again, showing a linear behav-
or of MSD with �.

For the two cases of a purely viscous medium as well as
he soft tissue-like viscoelastic medium, we solve Eqs. (2)
nd (3) using the finite element (FE) discretization
cheme. A 2-D circular object is assumed and discretized
o 1933 nodes with 3723 elements. The typical solution of
�r ,�� for �=10−9 s to �=10−2 s is shown in Fig. 1. We
ention here in passing that G�r ,�� is not our measure-
ent, but g2��� and the intensity I�r�=G�r ,0� are. From

hese measurements we derive a quantity ��r ,�� as dis-
ussed in Subsection 3.A. We have assumed the optical
arameters D and �s� are uniform with values given by
.0417 cm and 8 cm−1, respectively. Optical absorption co-
fficient �a has a background value of 10−3 cm−1. Particle
iffusion coefficient DB has a background value 0.1
10−8 cm2/s. The forward operator is used to compute
�r ,�� everywhere, especially on the boundary ��.
The intensity autocorrelation, one of the measurements
ade on ��, is given by

�I�r,��I�r,t + ��� � g2��� = 1 + �
g1�r,��
2. �4�

ere 
g1�r ,��
= 

G�r,��

G�r,0� 
, and � is a constant dependent on
he collection optics used in the experiments. Since
�r ,0� is the intensity I�r�, which is also experimentally
easured, we can arrive at g2���=1+�
G�r ,�� /G�r ,0�
2

rom the computed G�r ,��.

. MEASUREMENTS DERIVED FROM g2„�…
ND THE VERIFICATION OF THEIR
ENSITIVITIES WITH RESPECT TO DB AND
a

. Numerical Study of the Variation of the
easurements Derived from g2„�… with Absorption and

article Diffusion Coefficients
irst we consider the case of a purely viscous medium in
hich the approximation ��r2�r ,���=6DB�r�� holds. In

his case the propagation equation for G�r ,�� has coeffi-
ients dependent on optical absorption coefficient �a, par-
icle diffusion coefficient DB and reduced scattering coef-
cient �s�. Of these, we assume �s� is known and uniform
hroughout the object, leaving us with two unknowns
a�r� and DB�r�. Since our measurement is g2����M=1
�
G�m ,�� /G�m ,0�
2, and the propagation equation is for
�r ,�� we define a measurement operator M as

M�G�m,��� � G2�m,0��M − 1

�
� � ��m,��. �5�

ere m is the detector location on �� the boundary. As in-
icated earlier ��m ,�� can be computed from boundary
easurements. From ��m ,�� we derive a scalar measure-
ent

ig. 1. (Color online) Typical plot of the modulus of field auto-
orrelation with � at a boundary node for a homogeneous object:

a
b=0.001 cm−1, �s�

b=8 cm−1, and DB=0.1�10−8cm2/s.
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M =�
�1

�2

��m,��d�, �6�

here �1 and �2 define an interval on the � axis within the
upport of g2���. By numerical experiments we have se-
ected two intervals, one in the neighborhood of �=0 (rela-
ively small values of �) and the other in the neighborhood
f ��10−6 s (i.e., for larger values of �), and used these
easurements M1 and M2, respectively, to explore the

ossibility of reconstructing �a and DB separately. As in-
icated in Section 1, we found that M1 (where �1 and �2
re, respectively, 10−9 s and 10−7 s, and these values are
xed through repeated numerical simulations) is very
ensitive to changes in �a and insensitive to changes in
B, while M2 (where �1 and �2 are, respectively, 10−6 s and
0−3 s) is very sensitive to changes in DB and insensitive
o changes in �a.

These factors were established using the following nu-
erical experiments. We have considered a circular 2-D

bject of diameter 8 cm and homogeneous properties of
a=0.001 cm−1 and �s�=8 cm−1 and DB=0.1�10−8 cm2/s.
fter finite element discretization of Eq. (2) and Eq. (3)
ith 1933 nodes and 3723 elements we have solved for
�r ,�� everywhere in � and computed ��m ,�� on the
oundary from which M1 and M2 were calculated. The
easurements ��m ,�� evaluated at a typical detector

oint on the boundary when the homogeneous value of �a
s varied from 0.001 to 0.01 cm−1 are shown in Fig. 2(a)
DB is held constant at 0.1�10−8 cm2/s). Similar curves
howing G�m ,�� versus � as DB is varied from 0.1
10−8 cm2/s to 1�10−8 cm2/s (�a held constant at

.001 cm−1) are shown in Fig. 2(b).
It is clear from these figures that when � is small (in

he range of 10−9 s to 10−7 s), whereas DB did not have
ny noticeable effect on ��m ,��, �a did have. The opposite
s found to be true for larger values of �. From these nu-

erical trial runs we fix the values of �1 and �2 to arrive
t the two intervals indicated earlier to compute the two
easurements M1 and M2 using Eq. (6). The behavior of
1 and M2 with �a and DB are shown in Figs. 3(a)–3(d).

he earlier observations of the sensitivity of M1 and M2 to

ig. 2. (Color online) Plots of ��r ,�� versus � when: (a) backgrou
emaining constant at 0.1�10−8 cm2/s; (b) background DB is varie
emaining constant at 0.001 cm−1. The source–detector separatio
arameters �a and DB are once again confirmed through
he above results, and these measurements are subse-
uently used to reconstruct �a and DB.
In Subsection 3.B we derive the sensitivity relations for
easurements M1 and M2 with respect to �a and DB. For

he viscoelastic medium, the set of measurements
��m ,�i�� at a number of points on the boundary of the ob-
ect sampled in � starting from �=10−9 to �=10−2 s is used
s data for the recovery of ��r2�r ,���. The sensitivity of
�r ,�� with respect to ��r2�r ,��� is established quantita-
ively, and the corresponding sensitivity matrix is also
omputed.

. Construction of the Jacobian for the Measurements
1 and M2 with Respect to �a and DB
e intend to employ a forward-propagation-model-based

terative reconstruction algorithm to recover �a and DB,
hich requires repeated computation of the derivative

sensitivity or Jacobian matrix) of the measurements with
espect to the parameters to be reconstructed. To this end
e describe here a method for the quick evaluation of

hese Jacobian matrices [26,27]. The iterative reconstruc-
ion procedure essentially involves comparison of the ex-
erimental measurements with the computed measure-
ents obtained via the forward operator and perturbing

he material properties, guided by the Jacobians.

. Jacobian with Respect to Absorption Coefficient
sing Eq. (2), which is the forward propagation equation

or the basic quantity G�r ,��, one can compute a pertur-
ation in G�r ,��, by say G
�r ,��, by perturbing �a�r� by

a

�r�. Substituting these in Eq. (2), after simplification
e get the equation connecting G
�r ,�� to �a


�r ,��, which
e call the Frechet derivative of the forward propagation
quation:

� · D � G
�r,�� − ��a + 2DB�k0
2�s��G


�r,�� = �a

G�r,��.

�7�

he boundary condition for G
�r ,�� is

is varied from (1) 0.001 cm−1 to (2) 0.005 cm−1, (3) 0.01 cm−1, DB
(1) 0.1�10−8 cm2/s to (2) 0.5�10−8 cm2/s, (3) 1�10−8 cm2/s, �a
in the simulation was 8 cm.
nd �a
d from
n used
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G
�m,�� + D
�G
�m,��

�n
= 0, m � ��. �8�

olution of Eqs. (7) and (8) gives G
�r ,��, in particular on
he boundary, for �a perturbation, say at a node. On


�m ,�� we apply the measurement operator M [Eq. (5)]
o obtain �
�m ,��, from which the change in measure-
ent M
 is computed as M
=��1

�2�
�m ,��d�. We use this to
ompute the derivative, the rate of change of a measure-
ent with respect to �a at a node, which is an element of

he Jacobian matrix with respect to �a. The whole matrix
an be evaluated by continuing these calculations for all
odes and for all detectors.
This rather computation-intensive procedure can be

voided by employing the adjoint of the Frechet deriva-
ive operator [Eqs. (7) and (8)], as is done in the context of
OT [26,27]. With this, one can get a row of the Jacobian
atrix (i.e., the derivative for a single measurement with

espect to the parameter at all the nodes) by solving two
orward propagation operators, one, Eqs. (7) and (8), and
he other its adjoint.

The adjoint of Eqs. (7) and (8) can be easily found as

� · D � ��r,�� − ��a + 2DB�k0
2�s����r,�� = 0, �9�

ith the boundary condition

ig. 3. (Color online) Variations of M1 and M2 with �a and DB.
t is seen that M1 and M2 have larger variations with respect to
��r,�� + D
���r,��

�n
= q+. �10�

ere q+ is the so-called “Robin source” at the boundary
here the detector is located [26].
Multiplying Eq. (7) by �̄ and Eq. (9) by G
�r ,��, inte-

rating over the whole domain �, and applying Green’s
heorem, we get

�
��

G
�m,��q+dn−1r =�
�

�a

�r�G�r,����r,��dnr. �11�

f q+ is a delta source at the detector on the boundary, the
eft hand side of Eq. (11) picks up a G
�m ,�� at the detec-
or. In that sense Eqs. (9) and (10) together represent the
djoint of Eqs. (7) and (8).
We make use of Eq. (11) and Eq. (7) to arrive at an ex-

ression for ��
�m ,�� /��a for �a at every node. Here
�m ,��, as noted in Subsection 3.A, is related to the mea-
urement M=g2��� through ��M−1� /��G2�m ,0�, which is
G�m ,��
2. Therefore we have

�
�m,�� = 	G�m,�� + G
�m,��
	Ḡ�m,�� + Ḡ
�m,��


− G�m,��Ḡ�m,�� � G
�m,��Ḡ�m,��

+ G�m,��Ḡ
�m,�� = �1

�m,�� + �2


�m,��, �12�

versus �a, (b) M1 versus DB, (c) M2 versus �a, (d) M2 versus DB.
DB, respectively
(a) M1
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here �
�m ,�� is real. Substituting G
�m ,��
�1


�m ,�� /Ḡ�m ,�� in Eq. (11) we get

�
��

�1

�m,��

Ḡ�m,��
q+dn−1r =�

�

�a

�r�G�r,����r,��dnr. �13�

imilarly

�
��

�2

�m,��

G�m,��
q+dn−1r =�

�

�a

�r�Ḡ�r,���̄�r,��dnr. �14�

herefore using the fact that q+=
�m−mi�, where mi
ives the ith detector location, we can write [by combining
qs. (13) and (14)]

�
�mi,�� = Re�Ḡ�mi,���
�

�a

�r��G�r�,��GR

� �r�,mi,��dnr�� ,

�15�

here GR
� �r ,mi ,�� is the Green’s function for the adjoint

quation given by Eqs. (9) and (10). Here Re denotes “real
art of.”
Both G
�mi ,�� and �
�mi ,�� can also be obtained by

olving the Frechet derivative operator [Eqs. (7) and (8)].
hrough this route we obtain �
�mi ,�� as

�
�mi,�� = Re�Ḡ�mi,���
�

�a

�r��G�r�,��G��mi,r�,��dnr�� .

�16�

omparing Eqs. (15) and (16) we get

GR
� �r�,mi,�� = G��mi,r�,��. �17�

quation (17) is a reciprocity relation which asserts that
he measurement made at mi with source at r� [i.e.,

��mi ,r� ,��] is equal to the measurement made at r� with
he source at mi [i.e., GR

� �r� ,mi ,��]. Using Eq. (17) in Eq.
15) we get

���mi,��

��a

�r��

= Re�Ḡ�mi,��G�r�,��GR
� �r�,mi,���. �18�

. Jacobian with Respect to DB
he Frechet derivative of the forward propagation equa-
ion [Eqs. (2) and (3)] with respect to DB is

· D � G
�r,�� − ��a + 2�s�k0
2DB��G
�r,�� = 2�s�k0

2DB

 �G�r,��,

�19�

ith the boundary condition

G
�r,�� + D
�G
�r,��

�n
= 0. �20�

ollowing a similar procedure as in Subsection 3.B.1 we
an easily see that the Jacobian of ��mi ,�� with respect to

is
B
���mi,��

�DB

 �r��

= Re	2�s�k0
2�Ḡ�mi,��GR

��r�,mi,��G�r�,��
.

�21�

ere GR
� solves the adjoint of Eqs. (19) and (20), which is

� · D � ��r,�� − ��a + 2�s�k0
2DB����r,�� = 0, �22�

ith the boundary condition

��r,�� + D
���r,��

�n
= q+. �23�

. Jacobian for the Two Measurements M1 and M2
erived from �„m,�…
ince M1 and M2 are obtained from ��m ,�� by integrating
ver different intervals of �, the procedure to obtain either
Mi /��a or �Mi /�DB is similar. We denote the perturba-
ion equation connecting E�m ,��, the perturbation in
�m ,��, to the perturbation in p, the property of which is
ither �a or DB, as

�
j=1

N ���mk,��

�pj
�pj = E�mk,��, k = 1, . . . m. �24�

ere m gives the number of measurements, N is the num-
er of nodes in the domain �, and E�mk ,�� is the pertur-
ation in the measurement �i�mk ,��. We integrate Eq.
24) with respect to �, take the integral inside the deriva-
ive operator, use Mi to denote ��1

�2��mk ,��d� (where i=1 or
depending on whether �1 or �2 defines the first or the

econd interval of integration) and obtain

�
j=1

n �Mi

�pj
�pj

av = �Mi, �25�

here �pj
av is the mean value of �pj. In Eq. (25), the ma-

rix 	�Mi /�pj
 is the Jacobian for measurement Mi (either
1 or M2) with respect to the property p (either �a or DB).

his Jacobian is constructed by integrating the deriva-
ives given by Eqs. (18) and (21). It is seen that for the
easurement M1, the values of the derivative with re-

pect to �a are larger; and for M2 the same is true for de-
ivatives with respect to DB.

. Jacobian for the Measurement �„r ,�… with Respect to
�r2

„r ,�…‹
e compute the Jacobian for the measurement ��r ,�i� for

=�i, a typical value of time �. This Jacobian can be used
o reconstruct ��r2�r ,�i�� using the inversion procedure
iscussed in Section 4. From the measurement vector
��r ,�i�� for a range of � values and r��� and using this
acobian we recover the time varying ��r2�r ,��� for r��.
The Frechet derivative of the forward propagation

quation [Eq. (2)] with respect to a perturbation in
�r2�r ,��� denoted by ��r2�r ,�i��
 is

� · D � G
�r,�i� − ��a + 1
3 ��r2�r,�i��k0

2�s��G
�r,�i�

= 1
3k0

2�s���r2�r,�i��
G�r,�i�, �26�

ith the boundary condition



T

w

W
c
�

H
s

4
A
F
s
p
a
g
F
t
(
m
f
w
u

p
w
s

D
e
p
t
J
e
t
w

T
m
i
i
f
u
o
r
r
s

s
i

E
u
w
r
r
p

5
A
A
M
T
t
T
k
�
c
t
(
�
b
fF

g
a
g
t
o

1478 J. Opt. Soc. Am. A/Vol. 26, No. 6 /June 2009 Varma et al.
D
�G
�r,�i�

�n
+ G
�r,�i� = 0. �27�

he adjoint of the above equation is

� · D � � − ��a + 1
3 ��r2�r,�i��k0

2�s��� = 0, �28�

ith the boundary condition

D
���r,�i�

�n
+ ��r,�i� = q+. �29�

ith the procedure used in Subsection 3.B.1 we can easily
ompute the derivative of ��m ,�i� with respect to
�r2�r ,��� as

���mi,�i�

���r2�mi,�i��
= Re� 1

3k0
2�s�Ḡ�mi,��G�r�,�i�GR

� �r�,mi,�i�� .

�30�

ere GR
� �r� ,mi ,�i� is the Green’s function for the adjoint

ystem given by Eqs. (28) and (29).

. ITERATIVE RECONSTRUCTION
LGORITHM

igure 4 gives the block diagram of the proposed recon-
truction algorithm. To start, the initial guesses of the
roperties of the medium such as �a�r�, �s��r�, and DB�r�
re given as inputs which are used in the forward propa-
ation equation [Eqs. (2) and (3) discretized using the
EM] to compute G�r ,��. From G�m ,�� one can compute

he measurements ��m ,�� and M by using Eqs. (5) and
6). The algorithm is also supplied with the experimental
easurements Me (specifically M1

e and M2
e) and ��e�mi ,�i��

or a set of �i values for each detector position mi. In our
ork the experimental data are numerically simulated
sing a finer mesh. As indicated in Subsection 3.A, the ex-

ig. 4. Iterative reconstruction algorithm: The inputs to the al-
orithm are the initial guess of the property p0 (either �a or DB)
nd the experimental measurement Mj

e (either M1
e or M2

e). The al-
orithm has an outer and inner loop. In the inner loop the per-
urbation equation is solved to update the property pi. In the
uter loop the perturbation equation is itself updated.
eriments give the normalized intensity autocorrelation
hich should be supplemented by a set of intensity mea-

urements to compute ��m ,�� and M.
From measurements M1 and M2 we reconstruct �a and

B, respectively. Denoting by �M1 and �M2 the differ-
nces M1

e −M1
c and M2

e −M2
c , where M1

c and M2
c are the com-

uted measurements obtained from the current guess of
he properties, we set up the perturbation equations
�a

��a=�M1 and JDB
�DB=�M2. These perturbation

quations are normalized by premultiplying by JT, and af-
er adding a suitable regularization parameter �, they are
ritten as

�J�a

T J�a
+ �1I���a = J�a

T �M1, �31�

�JDB

T JDB
+ �2I��DB = JDB

T �M2. �32�

hese are solved for ��a and �DB by recasting them as
inimization problems, where ��JTJ+�I��p−JT�M�2=�

s minimized by adjusting the parameter �p. This is done
n the inner loop of the iteration algorithm. The outputs
rom the inner iteration, either ��a or �DB, are used to
pdate these properties to continue the algorithm in the
uter loop, which requires updating Eqs. (31) and (32) by
ecomputing the Jacobians and �M1 and �M2. The algo-
ithm is stopped when ��M� goes below a certain preset
mall value.

We sort the boundary measurements ���mi ,�j�� into
ets ���mi ,����=�j

. Each set is used to set up the regular-
zed perturbation equation similar to Eq. (31) and (32) as

�J��r2�r,�j��
T J��r2�r,�j��

+ �3I����r2�r,�j�� = J��r2�r,�j��
T

���m,�j�.

�33�

quation (33) is inverted for ���r2�r ,�j�� which is used to
pdate the current value of ��r2�r ,�j��. On convergence,
e reconstruct the distribution of ��r2�r ,�j�� for �=�j. By

epeating the above iteration for all values of �=�j in the
ange of measurement of g2�m ,��, we recover the com-
lete time variation of ��r2�r ,��� for all r��.

. NUMERICAL SIMULATIONS, RESULTS,
ND DISCUSSION
. Recovery of �a and DB from Measurements M1 and
2

he object used in our numerical simulations is circular,
aken as the cross-section of a cylinder of diameter 8 cm.
he background optical and mechanical properties are
ept as �a

b=0.001 cm−1, �s�
b=8 cm−1, and DB

b =0.1
10−8 cm2/s. There are two circular inhomogeneous in-

lusions in this object of diameter 1.8 cm, one an absorp-
ion inhomogeneity of value 0.004 cm−1 centered at
−2.5 cm, 0 cm) and the other a DB-inhomogeneity of 0.4

10−8 cm2/s at (2.5 cm, 0 cm). (The object is assumed to
e centered at the origin of the coordinate axes.) There-
ore the inclusions in the background are

�a�x,y� = 0.004 cm−1 if ��x + 2.5�2 + �y�2 � 0.9,

−8 2 � 2 2
DB�x,y� = 0.4 � 10 cm /s if �x − 2.5� + �y� � 0.9.
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To generate numerically the experimental data, Eqs.
2) and (3) are discretized using the FEM with 1933 nodes
nd 3723 triangular linear elements. For a collimated
ource on the boundary (which effectively means a point
ource inside the object at a distance of one transport
ean free path from the boundary) 40 detectors are

laced equi-angularly on either side of the diametrically
pposite point to the source location, to cover an overall
ngle of 320°. The discretized forward equation is solved
or G�r ,�� for � ranging from �=10−9 s to �=10−3 s. From
hese, ��r ,�� are calculated for r��� at all the detector
ocations, and the experimental data sets are generated
y adding 1% Gaussian noise to ��m ,��. Particular mea-
urements M1 and M2 are computed from the noisy
�m ,��. The above procedure is repeated by rotating the
ource–detector combination in unison by steps of 10° to
ather 36 sets of 40 readings each.

For inversion of data we use a coarser mesh, discretiz-
ng the domain with 1243 nodal points and 2376 triangu-
ar elements. We start the reconstruction algorithm (see
ig. 4) with an initial guess of the properties �a and DB,
hich are their background values. As mentioned before,

he measurement M1 is used to recover �a and M2 to re-
over DB. The Jacobians �M1

i /��a
j and �M2

i /�DB
j are con-

tructed for use in the iterative algorithm described in
ection 4. Compared to these, the Jacobians ��M2

i /��a
j �

nd ��M1
i /�DB

j � are found to be very small, proving that
1 and M2 are not sensitive to changes in DB and �a, re-

pectively. The whole set of data, which is the number of
etector readings from all the views, is input to the recon-
truction algorithm along with the initial guess of the
roperties and the Jacobians. The updates for �a and DB
re computed using the inner iteration. The algorithm
onverges in about 20 iterations of the outer loop when
�Mi� is reduced to less than 10−12.

Gray level plots of the original �a and DB distributions
re shown in Figs. 5(a) and 5(b), respectively. The recov-
red �a�r� from M1 is shown in Fig. 6 [the gray level plot
n (a) and the cross-sections through the center of the in-
omogeneity of the original and the recovered distribu-
ions in (b)]. Similarly the recovered DB�r� distribution
rom M2 is shown in Fig. 7. It is seen that the quantitative
ccuracy of the inhomogeneous inclusions recovered in-
luding their locations is very good, even though the spa-

ig. 5. (Color online) Original object used in the simulations: (a
ient distribution �cm2/sec�.
ial resolution of the recovered inclusion seems to be poor.
he loss of spatial resolution is due primarily to the dif-

usion of light.
Figures 8(a) and 8(b) show the recovered DB�r� and

a�r� from measurements M1 and M2, respectively. The
acobians used here are (1) ��M2 /��a� for recovering �a
rom M2 and (2) ��M1 /�DB� for recovering DB from M1.
he reconstructed DB and �a are positioned at the �a and
B inhomogeneities, respectively, of the original object. In

his sense these reconstructions show the residuals of the
nsensitive parameters recovered from these measure-

rption coefficient �cm−1� distribution; (b) particle diffusion coeffi-

ig. 6. (Color online) Reconstructed absorption coefficient dis-
ribution �cm−1� (a) gray-level plot; (b) cross-sectional plots
hrough the centers of the inhomogeneities in (a) as well as the
riginal inhomogeneous object of Fig. 6(a).
) abso
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ent types. We refer to them as cross-talks in the original
econstructions. It is seen that the cross-talk terms are
ery small compared with the actual reconstructions.

We observe that when the noise in the measurement is
ncreased beyond 1%, the recovery is noisy, and therefore
uantitative accuracy and position of the inhomogeneities
annot be guaranteed. Further, it is seen that the possible
patial resolution in the reconstruction is affected by
oise in data. In addition it is noted that noise pushes up
he minimum contrast needed in the inhomogeneity for it
o be discernible in the reconstruction.

. Recovery of Š�r2
„r ,�…‹ from the Measurement �„m,�…

he object used here is similar to the one employed ear-
ier. The background optical properties are the same as
efore (�a=0.01 cm−1 and �s�=8 cm−1) and the mechanical
roperty is defined using ��r2�r ,��� as explained below.
ere ��r2�r ,��� is assumed to have a nonlinear variation
ith � which is assumed to follow the relation [25]

��r2�r,��� = r0
2�r��1 − exp	�− �/�d�

1/
��1 + 6D1�/r0

2�.

�34�

ere r0�r� is a constant for a particular spatial location
nside the object which defines the mechanical stiffness at
ocation r (which defines the first plateau of the ��r2�r ,���
ersus � map), and �d is the time constant for the growth
f ��r2�r ,��� with �, which is given by � =r2 /6D . The val-

ig. 7. (Color online) Reconstructed particle diffusion coefficient
istribution �cm2/sec� (a) gray-level plot; (b) cross-sectional plots
hrough the centers of the inhomogeneities in (a) (dashed curve)
s well as the original inhomogeneous object of Fig. 6(b) (solid
urve).
d 0 B
es of D1 and 
 are taken to be 10−12 cm2/s and 0.28, re-
pectively.

The background mechanical property is also fixed by
efining r0�r� and �d. In the simulations r0 for the back-
round tissue is fixed at r0=7�10−7 cm and �d is varied
rom 8.33�10−5 to 8.33�10−6 s by selecting DB appropri-
tely.
The object used in the simulations has two circular in-

omogeneous inclusions of diameter 1.4 cm each. The
onstants r0 and �d for these regions are kept as

r0�x,y� =�1.5811 � 10−7 cm if ��x + 2.5�2 + �y�2 � 0.7

5 � 10−7 cm if ��x − 2.5�2 + �y�2 � 0.7� .

�35�

he corresponding values of �d for DB=1�10−9 cm2/s are
iven by

�d�x,y� =�4.1667 � 10−6 s if ��x + 2.5�2 + �y�2 � 0.7

4.1667 � 10−5 s if ��x − 2.5�2 + �y�2 � 0.7� .

�36�

We denote the relatively high stiffness region centered
t �−2.5,0� as inhomogeneity 1 and the region centered at

ig. 8. (Color online) These reconstructions give the cross-talk
n the reconstructions and are seen to be less than 1% of the cor-
ectly recovered DB and �a. (a) The cross-sectional plot through
he recovered change in absorption coefficient ���a=�a�r�−�a

b�
rom measurement M2 using the Jacobian ��M2 / ��a �.(b) The
ross-sectional plot through the recovered change in particle dif-
usion coefficient 	�DB=DB�r�−DB

b 
 from measurement M1 using
he Jacobian ��M1 / �DB �.
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2.5,0) with stiffness close to that of background as inho-
ogeneity 2. A typical variation of ��r2�r ,��� with respect

o � is shown in Fig. 9 with r a point in the homogeneous
ackground medium of the object.
As before the experimental data are generated by first

umerically solving Eqs. (2) and (3) using FEM discreti-
ation with 1933 nodes and 3723 elements for G�r ,�� and
hen computing ��r ,�� from G�r ,��. The measurement is
e�m ,��=��m ,��+noise, where noise is 1% Gaussian. At
ach detector � is varied from �min=10−6 s to �max=10 s,
iving a total of 40 samples of �e�m ,��.

For inversion, we use a coarser mesh than in the pre-
ious case (1243 nodal points and 2376 triangular ele-
ents). We use the same reconstruction algorithm as

sed earlier, and the initial values used for the unknown
�r2�r ,��� correspond to its assumed background values.
he required sensitivity matrices ���m ,�i� /���r2�r ,���
re calculated for each value of �i (for each �i we get one
acobian matrix), and the reconstruction proceeds using
he steps described in the algorithm of Fig. 4. For a typi-
al value of �i (say �i=10−6 s) the algorithm takes 30 it-
rations to converge, giving a reconstruction of ��r2�r ,���
t �=�i s, which is a spatial distribution of the parameter
t the time selected. Repeating this we generate sets of
�r2�r ,��� reconstructions for � going from �=10−6 s to �
10 s.
A typical reconstruction of ��r2�r ,��� at �=6�10−5 s is

hown in Fig. 10(a) (contour plot) with a cross-section
hrough the inhomogeneity shown in Fig. 10(b). It is seen
hat the reconstruction is fairly accurate in both the inho-
ogeneities. However, we find that if the contrast in the

nhomogeneity decreases below 50% of the background
alue [in ��r2�r ,���] the algorithm fails to reconstruct the
nhomogeneity. Spatial resolution of the recovery is once
gain poor due to the diffusive propagation of light
hrough the object. Figure 11 shows the plot of variation
f the recovered ��r2�r ,��� with respect to � at r inside the
nhomogeneities. For comparison the original variations
t those typical points are also shown. It is seen that the
uantitative accuracy of reconstruction is reasonably

ig. 9. (Color online) Typical variation of ��r2�r ,��� with � for a
omogeneous object (r0=7.0711�10−7 cm, DB=10−9 cm2/s, D1
10−12 cm2/s, � =0.01 cm−1, ��=8 cm−1).
a s
ood. From the recovered ��r2�r ,��� we compute the stor-
ge modulus G���� and loss modulus G���� in the inclu-
ions as [22]

G���� = 
G*���
cos��
���

2 � , �37�

G���� = 
G*���
sin��
���

2 � , �38�

here G*��� is given by


G*���
 �
KBT

�a���r2,�����1 + 
����
. �39�

ere 
��� is the logarithmic slope of ���r2 ,��� at �=1/�
nd � is the gamma function.
The recovered storage and loss moduli in the first and

he second inclusions are shown in Figs. 12(a) and 12(b),
espectively.

ig. 10. (Color online) (a) Gray-level plot of reconstructed
�r2�r ,��� �cm2� at �=6�10−5 s. (b) Cross-sectional plots through
he centers of the inhomogeneities for the original (solid curve)
nd the reconstructed (dotted curves) ��r2�r ,���. The inhomoge-
eity at the left is designated as inhomogeneity 1 and the one at
he right as inhomogeneity 2.
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. TOWARD THE EXPERIMENTAL
EALIZATION OF AN IMAGING SYSTEM
ince tissue is a highly scattering medium, the number of
hotons transmitted through an organ such as a breast
eing examined will be extremely small [28]. With this in-
ignificantly small number of photons, to achieve suffi-
iently large SNRs in the measured intensity correlation
s a challenging task. One should use a speckle averaging
echnique [29,30], employing a detector bundle consisting
f an array of single mode fibers with each fiber capturing
single speckle to obtain an averaged g2��� with an en-

anced SNR. As noted earlier, in our simulations when
he noise increased beyond 1% the quantitative accuracy
f the recovery was greatly affected.

In DCT, the transmission geometry is seldom used, a
ackscattering geometry being prefered. With light input
rom a fiber at a particular position, the backscattered
ight is detected at a number of locations around the input
uch that the diffusive path of light in the object maps a
ertain volume of the object at a certain depth determined
y the distance between the input and detector fibers.
Since the tissue is not an ergodic medium [31], the time

utocorrelation estimate of g2��� cannot be equated to the
nsemble-averaged autocorrelation. In the literature [31]
t is suggested that an ergodic medium consisting of beads
uspended in water be sandwiched to the nonergodic me-
ium studied to make a composite object which is ergodic.
rom the measured g2��� for the sandwiched composite
bject, the contribution from the tissuelike object which is
onergodic is separated out.
In spite of the difficulties encountered in the measure-
ent of g2��� [32], DCT is currently demonstrated by
any as a useful tool for in vivo blood flow measurement
ith potential medical diagnostic applications.

. CONCLUSION
he study of propagation of field correlation of light
hrough tissue and the corresponding inverse problem
as the potential to provide noninvasive maps of the op-

ig. 11. (Color online) Reconstructed and original ��r2�r ,��� ver-
us � for the inhomogeneities 1 [(1) and (2), respectively] and 2
(3) and (4), respectively].
ical as well as mechanical properties of the tissue. This
as obvious medical diagnostic applications, such as de-
ecting the changes associated with the onset of cancer or
ther diseases. The objective of this work, proven through
imulations, is the separate recovery of mechanical (rep-
esented by DB, the particle diffusion coefficient) and op-
ical (the absorption coefficient) properties from the mea-
urements derived from the boundary intensity
utocorrelation g2���. We have devised two measurements

1 and M2 which are integrals of a function derived from
he measured g2���, the first going from �=10−9 s to �
10−7 s (smaller values of �) and the second going from
=10−6 s to �=10−3 s (relatively larger values of �).
hrough numerical simulations we confirmed that M1 is
ensitive to �a variations and insensitive to DB variations
nd vice versa for M2. We have constructed the Jacobian
atrix for these measurements with respect to �a and DB

nd used these in the recovery of these parameters. We
ave shown that �a and DB can be separately recon-
tructed from measurements M1 and M2 employing the
orward propagation operator for the amplitude autocor-
elation in the reconstruction algorithm. The cross-talk
as defined earlier) in these reconstructions is negligible.
he reconstructed accuracy of the inhomogeneities recov-
red is �90% for both � and D . The location of the in-

ig. 12. (Color online) Reconstructed G� (dotted curve) and G�
solid curve) for (a) inhomogeneity 1, (b) inhomogeneity 2.
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omogeneity is accurately recovered, so long as the noise
n the data is below 1%, even though the spatial reso-
ution is affected by the diffusive nature of the G1���
ropagation in turbid media.
In addition, we have verified the possibility of a space-

esolved recovery of ��r2�r ,��� from the boundary mea-
urements of complete sets of g2��� for all �, in the case
here the behavior of ��r2�r ,��� with � is nonlinear, rep-

esenting a viscoelastic tissuelike medium. At any inho-
ogeneous location in the object, the variation of

�r2�r ,��� with � is recovered, from which G���� and
����, the storage and loss moduli, respectively, are ex-

racted. This opens up the possibility of diagnosing re-
ions with pathology on the basis of changes in G����.
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