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This article is concerned with subsurface material identification for the 2-D
Helmholtz equation. The algorithm is iterative in nature. It assumes an initial
guess for the unknown function and obtains corrections to the guessed value. It
linearizes the otherwise nonlinear problem around the background field. The
background field is the field variable generated using the guessed value of the
unknown function at each iteration. Numerical results indicate that the algorithm
can recover a close estimate of the unknown function based on the measurements
collected at the boundary.
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AMS Subject Classifications: 31A25; 65N21

1. Introduction

In this article, we consider an inverse reconstruction algorithm for the Helmholtz
equation. This problem appears very naturally in various applications including
biomedical imaging [1,2], impedance imaging [3], optical imaging for non-destructive
evaluation [4], and wave propagation and scattering [5]. It is instructive to discuss one
example. Consider the propagation of the electromagnetic waves through the atmosphere.
Writing Maxwell’s equation in terms of the electric field, E(x), leads to the following vector
wave equation [6]:

r2Eþ r½E:rðlogð�ÞÞ� ¼ �
@2ð�EÞ

@t2
, ð1Þ

where � is the permeability and �(x) is the dielectric constant. Assuming a periodic incident
wave, E(t, x)¼ p(x) cos(!t), one arrives at

r2pþ !2��p ¼ �r½p:rðlogð�ÞÞ�, ð2Þ

for the amplitude of the electric field, p(x). The dielectric constant �(x) is a function of the
domain and, in general, is not known. It can also be argued that, for a wide range of
applications, the right-hand side in the above equation can be neglected in comparison to
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the other two terms [6, p. 232]. It is then clear that, in order to recover the dielectric
constant, one is led to deal with the Helmholtz equation.

For an elliptic system, there are two classes of problems that are often referred to as
inverse problems. One class of problems considers the case in which part of the boundary is
not accessible and no boundary data are available. The interest is then to recover the
unknown boundary conditions based on measurements collected at the part of
the boundary that is accessible [7–9]. In the other class of problems, which is the topic
of this work, the interest is in identifying a subsurface material property based on the
measurements collected at the boundary. It is well-known that both classes of problems are
highly ill-posed [10] and various methods have been developed to overcome it.

A number of methods have been developed for the specific inverse problem considered
here. These efforts include Newton based methods [11,12], layer stripping methods [13,14],
point-source method [15,16], factorization method [17], continuation method [18] and level
set method [19]. The purpose of this article is to apply a recently developed method,
[20,21], to the problem of subsurface evaluation for the Helmholtz equation. The method
is quite versatile and can be applied to various system. It has been developed and applied
to parabolic systems due to their severe ill-posedness. Section 2 presents the algorithm and
Section 3 uses two numerical examples to show the applicability of the method.

2. Helmholtz equation and inversion

Let S�R2 be a closed bounded set. Consider a 2-D Helmholtz equation given by

Duþ k2gðxÞu ¼ 0, x2S � R2, ð3Þ

where Dirichlet boundary conditions are given at the boundary of S, denoted by @S.

uðxÞ ¼ �ðxÞ, x2 @S: ð4Þ

The variable u(x) denotes the electric field, the parameter k denotes the frequency of the
incident wave and the function g(x) is a physical parameter. The goal is to recover the
function g(x) based on boundary measurements. For our application, the permeability of
the domain, �, is equal to one, and g(x)¼ �(x) in Equation (2). A similar equation appears
in applications in time-harmonic acoustic wave [22] where g(x) is related to the refractive
index of the domain. Also, the above equation appears in optical tomography imaging
[23]. Assume that on parts of the boundary, in addition to the given Dirichlet condition,
data can be collected in the form of the Neumann condition given by

@u

@n
ðxÞ ¼ �ðxÞ, x2 @S, ð5Þ

where @u
@n is the normal derivative. The inverse problem is now to recover the unknown

function, g(x), based on the collected data at the boundary. The method can be applied to
3-D domains, however for simplicity, we consider a square region in 2-D. The present
algorithm is iterative in nature and it consists of the following steps.

I. Assume an initial guess: It is often the case that the goal is to recover an interior
abnormality within an otherwise uniform material property. It is then reasonable to
assume a uniform guess for the unknown function given by ĝ(x). The initial guess together
with the given Dirichlet boundary conditions leads to a background field, û(x),
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which satisfies the forward problem given by

Dûþ k2ĝðxÞû ¼ 0, x2S, ûðxÞ ¼ �ðxÞ, x2 @S: ð6Þ

This field satisfies the Dirichlet conditions at all four sides. Since the initial guess is almost

always not the actual function, the computed field is not the actual field. Let e(x) denote

the error, i.e. e(x)¼ u(x)� û(x), and subtract the two equations to obtain an equation for

the error given by

Deþ k2gðxÞu� k2ĝðxÞû ¼ 0, x2S, eðxÞ ¼ 0, x2 @S: ð7Þ

It is also possible to write g(x)¼ ĝþ h where h(x) is unknown. It follows that

Deþ k2ĝeþ k2hðxÞuðxÞ ¼ 0, x2S, eðxÞ ¼ 0, x2 @S: ð8Þ

Here, there is one equation and two unknowns, namely h(x) and u(x) (e(x) is also

unknown, but is related to u(x)). It is possible to linearize around the background field and

arrive at,

Deþ k2ĝeþ k2hðxÞû ¼ 0, x2S, eðxÞ ¼ 0, x2 @S: ð9Þ

Now, there are still two unknowns. However, the function e(x) is required to satisfy two

boundary conditions on the side at which the data are collected. It is possible to consider

two separate problems.

II. Consider two different problems for e(x): The two well-posed elliptic problems for e(x)

are given by

where q( y)¼ ux(0, y)� ûx(0, y). Note that ux(0, y) is the collected data, and ûx(0, y) can be

computed from the background field.
The same symbol, e(x), is being used here to denote the error in both of these problems.

In what follows, it will specifically be clear which problem is being considered. After

finite-dimensional discretization, these two equations lead to

A0 �eþ k2 �hðxÞ �uðxÞ ¼ 0, Problem I ð10Þ

and

A1 �eþ k2 �hðxÞ �uðxÞ ¼ �q, Problem II: ð11Þ

Δe + k2ĝe + k2hû =0 Δe + k2ĝe + k2hû =0e=0 e=0 ex = q(y)

e=0

e=0

e=0

e=0

e=0

Problem IIProblem I

Figure 1. Two elliptic problems for the error field.
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The quantities �e, �h, �u and �q are finite-dimensional representations of the variables e, h, û
and ~q. The matrices A0 and A1, and the vector �u are known. Also, the condition ex¼ q( y)
appears in the vector �q in Equation (11).

The error, �e, is still unknown and so is �h. But now, there are two equations and two
unknowns. One can obtain one equation for �h by eliminating the �e. It follows that

k2ðA�10 � A�11 Þ �u
�h ¼ �A�11 �q: ð12Þ

The above equation can now be solved for �hðxÞ. The collected data show up in the vector �q
on the right-hand side of Equation (12). As it is expected, the coefficient matrix is singular.
However, one can solve for the unknown vector with the help of Tikhonov regularization.
One can introduce Tikhonov regularization by considering the over-determined linear
system given by

k2ðA�10 � A�11 Þ �u
��
��

2
4

3
5 �h ¼

�A�11 �q
0
0

2
4

3
5, ð13Þ

where � is a pre-specified positive constant, and � and � are matrix representations of the
first-order derivatives in x and y. The above over-determined system can now be solved for
�h using least-square method.

III. Update the assumed value: With �h computed, one can update the assumed value of the
unknown function according to

ĝðxÞ ¼ ĝðxÞ þ hðxÞ, ð14Þ

and proceed to step I.
The error shows up in the vector �q. As the iterations proceed, the value of the error is

reduced.

3. Specific approximations and numerical results

In this section, we use a number of numerical examples to investigate the applicability of
the proposed method. The above algorithm involves the numerical solution of the
Helmholtz equation. It is well-known that, for high frequencies, the numerical solution of
Helmholtz equation remains challenging [24,25]. It is also noted that the present algorithm
requires the inverse of the matrices that appear in Equation (12). Therefore, although
sparse solvers can be used to improve the accuracy of the forward problem in Equation (6),
the need for the actual inverse of the matrices in Equation (12) dictates the range of the
applicable system parameters. This is entirely a numerical issue. The goal of this article is
to investigate the applicability of the present inversion method to the Helmholtz equation.

It is possible to obtain working equations by using the finite-difference method. The
domain can be divided into 60 equal intervals in both x and y directions with
Dx ¼ Dy ¼ 1

60. Using central fourth-order and one-sided second-order accurate
finite-difference schemes, it is possible to compute various terms in Equations (12)
and (13). For this choice for the mesh, the dimension of the linear system in Equation (12)
is 3721. Our numerical experiments indicated that this mesh size is adequate for the
frequencies studied in this article. Little change in the solution of the forward problem was
noticed.
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We first consider recovering one interior target. The actual function g(x, y) is given by

gðx, yÞ ¼ 1þ exp½� ð0:3�xÞ
4

0:0001 � exp½�
ð0:3�yÞ4

0:0001 � and is shown in Figure 4. For simplicity, it is

assumed that the domain is exposed to the external field given by

u(x, y)¼ cos(k(x cos(�)þ y sin(�))), where � is the direction for the incoming wave.

The necessary Dirichlet conditions are then given by

uðx, 0Þ ¼ cosðkðx cosð�ÞÞÞ, uðx, 1Þ ¼ cosðkðx cosð�Þ þ sinð�ÞÞÞ, ð15Þ

uð0, yÞ ¼ cosð y sinð�ÞÞÞ, uð1, yÞ ¼ cosðkðcosð�Þ þ y sinð�ÞÞÞ: ð16Þ

In practice, the boundary is accessible and it is possible to collect data on all sides of the

domain. Here, we assume that measurements are collected at one side identified by x¼ 0

and y2 [0, 1]. The given measurements are the slope of the field on this side.
It is also possible to collect data for a number of frequencies and a number of incoming

wave angles. Formulations for these different sets of experiments can be added to the

least-square problem given in Equation (13) according to

Gðk1, �1Þ
Gðk1, �2Þ

..

.

Gðk2, �1Þ
Gðk2, �2Þ

..

.

��
��

2
6666666666664

3
7777777777775

�h ¼

�A�11 �q
ð1Þ
1

�A�11 �q
ð1Þ
2

..

.

�A�11 �q
ð2Þ
1

�A�11 �q
ð2Þ
2

..

.

0
0

2
66666666666664

3
77777777777775

, or � �h ¼ �, ð17Þ

where

Gðki, �j Þ ¼ ðk
2
i ðA
�1
0 � A�11 Þ �uÞ: ð18Þ

In the above equation, each row corresponds to the collected data for the frequency ki and

the incident angle �j. On the right-hand side, the subscripts in �q
ð j Þ
i correspond to the

frequency, and the superscripts correspond to the incident angle. In addition, for

simplicity, Equation (17) also denotes the coefficient matrix by � and the right-hand side

by �. The least-square solution to the above over-determined system is given by

�h ¼ ½�>���1�>�: ð19Þ

Consider the above least-square problem before the inclusion of the Tikhonov

regularization. In order to see the effect of including additional experimental data, it is

instructive to look at the singular values of the coefficient matrix, �, or the eigenvalues of

the symmetric non-negative matrix, [�>�]. Figure 2 shows the eigenvalues of the

symmetric matrix [�>�] for a single frequency k¼ 10. The eigenvalues are normalized with

respect to their highest value and they are plotted as formulations for different values of

the incident angles are added to the least-square problem. The figure shows that, when

formulations for nine different incident angles are included, the coefficient matrix has the

largest number of non-zero eigenvalues. Figure 3 suggests the same behaviour when

formulations for three different frequencies are included, i.e. k¼ 10, 15, 17. The incident

angle for these experiments is � ¼ 	
18.

Inverse Problems in Science and Engineering 5

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
U
n
i
v
e
r
s
i
t
a
'
 
d
i
 
T
r
e
n
t
o
]
 
A
t
:
 
1
4
:
2
6
 
1
1
 
M
a
y
 
2
0
1
1



Example 1 It is now possible to proceed with the inversion algorithm and consider

recovering the material property. The actual function is given by

gðx, yÞ ¼ 1þ exp �
ð0:3� xÞ4

0:0001

� �
exp �

ð0:3� yÞ4

0:0001

� �
, ð20Þ

and is shown in Figure 4. The data are collected for four different frequencies. For each

frequency, nine different incident angles are considered. The four frequencies are given by

θ = θ9
θ = θ8
θ = θ7
θ = θ6
θ = θ5
θ = θ4
θ = θ3
θ = θ2
θ = θ1

Number of eigenvalues

N
or

m
al

iz
ed

 e
ig

en
va

lu
es

2520151050

1

0.1

0.01

0.001

0.0001

Figure 2. Normalized singular values of the coefficient matrix using the formulations for only one
frequency k¼ 10.

k = k3
k = k2
k = k1

Number of eigenvalues

N
or

m
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ed

 e
ig

en
va

lu
es

20151050

1

0.1

0.01

0.001

0.0001

Figure 3. Normalized singular values of the coefficient matrix using the formulations for only one
angle of incident � ¼ 	

18.
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ki¼ 10, 15, 17, 19, and the nine angles are given by �j ¼
	
18 ,

	
15 ,

	
10,

	
7 ,

	
5 ,

	
4 ,

	
3:5,

	
3 ,

	
2:5.

In order to model the noise in the data, the given data are contaminated with a zero-mean

white noise with the noise-to-signal ratio of 8%.
It is easy to note that the dimension of the least-square problem can become

exceedingly large, when all of the available data are used at the same time. In fact, the bulk

of the computational burden is in computing the matrix multiplication in Equation (19).

On the other hand, matrix–matrix calculation can be performed very efficiently on a

parallel machine. In what follows, the data for nine different incident angles are used at the

same time. However, the algorithm is repeated for each frequency.
For this study, we do not use anymethod to choose an optimal value for the parameter �.

This parameter controls the amount of smoothness that is imposed in the least-square
problem. We can start with a relatively large value for this parameter and monitor the error

as the iterations proceed. As we reduce this parameter, the error reduces at a faster rate.

There is also a minimum value for this parameter after which, if this parameter is reduced

further, then numerical instability sets in and the iterations diverge. For all the examples in

this article, there is a range for the value of � that can lead to successful inversion.
It is possible to start the algorithm from a uniform initial guess, i.e. ĝ(x, y)¼ 1 for the

first frequency k1¼ 10. After a reasonable amount of reduction in error is achieved,

it is then possible to use the collected data for the next frequency, i.e. k2¼ 15. The output
from the first iteration, using k¼ 10, can be used as the initial guess for the second

iteration, using k¼ 15. This process can be repeated for the remaining data. Figure 5

shows the recovered function which is in good agreement with the sought after function.

y

x

g(
x,

y)

2
1.8
1.6
1.4
1.2

1

1
0.8

0.6
0.4

0.2
010.80.60.40.20

Figure 4. The unknown function to be recovered in Example 1.

y

x

g(
x,

y)

2
1.8
1.6
1.4
1.2

1
0.8

1
0.8

0.6
0.4

0.2
010.80.60.40.20

Figure 5. The recovered function with 8% signal-to-noise ratio.
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For each frequency the algorithm is allowed to iterate 35 times. Figures 6 and 7 show two
cross-sections of the unknown function and compare them to the actual function. The
indicated functions are the outputs for each frequency. The parameter � is set at
�¼ 0.0005.

It is also possible to monitor the error as the iterations proceed. For each iteration, it is
possible to compute the error which is given by

Error¼
X61
‘¼1

ux‘ � ûx‘
� �2

, where ux‘ ¼ uxð0, ð‘�1ÞDyÞ and ûx‘ ¼ ûxð0, ð‘�1ÞDyÞ: ð21Þ

k=19
k=17
k=15
k=10
Exact

x

g(
x,

0.
3)

10.80.60.40.20

2

1.8

1.6

1.4

1.2

1

Figure 6. A cross-section of the recovered functions and their comparison to the actual function for
Example 1. The functions are the outputs from the algorithm using the data for the indicated
frequencies. The results are for a fixed value of y¼ 0.3.

k=19
k=17
k=15
k=10
Exact

y

g(
0.

3,
y)

10.80.60.40.20

2

1.8

1.6

1.4

1.2

1

Figure 7. A cross-section of the recovered functions and their comparison to the actual function for
Example 1. The functions are the outputs from the algorithm using the data for the indicated
frequencies. The results are for a fixed value of x¼ 0.3.
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Figure 8 shows the reduction in the error for the first example. The algorithm treats the

data for each frequency separately.

Example 2 We next consider an example with two targets. Consider boundary evaluation

of the function given by

gðx, yÞ ¼ 1þ exp �
ð0:25� xÞ4

0:00015

� �
exp �

ð0:7� yÞ4

0:00015

� �
þ exp �

ð0:45� xÞ4

0:00015

� �
exp �

ð0:3� yÞ4

0:00015

� �
:

ð22Þ

The actual function is also shown in figure 9. Figure 10 shows the recovered function. For

this case, the algorithm is allowed to iterate 50 times for each frequency. The parameter �
is chosen as �¼ 0.00035. Figures 11 and 12 show two cross-sections of the computed

function. The figures show the computed values after 50 iterations for each frequency and

compare them to the actual values. One can note that the algorithm can recover a better

estimate of the target that is closer to the boundary at which measurements are collected.
The algorithm exhibits a relatively good robustness to noise. For both examples, the

signal-to-noise ratio is 8%. Figure 13 shows the recovered function for the second

y

x

g(
x,

y)

2
1.8
1.6
1.4
1.2

1

10.80.60.40.201
0.8

0.6
0.4

0.2
0

Figure 9. The unknown function with two interior targets to be recovered in Example 2.

k=19
k=17
k=15
k=10

Number of iterations

E
rr

or

101

10000

1000

100

10

Figure 8. Reduction in the error for the four stages of the algorithm as functions of iterations for
Example 1. The algorithm performs 35 iterations for each frequency.

Inverse Problems in Science and Engineering 9

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
U
n
i
v
e
r
s
i
t
a
'
 
d
i
 
T
r
e
n
t
o
]
 
A
t
:
 
1
4
:
2
6
 
1
1
 
M
a
y
 
2
0
1
1



example, if the level of noise is reduced to 4%. As expected, a relatively better estimate of

the unknown function is obtained.
It is also possible to improve the results by using the recovered function, given in

Figure 13, as the initial guess for the algorithm. The algorithm in the present form uses the

data for the given four frequencies separately. Figure 14 shows the recovered function,

when the given data are used twice. Figures 15 and 16 compare the exact solutions to the

recovered functions at two different cross-sections.

Example 3 We next consider the same problem as in Example 2, and assume that the

data are collected at two sides. In other words, in addition to the data at x¼ 0, i.e. ux(0, y),

k=19
k=17
k=15
k=10
Exact

x

g(
x,

0.
3)

10.80.60.40.20

2

1.8

1.6

1.4

1.2

1

0.8

Figure 11. A cross-section of the recovered functions and their comparison to the actual function for
Example 2. The functions are the outputs from the algorithm using the data for the indicated
frequencies. The results are for a fixed value of y¼ 0.3.
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1
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0

Figure 10. The recovered function with 8% signal-to-noise ratio for Example 2. The algorithm
performs 50 iterations for each frequency.
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we assume that the flux at the top surface can also be provided, i.e. uy(x, 1). The two
problems that we consider for the error field are given in Figure 17, where the error in the
flux at the top boundary is given by 
(x)¼ uy(x, 1)� ûy(x, 1). For this case, we choose the
noise-to-signal ratio as 0.04% and keep the same angles of incident and frequencies.
Figure 18 shows the recovered function. Figures 19 and 20 show the recovered function at
two cross-sections and compare them to the actual function. The results are somewhat
better. The recovered function for the target that is close to the top boundary compares
better with the actual function. The parameter � is chosen as �¼ 0.00085. Similar to
Example 2, it is also possible to improve the results by using the recovered function as the
initial guess for the algorithm and use the data again.
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Figure 12. A cross-section of the recovered functions and their comparison to the actual function for
Example 2. The functions are the outputs from the algorithm using the data for the indicated
frequencies. The results are for a fixed value of y¼ 0.7.
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Figure 13. The recovered function with 4% signal-to-noise ratio for Example 2. The algorithm
performs 50 iterations for each frequency.
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The results for the unknown function show little sensitivity to the angle of incident for

the incoming wave, i.e. �, as long as the chosen angles are such that they generate

measurements that are linearly independent. In terms of the frequency of the incoming

wave, our limitation is in terms of the accuracy of the forward problem. Results were less

accurate for certain frequencies that are close to the eigenvalues of Helmholtz’s operator.

However, since we do not know the unknown function, therefore it is not possible to know

these frequencies a prior.
Using the additional data in Example 3, it is possible to generate two forward

problems. With two forward problems, it is possible to generate two equations for the
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Figure 15. A cross-section of the recovered functions and their comparison to the actual function for
Example 2, using the recovered function given in Figure 13 as the initial guess. The functions are the
outputs from the algorithm using the data for the indicated frequencies. The results are for a fixed
value of y¼ 0.3.

y

x

g(
x,

y)

1.6
1.5
1.4
1.3
1.2
1.1

1
0.9
0.8

10.80.60.40.201
0.8

0.6
0.4

0.2
0

Figure 14. The recovered function for Example 2, when the recovered function given in Figure 13 is
used as the initial guess.
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Figure 16. A cross-section of the recovered functions and their comparison to the actual function for
Example 2, using the recovered function given in Figure 13 as the initial guess. The functions are the
outputs from the algorithm using the data for the indicated frequencies. The results are for a fixed
value of x¼ 0.45.
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Figure 18. The recovered function with 4% signal-to-noise ration for Example 3.
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Figure 17. Two elliptic problems for the error field with additional measurements used in
Example 3.
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unknown function. Using two forward problems, we were able to improve the results
significantly for an inverse parabolic problem [26]. Here, we are limited by the available
computational resources. The algorithm can be improved in a number of ways, and they
will explored in future works.

4. Conclusions

In this article, we studied the application of a new method to the subsurface material
identification for the Helmholtz equation. The method shows good robustness to
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Figure 20. A cross-section of the recovered functions and their comparison to the actual function for
Example 3. The functions are the outputs from the algorithm using the data for the indicated
frequencies. The results are for a fixed value of x¼ 0.45.
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Figure 19. A cross-section of the recovered functions and their comparison to the actual function for
Example 3. The functions are the outputs from the algorithm using the data for the indicated
frequencies. The results are for a fixed value of y¼ 0.3.
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the noise. Results can be improved by collecting measurements at additional locations on
the boundary. The method is general and can, in principle, be applied to the Helmholtz
equation with any incident frequency. The results presented here are for low-range
frequencies. This is entirely a numerical issue. Numerical results can also be greatly
improved by using a finer mesh and/or, more accurate finite-difference approximations.
The targets in both examples include regions with very high gradients and smaller mesh
sizes are indeed required for accurate calculation of the working equations. It is also
possible to change the ordering in the algorithm. In other words, it is possible to include
the formulations for the four frequencies in each iterations. The algorithm can then be
repeated individually for each incident angle. All of these issues will be addressed in
future works.
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