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Abstract In this article, we consider a distributed optimal control problem associ-
ated with the Laplacian in a domain with rapidly oscillating boundary. For simplicity,
we consider a rectangular region in 2d with oscillations on one part of the boundary.
We consider two types of functionals, namely a functional involving the L2-norm
of the state variable and another one involving its H1-norm. The homogenization
of the optimality system is obtained and then we derive appropriate error estimates
in both cases.
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1 Introduction

In this article, our aim is to consider a distributed optimal control problem associated
with the Laplacian with a rapidly oscillating boundary. For simplicity, we consider
a rectangular region in a plane (2d) with oscillations on one part of the boundary.
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Presently, we consider only a model problem, but it is motivated by real problems mod-
elled by Navier–Stokes/Stokes/Viscous–Moore–Greitzer equations. There are vari-
ous homogenization problems with oscillating/rough boundaries in the literature. The
asymptotic analysis of the solutions of partial differential equations (PDEs) with highly
oscillating data in an oscillating boundary arises in many interesting and challenging
physical models.

To cite an example, boundary value problems, in particular control or controllability
problems involving highly oscillating boundaries or interfaces have various applica-
tions in industrial problems such as flows with rough boundaries (rough boundaries
can be modelled as oscillating boundaries), rough interface, air flow through com-
pression systems in turbo machines such as jet engine. For example, the last one can
be modelled by the Viscous–Moore–Greitzer equation derived from Scaled Navier–
Stokes equations (see [9,27,28]). Here the pitch and size of the rotor–stator pair of
blades in the engine provides a small parameter compared to the size of the engine
which is oscillatory as well as rotating (moving). The motion of the stator and rotor
blades in the compressor produces turbulent flow on a fast time scale. When the engine
operates close to the optimal parameters, the flow becomes unstable. This model gives
motivations to look into control problems described by PDEs of evolution type such
as the heat equation or the Navier–Stokes equations. As the problem is quite com-
plicated, we wish to begin with a sample problem of Laplacian with an oscillating
boundary and the control region is away from the oscillating regions, though the aim
is to consider controls acting on the moving boundaries.

For simplicity, we consider nearly a 2d rectangular region with oscillating part on
one side of the region to be made precise later. Basically the oscillating part can be
viewed as slabs of width ǫ > 0 but of height O(1) fixed to a rectangular region. In fact,
the oscillating boundary can be of different types. Basically there are two categories,
namely the oscillations with large amplitude (that is O(1)) and oscillations with small
amplitude (that is O(ǫα), α > 0). The small amplitude oscillation problems are easier
to handle. In this article, we deal with a problem with O(1) amplitude. Such regions are
considered in the literature for studying homogenization of PDE problems. We mainly
refer to the paper by Amirat et al. [4]. But we do not see much literature regarding opti-
mal control/controllability problems. There are plenty of literature on the asymptotic
analysis of problems with oscillating boundaries (see [1,3,6,10–12,15,16,31] and the
references therein). For general homogenization, we refer to [8,13,19,33]. Regarding
the homogenization of optimal control/ controllability, we cite some of the references
as [20,21,29,30]. A few references are concerned with optimal control problems and
derivation of optimality systems, one can refer to [2,7,11,14,23,25,26].

2 Notations and problem description

For ǫ > 0, a small parameter, we consider a varying domain�ǫ as in the Fig. 1 which
we describe below. Let L > 0 and g : R → R be a smooth and periodic function with
period L . The smoothness of g is required to establish some regularity results. The
graph of g describes the bottom part of the boundary �ǫ , namely
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Ŵb = {(x1, x2) : x2 = g(x1), x1 ∈ [0, L] = I }.

Let 0 < a < b < L and ηǫ be the ǫL-periodic function defined on [0, L] by periodic
extension of

ηǫ(x1) =

{

M ′ if x1 ∈ (ǫa, ǫb),

M if x1 ∈ [0, ǫL)\(ǫa, ǫb),

with M ′ > M > m, where

m := max{|g(x1)|, x1 ∈ I }.

The graph of ηǫ provides the oscillating boundary. One would like to consider moving
oscillating domains of the form η(t, x

ǫ
). In this paper, we do not discuss the analysis

in such domains. Define the fixed part of the domain �− as

�− = {(x1, x2) : 0 < x1 < L , g(x1) < x2 < M}.

Let

Ŵs = {(0, x2) : g(0) ≤ x2 ≤ M} ∪ {(L , x2) : g(L) ≤ x2 ≤ M}

which is the vertical boundary of �− and

Ŵu = {(x1,M) : 0 ≤ x1 ≤ L}

is the upper boundary of �−. We, now define �ǫ as

�ǫ = {(x1, x2) ∈ R
2 : 0 < x1 < L , g(x1) < x2 < ηǫ(x1)}

which is the domain �− together with small strips of width ǫ and height (M ′ − M)

attached to�− (see Fig. 1). In fact,�ǫ can be viewed as the bidimensional section of
a more realistic solid cube in which small slabs are attached to it. The boundary ∂�ǫ
can be decomposed as

∂�ǫ = Ŵb ∪ Ŵs ∪ γǫ,

where γǫ is the contribution from the periodic strips.
Let � = {(x1, x2) : 0< x1< L , g(x1)< x2<M ′} be the full domain. Let �+

ǫ =

{x ∈ �ǫ | M < x2<M ′} denote the top part of�ǫ , with�ǫ = �− ∪ ([0, L]×{M})∪

�+
ǫ . Let Hm

per (�ǫ) (respectively L2
per (�ǫ)) be the subspace in Hm(�ǫ) (respectively

L2(�ǫ)) of functions which are L-periodic with respect to the x1 variable. In that case
we shall say that the functions are Ŵs-periodic because they take same values on both
sides of Ŵs . We denote by �̃ǫ the periodic extension of �ǫ in the x1-direction.
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Let ω ⊂⊂ �− be the subdomain of �− in which the control acts. Without loss of
generality, we assume that

ω = {(x1, x2) : 0 < x1 < L , g(x1) < x2 < M−},

where M > M− > m.

Remark 2.1 We have taken this special domain�ǫ with oscillations of order 1 on one
part of the boundary to understand the behavior of optimal control problems. One can
indeed consider other type of domains, but we will not discuss it here. ⊓⊔

2.1 Problem description

We consider the following interior optimal control problem, where the control is acting
on the sub-domain ω:















−1yǫ = f + θχω in �ǫ,
yǫ = 0 on γǫ,
yǫ = u on Ŵb,

yǫ is Ŵs − periodic.

(2.1)

Here θ ∈ L2(ω) is the control function and χω is the characteristic function of ω.
Throughout the paper, we assume that

g ∈ C1
per (R), u ∈ H

1/2
per (Ŵb) and f ∈ L2

per (�). (2.2)

It is well-known that if the Assumptions (2.2) are fulfilled and if θ ∈ L2
per (ω),

then Eq. (2.1) admits a unique solution yǫ = yǫ(θ) ∈ H1
per (�ǫ). We denote ỹǫ the

extension by 0 of yǫ to �, and thus ỹǫ ∈ H1
per (�). The solution operator

( f, θ, u) 7−→ ỹǫ
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is linear and continuous from L2
per (�)× L2

per (ω)× H
1/2
per (Ŵb) into H1

per (�). That is

‖ỹǫ‖H1(�) ≤ C(‖ f ‖L2(�) + ‖θ‖L2(ω) + ‖u‖H1/2(Ŵb)
), (2.3)

where C > 0 is independent of ǫ. Let us consider the following two cost functionals

J1,ǫ(yǫ, θ) =
1

2

∫

�ǫ

(yǫ − yd)
2 +

β

2

∫

ω

θ2

and

J2,ǫ(yǫ, θ) =
1

2

∫

�ǫ

|∇ yǫ − ∇ yd |2 +
β

2

∫

ω

θ2,

with β > 0, yd is a given desired state belonging to L2
per (�) for J1,ǫ and to H1

per (�)

for J2,ǫ . Since we are going to see that yǫ is of order ǫ, i.e. O(ǫ) in the upper part
�+
ǫ , it is reasonable to take supp yd ⊂ �−. This assumption is assumed throughout

the paper.
Associated with these functionals we consider the two optimal control problems

inf{J1,ǫ (yǫ, θ) | θ ∈ L2
per (ω) , (yǫ, θ) obeys (2.1)}, (P1,ǫ)

and

inf{J2,ǫ (yǫ, θ) | θ ∈ L2
per (ω) , (yǫ, θ) obeys (2.1)}. (P2,ǫ)

Remark 2.2 We could be interested in considering much more general elliptic opera-
tors and/or general cost functionals. We shall discuss these issues in a later paper. ⊓⊔

For each ǫ > 0, the minimization problem (P1,ǫ) is quite standard and it admits a
unique solution (ȳǫ, θ̄ǫ) (see [7,24,32]). We call (ȳǫ, θ̄ǫ) the optimal solution, where
θ̄ǫ is the optimal control and ȳǫ the optimal state. Further, it can be characterized using
the adjoint state (co-state) z̄ǫ , where z̄ǫ solves the adjoint problem







−1z̄ǫ = ȳǫ − yd in �ǫ,
z̄ǫ = 0 on γǫ ∪ Ŵb,

z̄ǫ ∈ H1
per (�ǫ).

(2.4)

The following theorem is well established.

Theorem 2.3 Let f ∈ L2(�) and (ȳǫ, θ̄ǫ) be the optimal solution of (P1,ǫ). Let

z̄ǫ ∈ H1
per (�ǫ) solves (2.4), then the optimal control is given by

θ̄ǫ = −
1

β
z̄ǫχω.
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Conversely, assume that a pair (ŷǫ, ẑǫ) ∈ H1
per (�ǫ)× H1

per (�ǫ) solves the optimality

system







−1ŷǫ = f −
1

β
ẑǫχω in �ǫ, ŷǫ = 0 on γǫ, ŷǫ = u on Ŵb,

−1ẑǫ = ŷǫ − yd in �ǫ, ẑǫ = 0 on γǫ ∪ Ŵb.

(2.5)

Then, the pair (ŷǫ,−
1
β

ẑǫχω) is the optimal solution to (P1,ǫ).

The first aim of this article is to study the asymptotic behavior of (ȳǫ, θ̄ǫ) as ǫ → 0
and obtain the limit equations.

Using the convergence of the optimality system, we in fact show that the minimiza-
tion problem will converge to a suitable minimization problem. This is done in Sect. 3.
The other important aspect of the article is to prove some corrector estimates. We show
some H1- estimates in terms of the L2- estimates using certain test functions. In fact
these test functions were used earlier by other authors for studying homogenization
problems (uncontrolled) in such domains, see [4]. This is the content of Sect. 4. Test
functions are also introduced in the same section. Finally, we study the analysis of
Dirichlet cost functional in Sects. 5 and 6.

3 Homogenization Theorem

3.1 Estimates

Assume that (ȳǫ, θ̄ǫ) is the optimal solution of (P1,ǫ). With θ = 0, let yǫ(0) be the
solution of the problem (2.1), then using the classical weak formulation or (2.3), we get

‖yǫ(0)‖H1(�ǫ)
≤ C. (3.1)

Since (ȳǫ, θ̄ǫ) is a minimal solution, we get

∫

�ǫ

(ȳǫ − yd)
2 +

β

2

∫

ω

θ̄2
ǫ ≤

∫

�ǫ

(yǫ(0)− yd)
2 ≤ C. (3.2)

Thus we have

‖θ̄ǫ‖L2(ω) ≤ C, (3.3)

‖ ˜̄yǫ‖L2(�) ≤ C, (3.4)

where ˜̄yǫ is the extension by 0 to �.
Using the weak formulation of the adjoint system (2.4), it follows that

‖z̄ǫ‖H1(�ǫ)
≤ C, (3.5)

where C > 0 is independent of ǫ. Then we have the following theorem:
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Theorem 3.1 Let (ȳǫ, θ̄ǫ) be the optimal solution of the problem (P1,ǫ), then θ̄ǫ ∈

H1(ω) and there exists a constant C independent of ǫ such that

‖θ̄ǫ‖H1(ω) ≤ C (3.6)

and

‖ ˜̄yǫ‖H1(�) ≤ C. (3.7)

Proof The fact θ̄ǫ ∈ H1(ω) and estimate (3.6) follow from the characterization θ̄ǫ =

−
1

β
z̄ǫχω. Estimate (3.7) is then a consequence of the first equation in (2.5). ⊓⊔

Thus, we have, along a subsequence















˜̄yǫ ⇀ ȳ0 weakly in H1(�)

˜̄zǫ ⇀ z̄0 weakly in H1(�)

θ̄ǫ ⇀ θ̄0 weakly in H1(ω),

(3.8)

for some (ȳ0, z̄0, θ̄0) ∈ H1(�) × H1(�) × H1(ω). In fact, we shall get the strong
convergence in H1(�) for ˜̄zǫ and hence for the control θ̄ǫ in H1(ω).

Introduce the following problem in �−. Given θ ∈ L2(ω), let y ∈ H1
per (�

−) be
the solution to







−1y = f + θχω in �−,

y = 0 on Ŵu,

y = u on Ŵb.

(3.9)

The limit cost functional J1 is defined by

J1(y, θ) =
1

2

∫

�−

(y − yd)
2 +

β

2

∫

ω

θ2. (3.10)

Let (ȳ, θ̄ ) be the solution to the minimization problem

inf{J1(y, θ) | θ ∈ L2(ω)}, (y, θ) obeys (3.9)}, (P1)

Then, θ̄ can be characterized by θ̄ = −
1

β
z̄, where z̄ ∈ H1

per (�
−) solves

{

−1z̄ = ȳ − yd in �−,

z̄ = 0 on Ŵb ∪ Ŵu .
(3.11)
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Theorem 3.2 Let (ȳǫ, θ̄ǫ) and (ȳ, θ̄ ) be, respectively, the optimal solution of (P1,ǫ)

and of (P1). Then

θ̄ǫ → θ̄ strongly in H1(ω),
˜̄yǫ → ˜̄y strongly in H1(�),

where

˜̄y =

{

ȳ in�−,

0 in�+.

Moreover

J1,ǫ(ȳǫ, θ̄ǫ) −→ J1(ȳ, θ̄ ) when ǫ −→ 0.

Proof Restricting the Eqs. (2.1) and (2.4) to �−, and using the convergence (3.8), it
is easy to pass to the limit in �− to get















−1ȳ0 = f − 1
β

z̄0χω in �−, ȳ0 = u onŴb,

−1z̄0 = ȳ0 − yd in �−, z̄0 = 0 on Ŵb,

ȳ0, z̄0 ∈ H1
per (�

−).

(3.12)

Recovering the boundary condition ȳ0 = z̄0 = 0 on Ŵu is quite easy. Let χ�+
ǫ

be the
characteristic function of �+

ǫ ⊂ �+, then by standard result, we have

χ�+
ǫ
⇀ A weakly∗ in L∞(�+) where A =

b − a

L
.

Now passing to the limit in the equation ˜̄yǫ = ˜̄yǫχ�+
ǫ

, we see that ȳ = 0 in �+ since
0 < A < 1. Similarly z̄0 = 0 in �+. Thus (3.12), together with ȳ0 = z̄0 = 0 on Ŵu ,
is the optimality system corresponding to the minimization problem (P1). According

to Theorem 2.3, its optimal solution is given by (ȳ0,−
1

β
z̄0χω).

Thus, we have

ȳ = ȳ0, z̄ = z̄0 and θ̄ = θ̄0 = −
1

β
z̄0χω.

Moreover, using the strong convergence ˜̄yǫ → ȳ in L2(�+), we can verify that

lim
ǫ→0

J1,ǫ(ȳǫ, θ̄ǫ) = J1(ȳ, θ̄ ).
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Further,

lim
ǫ→0

∫

�ǫ

| ∇zǫ |2 = lim
ǫ→0

∫

�ǫ

(ȳǫ − yd)zǫ

=

∫

�−

(ȳ − yd)z̄ =

∫

�−

| ∇ z̄ |2 .

Since ˜̄z is 0 in �+ and z̄ ∈ H1(�), we get

‖∇ ˜̄zǫ‖
2
L2(�)

−→ ‖∇ ˜̄z‖2
L2(�)

.

Thus ˜̄zǫ → ˜̄z strongly in H1(�) and in particular θ̄ǫ = z̄ǫχω → θ̄ = z̄χω strongly in
H1(ω). Similarly, we get the strong convergence of ˜̄yǫ and hence the theorem. ⊓⊔

4 Error (Corrector) estimates

The aim of this section is to derive certain error estimates. Indeed, we admit that
we are not able to do a complete error analysis, but following the work in [4], we
get H1-estimates of the control (or adjoint state) away from the oscillating boundary
in terms of the L2-estimates of the optimal state. This, in turn, will produce H1-esti-
mates of the state in terms of L2-estimates. We need to recall the relevant test functions
(see [3–5]).

4.1 Test functions

Let 3± be the unbounded domains defined by 3+ = (a, b) × (0,∞) and 3− =

(0, L)×(−∞, 0)which in some sense has to be seen as 1
ǫ

scaling of (ǫa, ǫb)×(M,M ′)

and �− respectively, and then extended up to infinity (see Fig. 2). We denote the
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variables in the cell domains 3+ and 3− as ξ = (ξ1, ξ2). Define the test functions
ψ± as

ψ+ ∈ H1(3+), ψ− ∈ H1
loc, per(3

−), ∇ψ− ∈ L2(3−), (4.1)

satisfying











































1ψ± = 0 in 3±,

ψ− = 0 on (0, a) ∪ (b, L)× {0},

ψ+ = 0 on ∂3+\(a, b)× {0},

ψ+ = ψ− on (a, b)× {0}

∂ψ+

∂ξ2
=
∂ψ−

∂ξ2
+ 1 on (a, b)× {0}.

(4.2)

For δ > 0, define the average of ψ− along the horizontal line ξ2 = −δ as

β1 = β1 (δ) =
1

L

L
∫

0

ψ−(ξ1,−δ)dy1. (4.3)

For following result, the reader can refer to [2,3,5,22,24].

Proposition 4.1 The problem (4.1) and (4.2) admits a unique solution. Further,

1. β1(δ) is independent of δ and we denote it by β1.

2. For any α ∈ N × N, δ > 0, there are positive constants C, Cα,δ such that

| ∂αψ+(ξ) |≤ Cα,δ e−Cξ2 , ∀ ξ = (ξ1, ξ2) ∈ (a, b)× (δ,∞), (4.4)

and

| ∂α(ψ−(ξ)− β1) |≤ Cα,δ eCξ2 , ∀ ξ = (ξ1, ξ2) ∈ (0, L)× (−∞,−δ). (4.5)

⊓⊔

Corollary 4.2 ψ− − β1 ∈ H1
per(3

−). ⊓⊔

This is trivial because, by (4.5), we have

‖ψ− − β1‖
2
L2(3−)

= ‖ψ− − β1‖
2
L2((0,L)×(−1,0)) + ‖ψ− − β1‖

2
L2((0,L)×(−∞,−1))

≤ C1 + C2

−1
∫

−∞

ecξ2 dξ2 ≤ C.

It is already given that ∇(ψ− − β1) = ∇ψ− ∈ L2(3−).
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Extend ψ+ by 0 to (0, L) × (0,∞) and then extend periodically to R
2
+ which is

again denoted by ψ+. Similarly the periodic extension of ψ− to R
2
− is also denoted

by ψ−. These test functions are used to obtain corrector results. It is not, however,
possible to obtain exact corrector results as in an uncontrolled problem since we have
to work with the optimality system with varying right hand side.

Corollary 4.3 The test functions ψ± defined by (4.1) and (4.2) satisfy

∫

�+
ǫ

∣

∣

∣

∣

ψ+

(

x1

ǫ
,

x2 − M

ǫ

)
∣

∣

∣

∣

2

dx ≤ Cǫ,

∫

�−

∣

∣

∣

∣

ψ−

(

x1

ǫ
,

x2 − M

ǫ

)

− β1

∣

∣

∣

∣

2

dx ≤ Cǫ,

∫

�ǫ\Bǫ

∣

∣

∣

∣

∇

(

ψ

(

x1

ǫ
,

x2 − M

ǫ

))
∣

∣

∣

∣

2

dx ≤ Ce−c/ǫ,

where Bǫ = (0, L) × (M − ǫ,M + ǫ) is a strip of width 2ǫ around the upper part

Ŵu,C is a positive constant independent of ε and ψ is the function defined by

ψ =

{

ψ− in3−,

ψ+ in3+.

Proof Since there are O(ǫ−1) ǫ-cells like ǫ3+, by periodicity, we get

∫

�+
ǫ

∣

∣

∣

∣

ψ+

(

x1

ǫ
,

x2 − M

ǫ

)
∣

∣

∣

∣

2

dx ≈ ǫ−1

ǫb
∫

ǫa

M ′
∫

M

∣

∣

∣

∣

ψ+

(

x1

ǫ
,

x2 − M

ǫ

)
∣

∣

∣

∣

2

dx

≤ Cǫ

b
∫

a

M ′−M
ǫ

∫

0

∣

∣ψ+ (y)
∣

∣

2
dy

≤ Cǫ‖ψ+‖2
L2(3+)

≤ Cǫ.

Similarly, we get the second estimate. Again

∫

�ǫ\Bǫ

∣

∣

∣

∣

∇

(

ψ

(

x1

ǫ
,

x2 − M

ǫ

))
∣

∣

∣

∣

2

dx

≤ C







∫

3+\(a,b)×(1,∞)

∣

∣∇ψ+ (ξ)
∣

∣

2
dξ+

∫

3−\(0,L)×(−1,0)

∣

∣∇ψ− (ξ)
∣

∣

2
dξ






≤ Ce−c/ǫ,

by (4.4) and (4.5). ⊓⊔
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4.2 Estimates on co-state and control

To derive corrector estimates, one needs to have more regularity on the solution of
the corresponding homogenized problem. This can be obtained with the additional
regularity assumptions

f ∈ H2
per (�

−) ∩ L2
per (�), g ∈ H6

per (0, L) and yd ∈ H4
per (�

−). (4.6)

Remark 4.4 To get error estimates on the optimal solution ȳ, one may require f ∈

H4
per (�

−), but for the co-state, it is enough to have (4.6). ⊓⊔

Recall that the co-state z̄ ∈ H1
per (�

−) is the solution to

{

−1z̄ = ȳ − yd in �−,

z̄ = 0 on Ŵu ∪ Ŵb,
(4.7)

where ȳ is the solution of equation (3.9) with θ = θ̄ = − 1
β

z̄. Since the control is

located in ω, we cannot deduce from the optimality system (3.12) that ȳ ∈ H4
per (�

−)

and z̄ ∈ H6
per (�

−). However, using for example a truncation argument, since the
dimension is n = 2, by the standard regularity (see [17,18]) we can show that

ȳ ∈ H4
per (R) ⊂ C2(R) and z̄ ∈ H6

per (R) ⊂ C4(R), (4.8)

where R is the band

R = {(x1, x2) | 0 < x1 < L ,
M + M−

2
< x2 < M}.

The error estimate is based on the flux of z̄, namely
∂ z̄

∂x2
, across the upper boundary

of �−. Introduce ϑ ∈ H1
per (�

−), the solution of







1ϑ = 0 in �−,

ϑ = 0 on Ŵb,

ϑ = β1
∂ z̄
∂x2

on Ŵu .

(4.9)

Denote by ϑ̃ the extension by 0 of ϑ to �. Since
∂ z̄

∂x2

∣

∣

Ŵu
∈ H9/2(Ŵu), we get

ϑ ∈ H5
per (�

−) ⊂ C3(�−). (4.10)

Since ϑ̃ does not belong to H1(�), we are using it only in the domain �ǫ\Bǫ (where
Bǫ is defined in Corollary 4.3) and we have the following theorem.
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Theorem 4.5 Let z̄ǫ and z̄ be respectively the solutions of the inhomogenized and

homogenized co-state equation defined in (2.4) and (4.7), let ϑ be the solution of

(4.9) and ȳǫ be the optimal state. Then

‖z̄ǫ − ˜̄z − ǫϑ̃‖H1(�ǫ\Bǫ)
≤ C

[

‖ȳǫ − ȳ‖L2(�−) + ǫ3/2
]

, (4.11)

where ˜̄z the extension by 0 of z̄ to �. ⊓⊔

Remark 4.6 We would like to obtain estimate without the term ‖ȳǫ − ˜̄y‖L2(�ǫ)
on the

RHS. We believe so, but a proof is not yet worked out. ⊓⊔

The proof of Theorem 4.5 is very similar to the one of Theorem 4.1 in [4]. However
our result is different. It is why we rewrite only the first part of the proof where the
additional term ‖ȳǫ − ȳ‖L2(�−) appears. For the other parts, we shall refer to [4].

To prove Theorem 4.5, as in [4], we need another class of test functions for the
proof. Let ϑ+

ǫ ∈ H1(�+) and ϑ−
ǫ ∈ H1

per (�
−) satisfy



















































1ϑ+
ǫ = 0 in �+

ǫ ,

1ϑ−
ǫ = 0 in �−,

ϑ+
ǫ = 0 on γǫ\(γǫ ∩ Ŵu),

ϑ−
ǫ = β1

∂ z̄

∂x2
on γǫ ∩ Ŵu,

ϑ+
ǫ = ϑ−

ǫ − β1
∂ z̄

∂x2
on Ŵu\(γǫ ∩ Ŵu),

∂ϑ+
ǫ

∂x2
=
∂ϑ−

ǫ

∂x2
on Ŵu\(γǫ ∩ Ŵu).

(4.12)

Denote ψ+
ǫ = ψ+

(

x1

ǫ
,

x2 − M

ǫ

)

, ψ−
ǫ = ψ−

(

x1

ǫ
,

x2 − M

ǫ

)

. Then, we can write

z̄ǫ − ˜̄z − ǫϑ̃ = τǫ + ǫρǫ + πǫ in �ǫ, (4.13)

where

τǫ =























τ+
ǫ = z̄ǫ − ˜̄z − ǫϑ+

ǫ − ǫ
∂ ˜̄z

∂x2
(x1,M)ψ+

ǫ in �+
ǫ ,

τ−
ǫ = z̄ǫ − ˜̄z − ǫϑ−

ǫ − ǫ
∂ ˜̄z

∂x2
(x1,M)(ψ−

ǫ − β1) in �−,

(4.14)

ρǫ =



















ρ+
ǫ = ϑ+

ǫ − ǫ
∂ϑ

∂x2
(x1,M) ψ+

ǫ in �+
ǫ ,

ρ−
ǫ = ϑ−

ǫ − ϑ − ǫ
∂ϑ

∂x2
(x1,M)ψ−

ǫ in �−,

(4.15)
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and

πǫ =























π+
ǫ = ǫ

∂ ˜̄z

∂x2
(x1,M) ψ+

ǫ + ǫ2 ∂ϑ

∂x2
(x1,M) ψ+

ǫ ,

π−
ǫ = ǫ

∂ ˜̄z

∂x2
(x1,M)

(

ψ−
ǫ − β1

)

+ ǫ2 ∂ϑ

∂x2
(x1,M) ψ−

ǫ .

(4.16)

We need to estimate τǫ, ρǫ and πǫ .

Proposition 4.7 Assume the regularity conditions (4.6). Then τǫ and ρǫ , respectively

defined by (4.14) and (4.15), satisfy

‖τǫ‖H1(�ǫ)
≤ C

[

‖ȳǫ − ȳ‖L2(�−) + ǫ3/2
]

and

‖ρǫ‖H1(�ǫ)
≤ Cǫ.

Proof Estimates on τǫ : – Since τ+
ǫ ∈ H1

(

�+
ǫ

)

, τ−
ǫ ∈ H1

(

�−
)

and τ+
ǫ = τ−

ǫ at the

interface �̄+
ǫ ∩�̄−, we get τǫ ∈ H1

per (�ǫ). Actually, it is easy to see that
∂τ+
ǫ

∂x2
=
∂τ−
ǫ

∂x2
on �̄+

ǫ ∩ �̄−. We compute 1τǫ in �ǫ . In �+
ǫ , we have

1τǫ = 1τ+
ǫ = (ȳǫ − yd)− ǫ

∂3 ˜̄z

∂x2
1∂x2

(x1,M)ψ+
ǫ − 2ǫ

∂2 ˜̄z

∂x1∂x2
(x1,M)

∂ψ+
ǫ

∂x1
,

and in �−
ǫ we get

1τǫ = 1τ−
ǫ = (ȳǫ − ȳ)− ǫ

∂3 ˜̄z

∂x2
1∂x2

(x1,M)
(

ψ−
ǫ − β1

)

− 2ǫ
∂2 ˜̄z

∂x1∂x2
(x1,M)

∂ψ−
ǫ

∂x1
.

Further,

τǫ |Ŵb
= −ǫ

∂ ˜̄z

∂x2
(x1,M)

(

ψ−

(

x1

ǫ
,

g(x1)− M

ǫ

)

− β1

)

,

τǫ |γǫ∩(0,L)×M ′= −ǫ
∂ ˜̄z

∂x2
(x1,M) ψ+

(

x1

ǫ
,

M ′ − M

ǫ

)

.
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We need test functions which vanish on these boundaries to use in the weak formula-
tions. Choose φ1, φ2 ∈ C2(R; [0, 1]),

φ1(s) =







0 if s > m+M
2 ,

1 if s < 3m+M
4 ,

φ2(s) =







1 if s > M+M ′

2 ,

0 if s < 3M+M ′

4 .

In � let us define

τ 1
ǫ (x1, x2) = −ǫ

∂ ˜̄z

∂x2
(x1,M)

(

ψ−

(

x1

ǫ
,

g(x1)− M

ǫ

)

− β1

)

φ1(x2)

and

τ 2
ǫ (x1, x2) = −ǫ

∂ ˜̄z

∂x2
(x1,M)ψ+

(

x1

ǫ
,

M ′ − M

ǫ

)

φ2(x2).

Then clearly, τǫ−τ 1
ǫ −τ 2

ǫ ∈ H1
per (�ǫ)with τǫ−τ 1

ǫ −τ 2
ǫ = 0 on the boundary γǫ∪Ŵb.

Hence, we can use it as a test function to get

∫

�ǫ

|∇τǫ |
2dx =

∫

�ǫ

∇τǫ · ∇
(

τǫ − τ 1
ǫ − τ 2

ǫ

)

dx

+

∫

�ǫ

∇τǫ · ∇τ 1
ǫ dx +

∫

�ǫ

∇τǫ · ∇τ 2
ǫ dx

= −

∫

�+
ǫ

1τǫ

(

τǫ − τ 2
ǫ

)

dx −

∫

�−

1τǫ

(

τǫ − τ 1
ǫ

)

dx

+

∫

�+
ǫ

∇τǫ · ∇τ 2
ǫ dx +

∫

�−
ǫ

∇τǫ · ∇τ 1
ǫ dx .

Using Proposition 4.1, from the definition of τǫ , for i = 1, 2, we get



























∣

∣

∣

∣

∂τ 1
ǫ

∂xi

∣

∣

∣

∣

≤ C e−c/ǫ in �−

and
∣

∣

∣

∣

∂τ 2
ǫ

∂xi

∣

∣

∣

∣

≤ C e−c/ǫ in �+
ǫ .

(4.17)
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Now using the expression for 1τǫ and the Cauchy–Schwarz inequality, we get

‖∇τǫ‖
2
L2(�ǫ)

≤ C
[

ǫ‖ψ+
ǫ ‖

L2(�+
ǫ )

‖τǫ − τ2
ǫ ‖

L2(�+
ǫ )

+ ǫ‖ψ−
ǫ − β1‖L2(�−)‖τǫ − τ1

ǫ ‖L2(�−)

+

∣

∣

∣

∣

∣

∣

∣

∫

�+
ǫ

(yǫ − yd )(τǫ − τ2
ǫ )+

∫

�−

(ȳǫ − ȳ)(τǫ − τ1
ǫ )

∣

∣

∣

∣

∣

∣

∣

+‖∇τǫ‖L2(�ǫ)

(

‖∇τ2
ǫ ‖

L2(�+
ǫ )

+ ‖∇τ1
ǫ ‖L2(�−)

)

.

+ ǫ‖ψ+
ǫ ‖

L2
(

�+
ǫ

)‖∇(τǫ − τ2
ǫ )‖L2(�+

ǫ )
+ ǫ‖ψ−

ǫ − β1‖L2(�−)‖∇(τǫ − τ1
ǫ )‖L2(�−)

]

.

Applying the estimates of ψ+
ǫ , ψ

−
ǫ −β1 in Proposition 4.1, the inequalities in (4.17)

and Poincaré inequality, we get

‖∇τǫ‖
2
L2(�ǫ)

≤ C
[

(ǫ3/2)‖∇τǫ‖L2(�ǫ)
+ e−c/ǫ + ‖yǫ − yd‖L2(�+

ǫ )
‖τǫ − τ 2

ǫ ‖L2(�+
ǫ )

+‖ȳǫ − ȳ‖L2(�−)‖∇τǫ‖L2(�−)

]

.

Note that�+
ǫ consists of ǫ-strips of length 1 and applying Poincaré inequality in each

strip, summing up to have

‖τǫ − τ 2
ǫ ‖L2(�+

ǫ )
≤ Cǫ‖∇(τǫ − τ 2

ǫ )‖L2(�+
ǫ )
.

Considering yǫ in each strip and using Poincaré inequality, we obtain

‖yǫ‖L2(�+
ǫ )

≤ Cǫ.

In other words the Poincaré constant is of order ǫ (see [4]). Since yd = 0 in the strips,
we have

ǫ‖yǫ − yd‖L2(�+
ǫ )

≤ Cǫ2.

Hence we get

‖∇τǫ‖L2(�ǫ)
≤ C[‖ȳǫ − ȳ‖L2(�−) + ǫ3/2 + e−c/ǫ]. (4.18)

Estimate on ρǫ : We can work on an analogous fashion, by computing 1ρǫ and intro-
ducing ρ1

ǫ and ρ2
ǫ , to get

‖∇ρǫ‖L2(�ǫ)
≤ Cǫ. (4.19)

We will not present the details here and we refer to [4]. Let us mention that (4.10) is
needed to prove (4.19).
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Estimate on πǫ : The estimate πǫ may be deduced from definition πǫ in (4.16) and
from the regularity results stated in (4.8). We get

‖∇πǫ‖L2(�ǫ\Bǫ)
≤ Ce−c/ǫ . (4.20)

Combining (4.18), (4.19), (4.20), we get (4.11) and the proof of Theorem 4.5 is
complete. ⊓⊔

Remark 4.8 One can also get H1-error estimates for the optimal solution in terms of
the adjoint state. For example, with f = 0, one can prove in an analogous fashion that

‖ȳǫ − ˜̄y − ǫϑ‖H1(�ǫ\Bǫ)
≤ C

[

‖z̄ǫ − z̄‖L2(ω) + ǫ
3
2

]

.

Indeed, ϑ is defined via the flux
∂ ȳ

∂x2
in �−. Our aim is eventually to get the above

estimates without the first term on the right hand side, which is not successful so far.
⊓⊔

5 Dirichlet cost functional

One can do an analysis by considering the Dirichlet cost functional J2,ǫ defined in
Sect. 2.1. For convenience, we recall the definition of the control problem

inf{J2,ǫ (yǫ, θ) | θ ∈ L2 (ω) , (yǫ, θ) obeys (5.1)}. (P2,ǫ)

where

J2,ǫ (yǫ, θ) =
1

2

∫

�ǫ

|∇ yǫ − ∇ yd |2 +
β

2

∫

ω

θ2,

with β > 0, yd ∈ H1(�) and







−1yǫ = f + θχω in �ǫ,
yǫ = 0 on γǫ, yǫ = u on Ŵb,

yǫ is Ŵs − periodic.
(5.1)

The problem (P2,ǫ) has a unique solution (θ̄ǫ, ȳǫ) which is characterized by the opti-
mality system (see [23,24,32])
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z̄ǫ, ȳǫ ∈ H1
per (�ǫ) ,

−1ȳǫ = f + θ̄ǫχω in �ǫ,

−1z̄ǫ = −1
(

yǫ − yd

)

in �ǫ,
yǫ = 0 on γǫ,

yǫ = u on Ŵb,

z̄ǫ = 0 on γǫ ∪ Ŵb,

θ̄ǫ = − 1
β

z̄ǫ .

(5.2)

Remark 5.1 It is possible to consider more general oscillating cost functionals of the
form

1

2

∫

�ǫ

B
( x

ǫ

)

∇ yǫ · ∇ yǫ +
β

2

∫

ω

θ2.

The analysis of (5.2) will be more delicate. We will not attempt to do it in this paper.
⊓⊔

Since the Dirichlet integral J2,ǫ contains derivative terms, it is easy to get the H1-
estimate straight from the functional. Considering the solution yǫ = yǫ(0)with θ = 0
of the Eq. (5.1) and using the fact that (ȳǫ, θ̄ǫ) is optimal, we get

J2,ǫ
(

ȳǫ, θ̄ǫ
)

≤ J2,ǫ (yǫ, 0) .

This yields

‖∇ ȳǫ‖
2
L2(�ǫ)

+ ‖θ̄ǫ‖
2
L2(ω)

≤ C.

Thus, we have

‖ ˜̄yǫ‖H1(�) ≤ C, ‖θ̄ǫ‖L2(ω) ≤ C, (5.3)

where ˜̄yǫ is the extension of ȳǫ by zero to �. Now using the variational formulation
of the second equation in (5.2), we see that

‖˜̄zǫ‖H1(�) ≤ C. (5.4)

Thus, we may deduce the following convergence as















˜̄yǫ ⇀ ȳ0 weakly in H1 (�) ,

˜̄zǫ ⇀ z̄0 weakly in H1 (�) ,

θ̄ǫ ⇀ θ̄0 weakly in H1 (ω) .

(5.5)
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In what follows, we will get the strong convergence of these sequences in H1.
Again by a similar argument as in the previous section, we have

ȳ0 = 0, z̄0 = 0 in �+.

Passing to the limit in (5.2), which is straightforward, we obtain



















































−1ȳ0 = f + θ̄0χω in �−

−1z̄0 = −1(ȳ0 − yd) in �−

ȳ0 = 0 on Ŵu

ȳ0 = u on Ŵb

z̄0 = 0 on Ŵu ∪ Ŵb

θ̄0 = − 1
β1

z̄0.

(5.6)

System (5.6) is the optimality system of the limit minimization problem

inf{J2 (y, θ) | θ ∈ L2 (ω)}, (y, θ) obeys (5.7)}, (P2)

with

J2 (y, θ) =
1

2

∫

�−

|∇ (y − yd)|
2 +

β

2

∫

ω

θ2,

and














y ∈ H1
per

(

�−
)

,

−1y = f + θχω in �−,

y = 0 on Ŵu,

y = u on Ŵb.

(5.7)

Hence,
(

ȳ0, θ̄0, z̄0
)

=
(

ȳ, θ̄ , z̄
)

, where (ȳ, θ̄ ) i the solution to problem (P2) and z̄ is
the corresponding adjoint state.

Actually, we have the following convergence theorem.

Theorem 5.2 Let
(

ȳǫ, θ̄ǫ
)

be the optimal solution of problem (P2,ǫ) and
(

ȳ, θ̄
)

be that

of problem (P2). Then

{

˜̄yǫ → ˜̄y strongly in H1 (�) ,

θ̄ǫ → θ̄ strongly in H1 (ω) .
(5.8)

Further,

J2,ǫ
(

θ̄ǫ
)

−→ J2
(

θ̄
)

when ǫ −→ 0. (5.9)
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Proof Since we have the convergence in (5.5), to complete the theorem, it is enough
to show that

‖∇ ˜̄yǫ‖
2
L2(�)

−→ ‖∇ ˜̄y‖2
L2(�)

and

‖∇ ˜̄zǫ‖
2
L2(�)

−→ ‖∇ ˜̄z‖2
L2(�)

.

Notice that, by trace theorem, we can conclude from (5.5) and (5.2), that

∂ ȳǫ

∂ν
⇀

∂ ȳ

∂ν
weakly in H−1/2 (Ŵb) . (5.10)

Weak formulation of (5.2) and (5.6) satisfied by ȳǫ and ȳ, respectively, along with
convergence (5.5) and (5.10), give the following

lim
ǫ→0

∫

�ǫ

| ∇ ȳǫ |2 = lim
ǫ→0

∫

�ǫ

f ȳǫ + lim
ǫ→0

∫

ω

θ̄ǫ ȳǫ + lim
ǫ→0

〈

∂ ȳǫ

∂ν
, u

〉

H−1/2(Ŵb),H
1/2(Ŵb)

=

∫

�−

f ȳ +

∫

ω

θ̄ ȳ +

〈

∂ ȳ

∂ν
, u

〉

H−1/2(Ŵb),H
1/2(Ŵb)

=

∫

�−

| ∇ ȳ |2 .

In the same way, using the weak formulation of (5.2) and (5.6) satisfied by z̄ǫ and z̄,
respectively, with (5.5) and the strong convergence of ∇ ˜̄yǫ −→ ∇ ˜̄y in L2(�), we can
show that

‖∇ ˜̄zǫ‖
2
L2(�)

−→ ‖∇ ˜̄z‖2
L2(�)

,

which by the characterization of θ̄ǫ and θ̄ gives (5.8). Finally

J2,ǫ(ȳǫ, θ̄ǫ) =
1

2

∫

�ǫ

| ∇(ȳǫ − yd) |2 +
β

2

∫

ω

θ̄ 2
ǫ

→
1

2

∫

�−

| ∇(ȳ − yd) |2 +
β

2

∫

ω

θ̄ 2 = J2(ȳ, θ̄ ),

and the proof is complete. ⊓⊔

123



Ann Univ Ferrara (2012) 58:143–166 163

6 Corrector for Dirichlet cost functional

In this section, we derive corrector (error) estimates similar to the one in Sect. 4, but
for the case of Dirichlet cost functional studied in Sect. 5. Indeed, there is a change
in the estimate since the cost functional and hence the adjoint equation are different.
We will not present the complete proof as it follows in similar lines as in Sect. 4, but
sketch the important steps.

Let ȳ, z̄ and θ̄ be the limit optimal solution obtained in Sect. 5. Define ϑ ∈

H1
per (�

−) via the flux ∂(ȳ−z̄)
∂x2

in �− which solves the following problem



















1ϑ = 0 in �−

ϑ = 0 on Ŵb

ϑ = β1
∂(ȳ − z̄)

∂x2
on Ŵu .

(6.1)

We want to estimate of ϑ in C3(�−). For that, we must have ȳ − z̄ ∈ H6
per (R) ⊂

C4(R). Thus we assume that

g ∈ H6
per (0, L) and yd ∈ H6

per (�
−). (6.2)

We have the following theorem.

Theorem 6.1 Assume (6.2) and ϑ solves (6.1). Let ȳǫ, θ̄ǫ are the optimal solution

and z̄ǫ is the adjoint states corresponding to the problem (P2,ǫ). Then, there exists a

positive constant C, independent of ǫ, such that

‖(ȳǫ − ˜̄y)− ( ˜̄zǫ − ˜̄z)− ǫϑ̃‖H1(�ǫ\Bǫ)
≤ Cǫ3/2. (6.3)

for ǫ small enough, where Bǫ = (0, L)× (M − ǫ,M + ǫ). Here ϑ̃ is the extension to

� of ϑ by zero.

Sketch of the proof. As in Sect. 4.2, we define ϑ+
ǫ ∈ H1(�+) and ϑ−

ǫ ∈ H1
per (�

−)

which satisfy































































1ϑ+
ǫ = 0 in �+

ǫ ,

1ϑ−
ǫ = 0 in �−,

ϑ+
ǫ = 0 on γǫ\(γǫ ∩ Ŵu),

ϑ−
ǫ = β1

∂ (ȳ − z̄)

∂x2
on γǫ ∩ Ŵu,

ϑ+
ǫ = ϑ−

ǫ − β1
∂ (ȳ − z̄)

∂x2
on Ŵu\(γǫ ∩ Ŵu),

∂ϑ+
ǫ

∂x2
=
∂ϑ−

ǫ

∂x2
on Ŵu\(γǫ ∩ Ŵu).

(6.4)
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Then, we may write

(ȳǫ − ˜̄y)− (z̄ǫ − ˜̄z)− ǫϑ̃ = τǫ + ǫρǫ + πǫ in �ǫ, (6.5)

where

τǫ =











τ+
ǫ = ȳǫ − z̄ǫ − ǫϑ+

ǫ − ǫ
∂ (ȳ − z̄)

∂x2
(x1,M) ψ+

ǫ in �+
ǫ ,

τ−
ǫ = (ȳǫ − ȳ)− (z̄ǫ − z̄)− ǫϑ−

ǫ − ǫ
∂ (ȳ − z̄)

∂x2
(x1,M)

(

ψ−
ǫ − β1

)

in �−,

ρǫ =



















ρ+
ǫ = ϑ+

ǫ − ǫ
∂ϑ

∂x2
(x1,M)ψ+

ǫ in �+
ǫ ,

ρ−
ǫ = ϑ−

ǫ − ϑ − ǫ
∂ϑ

∂x2
(x1,M)ψ−

ǫ in �−,

and

πǫ =



















π+
ǫ = ǫ

∂ (ȳ − z̄)

∂x2
(x1,M) ψ+

ǫ + ǫ2 ∂ϑ

∂x2
(x1,M) ψ+

ǫ ,

π−
ǫ = ǫ

∂ (ȳ − z̄)

∂x2
(x1,M)

(

ψ−
ǫ − β1

)

+ ǫ2 ∂ϑ

∂x2
(x1,M) ψ−

ǫ .

Hence, in �+
ǫ , we have

1τǫ = 1τ+
ǫ = −ǫ

∂3 (ȳ − z̄)

∂x2
1∂x2

(x1,M)ψ+
ǫ − 2ǫ

∂2 (ȳ − z̄)

∂x1∂x2
(x1,M)

∂ψ+
ǫ

∂x1
,

and in �−
ǫ we get

1τǫ = 1τ−
ǫ = −ǫ

∂3 (ȳ − z̄)

∂x2
1∂x2

(x1,M)
(

ψ−
ǫ − β1

)

− 2ǫ
∂2 (ȳ − z̄)

∂x1∂x2
(x1,M)

∂ψ−
ǫ

∂x1
.

Similar to the computation as in the proof of Proposition 4.7 (compare 1τǫ in the
proposition), we can derive the estimate

‖τǫ‖H1(�ǫ)
≤ Cǫ3/2. (6.6)

Similarly

‖ρǫ‖H1(�ǫ)
≤ Cǫ. (6.7)

and

‖πǫ‖H1(�ǫ\Bǫ)
≤ Ce−c/ǫ . (6.8)

We can conclude the proof by combining Eqs. (6.5)–(6.8). ⊓⊔
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Remark 6.2 One can also get an error estimate for the state. This is similar to the one
in Sect. 4. For example, with f = 0, one can prove in an analogous fashion that

‖ȳǫ − ȳ − ǫϑ̃‖H1(�ǫ\Bǫ)
≤ C

[

‖z̄ǫ − z̄‖L2(ω) + ǫ
3
2

]

.

Obviously here ϑ is defined via the flux
∂ ȳ

∂x2
in �−. Our aim is eventually to get the

above estimates without the first term on the right hand side, which is not successful
so far. ⊓⊔
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