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Convergence analysis of the Newton algorithm
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We propose a self-regularized pseudo-time marching scheme to solve the ill-posed, nonlinear inverse problem
associated with diffuse propagation of coherent light in a tissuelike object. In particular, in the context of dif-
fuse correlation tomography (DCT), we consider the recovery of mechanical property distributions from partial
and noisy boundary measurements of light intensity autocorrelation. We prove the existence of a minimizer for
the Newton algorithm after establishing the existence of weak solutions for the forward equation of light am-
plitude autocorrelation and its Fréchet derivative and adjoint. The asymptotic stability of the solution of the
ordinary differential equation obtained through the introduction of the pseudo-time is also analyzed. We show
that the asymptotic solution obtained through the pseudo-time marching converges to that optimal solution
provided the Hessian of the forward equation is positive definite in the neighborhood of optimal solution. The
superior noise tolerance and regularization-insensitive nature of pseudo-dynamic strategy are proved through
numerical simulations in the context of both DCT and diffuse optical tomography. © 2010 Optical Society of
America
OCIS codes: 100.3190, 110.6955, 170.0110, 170.3680.
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. INTRODUCTION
e consider the inverse problem of recovery of certain

roperty distributions of a diffuse-scattering object from
oundary measurements made on coherent light propa-
ated through it. In diffuse optical tomography (DOT) the
bsorption ��a� and scattering ��s� coefficient distribu-
ions are recovered from measurement of the photon flux
1,2]. By considering the propagation of the amplitude
orrelation �G�r ,��� of light, which is affected by both the
ptical properties and the dynamics of the scattering par-
icles, in diffuse correlation tomography (DCT) [3] both
he mechanical and the optical property distributions can
e recovered. In DCT, the boundary measurement is ei-
her G�r ,�� or a quantity related to G�r ,��, such as the in-
ensity autocorrelation �g2���� and its moments. The pa-
ameter recovered, from which mechanical properties are
omputed, is the mean-square displacement of scattering
entres. Both the DOT and the DCT have important ap-
lications in medical diagnostics imaging through their
bility to monitor changes in �a and the viscoelastic prop-
rties that are related to pathological changes.

Our emphasis in this work is the mathematical analy-
is of the above inverse problem done in the context of
CT. The same analysis holds good for the recovery of �a

n DOT considering that G�r ,�� becomes the intensity of
ight when �, the correlation time, is zero. We introduce a
elf-regularized pseudo-dynamic scheme to solve the
bove inverse problem, which has certain advantages
ver the usual minimization method employing a variant
f the Newton algorithm [4]. The governing equation for
1084-7529/10/020259-9/$15.00 © 2
he propagation of G�r ,�� (also referred to as the forward
roblem) is a partial differential equation [5], the solution
f which helps us connect the measurements on the
oundary to the parameters of the object. Just as the
ropagation of photon flux, in DOT, is modeled by using a
iffusion equation under the assumption that �s��a, the
ropagation of G�r ,�� in the context of DCT is also mod-
led by using a diffusion equation. In the latter, the opti-
al as well as mechanical properties appear as coefficients
f the equation [5]. The inverse problem of DCT, which is
he recovery of these parameters (the mean-square dis-
lacement or DB, the particle diffusion coefficient, and �a,
he absorption coefficient distributions) is normally at-
empted through solving a nonlinear mean-square error
inimization problem, which is usually done by using a
ewton iteration or one of its variants. The Newton itera-

ion requires the inversion of a locally linearized version
f the optimality condition of the minimization problem,
hich often involves the inversion of an ill-conditioned
atrix. To facilitate this inversion, a regularization term

6–8] is added that improves the smoothness and quanti-
ative accuracy of the reconstructed parameter distribu-
ions. Apart from the critical dependence of the solution
n the regularization parameter, for the selection of which
here are computationally expensive procedures, the
ther disadvantages of the Newton-type algorithms are
heir divergence in the presence of measurement noise,
low convergence, and the need for a strict stopping crite-
ion.

Some of the difficulties of the deterministic inversion
010 Optical Society of America
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cheme can be addressed by adopting a stochastic filter-
ng [9] approach which traditionally requires a dynamical
ystems setting. In keeping with this, the stochastic fil-
ering has been employed to solve the DOT problem when
he optical coefficients are dynamically evolving [10].

hen the parameters are static, as for example in the
tatic elastography problem, a dynamics evolving in
seudo-time is introduced into the state equilibrium
quation [11]. Our present objective in the context of DCT
s to consider a pseudo-dynamical (PD) system obtained
rom the Gauss–Newton update equation, whose integra-
ion in time leads to an asymptotic solution of the inverse
roblem at hand. Since the evolution of the artificial dy-
amics may be interpreted to be on an invariant Lie
anifold, the recursion resulting from integrating the or-

inary differential equation (ODE) can have a self-
egularized character. Thus one can avoid the explicit use
f the regularization while using the PD system ap-
roach. In addition, this strategy results in an algorithm
hat is to a large extent insensitive to measurement noise.

The aim of the present work is twofold: we first show
heoretically that the time recursion of the PD strategy
as an asymptotic convergence to the solution of the mini-
ization problem. While doing this we also prove rigor-

usly the existence of a minimizer for the objective func-
ional, which can be reached through a Newton iteration.
econd, we establish through numerical experiments,
one in the context of both the DCT and DOT, the supe-
ior performance of the PD recursion vis-à-vis the Newton
ethod by bringing forth its noise tolerance in data and

egularization-insensitive nature. Since in DCT the mea-
urement on the boundary is the intensity autocorrela-
ion, we also briefly touch on the quick evaluation of the
ppropriate Jacobian for this measurement.

. NON-LINEAR LEAST SQUARE
STIMATION OF VISCOELASTIC
OEFFICIENT
hen coherent light passes through a tissuelike object,

he propagation of amplitude correlation is governed by
he partial differential equation [3]

� · D � G�r,�� − ��a +
1

3
��r2�r,����k0

2�s��G�r,��

= − q0�r − r0�, �2.1�

here k0 is the modulus of propagation vector of light,

s�= �1−g��s, � is the percentage of light scattered by the
oving scatterers, g is the anisotropy factor of scattering,

nd D=1/ �3��a+�s��� is the optical diffusion coefficient. In
he above model, we assume that the scattering is isotro-
ic with a length scale l*=1/�s�. The term q0�r−r0� is the
sotropic source located at r=r0. If we assume that the

edium is purely viscous, then the scattering particles
re pictured to diffuse through the medium. For a viscous
edium, the mean-square displacement suffered by the

article at r, denoted ��r2�r ,���, has a linear time evolu-
ion given by ��r2�r ,���=6DB�r�� [3,12], where DB�r� is
he time-independent particle diffusion coefficient related
o the viscosity � of the medium. We use the mixed bound-
ry condition to solve the propagation equation (2.1) for
�r ,��:

D�r�
�G�r,��

�n
= − G�r,��, �2.2�

n the boundary, ��. This implies that the light input is
nly from the source at r0. Note that when �=0, Eqs. (2.1)
nd (2.2) reduce to the propagation equation of photon
ux of DOT.
We denote A=2�s�k0

2 and f=DB. In a practical experi-
ent, the measurement on the boundary is not the field
�r ,��, but a quantity related to 	g1�r ,��	
	G�r ,�� /G�r ,0�	, namely, the intensity autocorrelation
iven by [4,13]

�I�r,��I�r,t + ��� 
 g2�r,�� = 1 + �	g1�r,��	2. �2.3�

ere � is a constant dependent on the collection optics
sed in the experiments.
However, the inverse problem presented here attempts

o find the particle diffusion coefficient f using the bound-
ry measurement of G�r ,�� and the forward model by pos-
ng it as a minimization problem. Toward this, we first es-
ablish the existence of solution of the forward operator
nd its Fréchet derivative. Thereafter the conditions for
he objective functional containing the mean-square error
etween the computed and the experimental measure-
ents and a regularization term to have a local minimum

re established. The Newton algorithm to reach this mini-
um and its convergence are also established.

. Solution of Forward Equation for Gaussian Source:
otation
et � be an open subset of Rn, n	2, and f be the function
o be reconstructed with a known background value f�.
et �� be the region fully contained in � such that f
quals the background value f� outside ��. That is f= f�

 with supp 
���, where ��� ��. Thus �� is the re-
ion of interest for the reconstruction of f. The notation
�� �� means that �� is open and ���� and supp f is

he support of f.

. Existence of Forward Solution
e assume the source q0 to be an isotropic Gaussian

ource [i.e., q0�L2���] located at a distance of one trans-
ort mean free path (typically 1 mm) inside the tissue.
et V be the space of H1��� functions, but with the inner
roduct defined as

�G,�� = ��G,���L2��� + �	G	��, 	�	���L2���� �2.4�

ith the induced norm

�G�V = ���G�L2���
2 + �	G	���L2����

2 �1/2.

onsider the weak formulation of Eqs. (2.1) and (2.2)
iven by
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�
�

D � G · �� +�
��

G� +�
�

��a + Af��G� =�
�

q0�,

�2.5�

here G ,��V. Define the bilinear and linear forms in
�V and V, respectively, by

B�G,�� =�
�

D � G · �� +�
��

G� +�
�

��a + Af��G�,

L��� =�
�

q0�.

e remark that � . �V is equivalent to � . �H1���. Using Hold-
rs inequality, one can show that the bilinear form B�G ,��
s bounded and satisfies the coercivity condition. Also, L is
bounded linear operator defined on V for q0�L2��� and
ence by the Lax–Milgram lemma [14], there is a unique
, which satisfies the weak formulation (2.5). Further, we
ave

�G�V 
 C�q0�L2���

or an appropriate finite constant C. Because of the inte-
ior regularity [15] of G in ��� ��, we get 	G	��
H2���� and, further, there is a constant C such that

�G�H2���� 
 C�q0�L2���.

. FRÉCHET DERIVATIVE
n the forward propagation equation (2.1) for the basic
uantity G�r ,��, we perturb f�r� to f�r�+ f��r� and obtain a
erturbation in G�r ,�� by G��r ,��. Substituting these into
q. (2.1), after simplification, we get the equation con-
ecting G��r ,�� to f��r�, which we call the Fréchet deriva-
ive of the forward propagation equation:

� · D � G��r,�� − ��a + Af��G��r,�� = Af��G �3.1�

ith the boundary condition

G��r,�� + D
�G��r,��

�n
= 0. �3.2�

he existence and uniqueness of solution of the above
quation can also be proved by using the standard weak
ormulation and subsequent application of the Lax–

ilgram lemma. For Gaussian source excitation, the
ight-hand side of Eq. (3.1) has to be in L2��� which is
rue if we assume that f��L2��� and the suppf����. As
emarked above, we have the interior regularity that
	G	���H2����, and for n=2,3, we use the imbedding

2�����C���� to get 	G	���C����. Thus A�f�G�L2���,
nd via the standard weak formulation we get G�

H1���. Moreover, G� also satisfies the interior regular-
ty that 	G�	���H2���� and

�G��H2���� 
 C�G�C�����f��L2���� �3.3�

or a finite constant C.
Adjoint of the Fréchet Derivative. Let G*�H1��� solve

he adjoint of the Fréchet derivative of the forward equa-
ion given by
� · D � G* − ��a + Af��G* = 0 �3.4�

ith the boundary condition

G* + D
�G*

�n
= �,

here ��L2����.
Making use of the weak formulation applied to the ad-

oint equation, we have

�G*�H1��� 
 C���L2����.

sing the interior regularity of the equation, we have

�G*�H2���� 
 C���L2����.

ow using the imbedding H2�����C����, we get

�G*�L����� 
 K1���L2����.

ere K1 is a suitable finite constant. Assume a Gaussian
ource excitation and hence G��H1���, and thus 	G�	��

H1/2����. With this, define the map DF�f� by

DF�f��f�� = 	G��r,��	��.

hus DF�f��f�� indicates the changes in the boundary val-
es of the field for a change f� from the background value
. Using the standard definition of the adjoint, we see that

DF*�f���� = 	A�GG*	��.

ote that we treat functions in L2���� as functions of
2��� by extending them to zero outside ��.

. APPROXIMATE SOLUTION OF INVERSE
ROBLEM BY REGULARIZED LEAST
QUARE MINIMIZATION
he field autocorrelation G�r ,�� depends on the particle
iffusion coefficient f, and therefore we write G�r ,��
G�r ,� , f� to show this dependence. The inverse problem
an be stated as follows: given the measurements G�r ,� , f�
n the boundary ��, find f over �. Clearly, this problem is
onlinear and ill posed, which is usually resolved by stat-

ng it as an optimization problem. We seek a minimizer f*

or an objective functional � over an admissible class of f
n which G�r ,� , f� satisfies the forward problem given in
q. (2.1). Define the forward map F�f� over
om�F��L���� as

F�f� = 	G�r,��	��.

ith f�L���� and q0�L2���, we have G�H1���, which
mplies 	G	���H1/2����. Let me be the measurement
	G	�� corresponding to a particular particle diffusion co-
fficient f to be reconstructed. For an initial guess f= f�,
e define the objective functional ��
� as

��
� =
1

2
�F�
̃ + f�� − me�L2����

2 +
�

2
�
�L2����

2 . �4.1�

e would like to minimize ��
� over an admissible class
f 
, i.e., min
�L2������
�. Here � is the Tikhonov regular-
zation parameter and 
̃=
 in ��, 
̃=0 in �\��. We ex-
and ��
� in terms of a Taylor series about 
 up to the
econd-order differential:
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��
 + �
� = ��
� + D��
���
� +
1

2
D2��
���
,�
�.

�4.2�

ere D��
���
� is the differential of ��
� in the direction

. As explained above, f can be expressed as f=
+ f�,
here f� defined on �\�� is known to us. Perturbation in

, denoted f�, is carried out through 
 as �
 in �� only. The
erivative of ��
� in the direction �
, D��
���
�, is [16]

D��
���
� = ��,DF�
 + f����
�� + ��
,�
�, �4.3�

here �=F�
̃+ f��−me. We also have

��,DF�
 + f����
�� = A���
,DF*�
 + f������.

ubstituting the above expression into Eq. (4.3), we have
he first-order derivative of ��
� in the direction �
:

D��
���
� = A��DF*�
 + f����� + �
,�
�.

efine the gradient Gr of the objective functional as

Gr�
� = DF*�
 + f���F�
 + f�� − me� + �
. �4.4�

n a similar manner, we can derive the second-order dif-
erential of ��
�. Neglecting the second-order differential
erm of the adjoint map, D2F*�f����, we have

D2��
���
,�
� = �DF*�
 + f��DF�
 + f����
� + ��
,�
�.

efine the Hessian as

H�
���
� = DF*�
 + f��DF�
 + f����
� + ��
. �4.5�

he gradient Gr�
� and the Hessian H�
���
� are con-
ected through the linear system of equations

H�
���
� = − Gr�
�. �4.6�

his can be solved iteratively for 
 by using the Gauss–
ewton method given by


i+1 = 
i − H�
i�−1Gr�
i�. �4.7�

he objective functional ��
� defined on Dom����L2����
as a minimizer if certain conditions are imposed on �
nd Dom���. Specifically, we look for a weakly closed do-
ain over which � is defined, thus ensuring the weak

imits to be in Dom���. We assume that the objective
unctional � is weakly lower semicontinuous, which is re-
uired in order to prove the existence of its minimizer.
Theorem 4.1. Let A= 

�L2���� :
+ f�	a�0� and as-

ume that the functional � is weakly lower semicontinu-
us. Then � has a minimizer 
� in A.

Proof. Let 

i��A with ��
i�→M�=inf
��
� :
�A�.
hen, by definition of M�, for any n�N, there is an index

n such that

��
in
� 
 M� +

1

n

 M� + 1. �4.8�

hus we have

�

2
�
in

�L2���� 
 ��
in
� 
 M� + 1.

onsider the set A� 
�
�L2����
 �2/���M�+1��, which is
losed and bounded and hence weakly compact in L2���.
o the sequence 
 has a convergent subsequence, again
in
enoted 
in
, which converges weakly to some 
�, such that


��L2����
 �2/���M�+1� and 
��A. The last inequality is
erived by using the fact that the norm is weakly lower
emicontinuous.

If the function � is weakly lower semicontinuous, then

��
�� 
 lim inf ��
in
� 
 M� +

1

n
.

ow, as n→�, we see that ��
��
M�. Since 
��A, we
et ��
��=M�, which proves the theorem. �

The weak lower semicontinuity assumption needed for
he existence of the minimizer is valid if the Hessian of
he functional � is positive semidefinite as stated in the
ollowing theorem.

Theorem 4.2. Let the functional � :A�L2����→R be
wice Gateaux differentiable at every point and in all di-
ections in A. Let the gradient Gr�
� of the objective func-
ional � be defined for all 
�A. If the second Gateaux de-
ivative D2��
���
 ,�
� is positive semi-definite, i.e,

D2��
���
,�
� 	 0 ∀ 
,�
 � A, �
 � 0, �4.9�

hen the functional � is weakly lower semicontiuous in A.
For the standard proof of the above theorem one can re-

er to [17]. The above condition on the second Gateaux de-
ivative is equivalent to saying that the Hessian should
e positive semidefinite on A, i.e.,

D2��
���
,�
� = �H�
���
�,�
� 	 0 ∀ 
,�
 � V, �


� 0. �4.10�

. Discretized Gauss–Newton Scheme for Inversion
iscretization of the forward problem gives us a system of
quation me=F���, where me is a partial set of noisy mea-
urements on the boundary assumed to be available on
oundary nodes, � is the discretized parameter vector to
e reconstructed, which in our case is DB, and F is a
ounded operator obtained from Eq. (2.1). The Gauss-
ewton algorithm (4.7) is

DB
i+1 = DB

i − �JTJ�DB
i � + �I�−1JT�DB

i ��mi. �4.11�

ere JTJ�DB
i � is the approximation to the Hessian evalu-

ted at the current estimate of the property DB
i ,

T�DB
i ��mi is a gradient of F�DB

i �, and �mi=me−mi with
i being the computed measurement through DB

i and
�DB

i � the Jacobian evaluated at DB
i . The term �I is added

or regularization, where � is the regularization param-
ter. To continue the algorithm of Eq. (4.11) the Hessian
nd gradient are recomputed. The stopping criterion for
he iteration is that ��mi � ��, where � is a preset small
ound for the error.
The Jacobian should be evaluated for the particular
easurement made at the boundary, which is m
g2���.
ince G�r ,0�, the intensity, can also be measured, we de-
ne a measurement operator M acting on G�r ,�� as [see
q. (2.3)]

M
G�r,��� 
 G2�r,0��m − 1

�
� 
 ��r,�� �4.12�

ith r���. The Jacobian for this measurement, ��r ,��,
an be computed by using Eqs. (3.1) and (3.4) [4]:
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� ���ri,��

�DB
� �rj�

� = Re
2�s�k0
2�Ḡ�ri,��GR

��rj,ri,��G�rj,���.

�4.13�

ere GR
��r ,�� solves the adjoint equation (3.4).

. PSEUDODYNAMICAL APPROACH TO
ECONSTRUCTION
he Gauss–Newton algorithm of Eq. (4.11) requires the
odification introduced by the regularization term be-

ause the system matrix JTJ usually has a large null
pace and cannot be inverted as it is. An alternative to the
auss–Newton algorithm is provided by quasi-Newton
ethod wherein the inverse of the Hessian is approxi-
ated from knowledge of the gradient of the objective

unctional. However, for the quasi-Newton method the
ate of convergence is smaller. The addition of the regu-
arization term (or the regularization operator) also alters
he minimization problem we originally intended solving.
e note that while an optimal choice of the regularization

arameter leads to meaningful solutions, even small
ariations in the parameter can result in unacceptably
arge errors.

An alternative route to the above iterative solution is
hrough introducing an artificial dynamics into the sys-
em and treating the steady-state response of the artifi-
ially evolving dynamical system as a solution. This alter-
ative also avoids an explicit inversion of the linearized
perator in the Gauss–Newton update equation. Thus, we
ntroduce an artificial dynamics to the Gauss–Newton up-
ate equation (4.11). We remark that the “time” used here
s a pseudo-variable, and the numerical integration of the
esulting ODE will lead us to the solution 
* that mini-
izes the functional � in Eq. (4.1).
To show this, we rewrite Eq. (4.11), keeping �=0 (the

egularization parameter) as a linearized ODE in con-
inuous time [18,19]. Thus, we have

ḊB + M�DB
0 ��DB�t� − DB

0 � + V�DB
0 � = 0, �5.1�

here M�DB�= �JT�DB�J�DB��, V�DB�=JT�DB��me

m�DB
0 �� and ḊB represents time derivative of DB. Fur-

her, DB
0 is the linearization point that at the start of the

lgorithm may be taken as the background value, which
s assumed to be known.

Indeed, Eq. (5.1) is an approximation, as it is the lin-
arized version of the nonlinear problem. See the remarks
elow. First we show that DB�t� converges to DB

* =
*, the
inimal solution, as t→�, assuming the model is exact.
emark 3 below gives a suggestion as to the actual imple-
entation.
Equation (5.1) on integration over �0, t� becomes

DB�t� = exp��− M�DB
0 ���t���DB

0 �t��

+�
0

t

exp�− M�DB
0 ��t − s��f�s�ds, �5.2�

here f�t�=M�DB
0 �DB

0 −V�DB
0 �.

That is, we get
DB�t� = exp��− M�DB
0 ���t���DB

0 �t��

+ M�DB
0 �−1�M�DB

0 �DB
0 − V�DB

0 ��. �5.3�

ut DB
* satisfies M�DB

0 �DB
0 −V�DB

0 �=M�DB
0 �DB

* .
Thus Eq. (5.3) becomes

DB�t� = exp��− M�DB
0 ���t���DB

0 �t�� + DB
* , �5.4�

hich converges to DB
* as t→�. Note that we have as-

umed that M�DB
0 � is positive definite. Therefore, we have

he following theorem.
Theorem 5.1. If M�DB

0 �=JTJ�DB
0 � is positive definite,

he pseudo-time marching scheme leads to a solution
B�t� that tends to DB

* .
Remark 1. It is also observed that the step size in the

seudo-time recursion regularizes the updates so that
purious oscillations in them due to the near-zero singu-
ar values of the associated coefficient matrix are largely
emoved. This assumes great significance when dealing
ith insufficient data generated from a practical setup
sing reflection geometry, leading to severely ill-
onditioned matrices in the reconstruction step. More-
ver, the exponential form of the updates admits exploita-
ion of powerful concepts in Lie group theory, such as
rotter’s formula [20] or Magnus expansion, so that an
dditional level of numerical stabilization is possible
hrough the preservation of certain invariants. The last
spect has, however, been kept outside the scope of the
resent work.
Remark 2. As mentioned above, Eq. (5.1) is a linearized

pproximation of a nonlinear system, and hence Eq. (5.1)
ay be valid only for a small time. Thus a large-time in-

egration may not represent the actual solution. In other
ords, the approximation is valid only locally around the

inearization point. Therefore, to get a more accurate so-
ution in an application, one needs to integrate over small
ime steps �t leading to an update of DB

0 and a relinear-
zation of the nonlinear equation by estimating J and �m
t the current property distribution at �t. We note that
or the convergence of the recursion, the positive definite-
ess of JTJ has to be ensured at the end of each time step.
Remark 3. The requirement that JTJ be positive defi-

ite at the initial guess of DB, namely, at DB
0 , is not usu-

lly met and also cannot be demanded. As is done in the
arlier work on an inverse problem using Newton itera-
ion [21], it is, at the most, reasonable to assume positive
efiniteness of JTJ at the optimal point DB

* . Thus, if the
nitial guess is very close to DB

* , then positive definiteness
ill be available because of the continuity of JTJ. As far
s numerical implementation is concerned, we start the
lgorithm with a regularization term �I. More precisely,
e consider JTJ�DB

0 �+�I instead of JTJ�DB
0 �. We update

B
0 , successively to DB

1 ,DB
2 , . . . at small intervals

t ,2�t. . ..
Finally, we have the algorithm derived from Eq. (5.3) as

�DB
i+1 = exp��− �M�DB

i � + �I��t��DB
i

+�
t

ti+�t

exp��− �M�DB
i � + �I����ti + �t − s�f�s�ds,
i
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DB
i+1 = DB

i + �DB
i+1 �5.5�

ere f�t� is redefined to nullify the effect of regularization
y adding an additional term to V�t� as follows: V�DB

i �
JT�DB

i ��me−m�DB
i ��+��DB

i −DB
0 �, similar in spirit to the

evenberg–Marquardt method [7,8].
As DB approaches DB

* , JTJ becomes positive definite
nd hence the relevance of the regularization parameter
s minimal and can be ignored. This phenomenon is am-
ly demonstrated in our numerical simulations. Thus in
ur computations, we begin with a regularization param-
ter and with the new update Eqs. (5.5) the contribution
f � decreases to zero as the true solution is approached.

. NUMERICAL EXPERIMENTS
efore we proceed with proving the efficacy of the algo-
ithm through numerical simulations, a word on limita-
ions brought in by data collection geometry in a practical
xperimental scenario. In the DCT imager a diffuse re-
ection geometry is used for data gathering [3], wherein
he light source and a set of detectors, with the detector
bres prealigned to receive a single speckle, are fixed at
elected distances so that a certain tissue volume at a de-
ired depth is covered by all the source–detector pairs. A
maller data set from the DCT imager leads to a severely
nderdetermined reconstruction problem, leading to nu-
erical difficulties, particularly for the Newton algorithm

equiring an inversion of an ill-conditioned and rank-
eficient matrix. It is here that pseudo-time recursion,
hich avoids matrix inversion, provides an alternative ac-

eptable route for reconstruction.
The object used in our numerical simulations is circu-

ar, taken as the cross section of a cylinder of diameter
cm. The background optical and mechanical properties

re kept as �a
b=0.001 cm−1, �s�

b=8 cm−1 and DB
b =1

10−8 cm2/s. There are two circular inhomogeneous in-
lusions, which are DB inhomogeneities, with diameter
.4 cm each, one with a value of DB=0.25�10−8 cm2/s at
−2.5 cm,0 cm�, and the other with a value of DB=0.75

10−8 cm2/s at �2.5 cm,0 cm� (The object is assumed to
e centered at the origin of the coordinate axes). There-
ore the inclusion in the background is

DB�x,y� =�0.25 � 10−8 cm2/s if ��x + 2.5�2 + �y�2 
 0.7

0.75 � 10−8 cm2/s if ��x − 2.5�2 + �y�2 
 0.7� .

To generate the experimental data numerically, Eqs.
2.1) and (2.2) are discretized by using the finite element
ethod with 1933 nodes and 3723 triangular linear ele-
ents. For a collimated source on the boundary, 40 detec-

ors are placed equiangularly on either side of the dia-
etrically opposite point to the source location, to cover

n overall angle of 320°. The discretized forward equation
s solved for G�r ,�� for �=10−4 s. While the experimental
ata sets are generated, Gaussian noise of varying inten-
ities is added (1%–5%) to G�r ,��. Using the noisy G�r ,��
nd Eq. (4.12), experimentally tenable measurements
��r ,��� are generated. The above procedure is repeated
y rotating the source–detector combination by steps of
0° to gather 36 sets of 40 readings each.
For inversion of data we use a coarser mesh, discretiz-
ng the domain with 1243 nodal points and 2376 triangu-
ar elements. First we perform reconstruction using the
auss–Newton algorithm of Eq. (4.7) [Eq. (4.11) in dis-

rete form] starting the reconstruction algorithm with an
nitial guess of the property DB

b , which is the background
alue. The Jacobian for the measurement ��r ,�� is com-
uted by using Eq. (4.13). The new update is obtained by
sing Eq. (4.11), where we use an appropriate regulariza-
ion parameter � set through trial and error. Once the up-
ated DB is obtained, J�DB

i � and �mi terms are recom-
uted at the new parameter distribution, and Eq. (4.11) is
tself updated. Inversion of the updated Eq. (4.11) gives us
he current update for DB to continue the iteration. The
lgorithm gave stabilized reconstruction of DB�r� in about
0 iterations. The gray-level plot of the original DB distri-
ution is shown in Fig. 1. The recovered DB from the mea-
urements with 1% Gaussian noise is shown in Fig. 2 [the
ray-level plot in Fig. 2(a) and the cross sections through
he centers of the inhomogeneities of the original and the
ecovered distributions in Fig. 2(b)]. When the percentage
f the noise is increased to 2, the algorithm did not con-
erge (even after regularization), and the reconstruction
as not able to reveal the location of the inhomogeneities

see Figs. 3(a) and 3(b)].
In the next step we employ the PD approach to recover

he particle diffusion coefficient distribution. As men-
ioned above, we have used the explicit time integration
tep and used the recursion of Eqs. (5.5) to recover DB.
he algorithm took 15 recursions to give an accurate DB
ecovery for which the mean-square error in the measure-
ent domain reached a minimum. The recovered DB dis-

ribution for measurement corrupted with 2% noise is
hown in Fig. 4 [the gray-level plot in Fig. 4(a) and the
ross sections through the centers of the inhomogeneities
f the original and the recovered distributions in Fig.
(b)]. Figures 5(a) and 5(b) are the gray-level plot and the
ross-sectional plots of the reconstructed DB distribu-
ions, respectively, when 5% noise is present in the data.

We also present the reconstruction of absorption coeffi-
ient from the boundary measurement of transmitted
ight, as was done in DOT. This problem can be viewed as

ig. 1. (Color online) Original particle diffusion coefficient dis-
ribution �cm2/s� used in the simulations
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ig. 2. (Color online) Reconstructed particle diffusion coefficient distribution �cm2/s� from data with 1% Gaussian noise for the Gauss–
ewton method: (a) gray-level-plot and (b) cross-sectional plots through the centers of the inhomogeneities in (a) (dashed curve) as well
s the original inhomogeneous object.
ig. 3. (Color online) Reconstructed particle diffusion coefficient distribution �cm2/s� from data with 2% Gaussian noise for the Gauss–
ewton method: (a) gray-level plot and (b) cross-sectional plots through the centers of the inhomogeneities in (a) (dashed curve) as well

s the original inhomogeneous object.
ig. 4. (Color online) Reconstructed particle diffusion coefficient distribution �cm2/s� from data with 2% Gaussian noise for the pseudo-
ime marching scheme: (a) gray-level plot and (b) cross-sectional plots through the centers of the inhomogeneities in (a) (dashed curve)
s well as the original inhomogeneous object.
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special case of DWS with �=0. The object used here is
lso circular, taken as a cross section of a diffusively scat-
ering cylinder of the same dimensions as earlier. The
ackground optical properties are kept as �a

b=0.01 cm−1

nd �s�
b=8 cm−1. The inhomogeneous inclusions are also

ircular, given by,

�a�x,y� =�3 � 10−2 cm−1 if ��x + 2.5�2 + �y�2 
 0.9

2 � 10−2 cm−1 if ��x − 2.5�2 + �y�2 
 0.9� .

he experimental data used here are G�r ,0�
I�r�, r
�� [obtained by solving the forward equation for G�r ,��

s before] after adding 5% Gaussian noise. The recon-
tructed �a distribution (gray level plot) and a cross sec-
ion through the centers of the inhomogeneties are shown
n Figs. 6(a) and 6(b), respectively, for which Gauss–
ewton method has been employed. Reconstruction by
sing the same data, employing the PD strategy, is shown

n Fig. 7 [as before, with the gray-level plot in Fig. 7(a)
nd the cross sections through the centers of the inhomo-
eneities of the original and the recovered distributions in
ig. 7(b)].
The results clearly show that the approach using the

D time marching gives reasonably good reconstructions

ig. 6. (Color online) Reconstructed absorption coefficient distrib
ewton method: (a) gray-level plot and (b) cross-sectional plots t
s the original inhomogeneous object.

ig. 5. (Color online) Reconstructed particle diffusion coefficient
ime marching scheme: (a) gray-level plot and (b) cross-sectional
s well as the original inhomogeneous object.
ven when the noise is as high as 5%. Moreover, by intro-
ucing a matching term to modify the force vector over ev-
ry recursion step [Eq. (4.11)], we have, for all practical
urposes, removed the effect of regularization on the re-
onstruction at convergence. If we started by setting �
0 in Eq. (4.11), the recursion of the PD system generated

rom it did not give meaningful reconstructions. Instead
e used the modification given by Eqs. (5.5). The modified

ecursion gave good reconstructions, which also effec-
ively nullifies the contribution of the regularization term
n convergence. The � we chose to begin the algorithm is
.1, and this value is fixed by observing how the data re-
idual error behaves.

. CONCLUSIONS
e have shown that a pseudo-time marching scheme pro-

ides a regularization-insensitive and robust (in the sense
f handling noise in data) method to solve the inverse
roblem of diffuse correlation tomography (DCT) to re-
over the particle diffusion coefficient from boundary in-
ensity autocorrelation measurement. First a Newton
ethod is set up to solve the mean-square error minimi-

cm−1� from data with 5% Gaussian noise for the ordinary Gauss–
the centers of the inhomogeneities in (a) (dashed curve) as well

ution �cm2/s� from data with 5% Gaussian noise for the pseudo-
hrough the centers of the inhomogeneities in (a) (dashed curve)
ution �
hrough
distrib
plots t
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ation problem into which the DCT reconstruction is re-
ast. We prove the existence of the minimizer for the
bove and establish the convergence of the Gauss–
ewton algorithm to this minimum. In doing this we also

how the existence and behavior of the solutions of the
orward propagation equation for the light autocorrela-
ion and its Fréchet derivative and adjoint. The Gauss–
ewton update equation, written as an ODE evolving

ver pseudo-time, is integrated to arrive at the update
ector as its steady-state response. We have proved that
he integration of the PD system provides asymptotically
table solutions. Through numerical simulations we es-
ablish that the PD method is a regularization-insensitive
lternative to the Newton iteration, giving robust recon-
tructions even when the data noise is up to 5%, which
as not possible by using the usual Gauss–Newton itera-

ion.
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