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Abstract

A stronger concept of complete (exact) controllability which we call Trajectory Controllability is

introduced in this paper. We study the Trajectory Controllability of an abstract nonlinear integro-

differential system in the finite and infinite dimensional space setting.
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1. Introduction

The concept of controllability (introduced by Kalman 1960) leads to some very
important conclusions regarding the behavior of linear and nonlinear dynamical systems.
Most of the practical systems are nonlinear in nature and hence the study of nonlinear
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systems is important. There are various notions of controllability such as complete
controllability [10], approximate controllability [13], exact controllability [4–8,20], partial
exact controllability [22], null controllability [21], local controllability [2], constrained
controllability [15–18] and references cited in. A new notion of controllability, namely,
Trajectory controllability (T-controllability) is introduced here for some abstract nonlinear
integro-differential systems. In T-controllability problems, we look for a control which
steers the system along a prescribed trajectory rather than a control steering a given initial
state to a desired final state. Thus this is a stronger notion of controllability.
Under suitable conditions, the T-controllability of nonlinear system in finite dimensional

case has been established in Section 2. Then the result is extended to infinite dimensional
case in Section 3. We use the tools of monotone operator theory and set-valued analysis.
We also use Lipschitzian and monotone nonlinearities with coercivity property in Section
3. Examples are provided to illustrate our results.

Remark 1.1. In practical applications, controls are always in some sense of constrained.
Recently Klamka [16] studied the sufficient conditions for constrained local relative
controllability of semilinear ordinary differential state equation in finite dimension with
delayed controls using a generalised open mapping theorem where he assumed that the
values of admissible controls are in a convex and closed cone with the vertex at zero. Also
Klamka [15] proved the constrained exact controllability of first and second order systems
in infinite dimension space. One can extend our system for second order and study
T-controllability result.

2. T-controllability of finite-dimensional systems

Consider the nonlinear scalar system

x
0

ðtÞ ¼ aðtÞxðtÞ þ bðt; uðtÞÞ þ f ðt;xðtÞ;
R t

0 gðt; s; xðsÞÞ dsÞ;

xð0Þ ¼ x0;

)
ð2:1Þ

for all 0rtrTo1. Here, a(t) is an Ł1 function defined on J=[0,T] and b : J � R/R.
For t 2 J, the state x(t) and the control u(t) belong to R. Further, f : J � R� R/R is a
nonlinear function satisfying the Caratheadory conditions, i.e. f is measurable with respect
to first argument and continuous with respect to second argument. Also, g : D� R/R is a
nonlinear function which also satisfies the Caratheadory conditions, where
D ¼ fðt; sÞ 2 J � J; 0rsrtrTg.

Definition 2.1. The system (2.1) is said to be completely controllable on J if for any
x0; x1 2 R, and fixed T, there exists a control uð�Þ 2 Ł2ðJÞ such that the corresponding
solution xð�Þ of (2.1) satisfies x(T)=x1.

It may be noted that according to the above definition, there is no constraint imposed on
the control or on the trajectory.

Remark 2.2. For the system (2.1), it is possible to steer any initial state x0 to any desired
final state x1. But it does not give any idea about the path along which the system moves.
Practically it may be desirable to steer the system from initial state x0 to a final state x1

along a prescribed trajectory. It may minimize certain cost involved in steering the system,
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depending upon the path chosen. It may also safe-guard the system. This motivates the
study on the notion of T-controllability.

Let T be the set of all functions zð�Þ defined on J=[0,T] such that zð0Þ ¼ x0; zðtÞ ¼ x1,
t 2 J and z is differentiable almost everywhere.

Definition 2.3. The system (2.1) is said to be T-controllable if for any z 2 T , there exists a
control u 2 L2ðJÞ such that the corresponding solution xð�Þ of (2.1) satisfies x(t)=z(t) a.e.

Definition 2.4. The system (2.1) is totally controllable on J if for all subintervals [ti,tf] of
[0,T], the system (2.1) is completely controllable.

Clearly, T-controllability ¼) Total controllability ¼) Complete controllability.
In the system (2.1), both control u( � ) and state x( � ) appear nonlinearly. First let us look

at the following system where the control appears linearly:

x
0

ðtÞ ¼ aðtÞxðtÞ þ bðtÞuðtÞ þ f ðt;xðtÞ;
R t

0 gðt; s; xðsÞÞ dsÞ;

xð0Þ ¼ x0;

)
ð2:2Þ

Assumptions [A1]. (i) The functions a(t) and b(t) are continuous on J.
(ii) b( � ) do not vanish on J.
(iii) f is Lipschitz continuous with respect to second and third argument, i.e. there exist

a1; a2 such that

jf ðt;x1;y1Þ�f ðt;x2;y2Þjra1jx1�x2j þ a2jy1�y2j

for all x1;x2; y1; y2 2 R; t 2 J.
(iv) g is L1-Lipschitz continuous with respect to the third argument in the following

sense:Z t

0

jgðt;s;xðsÞÞ�gðt;s;yðsÞÞj dsrbjxðtÞ�yðtÞj; x;y 2 T ;ðt;sÞ 2 D:

Under the above assumptions, one can easily construct the control explicitly to prove the
T-controllability of the nonlinear system (2.2). To see this we proceed as follows:

For each control u 2 L2ðJÞ, the existence and uniqueness of the solution for the system
(2.2) follow from Assumptions [A1] by using the standard arguments.

Let z(t) be a given trajectory in T . We define a control function u(t) by

uðtÞ ¼
z
0

ðtÞ�aðtÞzðtÞ�f ðt;zðtÞ;
R t

0 gðt;s;zðsÞÞ dsÞ

bðtÞ
:

With this control, (2.2) becomes,

x
0

ðtÞ ¼ aðtÞxðtÞ þ z
0

ðtÞ�aðtÞzðtÞ�f t;zðtÞ;

Z t

0

gðt;s;zðsÞÞ ds

� �
þ f t;xðtÞ;

Z t

0

gðt;s;xðsÞÞ ds

� �
;

xð0Þ ¼ x0:
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Setting w(t)=x(t)�z(t), we have

w
0

ðtÞ ¼ aðtÞwðtÞ þ f t;xðtÞ;
R t

0 gðt;s;xðsÞÞ ds
� �

�f ðt; zðtÞ;
R t

0 gðt; s; zðsÞÞ dsÞ;

wð0Þ ¼ 0:

)
ð2:3Þ

By using the transition function fðt; sÞ ¼ e

R t

s
aðsÞ ds

for the ordinary differential equation
y
0

(t)=a(t)y(t), (2.3) can be rewritten as

wðtÞ ¼

Z t

0

fðt;sÞ f s;xðsÞ;

Z s

0

gðs;t;xðtÞÞ dt
� �

�f s;zðsÞ;

Z s

0

gðs;t;zðtÞÞ dt
� �� �

ds:

Thus

jwðtÞjr
Z t

0

jfðt;sÞj a1jxðsÞ�zðsÞj þ a2

Z s

0

gðs;t;xðtÞÞ dt�
Z s

0

gðs;t;zðtÞÞ dt
����

����
� �

ds

r
Z t

0

jfðt;sÞj½a1jxðsÞ�zðsÞj þ a2bjxðsÞ�zðsÞj� ds:

That is,

jxðtÞ�zðtÞjrða1 þ a2bÞ
Z t

0

jfðt;sÞJxðsÞ�zðsÞj ds:

Hence by Grownwall’s inequality, it follows that

JxðtÞ�zðtÞJ ¼ 0:

This proves T-controllability of the system (2.2).

As remarked earlier in the above nonlinear system (2.2), the control u(t) is appearing
linearly. Let us now consider the case in which control as well as the state appear
nonlinearly as in (2.1). We have following theorem.

Theorem 2.5. Suppose that
(i)
 b(t,u) is continuous.

(ii)
 b(t,u) is coercive in the second variable, i.e.

bðt;uÞ-71 as u-71; t 2 J :
(iii)
 The function f is Lipschitz continuous in the second and third variable, uniformly in t, i.e.

there exist a140 and a240 such that

jf ðt;x1;y1Þ�f ðt;x2;y2Þjra1jx1�x2j þ a2jy1�y2j; 8x1;x2;y1;y2 2 R; t 2 J:
(iv)
 The function g is Lipschitz in the third variable uniformly in ðt; sÞ 2 D, i.e., there exists

b40 such that

jgðt;s;xÞ�gðt;s;yÞjrbjx�yj8x; y 2 R; ðt;sÞ 2 D:
Then the nonlinear system (2.1) is T-controllable.
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Proof. For each fixed u, the existence and uniqueness of the solution of the system (2.1)
follow from the Lipschitz continuity of the functions f and g. Moreover, this solution
satisfies the integral equation

xðtÞ ¼ fðt;0Þx0 þ

Z t

0

fðt; sÞbðs;uðsÞÞ dsþ

Z t

0

fðt;sÞf s;xðsÞ;

Z s

0

gðs;t;xðtÞÞ dt
� �

ds: ð2:4Þ

Let z 2 T be the prescribed trajectory with z(0)=x0. We want to find a control
u satisfying

zðtÞ ¼ fðt;0Þx0 þ

Z t

t0

fðt;sÞbðs;uðsÞÞ dsþ

Z t

0

fðt;sÞf s;zðsÞ;

Z s

0

gðs;t;zðtÞÞ dt
� �

ds:

The above equation can be written as

zðtÞ�fðt;0Þx0�

Z t

0

fðt;sÞf s;zðsÞ;

Z s

0

gðs;t;zðtÞÞ dt
� �

ds ¼

Z t

0

fðt;sÞbðs;uðsÞÞ ds:

Differentiating with respect to t, we get

z
0

ðtÞ�aðtÞfðt;0Þx0�

Z t

0

aðtÞfðt;sÞf s;zðsÞ;

Z s

0

gðs;t;zðtÞÞ dt
� �

ds�f t;zðtÞ;

Z t

0

gðt;s;zðsÞÞ ds

� �

¼

Z t

0

aðtÞfðt;sÞbðs;uðsÞÞ dsþ bðt;uðtÞÞ: ð2:5Þ

Eq. (2.5) can be written as

wðtÞ ¼

Z t

0

kðt;sÞwðsÞ dsþ w0ðtÞ; ð2:6Þ

where wðtÞ ¼ bðt; uðtÞÞ; kðt; sÞ ¼ �aðtÞfðt; sÞ and w0(t) is the left hand side of (2.5).
Eq. (2.6) is a linear Volterra integral equation of the second kind and it has a unique

solution w(t) for each given w0(t) (refer [19]). Hence it suffices to extract u(t) from the
solution w(t). To extract u(t), we use the technique of Deimling [11,12].

Consider the multi-valued function G: ½0;T �-2R defined by GðtÞ ¼ fu 2 R :
bðt; uÞ ¼ wðtÞg. Since bð�; �Þ and wð�Þ are continuous, by hypothesis (ii) G(t) is nonempty
for all t and upper semi-continuous. That is, tn-0 implies GðtnÞ � Gð0Þþ
Beð0Þ; 8nZnðe; 0Þ. Further, G has compact values. Hence G is Lebesgue measurable and
therefore has a measurable selection uð�Þ. This function u is the required control which
steers the nonlinear system along the prescribed trajectory zð�Þ.

Hence proof is complete. &

Remark 2.6. (i) The control u obtained in Theorem 2.5 is measurable, may not be
continuous. But, if we require control u to be continuous, we have to assume more stronger
condition on b(t,u).

(ii) If the nonlinear function b(t,u) is invertible then u(t) can be computed directly from
w(t)=b(t,u(t)). For example, if b(t,u) is strongly monotone, i.e. there exists b40 such that

jbðt;uÞ�bðt;vÞjZbju�vj;
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then there exists a unique u such that b(t,u)=w. Note that the strong monotonicity implies
coercivity.
(iii) If b(t,u) is coercive and monotonically increasing with respect to u, then it can be

seen that bðt;RÞ ¼ R and b(t,u)=w(t) is solvable.

Example 2.7. Consider the nonlinear integro-differential system with the control term
bðt; uÞ ¼ ujuj.

x
0

ðtÞ ¼ aðtÞxðtÞ þ bðt; uðtÞÞ þ sin ðxðtÞ þ 3
R t

0
xðsÞ ds

� �
;

xð0Þ ¼ x0:

)

The control term b(t,u) is continuous and coercive. One can now verify f and g as in
Theorem 2.5 to get T-controllability of the above system.

3. T-controllability of infinite-dimensional systems

In this section we consider a nonlinear integro-differential system defined in infinite
dimensional space and generalize the results of Section 2. Let H and U be Hilbert spaces
and consider following nonlinear integro-differential system:

w
0

ðtÞ ¼ AwðtÞ þ Bðt; uðtÞÞ þ F ðt;wðtÞ;
R t

0 Gðt; s;wðsÞ dsÞ; t 2 J ¼ ½0;T �;

wð0Þ ¼ w0;

)
ð3:1Þ

where the state wðtÞ 2 H and the control uðtÞ 2 U , for each t 2 J. The operator A :
DðAÞ � H/H is a linear operator not necessarily bounded. The maps B : J �U/H,
G : D�H/H and F : J �H �H/H are nonlinear operators, where
D ¼ fðt; sÞ 2 J � J : 0rsrtrTg.
We make the following assumptions on (3.1).

Assumptions [I]. (i) Let A be an infinitesimal generator of a strongly continuous
C0-semigroup of bounded linear operators SðtÞ; tZ0. So there exist constants M1Z0
and w 2 Rþ such that

JSðtÞJrM1ewt; tZ0

and also letZ T

0

Z t

0

JSðt�sÞJ2 ds dto1:

(ii) B and G satisfy Caratheadory conditions, i.e. Bðt; �Þ : U/H is continuous for t 2 J

and Bð�; xÞ : J/H is measurable for x 2 U and Gðt; s; �Þ : H/H is continuous 8ðt; sÞ 2 D
and Gð�; �; xÞ : D/H is measurable 8x 2 H.
(iii) F satisfies Caratheadory conditions like G.
(iv) B, G and F satisfy following growth conditions:

JBðt;uÞJHrb0ðtÞ þ b1JuJU 8u 2 U ; t 2 J ;

JGðt;s;xÞJrq0ðtÞ þ q1JxJH 8t 2 J ; x 2 H;
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JF ðt;x;yÞJHra0ðtÞ þ a1JxJH þ a2JyJH :

Under Assumptions [I], a mild solution of the system (3.1) satisfies the Volterra integral
equation

wðtÞ ¼ SðtÞw0 þ

Z t

0

Sðt�sÞBðs;uðsÞÞ dsþ

Z t

0

Sðt�sÞF s;wðsÞ;

Z s

0

Gðs;t;wðtÞÞ dt
� �

ds:

ð3:2Þ

Let T be the set of all functions z 2 L2ðJ ;HÞ which are differentiable and z(0)=w0. We
say that the system (3.1) is T-controllable if for any z 2 T , there exists an L2-function
u : J/H such that the corresponding solution w of (3.1) satisfies wð�Þ ¼ zð�Þ a.e.

We make the following additional assumptions on F and B.

Assumptions [II]. (i) F(t,x,y) is Lipschitz continuous with respect to x and y, i. e. there exist
constants a1; a2Z0 such that

JF ðt;x1;y1Þ�F ðt;x2;y2ÞJra1Jx1�x2Jþ a2Jy1�y2J

for all x1;x2; y1; y2 2 H; t 2 J.
(ii) G(t,s,x) is Lipschitz continuous with respect to x, i.e. there exists a constant b40

such that

JGðt;s;xÞ�Gðt;s;yÞJrbJx�yJ; x;y 2 H; ðt;sÞ 2 D:

(iii) B satisfies monotonicity and coercivity conditions, i.e.

/Bðt;uÞ�Bðt;vÞ;u�vSZ0; 8u;v 2 U ; t 2 J

and

lim
JuJ-1

/Bðt;uÞ;uS
JuJ

¼ 1:
We now prove the T-controllability result for the system (3.1).

Theorem 3.1. Under Assumptions [I] and [II], the nonlinear system (3.1) is T-controllable.

Proof. Let z be any trajectory in T . Following the proof of the Theorem 2.5, we look for a
control u satisfying

zðtÞ�SðtÞw0�

Z t

0

Sðt�sÞF s;zðsÞ;

Z s

0

Gðs;t;zðtÞÞ dt
� �

ds ¼

Z t

0

Sðt�sÞBðs;uðsÞÞ ds:
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Differentiating with respect to t, we get

z
0

ðtÞ�ASðtÞw0�

Z t

0

ASðt�sÞF s;zðsÞ;

Z s

0

Gðs;t;zðtÞÞ dt
� �

ds�F t;zðtÞ;

Z t

0

Gðt;s;;zðsÞÞ ds

� �� �

¼

Z t

0

ASðt�sÞBðs;uðsÞÞ dsþ Bðt;uðtÞÞ: ð3:3Þ

Eq. (3.3) can be rewritten in the form

yðtÞ ¼

Z t

0

kðt;sÞyðsÞ dsþ y0ðtÞ; ð3:4Þ

where y(t)=B(t,u(t)), k(t,s)=�AS(t�s) and y0(t) is the left hand side of (3.3).
Define an operator K :L2ðJ ;HÞ-L2ðJ ;HÞ by

ðKyÞðtÞ ¼

Z t

0

kðt;sÞyðsÞ ds: ð3:5Þ

Assumption [I(i)] assures that K is a bounded linear operator [3]. Also, it can be easily
proved that Kn is a contraction for sufficiently large n (refer [11,22]). Hence by generalized
Banach contraction principle, there exists a unique solution y for (3.4) for given
y0 2 L2ðJ;HÞ. Therefore, T-controllability follows if we can extract u(t) from the relation:

Bðt;uðtÞÞ ¼ yðtÞ: ð3:6Þ

To see this, define an operator N:L2ðI ;HÞ-L2ðI ;HÞ by

ðNuÞðtÞ ¼ Bðt;uðtÞÞ: ð3:7Þ

Assumptions [I(ii)–(iv)] imply that N is well-defined, continuous and bounded operator.
Assumption [II(iii)] shows that N is monotone and coercive. A hemi-continuous monotone
mapping is of type (M) (see [14, p. 78]). Therefore, by Theorem 3.6.9 of Joshi and Bose
[14], the nonlinear map N is onto. Hence there exists a control u satisfying (3.6). The
measurability of u(t) follows as u is in L2(I,H). This proves T-controllability of the system
(3.1). &

Corollary 3.2. If F and G are Lipschitz continuous and B is strongly monotone, i.e. there

exists b40 such that

/Bðt;uÞ�Bðt;vÞ;u�vSZbJu�vJ28u; v 2 H ; t 2 J: ð3:8Þ

Then the system (3.1) is T-controllable.

Proof. The proof follows from the fact that the condition (3.8) implies Assumption
[II(iii)]. &

Remark 3.3. We have not directly used the Assumptions [II(i)] and [II(ii)] of the Lipschitz
continuity of f in the proof of Theorem 3.1. Actually, it is needed for the existence and
uniqueness of the solution wð�Þ satisfying (3.2) for each control uð�Þ. There are also other
verifiable conditions for the uniqueness of the solution, in the literature (see [7]).
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Example 3.4. Let O be a bounded domain in Rn with a smooth boundary @O. Consider the
system

@y

@t
¼ Dyþ uðx; tÞ þ

1

2
½sin2xðtÞ þ sinyðtÞ� in O� ð0;TÞ;

yðx;0Þ ¼ 0 in O;

yðx; tÞ ¼ 0 in @O� ð0;TÞ:

9>>>=
>>>;

The above system can be put into the form of (3.1) by defining AwðtÞ ¼ DwðtÞ for all
wðtÞ 2 DðAÞ; where DðAÞ ¼ H2ðOÞ \H1

0 ðOÞ is the domain of A and H ¼ U ¼ L2ðOÞ. Here
the control term B(t,u(t))=u(t) is linear. The above system is T-controllable under the
assumptions on F and G as in the theorem.

In the one-dimensional case, say, O ¼ ð0; 1Þ, one can explicitly write A :
L2ð0; 1Þ-L2ð0; 1Þ by Aw ¼ w

00

, where DðAÞ ¼ fw 2 H:w;w
0

are absolutely continuous,
wð0Þ ¼ wð1Þ ¼ 0g and

Aw ¼
X1
n¼1

n2ðw;wnÞwn:

Here wnðsÞ ¼ O2sinns; n ¼ 1; 2; 3 . . . is the orthogonal set of eigenfunctions of A

and (w,wn) is the L2 inner product. Further, A generates an analytic semigroup
SðtÞ; tZ0 in H given by

SðtÞw ¼
X1
n¼1

expð�n2tÞðw;wnÞwn; w 2 H :

Here F ðt; xðtÞ; yðtÞÞ ¼ 1
2
½sin2 xðtÞ þ sinyðtÞ� and Gðt; s; yðsÞÞ ¼ 1

2
½cosyðsÞ�, both are Lipschitz

continuous.

We now specialize Theorem 3.1 for the case H ¼ Rn. So we consider the following finite
dimensional nonlinear system in Rn:

w
0

ðtÞ ¼ AðtÞwðtÞ þ Bðt; uðtÞÞ þ F t;wðtÞ;
R t

0 Gðt; s;wðsÞÞ ds
� �

;

wð0Þ ¼ ðw0Þ;

)
ð3:9Þ

where A, B, F and G are as in (3.1) with H replaced by Rn. Therefore Theorem 3.1 can be
specialized for the system (3.9) in Rn. The following theorem can be proved as in Theorem
2.5.

Theorem 3.5. Suppose that
(i)
 F is Lipschitz continuous with respect to x and y and G is Lipschitz continuous in x.

(ii)
 B(t,u) satisfies

lim
JuJ-1

/Bðt;uÞ;uS
JuJ

¼ 1:
Then the nonlinear system (3.9) is T-controllable by a measurable control u : J/Rn.
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Example 3.6. Consider the nonlinear two-dimensional system,

x
0

1ðtÞ ¼ a11x1 þ a12x2 þ sin y1ðtÞ þ 3

Z t

0

y1ðsÞ ds

� �
þ cos y2ðtÞ þ 3

Z t

0

y2ðsÞ ds

� �
þ u21;

x1ð0Þ ¼ x01;

x
0

2ðtÞ ¼ a21x1 þ a22x2 þ cos y1ðtÞ þ 3

Z t

0

y1ðsÞ ds

� �
þ sin y2ðtÞ þ 3

Z t

0

y2ðsÞ ds

� �
þ u22;

x2ð0Þ ¼ x02:

It can be easily verified that the above system satisfies the hypotheses of Theorem 3.2, and
hence it is T-controllable.

Concluding remarks: In this paper sufficient conditions for T-controllability of semilinear
integro differential system in finite and infinite dimension spaces are proved by using
measurable selections, generalised Banach contraction principle and monotone operatory
theory.
The method presented here is quite general and covers wide class of semilinear

dynamical control systems. Similar results may be proved for second order systems and
semilinear dynamical control inclusions with delay arguments.
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