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We propose a self-regularized pseudo-time marching scheme to solve the ill-posed, nonlinear inverse problem
associated with diffuse propagation of coherent light in a tissuelike object. In particular, in the context of dif-
fuse correlation tomography (DCT), we consider the recovery of mechanical property distributions from partial
and noisy boundary measurements of light intensity autocorrelation. We prove the existence of a minimizer for
the Newton algorithm after establishing the existence of weak solutions for the forward equation of light am-
plitude autocorrelation and its Fréchet derivative and adjoint. The asymptotic stability of the solution of the
ordinary differential equation obtained through the introduction of the pseudo-time is also analyzed. We show
that the asymptotic solution obtained through the pseudo-time marching converges to that optimal solution
provided the Hessian of the forward equation is positive definite in the neighborhood of optimal solution. The
superior noise tolerance and regularization-insensitive nature of pseudo-dynamic strategy are proved through
numerical simulations in the context of both DCT and diffuse optical tomography. © 2010 Optical Society of
America
OCIS codes: 100.3190, 110.6955, 170.0110, 170.3680.
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1. INTRODUCTION

We consider the inverse problem of recovery of certain
property distributions of a diffuse-scattering object from
boundary measurements made on coherent light propa-
gated through it. In diffuse optical tomography (DOT) the
absorption (u,) and scattering (u,) coefficient distribu-
tions are recovered from measurement of the photon flux
[1,2]. By considering the propagation of the amplitude
correlation [G(r, 7)] of light, which is affected by both the
optical properties and the dynamics of the scattering par-
ticles, in diffuse correlation tomography (DCT) [3] both
the mechanical and the optical property distributions can
be recovered. In DCT, the boundary measurement is ei-
ther G(r, 7) or a quantity related to G(r, 7), such as the in-
tensity autocorrelation [go(7)] and its moments. The pa-
rameter recovered, from which mechanical properties are
computed, is the mean-square displacement of scattering
centres. Both the DOT and the DCT have important ap-
plications in medical diagnostics imaging through their
ability to monitor changes in u, and the viscoelastic prop-
erties that are related to pathological changes.

Our emphasis in this work is the mathematical analy-
sis of the above inverse problem done in the context of
DCT. The same analysis holds good for the recovery of u,
in DOT considering that G(r,7) becomes the intensity of
light when 7, the correlation time, is zero. We introduce a
self-regularized pseudo-dynamic scheme to solve the
above inverse problem, which has certain advantages
over the usual minimization method employing a variant
of the Newton algorithm [4]. The governing equation for
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the propagation of G(r, 7) (also referred to as the forward
problem) is a partial differential equation [5], the solution
of which helps us connect the measurements on the
boundary to the parameters of the object. Just as the
propagation of photon flux, in DOT, is modeled by using a
diffusion equation under the assumption that u,> u,, the
propagation of G(r,7) in the context of DCT is also mod-
eled by using a diffusion equation. In the latter, the opti-
cal as well as mechanical properties appear as coefficients
of the equation [5]. The inverse problem of DCT, which is
the recovery of these parameters (the mean-square dis-
placement or Dp, the particle diffusion coefficient, and u,,,
the absorption coefficient distributions) is normally at-
tempted through solving a nonlinear mean-square error
minimization problem, which is usually done by using a
Newton iteration or one of its variants. The Newton itera-
tion requires the inversion of a locally linearized version
of the optimality condition of the minimization problem,
which often involves the inversion of an ill-conditioned
matrix. To facilitate this inversion, a regularization term
[6-8] is added that improves the smoothness and quanti-
tative accuracy of the reconstructed parameter distribu-
tions. Apart from the critical dependence of the solution
on the regularization parameter, for the selection of which
there are computationally expensive procedures, the
other disadvantages of the Newton-type algorithms are
their divergence in the presence of measurement noise,
slow convergence, and the need for a strict stopping crite-
rion.

Some of the difficulties of the deterministic inversion
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scheme can be addressed by adopting a stochastic filter-
ing [9] approach which traditionally requires a dynamical
systems setting. In keeping with this, the stochastic fil-
tering has been employed to solve the DOT problem when
the optical coefficients are dynamically evolving [10].
When the parameters are static, as for example in the
static elastography problem, a dynamics evolving in
pseudo-time is introduced into the state equilibrium
equation [11]. Our present objective in the context of DCT
is to consider a pseudo-dynamical (PD) system obtained
from the Gauss—Newton update equation, whose integra-
tion in time leads to an asymptotic solution of the inverse
problem at hand. Since the evolution of the artificial dy-
namics may be interpreted to be on an invariant Lie
manifold, the recursion resulting from integrating the or-
dinary differential equation (ODE) can have a self-
regularized character. Thus one can avoid the explicit use
of the regularization while using the PD system ap-
proach. In addition, this strategy results in an algorithm
that is to a large extent insensitive to measurement noise.

The aim of the present work is twofold: we first show
theoretically that the time recursion of the PD strategy
has an asymptotic convergence to the solution of the mini-
mization problem. While doing this we also prove rigor-
ously the existence of a minimizer for the objective func-
tional, which can be reached through a Newton iteration.
Second, we establish through numerical experiments,
done in the context of both the DCT and DOT, the supe-
rior performance of the PD recursion vis-a-vis the Newton
method by bringing forth its noise tolerance in data and
regularization-insensitive nature. Since in DCT the mea-
surement on the boundary is the intensity autocorrela-
tion, we also briefly touch on the quick evaluation of the
appropriate Jacobian for this measurement.

2. NON-LINEAR LEAST SQUARE
ESTIMATION OF VISCOELASTIC
COEFFICIENT

When coherent light passes through a tissuelike object,
the propagation of amplitude correlation is governed by
the partial differential equation [3]

1
V-DVG(r,7) - (,ua + g(Arz(r, T))akg/L;)G(r, 7)

=—q0(I‘—I'0), (21)

where % is the modulus of propagation vector of light,
te=(1-g)us, a is the percentage of light scattered by the
moving scatterers, g is the anisotropy factor of scattering,
and D=1/[3(u,+ u.)]is the optical diffusion coefficient. In
the above model, we assume that the scattering is isotro-
pic with a length scale {*=1/u.. The term go(r-rp) is the
isotropic source located at r=r(. If we assume that the
medium is purely viscous, then the scattering particles
are pictured to diffuse through the medium. For a viscous
medium, the mean-square displacement suffered by the
particle at r, denoted (Ar2(r, 7)), has a linear time evolu-
tion given by (Ar?(r,7)=6Dg(r)7 [3,12], where Dy(r) is
the time-independent particle diffusion coefficient related
to the viscosity 7 of the medium. We use the mixed bound-
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ary condition to solve the propagation equation (2.1) for
G(r,7):

dG(r,7)

D(r) =-G(r,7), (2.2)

on the boundary, 7Q). This implies that the light input is
only from the source at r(. Note that when 7=0, Eqgs. (2.1)
and (2.2) reduce to the propagation equation of photon
flux of DOT.

We denote A=2,us'kg and f=Dpg. In a practical experi-
ment, the measurement on the boundary is not the field
G(r,7, but a quantity related to |gi(r,7)]
=|G(r,7)/G(r,0)|, namely, the intensity autocorrelation
given by [4,13]

I, DI(r,t + 7)) =go(r, ) =1+ 9lg1(r, D>, (2.3)

Here y is a constant dependent on the collection optics
used in the experiments.

However, the inverse problem presented here attempts
to find the particle diffusion coefficient f using the bound-
ary measurement of G(r, 7) and the forward model by pos-
ing it as a minimization problem. Toward this, we first es-
tablish the existence of solution of the forward operator
and its Fréchet derivative. Thereafter the conditions for
the objective functional containing the mean-square error
between the computed and the experimental measure-
ments and a regularization term to have a local minimum
are established. The Newton algorithm to reach this mini-
mum and its convergence are also established.

A. Solution of Forward Equation for Gaussian Source:
Notation

Let Q) be an open subset of R", n =2, and f be the function
to be reconstructed with a known background value f'.
Let Q' be the region fully contained in ) such that f
equals the background value f’ outside ()'. That is f=f"
+p with supp pC ', where ' C CQ. Thus ' is the re-
gion of interest for the reconstruction of f. The notation
Q' C CQ means that Q' is open and Q' CQ and supp f is
the support of f.

B. Existence of Forward Solution

We assume the source gy to be an isotropic Gaussian
source [i.e., go e L%(Q)] located at a distance of one trans-
port mean free path (typically 1 mm) inside the tissue.
Let V be the space of H1(Q) functions, but with the inner
product defined as

(G, =(VG,Vhr20) +{ Glsa, Pa)r20) (2.4)
with the induced norm
1G]y = [IVGIF 2 + 1| Glaol72s0) ]

Consider the weak formulation of Egs. (2.1) and (2.2)
given by



Varma et al.

fpva.vL/HJ wa (Ma+AfT)G‘/f=J(IOl//,
Q Q) Q (9]
(2.5)

where G, e V. Define the bilinear and linear forms in
VXV and V, respectively, by

B(G,l/f)=J DVG-Vz//+f Gz//+J (g +AfDGY,
Q a0 Q

L(y) = f Qo
Q

We remark that [|. |y is equivalent to ||.||g1(q). Using Hold-
ers inequality, one can show that the bilinear form B(G, )
is bounded and satisfies the coercivity condition. Also, L is
a bounded linear operator defined on V for g, € L(Q}) and
hence by the Lax—Milgram lemma [14], there is a unique
G, which satisfies the weak formulation (2.5). Further, we
have

IGllv < Cligoll2)

for an appropriate finite constant C. Because of the inte-
rior regularity [15] of G in Q'CCQ, we get Glo
e H%(Q)') and, further, there is a constant C such that

G20 =< Cllgollz2)-

3. FRECHET DERIVATIVE

In the forward propagation equation (2.1) for the basic
quantity G(r, 7), we perturb f(r) to f(r)+f(r) and obtain a
perturbation in G(r, 7) by GXr, 7). Substituting these into
Eq. (2.1), after simplification, we get the equation con-
necting G%(r, 7) to f%(r), which we call the Fréchet deriva-
tive of the forward propagation equation:

V-DVGr,D - (u, +AfDG%x,n =Af°7G  (3.1)
with the boundary condition

G(x,7)
— -0

Gxr,n+D (3.2)

The existence and uniqueness of solution of the above
equation can also be proved by using the standard weak
formulation and subsequent application of the Lax—
Milgram lemma. For Gaussian source excitation, the
right-hand side of Eq. (3.1) has to be in L2(Q)) which is
true if we assume that f°e L%(Q) and the suppf°C)’. As
remarked above, we have the interior regularity that

Glo e H*(Q)'), and for n=2,3, we use the imbedding
H?(Q')—C(Q') to get Gly e C(Q'). Thus A7f°G e L3(Q)),
and via the standard weak formulation we get G?
e H(Q)). Moreover, G’ also satisfies the interior regular-
ity that G € HX(Q') and

G20 < ClGlenlf 2o (3.3)

for a finite constant C.

Adjoint of the Fréchet Derivative. Let G* € H'(Q) solve
the adjoint of the Fréchet derivative of the forward equa-
tion given by
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V-DVG* - (p, +AfG*=0 (3.4)
with the boundary condition
IG*
G* + DE =¢,

where ¢ e L2(60Q).
Making use of the weak formulation applied to the ad-
joint equation, we have

1Gz110) < Cll#lL2000)-

Using the interior regularity of the equation, we have
G20 < Clldll20)-

Now using the imbedding H%(Q')— C(Q)’), we get
1G]~y < Kill llz20)-

Here K is a suitable finite constant. Assume a Gaussian
source excitation and hence G%c HY(Q)), and thus G,
e H2(9Q). With this, define the map DF(f) by

DF(O(f’) = G*(x, D]

Thus DF()(f°) indicates the changes in the boundary val-
ues of the field for a change f° from the background value
f. Using the standard definition of the adjoint, we see that

DF*(f)(¢) = A1GG*|o.

Note that we treat functions in L2%(Q)’) as functions of
L?(Q) by extending them to zero outside Q'.

4. APPROXIMATE SOLUTION OF INVERSE
PROBLEM BY REGULARIZED LEAST
SQUARE MINIMIZATION

The field autocorrelation G(r,7) depends on the particle
diffusion coefficient f, and therefore we write G(r,7)
=G(r,7,/) to show this dependence. The inverse problem
can be stated as follows: given the measurements G(r, 7,f)
on the boundary dQ, find f over (). Clearly, this problem is
nonlinear and ill posed, which is usually resolved by stat-
ing it as an optimization problem. We seek a minimizer f*
for an objective functional ® over an admissible class of f
in which G(r, 7,f) satisfies the forward problem given in
Eq. (2.1). Define the forward map F(f) over
Dom(F)CL*(Q)) as

F(f) = G(T,T)|,7Q.

With fe L*(Q) and g, € L%(Q)), we have G € H'(()), which
implies  G|,0 € H"2(dQ). Let m® be the measurement

G|, corresponding to a particular particle diffusion co-
efficient f to be reconstructed. For an initial guess f=f,
we define the objective functional ®(p) as

1 B
~ ’ e||2 2
O0) = SIFG+F) - mlEa + Sl D)

We would like to minimize ®(p) over an admissible class
of p, i.e., min, _12(q/)O(p). Here B is the Tikhonov regular-
ization parameter and p=p in ', p=0 in O\ Q’. We ex-
pand O(p) in terms of a Taylor series about p up to the
second-order differential:
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1
O(p+ 8p) = O(p) + DO(p)(5p) + 5D2®(p)(5p, p).

(4.2)

Here DO(p)(8p) is the differential of ®(p) in the direction
Sp. As explained above, f can be expressed as f=p+f’,
where [’ defined on Q\ )’ is known to us. Perturbation in
f, denoted f?, is carried out through p as 8p in ' only. The
derivative of ®(p) in the direction Sp, DO(p)(5p), is [16]

DO(p)(Sp) =(p,DF(p +f")(p)) + Bp,op),  (4.3)
where ¢=F(p+f')-m°. We also have
(¢,DF(p +[")(9p)) = A Sp,DF*(p + ') ().

Substituting the above expression into Eq. (4.3), we have
the first-order derivative of ®(p) in the direction Jp:

DO(p)(dp) =ADF(p+[")(¢) + Bp, Ip).
Define the gradient Gr of the objective functional as
Gr(p) =DF*(p+[)[F(p+f") - m*]+ Bp. (4.4)

In a similar manner, we can derive the second-order dif-
ferential of O(p). Neglecting the second-order differential
term of the adjoint map, D?F*(f)(¢), we have

D0 (p)(8p, 5p) =(DF*(p +f")DF(p +[")(5p) + BSp, 5p).
Define the Hessian as
H(p)(dp) =DF*(p+f )DF(p+f")(dp) + BSp.  (4.5)

The gradient Gr(p) and the Hessian H(p)(dp) are con-
nected through the linear system of equations

H(p)(dp) = - Gr(p). (4.6)

This can be solved iteratively for p by using the Gauss—
Newton method given by

piv1=p; —H(p)'Gr(p;). (4.7

The objective functional O(p) defined on Dom(®) C L3(Q)’)
has a minimizer if certain conditions are imposed on @
and Dom(0). Specifically, we look for a weakly closed do-
main over which O is defined, thus ensuring the weak
limits to be in Dom(®). We assume that the objective
functional O is weakly lower semicontinuous, which is re-
quired in order to prove the existence of its minimizer.

Theorem 4.1. Let A={pe L3(Q)'):p+f =a >0} and as-
sume that the functional O is weakly lower semicontinu-
ous. Then O has a minimizer pgin A.

Proof. Let {p}CA with O(p;) —Mz=inf{O(p):p e A}.
Then, by definition of M, for any n € N, there is an index
i,, such that

1
®(pin)sMB+—SMﬁ+1. (4.8)
Thus we have n

B
E”Pin”LZ(Q’) <O(p, ) sMg+1.

Consider the set AN{|pllr2=<(2/B)(Mg+1)}, which is
closed and bounded and hence weakly compact in L%(().
So the sequence p; has a convergent subsequence, again
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denoted p; , which converges weakly to some pg, such that
gLz = 2/,8)(MB+ 1) and pge A. The last inequality is
derived by using the fact that the norm is weakly lower
semicontinuous.

If the function O is weakly lower semicontinuous, then

1
O(pp) <liminf@(p;, ) < Mg+ —.
" n

Now, as n—=, we see that @(pg)<Mp. Since pzcA, we
get O(pg)=M g, which proves the theorem. |

The weak lower semicontinuity assumption needed for
the existence of the minimizer is valid if the Hessian of
the functional O is positive semidefinite as stated in the
following theorem.

Theorem 4.2. Let the functional ©:ACL3*(Q)')—R be
twice Gateaux differentiable at every point and in all di-
rections in A. Let the gradient Gr(p) of the objective func-
tional O be defined for all p e A. If the second Gateaux de-
rivative D*@(p)(8p, 8p) is positive semi-definite, i.e,

D*0(p)(p,0p) =0  Vp,dpeA, sp#0, (4.9)

then the functional O is weakly lower semicontiuous in A.

For the standard proof of the above theorem one can re-
fer to [17]. The above condition on the second Gateaux de-
rivative is equivalent to saying that the Hessian should
be positive semidefinite on A, i.e.,

D0 (p)(8p, 5p) = (H(p)(5p), p) = 0
#0. (4.10)

Vp,opeV, &

A. Discretized Gauss-Newton Scheme for Inversion
Discretization of the forward problem gives us a system of
equation m®=F(p), where m° is a partial set of noisy mea-
surements on the boundary assumed to be available on
boundary nodes, p is the discretized parameter vector to
be reconstructed, which in our case is Dg, and F is a
bounded operator obtained from Eq. (2.1). The Gauss-
Newton algorithm (4.7) is

D' = Di - (JTI(Dy) + \)'JT(DE)Am,;.  (4.11)
Here J7J (D];) is the approximation to the Hessian evalu-
ated at the current estimate of the property DB,
JT(D )Am; is a gradient of }'(DB), and Am;=m°®-m’ with
m’ being the computed measurement through DB and
J (DiB) the Jacobian evaluated at DiB. The term M\ is added
for regularization, where \ is the regularization param-
eter. To continue the algorithm of Eq. (4.11) the Hessian
and gradient are recomputed. The stopping criterion for
the iteration is that |[Am,| <e, where € is a preset small
bound for the error.

The Jacobian should be evaluated for the particular
measurement made at the boundary, which is m=gy(7).
Since G(r,0), the intensity, can also be measured, we de-
fine a measurement operator M acting on G(r,7) as [see
Eq. (2.3)]

m-1
M{G(xr,n} = G2(r,0)<—) =T(r,7n (4.12)
Y

with r € Q). The Jacobian for this measurement, I'(r,7),
can be computed by using Eqgs. (3.1) and (3.4) [4]:
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ﬁr(ria T)
dD}(r))

= Re{QM;kgTé(rl, T)G}‘é(rj,ri, T)G(rj, T)}

(4.13)

Here Gg(r, 7) solves the adjoint equation (3.4).

5. PSEUDODYNAMICAL APPROACH TO
RECONSTRUCTION

The Gauss—Newton algorithm of Eq. (4.11) requires the
modification introduced by the regularization term be-
cause the system matrix J7J usually has a large null
space and cannot be inverted as it is. An alternative to the
Gauss—Newton algorithm is provided by quasi-Newton
method wherein the inverse of the Hessian is approxi-
mated from knowledge of the gradient of the objective
functional. However, for the quasi-Newton method the
rate of convergence is smaller. The addition of the regu-
larization term (or the regularization operator) also alters
the minimization problem we originally intended solving.
We note that while an optimal choice of the regularization
parameter leads to meaningful solutions, even small
variations in the parameter can result in unacceptably
large errors.

An alternative route to the above iterative solution is
through introducing an artificial dynamics into the sys-
tem and treating the steady-state response of the artifi-
cially evolving dynamical system as a solution. This alter-
native also avoids an explicit inversion of the linearized
operator in the Gauss—Newton update equation. Thus, we
introduce an artificial dynamics to the Gauss—Newton up-
date equation (4.11). We remark that the “time” used here
is a pseudo-variable, and the numerical integration of the
resulting ODE will lead us to the solution p* that mini-
mizes the functional O in Eq. (4.1).

To show this, we rewrite Eq. (4.11), keeping A=0 (the
regularization parameter) as a linearized ODE in con-
tinuous time [18,19]. Thus, we have

Dg + M(DY)(Dg(t) - DY) + V(D}) = 0, (5.1)

M(Dg)=[J"(Dg)J (Dg)], V(Dg)=J7(Dg)(m*
-m(DY)) and Dy represents time derivative of Dg. Fur-
ther, D% is the linearization point that at the start of the
algorithm may be taken as the background value, which
is assumed to be known.

Indeed, Eq. (5.1) is an approximation, as it is the lin-
earized version of the nonlinear problem. See the remarks
below. First we show that Dg(¢) converges to D;=p*, the
minimal solution, as £—, assuming the model is exact.
Remark 3 below gives a suggestion as to the actual imple-
mentation.

Equation (5.1) on integration over (0,¢] becomes

Dg(t) = exp([- M(DY)](¢) (DY)

where

+ f exp(- M(D%)(t -3))f(s)ds, (5.2)

0

where f(t)=M(Dg) D} - V(DY)
That is, we get
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Dg(t) = exp([- M(DY)1(¢) (D))
+M(Dy) (M(Dy)Dy - V(DR)).  (5.3)

But D}, satisfies M(Dg)Dy-V(Dg)=M(Dp)D;,.
Thus Eq. (5.3) becomes

Dg(?) = exp((- M(Dp)]1(1)(Dg(?)) + Dy, (5.4)

which converges to D; as t—. Note that we have as-
sumed that M (D%) is positive definite. Therefore, we have
the following theorem.

Theorem 5.1. If M (D%):JT J(D%) is positive definite,
the pseudo-time marching scheme leads to a solution
Dg(t) that tends to D,

Remark 1. 1t is also observed that the step size in the
pseudo-time recursion regularizes the updates so that
spurious oscillations in them due to the near-zero singu-
lar values of the associated coefficient matrix are largely
removed. This assumes great significance when dealing
with insufficient data generated from a practical setup
using reflection geometry, leading to severely ill-
conditioned matrices in the reconstruction step. More-
over, the exponential form of the updates admits exploita-
tion of powerful concepts in Lie group theory, such as
Trotter’s formula [20] or Magnus expansion, so that an
additional level of numerical stabilization is possible
through the preservation of certain invariants. The last
aspect has, however, been kept outside the scope of the
present work.

Remark 2. As mentioned above, Eq. (5.1) is a linearized
approximation of a nonlinear system, and hence Eq. (5.1)
may be valid only for a small time. Thus a large-time in-
tegration may not represent the actual solution. In other
words, the approximation is valid only locally around the
linearization point. Therefore, to get a more accurate so-
lution in an application, one needs to integrate over small
time steps At leading to an update of D% and a relinear-
ization of the nonlinear equation by estimating J and Am
at the current property distribution at A¢. We note that
for the convergence of the recursion, the positive definite-
ness of J7J has to be ensured at the end of each time step.

Remark 3. The requirement that J7J be positive defi-
nite at the initial guess of Dg, namely, at DOB, is not usu-
ally met and also cannot be demanded. As is done in the
earlier work on an inverse problem using Newton itera-
tion [21], it is, at the most, reasonable to assume positive
definiteness of J7J at the optimal point D;. Thus, if the
initial guess is very close to D;, then positive definiteness
will be available because of the continuity of J7J. As far
as numerical implementation is concerned, we start the
algorithm with a regularization term \. More precisely,
we consider JTJ(Dg)+\ instead of JTJ(DY). We update
D%, successively to D]13,D2 ,... at small intervals
At,2A¢. ...

Finally, we have the algorithm derived from Eq. (5.3) as

ADE?! = exp([- (M(D%) + N)At]) Dy

ti+At
+ f exp([- (M(Di;) + M) ])(¢; + At — s)f(s)ds,

i
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Dg'=Dg+ ADg' (5.5)

Here £(t) is redefined to nullify the effect of regularization
by adding an additional term to V(¢) as follows: V(DiB)
=JT(Di3)(me—m(Di;))+)\(Di3—D%), similar in spirit to the
Levenberg—Marquardt method [7,8].

As Dpg approaches D;, JTJ becomes positive definite
and hence the relevance of the regularization parameter
is minimal and can be ignored. This phenomenon is am-
ply demonstrated in our numerical simulations. Thus in
our computations, we begin with a regularization param-
eter and with the new update Egs. (5.5) the contribution
of \ decreases to zero as the true solution is approached.

6. NUMERICAL EXPERIMENTS

Before we proceed with proving the efficacy of the algo-
rithm through numerical simulations, a word on limita-
tions brought in by data collection geometry in a practical
experimental scenario. In the DCT imager a diffuse re-
flection geometry is used for data gathering [3], wherein
the light source and a set of detectors, with the detector
fibres prealigned to receive a single speckle, are fixed at
selected distances so that a certain tissue volume at a de-
sired depth is covered by all the source—detector pairs. A
smaller data set from the DCT imager leads to a severely
underdetermined reconstruction problem, leading to nu-
merical difficulties, particularly for the Newton algorithm
requiring an inversion of an ill-conditioned and rank-
deficient matrix. It is here that pseudo-time recursion,
which avoids matrix inversion, provides an alternative ac-
ceptable route for reconstruction.

The object used in our numerical simulations is circu-
lar, taken as the cross section of a cylinder of diameter
8 cm. The background optical and mechanical properties
are kept as u=0.001cm™!, wu/®=8cm™! and D=1
% 1078 cm?/s. There are two circular inhomogeneous in-
clusions, which are Dy inhomogeneities, with diameter
1.4 cm each, one with a value of Dg=0.25Xx 10-8 cm?/s at
(-2.5 cm,0 cm), and the other with a value of Dp=0.75
X 1078 em?/s at (2.5 cm,0 cm) (The object is assumed to
be centered at the origin of the coordinate axes). There-
fore the inclusion in the background is

0.25 X 107 em®/s if \[(x + 2.5)% + ()2 < 0.7
DB(xay) = -8 2 . 2 Pl
0.75 X 107® em®/s if \/(x - 2.5)2+ (y)? < 0.7

To generate the experimental data numerically, Egs.
(2.1) and (2.2) are discretized by using the finite element
method with 1933 nodes and 3723 triangular linear ele-
ments. For a collimated source on the boundary, 40 detec-
tors are placed equiangularly on either side of the dia-
metrically opposite point to the source location, to cover
an overall angle of 320°. The discretized forward equation
is solved for G(r, ) for r=10"* s. While the experimental
data sets are generated, Gaussian noise of varying inten-
sities is added (1%—5%) to G(r, 7). Using the noisy G(r, 7)
and Eq. (4.12), experimentally tenable measurements
{I'(r,7)} are generated. The above procedure is repeated
by rotating the source—detector combination by steps of
10° to gather 36 sets of 40 readings each.
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x40
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Fig. 1. (Color online) Original particle diffusion coefficient dis-
tribution (cm?/s) used in the simulations

For inversion of data we use a coarser mesh, discretiz-
ing the domain with 1243 nodal points and 2376 triangu-
lar elements. First we perform reconstruction using the
Gauss—Newton algorithm of Eq. (4.7) [Eq. (4.11) in dis-
crete form] starting the reconstruction algorithm with an
initial guess of the property D%, which is the background
value. The Jacobian for the measurement I'(r,7) is com-
puted by using Eq. (4.13). The new update is obtained by
using Eq. (4.11), where we use an appropriate regulariza-
tion parameter \ set through trial and error. Once the up-
dated Dy is obtained, J(Dy) and Am; terms are recom-
puted at the new parameter distribution, and Eq. (4.11) is
itself updated. Inversion of the updated Eq. (4.11) gives us
the current update for Dp to continue the iteration. The
algorithm gave stabilized reconstruction of Dp(r) in about
30 iterations. The gray-level plot of the original Dy distri-
bution is shown in Fig. 1. The recovered Dg from the mea-
surements with 1% Gaussian noise is shown in Fig. 2 [the
gray-level plot in Fig. 2(a) and the cross sections through
the centers of the inhomogeneities of the original and the
recovered distributions in Fig. 2(b)]. When the percentage
of the noise is increased to 2, the algorithm did not con-
verge (even after regularization), and the reconstruction
was not able to reveal the location of the inhomogeneities
[see Figs. 3(a) and 3(b)].

In the next step we employ the PD approach to recover
the particle diffusion coefficient distribution. As men-
tioned above, we have used the explicit time integration
step and used the recursion of Egs. (5.5) to recover Dg.
The algorithm took 15 recursions to give an accurate Dg
recovery for which the mean-square error in the measure-
ment domain reached a minimum. The recovered Dy dis-
tribution for measurement corrupted with 2% noise is
shown in Fig. 4 [the gray-level plot in Fig. 4(a) and the
cross sections through the centers of the inhomogeneities
of the original and the recovered distributions in Fig.
4(b)]. Figures 5(a) and 5(b) are the gray-level plot and the
cross-sectional plots of the reconstructed Dg distribu-
tions, respectively, when 5% noise is present in the data.

We also present the reconstruction of absorption coeffi-
cient from the boundary measurement of transmitted
light, as was done in DOT. This problem can be viewed as
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Newton method: (a) gray-level plot and (b) cross-sectional plots through the centers of the inhomogeneities in (a) (dashed curve) as well
as the original inhomogeneous object.
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(Color online) Reconstructed particle diffusion coefficient distribution (cm?/s) from data with 2% Gaussian noise for the pseudo-
time marching scheme: (a) gray-level plot and (b) cross-sectional plots through the centers of the inhomogeneities in (a) (dashed curve)
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Fig. 5. (Color online) Reconstructed particle diffusion coefficient distribution (cm?/s) from data with 5% Gaussian noise for the pseudo-
time marching scheme: (a) gray-level plot and (b) cross-sectional plots through the centers of the inhomogeneities in (a) (dashed curve)

as well as the original inhomogeneous object.
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Fig. 6. (Color online) Reconstructed absorption coefficient distribution (cm™) from data with 5% Gaussian noise for the ordinary Gauss—
Newton method: (a) gray-level plot and (b) cross-sectional plots through the centers of the inhomogeneities in (a) (dashed curve) as well

as the original inhomogeneous object.

a special case of DWS with 7=0. The object used here is
also circular, taken as a cross section of a diffusively scat-
tering cylinder of the same dimensions as earlier. The
background optical properties are kept as ,u2=0.01 em!
and u.°=8 cm™!. The inhomogeneous inclusions are also
circular, given by,

3x 102 em™ if \(x+2.5)2+ (y)2<0.9

ax’ = - — . [ a9 /9
Ha(x,) 2x10%em™ if \(x - 2.5)%+(y)2<0.9

The experimental data used here are G(r,0)=I(r), r
€ Q) [obtained by solving the forward equation for G(r, 7)
as before] after adding 5% Gaussian noise. The recon-
structed u, distribution (gray level plot) and a cross sec-
tion through the centers of the inhomogeneties are shown
in Figs. 6(a) and 6(b), respectively, for which Gauss—
Newton method has been employed. Reconstruction by
using the same data, employing the PD strategy, is shown
in Fig. 7 [as before, with the gray-level plot in Fig. 7(a)
and the cross sections through the centers of the inhomo-
geneities of the original and the recovered distributions in
Fig. 7(b)].

The results clearly show that the approach using the
PD time marching gives reasonably good reconstructions

even when the noise is as high as 5%. Moreover, by intro-
ducing a matching term to modify the force vector over ev-
ery recursion step [Eq. (4.11)], we have, for all practical
purposes, removed the effect of regularization on the re-
construction at convergence. If we started by setting A\
=01in Eq. (4.11), the recursion of the PD system generated
from it did not give meaningful reconstructions. Instead
we used the modification given by Egs. (5.5). The modified
recursion gave good reconstructions, which also effec-
tively nullifies the contribution of the regularization term
on convergence. The N\ we chose to begin the algorithm is
0.1, and this value is fixed by observing how the data re-
sidual error behaves.

7. CONCLUSIONS

We have shown that a pseudo-time marching scheme pro-
vides a regularization-insensitive and robust (in the sense
of handling noise in data) method to solve the inverse
problem of diffuse correlation tomography (DCT) to re-
cover the particle diffusion coefficient from boundary in-
tensity autocorrelation measurement. First a Newton
method is set up to solve the mean-square error minimi-
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Fig. 7. (Color online) Reconstructed absorption coefficient distribution (cm™!) from data with 5% Gaussian noise for the pseudo-time
marching scheme (a) gray-level plot and (b) cross-sectional plots through the centers of the inhomogeneities in (a) (dashed curve) as well

as the original inhomogeneous object.

zation problem into which the DCT reconstruction is re-
cast. We prove the existence of the minimizer for the
above and establish the convergence of the Gauss—
Newton algorithm to this minimum. In doing this we also
show the existence and behavior of the solutions of the
forward propagation equation for the light autocorrela-
tion and its Fréchet derivative and adjoint. The Gauss—
Newton update equation, written as an ODE evolving
over pseudo-time, is integrated to arrive at the update
vector as its steady-state response. We have proved that
the integration of the PD system provides asymptotically
stable solutions. Through numerical simulations we es-
tablish that the PD method is a regularization-insensitive
alternative to the Newton iteration, giving robust recon-
structions even when the data noise is up to 5%, which
was not possible by using the usual Gauss—Newton itera-
tion.
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