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We address a certain inverse problem in ultrasound-modulated optical tomography: the recovery of the amplitude
of vibration of scatterers [pðrÞ] in the ultrasound focal volume in a diffusive object from boundary measurement of
the modulation depth (M) of the amplitude autocorrelation of light [ϕðr; τÞ] traversing through it. Since M is de-
pendent on the stiffness of the material, this is the precursor to elasticity imaging. The propagation of ϕðr; τÞ is
described by a diffusion equation from which we have derived a nonlinear perturbation equation connecting pðrÞ
and refractive index modulation [ΔnðrÞ] in the region of interest to M measured on the boundary. The nonlinear
perturbation equation and its approximate linear counterpart are solved for the recovery of pðrÞ. The numerical
results reveal regions of different stiffness, proving that the present method recovers pðrÞ with reasonable quan-
titative accuracy and spatial resolution. © 2011 Optical Society of America

OCIS codes: 170.3880, 170.3660, 170.7180, 170.3010, 170.4580, 100.3190.

1. INTRODUCTION
Ultrasound-modulated optical tomography (UMOT) [1,2] is an
imaging technique that combines the advantages of diffuse op-
tical tomography in producing optical property images with
those of ultrasound (US) in producing images of better spatial
resolution, because ultrasound scatters very little compared
to light in soft tissue. The US, often focused, produces com-
pression and rarefaction in a selected focal volume, the region
of interest (ROI) being looked at, causing local refractive in-
dex modulation and vibration of the scattering particles [3].
These effects cause light passing through the ROI to be phase
modulated and Doppler shifted [4]. These Doppler-shifted so-
called “tagged” photons carry local information pertaining to
the ROI and, on detection on the boundary of the object, can
be used to reconstruct, primarily, the optical contrast of the
ROI noninvasively. In the beginning in UMOT, the strength of
the detected tagged photons is used to produce a qualitative
map of the averaged optical absorption coefficient (μa) of the
ROI, and a μa image is obtained by scanning the object with
ultrasound focal volume. The measurement is the modulation
depth (M) of the speckle pattern in the exiting near-IR (NIR)
light [5], which represents the strength of the tagged photons.

Since a μa image, which is organized from the measured M
as a gray-level plot, does not contain quantitative information,
it has very little diagnostic value. Medical diagnostic imaging
should lead to an accurate recovery of optical (μa) and me-
chanical (Young’s modulus E) properties of the affected re-
gion, from which valuable functional parameters can be
ascertained. Therefore, many have attempted to relate M to

the optical and mechanical properties of the object through
equations. However, the current developments in UMOT stop
short of an explicit procedure for quantitative recovery of
these useful parameters from M . The aim of the present work
is to make a beginning in this direction by recovering the US-
induced amplitude of oscillation at the ROI.

One of the first steps in this direction was taken when the
effect of the ultrasound on the ROI was modeled in [2,6,7]. It is
found that the ultrasound forcing mainly produces a modula-
tion in refractive index (Δn) and an oscillation of the scatter-
ing particles at the frequency of the ultrasound. (The
modulation produced in the local μa is very small and is
not considered.) Combined, Δn and the oscillation give a
phase modulation to the ultrasound-tagged light, which on in-
terference with the untagged photons produces a speckle pat-
tern whose modulation is dictated by the above-mentioned
two effects of the ultrasound forcing. The measured M is also
affected by the local μa in the ROI.

To finally relate M to μa, Δn, and p, one needs a photon
transport model that takes into account the effect of pertur-
bation created by the ultrasound. The model which uses light
fluence as the basic dependent quantity is insufficient to ac-
count for the dynamics of the scattering particles in the ROI.
However, in the well-established field known as diffusing
wave spectroscopy (DWS) [8,9], one uses models, where the
basic quantity of interest is related to the mutual coherence of
light, the amplitude correlation ϕðr; τÞ. The ϕðr; τÞ is also af-
fected by the dynamics of the particles in the body over and
above the optical properties such as μa and μs (scattering
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coefficient). In DWS one studies the temperature driven Brow-
nian motion experienced by the scattering centers. In UMOT,
to this scenario we bring in a deterministic dynamics, the os-
cillations and compressions produced by ultrasound forcing.
Therefore, the model of light transport eminently suited in
UMOT is the correlation transport equation (CTE) or its
diffusive approximation, the correlation diffusion equation
(CDE), in both of which the dependent quantity is either a
scattering-angle-dependent or angle-averaged ϕðr; τÞ. Tomo-
graphic recovery with DWS data was attempted in [10,11],
and in the context of UMOT, transport models for ϕðr; τÞ have
been established through a number of publications in the past
[12,13]. In both the CTE and CDE, it is assumed that kaltr ≫ 1,
where ka is the modulus of the acoustic wave vector and ltr is
the transport mean free path [6]. Since the amplitude of vibra-
tion in the ROI depends on the elastic properties of the object
(i.e., E, assuming the body purely elastic), it is possible to con-
nect the UMOT measurements to Young’s modulus of the ma-
terial in the ROI through pðrÞ [14].

Our objective in this work is to consider the following in-
verse problem associated with the UMOT: the recovery of the
causes of the phase modulation, Δn, and the amplitude of os-
cillations from the measured modulation in ϕðr; τÞ, r ∈ ∂Ω.
Here ∂Ω represents the boundary of the domain Ω. While
we have taken into account both these effects in our forward
model to compute M , we note that the recovery here is re-
stricted to pðrÞ, leaving a complete recovery of both the
parameters to a future publication. Since the tissue is assumed
incompressible, and at US excitation of 1MHz only compres-
sive modes are excited, the change in density (and henceΔn)
is, however, quite small. Writing the CDE as a perturbation
equation connecting ϕδðr; τÞ, the perturbations in ϕðr; τÞ, to
the localized effects introduced by ultrasound, we reformulate
the UMOT inversion as a source recovery problem [15]. This
recovery of the unknown pðrÞ [Eq. (12) in Subsection 2.A] is a
nonlinear problem due to the appearance of pðrÞ in the left-
hand side (LHS) as well. We have solved for pðrÞ, first linear-
izing the above equation and then solving the nonlinear equa-
tion without recourse to linearization.

We employ a Gauss–Newton scheme [16] to minimize the
mean square error between the experimental (here numeri-
cally simulated and noise added) and computed mea-
surements, which are derived from ϕδðr; τÞjr∈∂Ω. Our measure-
ment M on ϕδðr; τÞ is obtained through time Fourier
transforming ϕδðr; τÞ and taking the modulus of this Fourier
transform at ω ¼ ωa, the frequency of the ultrasound. The rest
of the paper is organized as follows: in Section 2, we describe
the CDE for the propagation of ϕðr; τÞ in a tissuelike medium
insonified with a focused ultrasound. A nonlinear perturba-
tion model for the perturbations in amplitude autocorrelation
induced by the ultrasound is derived from the CDE. A linear
perturbation model is also arrived at by linearizing the non-
linear model around p ¼ 0. The inverse problem of recovering
the function p using the derived nonlinear/linear perturbation
models and the measurement M is formulated as a least
square minimization problem. The construction of a Jacobian
for the measurement with respect to p is discussed in detail in
this section for both models. The numerical results showing
the recovered image using the least square inversion algo-
rithm are presented in Section 3. Finally, the concluding re-
marks are given in Section 4.

2. DIFFUSION MODEL FOR THE
PROPAGATION OF AMPLITUDE
CORRELATION
The background to this work is taken from the publications
of Sakadzic and Wang [12,17]. As indicated in Section 1,
the model that describes coherent light propagation in a dif-
fusive medium insonified by US is built on the existing models
of DWS. The US brings in a local deterministic “dynamics” due
to the force applied in the focal volume, resulting in oscilla-
tions of scattering particles and a modulation of the refrac-
tive index.

Following the outline given in [12], the phase modulations
arising in the path due to the two causes are given respec-
tively by

φo
a;bðtÞ ¼ k̂s · ðdbðtÞ − daðtÞÞ ð1Þ

and

φn
a;bðtÞ ¼

η
ρv2a

Z
rb

ra

Aðr; tÞdr; ð2Þ

giving the overall phase modulation

φa;b ¼ φo
a;b þ φn

a;b: ð3Þ

Here, we have considered two typical scattering events
from positions ra and rb, which have themselves suffered
displacements of da and db, and k̂s denotes the unit vector
along rb − ra. The modulated refractive index is given by
nðr; tÞ≔n0½1þ ηAðr;tÞ

ρv2a
�, where Aðr; tÞ ¼ Aa cosðωat − ka · rþ ϕÞ

is the assumed plane US pressure wave with Aa being its am-
plitude, ωa the angular frequency, ka the wave vector, ρ the
material density, va the US speed, η the elasto-optic coeffi-
cient, and ϕ an initial phase. Moreover, da (or db) is given by

da ¼ Pa

kaρv2a
sinðωat − ka · ra þ φinÞ: ð4Þ

Here, Pa is the vector amplitude of oscillation of the scat-
tering particle at ra (which is obtained by setting up and
solving a momentum balance equation, where the ultrasound
forcing and the local elastic properties enter in),ωa and ka are,
respectively, the angular frequency and the propagation vec-
tor of the ultrasound, and φin is an initial phase attributed
to light.

We track one of the basic coherent properties, namely the
specific intensity Iðr; k̂s; τÞ derived from the mutual coherence
function hEaðra; tÞE�

bðrb; tþ τÞi expressed in the center of
gravity coordinate system. Using Eq. (3) we can find the phase
increment ΔφðτÞ in time τ along the scattering path rb − ra
as ΔφðτÞ ¼ φa;bðtþ τÞ − φa;bðtÞ. Using the assumption that
kaltr ≫ 1, i.e., when the length scale associated with diffusive
light propagation is very large compared to the acoustic wave-
length, phase increments contributed from different scatter-
ing events are uncorrelated, and therefore hΔφiltr ¼ 0. From
this we write

hexpðjΔφÞi ≈ 1 − jrb − rajl−1tr
hΔφ2iltr

2
; ð5Þ
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where hΔφ2iltr can be computed as in [12]:

hΔφ2iltr ¼ jPaj2 sin2
�ωaτ

2

� ðltrka · k̂sÞ2
1þ ðltrka · k̂sÞ2

�
S2
aðk̂s · k̂aÞ2

þ η2

ðk̂s · k̂aÞ2
− 2ηSa

�
: ð6Þ

Here Sa, as noted in [12], represents the deviation of the
scattering particles’ movement in the ROI from the motion
of the surrounding material. Since Pa itself represents the am-
plitude of oscillation introduced by the ultrasound forcing in
the ROI, Sa can be absorbed into Pa. Using Eqs. (5) and (6) one
can compute the increment in specific intensity, ΔI, due to
scattering from ra in the direction rb as

ΔI ¼ Iðra; k̂0s; τÞ expð−μtjrb − rajÞ
�
1 − jrb − rajμt

hΔφ2iltr
2

�
;

ð7Þ

where μt is the total attenuation coefficient, i.e., μt ¼ μa þ μs.
From Eq. (7) a transport equation for Iðra; k̂0s; τÞ can be de-
rived as

k̂s ·∇Iðr; k̂s;τÞ¼−ðμaþμsÞIðr; k̂s;τÞþSðr; k̂sÞ

þμs
Z
4π
pðk̂s; k̂0zÞ

�
1−

1
2
hΔφ2iltr

�
Iðr; k̂0s;τÞdk̂0s:

The above is the CTE derived in [12]. By expanding
Iðr; k̂s; τÞ in spherical coordinates as Iðr; ŝ; τÞ ¼ 1

4π ðϕðr; τÞþ
3k̂sJðr; τÞÞ, one can derive a diffusion-type equation satisfied
by ϕðr; τÞ ¼ R

Iðr; k̂s; τÞdk̂s, which is the CDE:

−∇ · D∇ϕðr; τÞ þ ðμa þ μsφ̂ðτÞÞϕðr; τÞ ¼ S0ðr0Þ; ð8Þ

where

φ̂ðτÞ ¼ 1
2
jPaj2 sin2

�ωaτ
2

��
η2ðkaltrÞ tan−1ðkaltrÞ þ

S2
a

3
− 2ηSa

�
:

In Eq. (8), D ¼ 1=ð3ðμa þ μ0sÞÞ is the optical diffusion coeffi-
cient and S0ðr0Þ is the isotropic source at r0 ∈ Ω. Equation (8)
comes with the boundary condition

ϕðr; τÞ þ D
∂ϕðr; τÞ

∂n
¼ 0; r ∈ ∂Ω:

If the Brownian motion caused by temperature is also
accounted for, Eq. (8) becomes

−∇ · D∇ϕðr; τÞ þ ðμa þ μsφ̂ðτÞ þ Bðr; τÞÞϕðr; τÞ ¼ S0ðr0Þ;

where Bðr; τÞ ¼ 2μ0sk20DBτ and DB is the particle diffusion
coefficient at the insonified volume. For simplicity of notation,
we use p to denote the quantity jPaj2 and call it the amplitude
of vibration (in square centimeters). In the absence of ultra-
sound forcing, the above equation reduces to

−∇ · D∇ϕðr; τÞ þ ðμa þ Bðr; τÞÞϕðr; τÞ ¼ S0ðr0Þ; ð9Þ

with the boundary condition

ϕþ D
∂ϕ
∂n

¼ 0:

Considering the ultrasound probing as a source of pertur-
bation, we rewrite Eq. (8) as Eq. (9) perturbed by the presence
of ultrasound forcing in the ROI, causing ϕ to change to
ϕþ ϕδ:

−∇ · D∇ðϕþ ϕδÞðr; τÞ þ ðμa þ Bðr; τÞ
þ AðτÞχIpðr; τÞÞðϕþ ϕδÞðr; τÞ ¼ S0ðr0Þ;

ð10Þ

with the boundary condition

ðϕþ ϕδÞðr; τÞ þ D
∂ðϕþ ϕδÞðr; τÞ

∂n
¼ 0; r ∈ ∂Ω:

Here AðτÞ ¼ 1
2 sin

2ðωaτ
2 Þ½η2ðkaltrÞ tan−1ðkaltrÞ þ S2

a
3 − 2ηSa�, and

χI is the characteristic function of the insonified ROI. In
UMOT the measurement, M , that is available to reconstruct
the function p is the Fourier transform of ϕðr; τÞ with respect
to τ on the object boundary given by

Mðp; r;ωÞ ¼
Z

∞

0
ðϕþ ϕδÞðr; τÞe−jωτdτ; r ∈ ∂Ω: ð11Þ

Since our objective is to recover the amplitude of vibration
introduced by the external force from the ultrasound operat-
ing at ω ¼ ωa, the most appropriate measurement would be
the one based on the Fourier transform of ϕδðr; τÞ, given by

~Fðp; r;ωaÞjr∈∂Ω ¼
Z

∞

0
ϕδðr; τÞe−jωaτdτ: ð12Þ

From Eq. (12) we get our measurement as Fðp; r;ωaÞ ≈
~Fðp; r;ωaÞ [18]. In any UMOT experiment, one in fact mea-
suresM of Eq. (11) by time Fourier transforming ϕþ ϕδ. How-
ever, ~Fðp; r;ωaÞ can be obtained from such Mðp; r;ωaÞ by
removing its background at ω ¼ ωa. With this measurement,
the UMOT problem can be restated as the recovery of p in the
insonified region I given the boundary measurements fFg.
This inverse problem is essentially a nonlinear coefficient re-
covery problem, which has a linear approximation, wherein it
becomes a source recovery problem. We discuss these formu-
lations in the following sections.

A. Nonlinear Perturbation Equation Connecting
ϕδ and p
The nonlinear perturbation equation connecting ϕδ to p is
easily derived from Eqs. (9) and (10) as

−∇ · D∇ϕδðr; τÞ þ ðμa þ Bðr; τÞ þ AðτÞχIpðr; τÞÞϕδðr; τÞ
¼ −AðτÞχIpϕ; ð13Þ

with the boundary condition

ϕδðr; τÞ þ D
∂ϕδðr; τÞ

∂n
¼ 0; r ∈ ∂Ω: ð14Þ
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Even though our objective is to recover p from boundary
measurements of ϕδ, we take a small detour here to discuss
the conditions under which ϕδ is sufficiently smooth so that
convergence of the numerical algorithm for inversion of p is
guaranteed. It turns out, as stated in Remark 1 below, that the
same conditions also guarantee a smooth enough source due
to the perturbation from the ultrasound source. To start with,
we assume that the optical and mechanical property distribu-
tions satisfy the following conditions: D0 ≤ D ≤ �D, 0 ≤ DB ≤ �DB,
0 ≤ μa ≤ �μa, and 0 ≤ Bðr; τÞ ≤ �B for any τ. Here quantities such
as �DB represent maximum values in the ROI.

Remark 1. With the above assumptions and because S0ðr0Þ
in Eq. (9) is a δ-source, one can, through the method of trans-
position [19], show that there exists ϕð·; τÞ ∈ L2ðΩÞ that is a
unique solution to Eq. (9). In particular, Eq. (9) does not fall
within the framework of H1ðΩÞ-based variational theory, and
thus it cannot be numerically solved by the standard finite ele-
ment method without considerable refining of the mesh close
to r0. This could present difficulties for the implementation of
an iterative least squares reconstruction algorithm, which ty-
pically requires repetitive solution of the forward problem.
Fortunately, Eq. (13), the forward problem of UMOT, has
the unique solution ϕδð·; τÞ ∈ H1ðΩÞ through the Lax–Milgram
lemma, which also demonstrates that Eq. (13) can be solved
with the finite element method, circumventing complications
due to lack of smoothness.

Allowing a small abuse of notation, we denote by F the
nonlinear operator, which takes p and produces the measure-
ment of Eq. (12), making use of Eqs. (13) and (14). The inver-
sion of F is posed as the following nonlinear minimization
problem:

minimize
p∈L∞ðΩÞ

ΘðpÞ ¼ 1
2
∥F ðpÞ − F e∥2

L2ð∂ΩÞ þ
β
2
∥p∥2

L2ðIÞ: ð15Þ

Here the second term is a regularization term where β > 0
is an appropriately chosen regularization parameter and F e is
the experimental data measured on ∂Ω. A Newton algorithm
for the above minimization problem is pðiþ1Þ ¼ pðiÞ−
HðpðiÞÞ−1GðpðiÞÞ, where H and G denote the Hessian and gra-
dient of Θ, respectively, approximated by HðpÞðδpÞ ¼
DF �ðpÞDF ðpÞðδpÞ þ βðδpÞ and GðpÞ ¼ DF �ðpÞðF ðpÞ − F eÞþ
βp. Also DF denotes the Fréchet derivative of F [the compo-
site operator given by Eqs. (12)–(14)] and DF � its adjoint. We
now proceed to derive an expression for the derivative f∂F

∂pg
(i.e., the rate of change of measurement with respect to the
parameter we would like to recover), from which we can ap-
proximate both G and H and set up the Newton iteration to
recover p.

The Fréchet derivative of Eq. (13) can be obtained by per-
turbing p by pδ, resulting in a perturbation in ϕδ, which is de-
noted by ϕ2δ. The equation for the Fréchet derivative is

−∇ · D∇ϕ2δ þ ðμa þ Bðr; τÞ þ AðτÞχIpÞϕ2δ

¼ −AðτÞχIpδðϕþ ϕδÞ; ð16aÞ

with the boundary condition

ϕ2δðr; τÞ þ D
∂ϕ2δðr; τÞ

∂n
¼ 0; r ∈ ∂Ω: ð16bÞ

The adjoint of Eq. (16) is given by

−∇ · D∇ψ þ ðμa þ Bðr; τÞ þ AðτÞχIpÞψ ¼ 0; ð17aÞ

with the boundary condition

ψ þ D
∂ψ
∂n

¼ qþ; ð17bÞ

where qþ is a boundary (point) source. Multiplying Eq. (16) by
ψ and Eq. (17) by ϕ2δ, integrating over Ω and using Green’s
theorem, we get

Z
∂Ω

qþϕ2δ ¼ −

Z
Ω
AðτÞχIpδðϕþ ϕδÞψ :

For a perturbation ϕ2δ in ϕδ, the perturbation in the actual
measurement is F 2δ ¼ R

∞
0 ϕ2δe−jωaτdτ. Therefore, the rate of

change in the actual measurement F with respect to pj ,
i.e., the value of p around rj ∈ Ω, can be approximated via
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Fig. 1. (Color online) (a) Gray-level image of the object used in the
simulations given in terms of pðrÞ where the insonified region has one
inhomogeneous inclusion, (b) gray-level image of the object used in
the simulations given in terms of pðrÞ where the insonified region has
two inhomogeneous inclusions.
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�
∂F
∂pj

�
i
¼ −

Z
∞

0
½AðτÞχIðϕþ ϕδÞGψ

Re
−jωaτ�r¼rjdτ: ð18Þ

Here Gψ
Rðr;mi; τÞ is Green’s function for the adjoint opera-

tor defined by Eq. (17), i.e., Gψ
Rðr;mi; τÞ solves Eq. (17) with a

boundary source qþ ¼ δmi
, a delta source at the ith detector

location. Once we have the Jacobian (the finite dimensional
equivalent of DF) we can set up an iterative procedure, the
details of which are given in earlier publications [20,21].

B. Recovery of p Using a Linearized Perturbation
Equation
Neglecting the higher order term AðτÞχIpϕδðr; τÞ from the
LHS of Eq. (13), we get the following approximate model:

∇ · D∇ϕδðr; τÞ − ðμa þ Bðr; τÞÞϕδðr; τÞ ¼ AðτÞχIpϕðr; τÞ; ð19Þ

which is the linearized version of Eq. (13) around p ¼ 0.
However, the inverse problem of recovering p from boundary
measurements is still ill posed. Therefore, we take recourse to

setting up and solving a least square error minimization pro-
blem as in Eq. (15). In the present case, while deriving and
implementing the Newton iteration, some simplifications in
computation can be effected. For example, the partial differ-
ential equation (pde) part [Eq. (19)] of the Fréchet derivative
of the forward operator has the same structure as the forward
operator pde [Eq. (9)], and therefore, en route to implement-
ing the Jacobian, one needs only to use the adjoint of Eq. (9),
which is

∇ · D∇ψðr; τÞ − ðμa þ Bðr; τÞÞψðr; τÞ ¼ 0; ð20aÞ

along with the boundary condition

ψ þ D
∂ψ
∂n

¼ qþ: ð20bÞ

Implementing the variational form of Eq. (19) with ψ [the
solution of Eq. (20)] as the test function and imposing the con-
dition given by Eq. (20), we have

Z
∂Ω

qþϕδ ¼ −

Z
Ω
AðτÞχIψpϕ: ð21Þ
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Fig. 3. (Color online) (a) Same Fig. 2(a), but obtained from the ob-
ject in Fig. 1(b), (b) same Fig. 2(b), but obtained from the reconstruc-
tions of Fig. 3(a).
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Fig. 2. (Color online) (a) Recovered image obtained from the object
of Fig. 1(a) using the nonlinear-perturbation-equation-based algo-
rithm. Data for the algorithm were generated taking refractive index
modulation into account as well. (b) Cross-sectional plot through the
center of the inhomogeneity in Fig. 2(a) compared with a similar plot
from the original in Fig. 1(a).
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Taking qþ ¼ δmi
, a delta source atmi ∈ ∂Ω, and using Eq. (21),

we can thus approximate the needed Jacobian as

�
∂F
∂pj

�
i
¼ −

Z
∞

0
½AðτÞχIϕGψ

Re
−jωτ�r¼rjdτ; ð22Þ

where Gψ
R solves Eq. (20) with qþ ¼ δmi

and F still denotes the
operator that maps p to the measurement.

Remark 2. In our experience, even though reconstructions
based on the nonlinear inverse model of Section 2.A are more
accurate than those provided by the linearized version of this
section, there seems to be no prominent observable difference
in results, except in the case where Δn is included when the
linear algorithm failed to converge (see the numerical results
in Section 3). When the tissue is assumed incompressible, it is
reasonable to neglectΔn. This being true in all practical situa-
tions, since the term AðτÞχIpϕδðr; τÞ on the LHS of the
nonlinear model makes it more involved from the computa-
tional point of view, the linearized model introduced above
seems adequate to provide a reconstruction in most of
the cases.

Since the experimental data generation involves finding the
Fourier transform of the overall intensity autocorrelation at
ω ¼ ωa and removing the bias provided by the temperature-
induced Brownian motion, an easier route to compute the for-
ward measurementΦδðωaÞ is by solving the Fourier transform
of Eq. (19) for ΦδðωÞ without the term Bðr; τÞ, i.e.,

− ∇ · D∇ΦδðωaÞ þ ðμa þ
C0

2
χIpÞΦδðωaÞ ¼ −

C0

2
χIpπ: ð23Þ

We also note that for a proper recovery of p in the ROI it is
necessary to have data from multiple source locations, as
learned from our numerical simulations.

3. SIMULATION RESULTS AND
DISCUSSION
The iterative algorithm starts by solving the forward propaga-
tion equation using an initial guess of p, which is the value of p
corresponding to the background healthy tissue, which is as-
sumed to be known. At each iteration an update is calculated
using the expression

Δp ¼ ðJTJ þ λIÞ−1JTΔF ;
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Fig. 5. (Color online) (a) Same as Fig. 4(a), but obtained from the
object shown in Fig. 1(b), (b) cross-sectional plot through the center
of the inhomogeneities of the reconstruction in Fig. 5(a).
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Fig. 4. (Color online) (a) Same as Fig. 2(a), except that data used are
generated without taking refractive index modulation into account,
(b) cross-sectional plot through the center of the inhomogeneity of
the reconstruction in Fig. 4(a).
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whereΔF ¼ F c − F e,Δp ¼ pðiþ1Þ − pðiÞ, and J is the Jacobian
matrix. Here F c is the computed measurement and F e is the
experimental measurement, which is generated by solving
Eqs. (9) and (13) using a finer finite-element mesh and adding
noise. In the nonlinear-perturbation-model-based inversion al-
gorithm, Eq. (13) is used as the forward propagation model
and the expression in Eq. (18) is used to compute the Jaco-
bian. Since the computation of forward data and the Jacobian
depend on τ, the forward problem in Eq. (13) and the adjoint
in Eq. (17) have to be solved for each τ. The update is com-
puted for each source position, and this process is iterated
several times until the ∥ΔF∥ goes below a certain tolerance
level. The same iterative procedure is adopted for the inver-
sion based on the linear perturbation model also, where we
solve Eq. (19) to generate the forward data and use Eq. (22)
to compute the Jacobian matrix. In this case, the experimental
data are generated by solving the nonlinear model in Eq. (13),
once again with a finer mesh and adding noise to actually mi-
mic experimental data. As the inverse problem is linear, it is
enough to do a one-step inversion that, in principle, should
give a good reconstruction of p. However, when the simula-
tions are carried out with only one light source position (a

single view from one light source), the algorithm fails to re-
construct p. Therefore, in order to get a proper reconstruc-
tion, we have to change the position of the light source and
do the inversion for each view in an iterative manner.

The object used for numerical simulations is a circular disc
of radius 0:25 cm. The background optical and mechanical
properties of the tissue are set as μa ¼ 0:001 cm−1, μ0s ¼
20 cm−1, and DB ¼ 10−9 cm2 sec. A two-dimensional cross sec-
tion of a hyperboloid region centered at (0, 0:125 cm) with
waist radius 0:0375 cm and height 0:2 cm is set as the insoni-
fied region I, where the amplitude of vibration of scatterers
(i.e., p) assumes a value of 1 × 10−7 cm2. We consider two
cases: the ROI with a single circular inhomogeneous region
of radius 0:025 cm centered at the waist and one with two in-
homogeneous regions centered at (0:125 cm, 0:07 cm) and
(0:125 cm, −0:07 cm), in which the value of p is 5 × 10−7 cm2.
The ultrasound frequency is set at f a ¼ 1MHz.

With these objects we have broadly generated two sets of
experimental data, one in whichΔn is included in the forward
operator and the other without this inclusion. For simulating
experimental data, we use 1243 nodes and 2376 triangular
elements in the finite element method (FEM) discretization
of Eq. (13). With this scheme, the FEM with a bilinear basis
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Fig. 7. (Color online) (a) Same as Fig. 6(a), but for the object shown
in Fig. 1(b), (b) cross-sectional plot through the center of the inhomo-
geneity of the reconstruction of Fig. 7(a).
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Fig. 6. (Color online) (a) Same as Fig. 4(a), except that the recon-
struction algorithm uses the linear perturbation equation, (b) cross-
sectional plot through the center of the inhomogeneity of the recon-
struction of Fig. 6(a).
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function is used to generate the forward solution for τ, ranging
from 0 s to 5 × 10−7 s with an increment of 5 × 10−8 s. To this ϕδ

at the boundary, we add 1% Gaussian noise and then calculate
the measurement ~F given in Eq. (12) to generate the experi-
mental data for a single source position. In order to get the
complete set of experimental data F e, the above procedure
is repeated for each of the source positions obtained by rotat-
ing the source and the set of detectors (17 in our case, placed
equiangularly, one at the diametrically opposite point to the
source and the others on either side of it) by 19 degrees to
generate 18 sets of 17 readings each.

To avoid the so-called “inverse crime,” we use a coarser
mesh for the inversion algorithm consisting of 901 nodal
points with 1710 triangular elements. The reconstruction algo-
rithm is initiated with a background value of p ¼ 1 × 10−7 cm2

in the insonified region I. Since Eqs. (18) and (22) contain the
characteristic function χI on the right-hand side, the dimen-
sion of the Jacobian matrix is nI ×m, where nI is the number
of nodes in the region I and m is the number of detectors.

Thus the update is computed only for the region I, and in
the UMOT the illposedness is reduced considerably compared
to the diffuse optical tomography problem. By trial and error,
regularization parameter λ used in the algorithm is fixed for
inversions using linear and nonlinear perturbation equations.
In the nonlinear case, when Δn is included, the initial λ was
kept at 10−7 and adaptively reduced by a factor of 2 at each
iteration if error Θi is less than Θi−1: The algorithm is termi-
nated when

100

�Θi −Θi−3

Θi−3

�
< 0:1: ð24Þ

For the nonlinear case without Δn, initial λ is 10−5 and is kept
constant until the stopping criterion mentioned above is met.
When the linear perturbation equation is used, the algorithm
that took Δn into account, as indicated earlier, did not
converge. When Δn is omitted, convergence is obtained by
choosing an initial λ of 10−8 and decreasing it by half in each
iteration when Θi is less than Θi−1.

0 5 10 15 20 25 30 35 40
2

3

4

5

6

7

8

9

10

11
x 10

−11

Iteration

Θ

0 5 10 15 20 25 30 35 40
1.34

1.36

1.38

1.4

1.42

1.44

1.46
x 10

−6

Iteration

||p
or

ig
in

al
−

p re
co

ve
re

d|| 22

Fig. 8. (Color online) (a) Plot of the data domain error Θi versus
iteration number, i, for the object given in Fig. 1(b) with refractive
index modulation included in the simulation. The reconstruction uses
the nonlinear perturbation equation. (b) Plot of the object domain er-
ror ϵi ¼ ∥poriginal − precovered∥22 versus iteration number, i, for the ob-
ject given in Fig. 1(b) with refractive index modulation included in the
simulation. The reconstruction algorithm uses the nonlinear perturba-
tion equation.
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Fig. 9. (Color online) (a) Same as Fig. 8(a), except that data used are
generated without taking refractive index modulation into account,
(b) same as the one in Fig. 8(b), except that data used are generated
without taking refractive index modulation into account.
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The original distribution of pðrÞ used to generate the experi-
mental data is shown in Figs. 1(a) and 1(b). For the object
given in Fig. 1(a), the recovered pðrÞ, using the nonlinear per-
turbation equation with Δn included in the data generation
step, is shown in Fig. 2(a). A cross-sectional plot through
the center of the inhomogeneity for the above reconstruction
is shown in Fig. 2(b). For comparison, a cross section across
the original object is also shown. When the above data are
used in a linear-perturbation-based algorithm, we did not
get convergence. Figures 3(a) and 3(b) are similar reconstruc-
tion and cross-sectional plots corresponding to the object of
Fig. 1(b).

When Δn was not included in the data generation step, we
obtained reconstructions with both the linear and nonlinear
algorithms. Figures 4 and 5 give reconstructions and cross-
sectional plots when the nonlinear algorithm is used against
data from Figs. 1(a) and 1(b) respectively. Corresponding re-
constructions using the linear algorithms are shown in Figs. 6
and 7. Figures 8(a) and 8(b) show the data domain and object
domain error plots (mean square error of the reconstructions
with respect to original known object), respectively, for the
case when the nonlinear-perturbation-equation-based model

is used with refractive index modulation included in the data
generation. In this case the data are generated using the object
given in Fig. 1(b). Figure 9 is the same as Fig. 8 except that the
refractive index modulation is not included in the data genera-
tion. The error plots for the linear-perturbation-equation-
based inversion algorithm for the object given in Fig. 1(b)
are shown in Fig. 10. The position of the inhomogeneity is re-
covered satisfactorily in all reconstructions, whereas the con-
trast recovery is generally poor. It is seen that the algorithm is
able to reconstruct up to 50% of the original value of p with a
reasonably good spatial resolution.

4. CONCLUSIONS
The noninvasive imaging of tissue elastic properties using
both light and ultrasound is a very promising hybrid method
for the diagnosis of cancer. In this work we have developed a
numerical algorithm for noninvasive imaging of amplitude of
vibration of scatterers, p, inside a tissuelike medium using a
near-IR light source and a focused ultrasound. Two forward
propagation models, namely, linear and nonlinear perturba-
tion models, based on the CDE were developed for this pur-
pose. The nonlinear perturbation model was developed by
rewriting the CDE for the perturbations in the amplitude cor-
relation induced by the introduction of ultrasound in the light
propagation path. The linear perturbation model is then de-
rived from the nonlinear model by linearizing the equation
with respect to the function p around zero. We then define
a measurement ~F based on the Fourier transform of the solu-
tion of the nonlinear/linear models with respect to correlation
time τ. As the inverse problem of recovering p from the func-
tion ~F is an ill-posed problem, we reformulate it as a least
square minimization problem. The Hessian and gradient
needed for the minimization scheme were approximated for
both the nonlinear and linear perturbation models. The algo-
rithm was able to recover the function p up to 50% of the ori-
ginal value for the cases of nonlinear and linear perturbation
models. Whereas the nonlinear algorithm is able to produce
convergence whether Δn is included in the forward model
or not, the linear model gave results only when Δn was
not included. The locations of the two inhomogeneities were
accurately recovered, thus giving a good spatial resolution of
the recovered distribution limited by l�. One can use the re-
constructed pðrÞ in a momentum balance equation to recover
Young’s modulus EðrÞ in the ROI. This EðrÞ can be used to
assess the growth of a tumor and its malignancy. Scaling from
two-dimensional to three-dimensional is possible, though not
attempted here, provided a pseudodynamic form of the up-
date equation is integrated, avoiding inversion of the ill-
conditioned system matrix [21].
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Fig. 10. (Color online) (a) Same as Fig. 9(a), but with the linear-
perturbation-based-equation used for inversion, (b) same as Fig. 9(b),
but with the linear-perturbation-based-equation used for inversion.
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