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Abstract. The aim of this article is to study the mathematical analysis for an inverse problem and
its numerical implementation associated with diffuse correlation tomography. The coefficients of the
diffusion equation governing the propagation of field autocorrelation through a turbid medium (tissue-
like) depend on both the optical and mechanical properties of the medium. Assuming the mechanical
property is given by a time independent particle diffusion coefficient (Dp), we consider the develop-
ment of regularized Gauss-Newton algorithm for the recovery of Dy from boundary measurements.
We study the existence and uniqueness of the forward problem and also for the Fréchet derivative op-
erator which are essential for convergence study. The nonlinear minimization problem associated with
the recovery of Djp is locally linearized and solved through a regularized Gauss-Newton algorithm.
The conditions to be satisfied for the convergence of the Gauss-Newton algorithm are established.
Finally, the method is proven through numerical recovery of Dg from intensity autocorrelation mea-
sured at the boundary. Once Dp is obtained one can also recover other mechanical properties.

1 Introduction

Near infrared (NIR) light has found applications in the recent past for probing soft-tissue organs such
as human breast and prostate for detecting pathological changes which accompany certain diseases
[1,2]. The important parameters which are recovered by NIR light probe are absorption and scattering
coefficients [3, 4]; in particular absorption spectrum in the NIR range can help us compute functional
parameters of interest to physicians, such as partial pressure of oxygen and total haemoglobin con-
tent, which are of immense value for early diagnosis of cancer. Along with optical absorption changes
brought forth by angiogenesis associated with malignant tumor, there are also changes in elastic prop-
erties [5]. Therefore imaging based on elastic property changes was pursued vigorously in the past
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[6, 7, 8], leading to the development of elastography which, through a two step procedure, computes
the strain distribution known as the elastogram and also the shear modulus distribution.

When a coherent light is used to probe a turbid medium like tissue, optical properties such as ab-
sorption and scattering coefficients affect its complex amplitude. However if one considers the prop-
agation of a correlation function, say mutual coherence function or the amplitude auto-correlation, it
is affected both by the optical properties and the dynamics of the scatterers in the body. The scatter-
ers suffer temperature-induced Brownian-motion which also contributes to decrease in the amplitude
auto-correlation. Since the mean-square displacement of the scatterers due to temperature-induced
fluctuations is an indication of the stiffness of the surrounding medium, the way the auto-correlation
decreases has been used in the past to measure the micro-rheological properties of the medium. This
is one of the applications of the so-called diffusing wave spectroscopy (DWS)[9].

Tomographic reconstruction from DWS data is also explored, wherein the aim is to reconstruct the
movement of particles (say distribution of blood flow in capillaries) from the boundary measurement
of a quantity related to amplitude auto-correlation ([10]-[14]). It has also been established using
the newly developed diffuse correlation tomography (DCT) that we can recover both optical and
mechanical property distributions of tissue from sufficiently large sets of intensity auto-correlation
measurements at the boundary of the object [15].

The amplitude correlation function obeys a radiative transfer equation (RTE) [11] which can be
simplified to a diffusion equation under certain assumptions [15]. With diffusion equation as the
forward model for the correlation propagation, one can set up the inverse problem to recover the
coefficients of the partial differential equation (PDE) using a mean-square error minimization ap-
proach. This will involve a Gauss-Newton type of algorithm (or one of its variants) wherein one has
to repeatedly solve the forward equation and also set up and invert the normal equation connected
with the minimization problem. The forward model, which is the diffusion equation derived from the
correlation transport equation, is usually solved employing the finite element method [16].

Whereas publications dealing with the numerical/compuational aspects of the above inverse prob-
lem are many, those trying to establish a proper and rigorous mathematical framework examining
aspects such as existence and Fréchet differentiability of the forward operator, and convergence of
the iterative algorithm implementing the Newton procedure for minimization are not available to the
best of our knowledge. However, there are some papers which deal with the mathematical aspects of
similar inverse problems of diffuse optical tomography (DOT) and electrical impedance tomography
[17, 18]. In reference [17], convergence of an iteratively regularized Gauss-Newton approach to solve
the DOT problem is studied wherein the usefulness of relative weighting of the regularization term
in guiding the iteration is established. The convergence of the Levenberg-Marquardt(LM) method to
solve the inverse conductivity problem via regularized least-square minimization is studied in [18].
The inverse problem associated with light propagation through a diffuse object with varying refrac-
tive index distribution is analyzed in [19]. Here, using an L? source in a diffusion model for light
propagation, the existence of the forward solution is first established, followed by the computation of
its Fréchet derivative.

In this work, we address the inverse problem of DCT using a regularized least-square approach
for the recovery of particle diffusion coefficient. The issues considered are: (1) the existence of the
forward solution and its Fréchet derivative when the illumination is from a source which is either an
L? or a delta function, (2) establishment of the regularity of the forward operator and its derivative,
(3) existence of a minimizer for the error functional and (4) the convergence of LM method used to
arrive at the above minimum. In particular, we show that the weak solution of the forward equation
driven by a delta source is in L? using the method of transposition [20]. In [21], the same problem
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is addressed and the existence of a weak solution for the DOT forward equation is established using
Levi function.

Summary of the rest of the paper is as follows. In section 2, we introduce the forward model for the
propagation of field autocorrelation. We prove the existence of weak solution for the forward operator
for both collimated and diffusive type sources. This is relatively easy. In section 3, we derive the
Fréchet derivative and its adjoint operators and prove the existence of weak solution. The inversion
of the forward equation, posed as a regularized least square minimization problem, is discussed in
section 4, where we introduce the objective functional used for minimization. Regularity estimates of
the objective functional needed for proving the existence of the minimizer is also derived in section 4.
We state and prove the convergence theorem, in respect of LM procedure used in the minimization, in
section 5. In section 6, we verify the established inversion scheme through numerical simulations. For
the sake of completeness, we just present one inversion computation, but further details on numerical
implementation are available in [22]. Section 7 gives our conclusion drawn from this study.

2 Forward model for the field autocorrelation through a turbid tissue like medium

The basic quantity of interest to be propagated is the specific intensity /(r,8$,t), which obeys the
following correlation transport equation [11, 12];

8- VI(r,8,7) = —uI(r,8,7) + s / 1(r,8,7)g} (8,8, 7)dS + S(r,8). @.1)

Here 1, = u, + g, where uy, and yg are the absorption and scattering coefficients respectively, and
S(r,8) is the source at the location r. Also g3 (8,8, 1) is the incremental specific intensity added in the
direction § owing to a single scattering event from direction §' to §. To get the diffusion approximation

of the above transport equation, we expand /(r,$, 1) as
I(r,8,7) ~ G(r,t)+3§-J(r,T)/4m,

where G(r,T) and J(r,T) are defined by
G(r,1) = / 1(r,8,7)ds and J(r,7) = / 81(r,8,7)ds.

The field auto-correlation G(r, ) is related to the power spectrum of light through a Fourier transform
with respect to T. Under the assumption that t; >> u,, the diffusion approximation to (2.1) is obtained
as [23];

1
V-DVG(r,T) — (us + 3 < AF*(r,1) > okl ) G(r,T) = —qo(r — 1), (2.2)

where kg is the modulus of propagation vector of light, ¢, = (1 — g)uy, o is the percentage of light

scattered by the moving scatterers, g is the anisotropic factor of scattering and D = ——— is the

3 (:ua + lLlS)
optical diffusion coefficient. In the above model, we assume that the scattering is isotropic with a

length scale [* = /% The term go(r —rp) is the isotropic source located at r = ry. If we assume the

medium is purely \S/iscous, then the scattering particles are pictured to diffuse through the medium.
Here < Ar?(r,T) > represents the mean square displacement (MSD) suffered by the particle at r. We
assume that MSD has a linear time evolution given by < Ar?(r,t) >= 6Dp(r)T, where Dp(r) is the
time independent particle diffusion coefficient related to the viscosity 1 of the medium [15]. We use
the mixed boundary condition, to solve the propagation equation (2.2) for G(r,7):
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AG(r,1)

D(r) n

=—G(r,7),

on the boundary, dQ. This implies that the light input is only from the source at ry. To simplify
notation, we denote A = 206y§k(2) and f = Dp. Thus, we have

{ V-DVG(r,T) — (U +AfT)G(r,T) = —qo(r —r0)
2.3)

D(r) %Y — _G(r,1)

The inverse problem presented here attempts to find the particle diffusion coefficient f using the
boundary measurement of G(r,T) and the forward model by posing it as a minimization problem. We
employ the Lavenberg Marquardt method for the minimization, which involves the computation of
Fréchet derivative and its adjoint. First, we present the existence of solution of forward operator and
its regularity. We assume, for simplicity that G(r,t) is positive, real and hence we can work with the
boundary measurement of G(r, 1) rather than its modulus.

Remark 2.1. In a practical experiment, G(r,T) is not easy (or impossible) to measure. The more
G(r,7)
G(r,0)

realistic experimental measurement is the intensity autocorrelation |g; (r,T)| = |
by

| which is given

< I(r,0)I(r,t +17) >= g2(7) = 1 +Blg1(r,7)|*.
Here B is a constant dependent on the collection optics used in the experiments. This indeed increases
the computational difficulty. a

Notations: Let Q be a open bounded subset of R*, n > 2. Let f be the function to be reconstructed
starting with a known background value f’. Let Q' be the region, fully contained in  such that f
equals the back ground value f’ outside Q'. That is f = f' + p with supp p C Q/, where Q' CC Q.
Thus ' is the region of interest for the reconstruction, where f varies from the background value.
The notation Q' CC Q means that Q' is open and Q' C Q and suppf is the support of f, that is
suppf ={x € Q: f(x) #0}.

Let L?(Q) be the space of square integrable measurable functions with the norm defined by

Hu||%2(g) = / |u|*and H'(Q) be the Sobolev space of L*(Q) functions whose weak(generalized)
Q

derivatives are also in L?(Q) with the norm given by ||”H12ql(g) = Hu”iz(g) + ”VMH%Q(Q). The space
H~1(Q) is the dual of H}(Q) with the dual norm, where H}(Q) = {u € H'(Q) : u = 0onoQ} en-
dowed with the H' norm itself. One can also define the H*(Q), but we skip the details [24]. Let
C(Q) be the space of continuous functions in Q with the Sup norm and C(Q)’ be the dual. By Riesz
representation theorem, this dual space can be identified with the space M(Q) of Radon measures.

2.1 Delta source Excitation

We use the method of transposition to prove the existence of the forward solution when the illumi-
nation to the object is from a collimated pencil of light, which means gg is a delta source at one
transport mean free path inside the object from the boundary point of illumination [16]. The necessity
of adopting such a method is due to the presence of the delta source on the right hand side of the
forward operator. In order to get a weak solution G(r,t) in H'(Q), we need a more regular source
qo € H™1(Q). A delta source gy, is in H*(Q) if s < —n/2. Thus, go € H~'(Q) only if the dimension
n =1, but, in our situation n > 2, in particular n = 2 or 3 and hence g9 ¢ H~'(Q). Thus, we cannot
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apply standard weak formulation to get G(r,t) € H'(Q). This indeed causes difficulty in future anal-
ysis and we are not in a position to carry out the entire analysis with delta source. But we show by the
method of transposition that G(r,t) € L?(Q) thus losing the smoothness of the forward solution.

Weak formulation with ¢y € M(Q) = C(Q)’

Since gp € M(Q) = C(Q)’, we need test functions in C(Q) to define a weak formulation. We define
the test functions via the solution to an adjoint PDE. Let ¢ be in a class to be defined later. Consider

{ V-DVy(r,t) — (ua +Aft)y(r,t) = ¢

(2.4)
y+D% =0,

Multiply (2.3) by y and (2.4) by G(r,7), integrate by parts on each of the equations and then subtract
to get the weak formulation

(0,G) = —(q0,¥) (2.5)

We use the notation (-, -) to represent either the inner product or duality bracket which is self explana-
tory according to the functions involved inside. For example the RHS in (2.5) is a duality bracket and

hence the weak formulation given in (2.5) is valid if y € C(Q) because then (go,y) will represent
the duality. So we have to choose the test functions ¢ suitably so that the regularity of W € C(Q) is
achieved.

Theorem 2.2. Let ¢ € LY, g > n/2, % + % =1 and p < .%5. Then there exists a unique y € L” such
that

[30=taow). voerr 2.6)
where Y solves (2.4).
Proof. Since ¢ € L9, g > n/2, the regularity of (2.4) implies that y € W24(Q) c C%®(Q),0 <06 < 1

which in turn gives y € C(Q) and

Wlle@) < Cllwllwae < CllOl L -

Now define A : LY — C(Q) by A9 = y. Then, we have

1A0lle@) = IWllc@) < ClIol L -

This implies that A is continuous. Define the adjoint operator A* : M(Q) — L? by the duality

(A"q0,0) == (90,A0) = (g0, V)

for all go € M(Q). Here the first bracket is the duality between L” and L? and the second and third are
the duality between M () and C(Q). This is well defined and

[(A"q0,0)| = 1(q0,A9)| < Cllgolly ) IWllc@) < Cllgollpa) 10l -

Hence
[A%qoll1» < C”‘IOHM(Q)
which proves the continuity of A* . Therefore, for a given go € M(Q), the function y = A*qy is also

defined and satisfies (2.6). Uniqueness of y follows directly from (2.6) as [y¢ = 0 V¢ € L9, implies
y = 0 which proves the theorem.
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The above theorem motivates the following definition.

Definition 2.3 (Transposition Solution). For go € M(Q), the function G(.,T) € L”(Q) is called a
transposition solution to the problem (2.3) if

/ G(.,1)0 = (g0, ¥)

for all ¢ € L9(Q) and y € C(Q) is the unique solution to the problem (2.4). 0

Remark 2.4. The above theorem establishes the existence of a unique G. We also remark that, since
in our case n = 2 or 3, we can as well take ¢ = 2 and p = 2. Indeed G(.,t) € L*>(Q) and hence
the trace G(,.7)|3q is not well-defined. For the inversion, we need the boundary data/measurement,
namely G(.,T)|3q to be well defined in L?(dQ2). For the further convergence analysis, we assume
the source go € L*(Q) and we can use the standard weak formulation instead of the transposition
method. a

2.2 Gaussian source

We assume source gq to be an isotropic Gaussian source located at a distance of one transport mean
free path (typically 1 mm) inside the tissue so that gy € L*(Q). Let V be the space of H!(Q) functions,
but with the inner product defined as

(G,y) = (VG, V) 2(q) + (Glaq; W]aa) / VG-Vy+ / Gy. (2.7

with the induced norm
2 2 1/2
I1Gllv = [IVGIxq) + Gl a0)|

We remark that the ||y is equivalent to |[.|[;1(q). Consider the weak formulation of (2.3), as: Find
G €V satisfying

[ .0v6-vy+ [ oyt [ wrarGy= [ av 238)

where G € V. Define the bilinear and linear forms in V x V and V respectively by

B(G,w)=/QDVG-WJr/BQG\H/Q(yﬁAft)GW

Lw) = [ qov.

Assume there are positive constants by, ay,az,as,as,as suchthat0 < by <D < ay, H,Ua”L"“ <a,
1 fllz=(@) < a3 ||Allz=(q) < a4 and then [|u, +AfT||=(q) < as. These are standard assumptions Wthh
are reahstlc Using Holders inequality, we have
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B(G,¥)| < ai </Q!VG!2>1/2 (/Q!V\p]2> +a5(/Q\G’2)1/2(/QW|2)1/2
+( \Gz)m(/ W)l/z
<a Z vGP + /39\622)]/2 (Lwwes [ we)”
sas f 167) " (f,we) "
([ wors /BQ'GV)]/Z (f v+ /BQW)I/Z

1B(G,W)| < ail|Gllv[[Wllv +as[|Gll 20 W2 () + | Gllv Wy
< (as)[GllvIwllv

for some ag > 0. In order to prove the coercivity of B we proceed as below. Let a; = min{b;,1},
then

1/2

which gives

BG.G) = a( [ IVGP+ [ 1GP)+ [ (ua+Af)GP
Q Q Q
= Gl + [ (wa+ArvIGP
Since by assumption y, +AfT > 0, we have the coercivity condition
|B(G,G)| = a7|| G}

Now, L is a bounded linear operator defined on V. Thus for gg € L?(Q) by Lax-Milgram lemma, there
exists a unique G € V which satisfies the weak formulation (2.8). Further we have,

1Gllv < Cllgoll2@)- (2.9)

We also have the interior regularity; given Q' CC Q, there exists a constant C > 0 such that G €
H?*(Q') and
1G> @) < Cllgoll 2 (- (2.10)

Using the imbedding H?(Q') < C(Q), for n = 2,3, we have G € C(Q') and

1Glle@) < Cllgoll2()- (2.11)

3 Fréchet Derivative operator

In order to solve the inverse problem, namely to determine f from the boundary values, first we
need to understand the variations in G for small perturbations in f. We introduce, the corresponding
Fréchet derivative operators in this direction both for the delta source and Gaussian source. In the
forward propagation equation (2.3) for the basic quantity G(r, ), we perturb £(r) to f(r)+ f3(r) and
obtain a perturbation in G(r,t) by G3(r,t). That is we represent G+ G® as the solution corresponding
to f+ f3. Substituting these in (2.3), after simplification, we get the equation connecting GS(r,r) to
f 8(1'), which we call the Fréchet derivative of the forward propagation equation;
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{V-DVGWnty—Qm+AfﬂGWnt):Af%G» G

8 G (rr)
G¥(r,1) + DY —

The existence of solution of the Fréchet derivative operator also depends on the nature of excitation,
i.e., whether it is a Delta source or Gaussian. If it is a delta source, then the method of transposition can
be employed to prove the existence of solution. For the Gaussian source, the usual weak formulation
will give a unique solution. In this case, even for the Gaussian source excitation, there is another
difficulty due the appearance of the product f3G.

3.1 Delta source excitation

The presence of delta source will only give the solution G(r, ) of the forward operator to be in L*(Q),
thus lacking enough smoothness to give a meaning to the restriction of G to the boundary. Further the
function on the right hand side of the equation (3.1) is only a L' function (as it is a product of two
L? functions) which can be viewed as a radon measure. Again the solution G® can be interpreted as a
transposition solution. For ¢ € L*(Q), let y solves the equation

V-DVY — ((us +Af1))y =0 (3.2)
Y+ DG =0 |

Thus, as previously, y € C(Q) and now define G® € L?(Q) as the transposition solution to (3.1). That
is, G? satisfies the weak formulation

(G*.0) = ()
for all ¢ € L?(Q), and the duality pairings are in appropriate spaces. Here u = ATf 3G. Now

/Q 0G® = (u,w) < Ity IWlca)

Using the regularity result, we have

Wlic@) < Cllollz e

Taking ¢ = G®, we have
) S
1G°1 720 < Cllullm@ 1G]l 2

which gives
1G® 120y < Cllullye) < ClLf3G|1 )

< @ 1G]z

3.2 Gaussian source excitation

For Gaussian source excitation, the right hand side of (3.1) is in L>(Q) if we assume f® € L*(€) and
the Supp f® C Q'. Indeed, this is the region of reconstruction. In this case, we use the interior regularity
(see (2.11)) for G € C(Q') to prove that G e H 1(Q), via the standard variational formulation for
n=2,3. This gives ATf3G € L*(Q) since Suppf® C Q' and we have

1G% | (@) < ClLF Gz i) = Cll PGl < CllGlc@) 102 @) (3.3)

Thus, we have
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Theorem 3.1. For n = 2,3, f, % € L>(Q) with Suppf® c @', Q' cC Q, the problem (3.1) has a
unique solution G® € H'(Q) and satisfies

1G® |10y < ClIGlle@) I 2]l 2@ (3.4)

Here G is the solution of (2.3) corresponding to f. ad

3.3 Adjoint of the Fréchet derivative

Let G* € H'(Q) solves the adjoint of the Fréchet derivative operator given by

V.-DVG* — (u, +Aft)G* =0
* JaG* (3.5)
G+ D% =0,
where ¢ € L?(9Q) is given. Using the weak formulation applied to the adjoint equation we get
1G5 @) < Clloll2p0)- (3.6)
Using the interior regularity of the equation, we have
1G* |20y < ClIdll 200 (3.7)
Now using the imbedding H?(Q') < C(Q'), for n = 2,3, we get
1G*|2=) = [IG" llcery < ClIdll 200 (3.8)

We use the same notation C to represent the constant, but it may vary from one equation to another
and this will not cause any confusion. Assume a Gaussian source excitation and hence G° € H'(Q)
and thus G|yq € H'/?(dQ). With this, we define the forward Fréchet derivative map DF (f) given by

DF(f)(f°) = G°(r, 7)o (3.9)

Thus DF(f)(f®) indicates the changes in the boundary values of the field for a change f° from
the background value f. Using the standard definition of the adjoint, we get the forward Fréchet
derivative adjoint map DF*(f) given by

DF*(f)(0) = ATGG*| oy (3.10)

for all ¢ € L2(dQ2). We remark that, we treat functions in L?(Q') as functions of L?(Q) by extending
them to zero outside Q'.

4 Approximate solution of inverse problem using method of regularized least square
minimization

The field autocorrelation G(r,t) will depend on the particle diffusion coefficient f and therefore de-
note G(r,t) = G(r,7, f) to show the dependence. The inverse problem can be stated as follows: Given
the measurements G(r,T, f) on the boundary d€, find f over Q. Clearly, this problem is nonlinear
and ill-posed which is usually solved by stating it as an optimization problem. We seek a minimizer
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f* that minimizes an objective functional J over an admissible class of f in which G(r,, f) satisfies
the forward problem given in (2.3). Define the forward map F(f) over Dom(F) C L*(Q) as

F(f) = G(r,7)loa 4.1)

With f € L*(Q) and go € L*(Q), we have G € H'(Q) which implies G|3q € H'/>(dQ). Let M be the
measurement G|yq corresponding to a particular particle diffusion coefficient f to be reconstructed.
Then, we define the objective functional J(p) for p € L?(Q') given by

1 ~
J0) = M@+ )~ MIPga + 2ol @)

Here p=p in Q, p =0 in Q\ Q. Starting with an initial background value f’ for the particle
diffusion coefficient, we need to update f’ to f'+ p to get a better approximation to the particle
diffusion coefficient. This is done via the well-known Tikhonov regularized minimization, where we

minimize J(p) over admissible p. That is, find p which solves r1121(r1 )J (p), where B is the Tikhonov
peLl? (Y
regularization parameter.
Since we try to minimize the objective function J(p), expand it in terms of Taylors series about p

up to second order differential:

J(p+8p) =J(p) + DI (p)(89) + 5D%1(p) 3p.3p). @3

Here DJ(p)(8p) is the differential of J(p) in the direction 8p. As explained earlier f can be expressed
as f = p+ f, where f defined on Q\ Q' is known to us. Perturbation in f denoted by f? is carried
out through p as 8p in Q' only. The differential DJ(p)(8p) can be derived by first principles from the
expression of J(p) as follows:

J() = S{F(E+f) =M. F(p+f)~ M)+
Differentiating the above expression in the direction 8p we have

DJ(p)(3p) = (0, DF (p+ f')(3p)) + B(p,dp), 4.4)

where ¢ = F(p+ f') — M. The above expression can be replaced with an equivalent one by using the
definition of the adjoint map DF*(f)(¢) given as

(0,DF (p+f)(8p)) = At(dp, DF*(p+ f')(9)))
Substituting the above expression in (4.4), we have the first order derivative of J(p)
DJ(p)(8p) = (ATDF"(p + ')(9) +Bp, 5p)
Define the gradient Gr of the cost function as
Gr(p) =DF*(p+f)[F(p+f") —M]+PBp 4.5)

In a similar manner, we can derive the second order differential of J(p). Neglecting the second order
differential term of the adjoint map, D*F*(f)(¢), we have
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D*J(p)(8p,8p) = (DF*(p+ f")DF (p+ f')(3p) + BSp, 5p)
Define the Hessian as
H(p)(3p) = DF*(p+ f)DF (p+ f')(3p) (4.6)
The gradient Gr(p) and the Hessian H(p)(8p) are connected through the linear system of equations

H(p)(8p) = —Gr(p) 4.7

This can be solved iteratively for p using the Gauss-Newton method given by

pit1 = pi—H(pi) ' Gr(p:). (4.8)

In the next section, we derive the necessary continuity (error) estimates for above scheme which is a
crucial section of our paper.

4.1 Regularity estimates for the existence of minimizer

The Fréchet derivative operator defined in section 3 was derived by explicit perturbation in f and
expressing the change G® in an operator form. We proceed to prove the existence of Fréchet derivative
for the case in which the source is a Gaussian source. We also prove the continuity of the forward map
F(f) with respect to the parameter to be reconstructed i.e, f. We further prove the continuity of the
adjoint map DF*(f)(¢) with respect to the parameter f which is very crucial in proving the existence
of minimizer.

Lemma 4.1. Assume n = 2,3. Let f, f3 € L=(Q) with supp f® C &, f, f+ f® > a > 0 for some
a > 01in Q. Consider the operators F, DF, DF”*, respectively given by the equations (4.1), (3.9), (3.10).
Then, there exists a positive constant C such that

IDF ()|l 2 (@) 1200)) <€ (4.9)
F G+ 9= ) =DF DG 0y < €[ (4.10)
[F+ 7= F O ey <E17 @11
* S *
|@F (75 =DF (1)), o, < ClOla0y 7], ( 17].. Q,>. @12)

Proof. Multiplying (3.1) by G* and (3.5) by G?, integrating by parts, we get
S _ ) * ) *
—/ oG —/AftGG —/AftGG,
2Q o Q

since supp 3 C Q. Now onwards, we take ¢ = G® in 9Q, then we have

/ G3Gd| —
20

where G* corresponds to ¢ = G5\ag. We, thus have

/ Af3TGGH|,
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2

|pF(H() [ acfco

209Q) H 209)
d *
< || o GG it

Using (2.9) and (3.8), since ¢ = G, we get

lorid|, <[], o ol [

[2(0Q) L2(Q) [2(0Q)

which gives
IR

<cfr

qOHLQ(Q)

L2(0Q) L2(QY)

This proves (4.9). Now, let f be perturbed by f® which induces a perturbation in G by G®. Sub-
stituting it in (2.3), we get an equation which solves for G 4+ G for the particle diffusion coefficient

f+ f3. Introduce p € H'(Q) which solves

V-DVp — (ta+AfT)p = Af31G®
p+DE =0.

(4.13)

Then, using (2.3) and (3.1), it is easy to see that the trace of p restricted to boundary is given by

Pla =F(f+°) = F(f) = DF (f)(f*).
Now introduce w’ € H'(Q) which solves the adjoint of the above equation given by

V-DVW — (g +Aft)wW =0
Daw (l)

where ¢’ € L2(dQ). Then, we have the adjoint form

oQ Q

Taking ¢’ = p on dQ in (4.15), we get

|etr 75— - )|

/ A,Cf5G5 /

Using the similar interior regularity results used above, we do get

L[2(0Q)

1=y = €W L2y < 110" 2 00) = ClP N2 00

Now applying Holders inequality to (4.16), we have

|F(r+ 5= F(r) = DF () Hm oV 1 17 s
Using the estimate (3.3) and (2.11), we have
|Fr+9-F) DN, <17 g 1200 0l

(4.14)

(4.15)

(4.16)
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From (4.14), it follows that

|Ftr+ =) -DFOE) gy <€ g 0020

L[2(0Q)

which is (4.10). To prove (4.11), as done earlier, subtract (2.3) from the operator which solves for
G+ G for a perturbed particle diffusion coefficient f + f° resulting in an equation which solves for
v whose value restricted to the boundary is F(f 4+ f3) — F(f). Hence v solves the equation

V.-DVv— (u, +Aft)v = AfG
v+Dg =0.

LetVv' € H'(Q), solves the adjoint problem given by

{V-DVV’ — (g +AfTN =
v _
V/+D§ = V.

where y € L?(9Q). In the adjoint (weak) form of the above two system, substitute W = v on 9 and
since V| = F(f + f%) — F(f), we get

[P+ =F()

Pl / ALGY
L2(0Q) Q

Applying the Holders inequality

2

(@) IV =) |Gl 12 (0)-

|F(r+7-F(p) <c|r

L2(0Q))
Using the previous results, we obtain
H"/Hm(g') <C HV/HHZ(Q’) < Clvll2a0)

Then, we have

|F(r+/5-F)

< Gillgolliza || £°

12(0Q) ~ L)

To prove the last inequality, we proceed as follows: When the Fréchet derivative operator was
derived in Section 3, we neglected the small term ATf3G® from (3.1). We now need to consider the
equation without neglecting this small term. Let G’ solves the equation similar to that in (3.1) but
without neglecting the term ATfG? as

{ V-DVG — (ua+A(f + f2)1)G' = Af°tG
G _
G'+ D% =0.
In the same manner as done above, we derive the Fréchet derivative of the adjoint operator in (3.5)
without neglecting the higher order perturbation terms as given below:

V-DVG* — (us +A(f + f3)1)G* = Afo1G*

/% G _
G+ D" — 0,

Then, we have the identification
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DF*(f+f2)0 =At(G+G')(G"+G™)

and
DF*(f)(f%) = A1GG*

Thus, we have the expression
~ ((DF*(£+ %) = DF*(£))0) =AT[GG™ +G'G" + GG
which gives
|(DF*(f + £°) = DF* ()8l 2@ty < € (I1GG lizqer
GG @) + 116G )
Using the Holders inequality
I(DF*(f + £°) = DF*(f))9ll 2() < € (IIGHy(mIIG/*IIme)
G |2 1G™ || 1=(0) + HGIHLZ(Q’)HG/*HL‘”(Q’)>

Assuming f® € L=(Q'), we get the existence of G'* € H'(Q) and then the regularity of G* will give
the regularity of G™* as well. Combining, we have

1G™ [l 2=@) < ClIOlz200) 1l 220

Substituting all the regularity results, we finally, get

|(DF* (£ + 1% = DF*())0

< ¢ (10l ] g o0l

L2(Y) L2

101200 £ 22 0 222 )

< Clolzqae 1y (1+ 1y ) -

This proves (4.12) and hence all inequalities in the lemma.

5 Convergence Analysis

The objective functional J(p) defined on dom(J) C L?(Q') has a minimizer if certain conditions are
imposed on J and Dom(J). Specifically, we look for a weakly closed domain over which J is defined
thus ensuring the weak limits to be in Dom(J). In order to prove that J attains a minimum we need
either convexity or weak lower semicontinuity of J. Since the functional J is nonlinear with respect
to the parameter f, the convexity assumption is unrealistic. We assume that the functional is weakly
lower semi continuous in order to prove the existence of minimizer.

Theorem 5.1. Let a be a positive real number and A = {p € L*(Q') : p+ f' > a > 0} and assume
that the functional J is weakly lower semi continuous. Then J has a minimizer pg in A.
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Proof. Let {p;} C A withJ(p;) = Mp = inf{J(p):p € A}. Then by definition of Mg, for n € N, there
is a subsequence p;, such that

1
J(pi,) Mg+ < Mp+1 5.1)
Thus, we have
B ou ey < J(p1) < My 1

Let M = Z(Mg + 1) and consider the set B =AN{||p[/;2(ry < M}. Then B is a closed and bounded

set in L?(Q) and hence weakly compact in L2(Q). So the sequence p;, has a convergent subsequence
again denoted by p;, which converges weakly to some pg € B. That is HPBH Q) <M and pg € A.
Further, if the function J is weakly lower semi continuous, then

J(pg) < lim, /(p;,) < lim(My + )

which proves J(pg) < Mp. Since pg € A, we get J(pg) = Mg proves the theorem.

The iterative equation given in (4.8) will solve for a p which minimizes the RHS of the truncated
Taylors expansion of objective functional J given in (4.3). The regularity estimates derived in section
4 can be used to prove that the iterative scheme will converge to a p* which minimizes the functional
J in the least square sense as given in (4.2).

Theorem 5.2. Assume J(p) has a minimizer pg. Let po be the initial iterate which is close to pg. Let
the sequence {p;} generated by the minimization scheme p; 1 = p; — H(p;) ' G(p;) lies in a bounded
set. Then, for {3 large enough, we have p; — pg.

Proof. Let p; be the next iterate obtained from iterative equation (4.8). We estimate pg — p; in terms
Pp — Po which will set up a strict contraction. Consider the following notations Fy = F(po + /') and

Fg = F(pg + f') and the relations pg —po = 3, f=po+f, pg+f = f+ f3. We assume B is large
enough so that the relation ||[H(p)~!|| < é holds.
Denote W = DF (Fg — M) — DF; (Fy — Fo — DFy(pg — po)). We, now compute using (4.5) and
(4.6);
W = DFy(Fp—M) —I-DFO*DFO(pB —Po)
= Gr(po) —Bpo+H(po)(Pg — Po)}-
Therefore 1 1
H(po)™" (W+PBpo) = H(po) ™ Gr(po) + (Pp — Po)
= (Po—p1)+(Pp—Po) =P — P1,
by (4.8). That is
Pp—p1 =H(po)~" (W+Bpp+B(po—pp)) -

Using the first two regularity estimates in Lemma 4.1, we get
|DFg (Fg — Fo — DFy(pg — po)) || < C||Fg — M) — DF; (Fg — Fy — DFy(pg — po) ||
< Clpg—po "

Thus we have



94 Hari. M. Varma, A. K. Nandakumaran, R. M. Vasu
lop—p1ll < é (IlDFs (s — M)+ Bo| +C [lg — pol|* + Bllpg — pol ) -

But, for minimization of the functional J, we have G.(pp) = DFg (Fg — M) + Bpp = 0 which gives
lpg—p1l| < g (H (DFo* —DFg) (Fs—M)H + [lpg = pof|* + HPB—POH)

Again by Lemma 4.1, the first term on RHS can be estimated by ||pg — po|| and hence we get

C
[P —p1| Sngs—poH

So, B sufficiently large, we see that the above inequality is a strict contraction for the iterative proce-
dure. Hence we have the convergence.

x10°

w

[N)

cm
o

Fig. 1 (a)The grey level plot of the original particle diffusion coefficient distribution (cm? /sec) used in simulation (b) The
grey level plot of the reconstructed particle diffusion coefficient distribution (cm? /sec)
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Fig. 2 Cross-sectional plots of reconstructed particle diffusion coefficient distribution through the center of the inhomo-

geneity (dashed curve (a)) as well as the original inhomogeneous object (solid curve (b)).
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Fig. 3 Decay of the objective functional J with the iteration number

6 Numerical Simulations

The object used in our numerical simulations is circular, taken as the cross-section of a cylinder
of diameter 8 cm. The background optical and mechanical properties are kept as ¢ = 0.001 cm ™!,
,u;b = 8cm~! and Dg = 0 cm?/sec. There is a circular inhomogeneous inclusion in this object of

diameter 1.4 cm which is a Dg-inhomogeneity of 1.5 x 1078 cm? /sec at (—2.5¢m, 0cm) (The object is
assumed to be centered at the origin of the coordinate axes). Therefore the inclusion in the background

is
Dg(x,y) = 1.5 x 10 8¢cm? /sec if \/(x—|—2.5)2 +(y)? <0.7

To generate numerically the experimental data, (2.3) is discretized using the FEM with 1933 nodes
and 3723 triangular linear elements. For a collimated source on the boundary, forty detectors are
placed equi-angularly on either sides of the diametrically opposite point to the source location, to
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cover an overall angle of 320 degrees. The discretized forward equation is solved for G(r,t) for
T = 10 %sec. The experimental data sets is generated by adding 1% Gaussian noise to G(r,t). The
above procedure is repeated by rotating the source-detector combination by steps of ten degrees to
gather 36 sets of forty readings each.

For inversion of data, we use a coarser mesh, discretizing the domain with 1243 nodal points and
2376 triangular elements. We start the reconstruction algorithm with an initial guess of the property
D% which is the background value. Then we calculate the Gradient and Hessian for the measurement
G(r,7) using the (4.5) and (4.7) described in section 4. The new update is obtained using (4.8), where
we use an appropriate regularization parameter 3 set through trial and error.

Once the updated Dp is obtained, the gradient and Hessian terms are recomputed at the new
parameter distribution and (4.8) is itself updated. Inversion of the updated (4.8) gives us the current
update for Dy to continue the iteration. The algorithm gave stabilized reconstruction of Dg(r) in about
8 — 10 iterations as indicated by the low plateau region reached in the plot of the objective functional
vs. iteration number (figure 3).

The grey level plots of the original and the reconstructed Dg distribution are shown in figures
1(a) and (1)(b) respectively. The cross-sections through the centre of the inhomogeneity of the re-
constructed and the original Dp distributions are shown in figures 2(a) and 2(b) respectively. From
the reconstructed images it is clear that the quantitative recovery of the particle diffusion coefficient
Dg from the boundary measurement of G(r,T) is reasonably good. The a priori convergence anal-
ysis done for the Levenberg-Marquardt algorithm is supported by the numerical convergence of the
algorithm as indicated by the decay of the error functional J as the number of iteration advances. It is
also seen that the rate of convergence of the cost function with the number of iteration decreases as
iteration becomes larger. The rate of convergence can be modified by selecting suitable regularization
operators instead of the identity operator used for analysis.

7 Conclusion

In this work, we have addressed the mathematical analysis of the inverse problem associated with the
propagation of field autocorrelation through a turbid medium. Of the coefficients of the PDE which
govern the propagation, which are the optical properties (absorption and scattering coefficients) and
the mechanical properties (the MSD approximated through a particle diffusion coefficient) of the
medium we have considered the problem of recovering only the particle diffusion coefficient. How-
ever the same analysis can easily be extended to the recovery of optical properties as well, particularly
the absorption coefficient. Of major concern in the reconstruction is the forward operator which con-
nects the unknown property distributions to the boundary measurement, and its Fréchet derivative.
We have established the existence of an L? solution of the forward operator when the illumination is
from a delta source (a problem that cannot be handled through the usual variational weak formulation
of PDE’s) by using the method of transposition, which enables us to handle very weak data sets. The
parameter recovery is achieved through solving a nonlinear minimization problem, for which the LM
method is used. We have also proven the existence of the minimizer for the error functional and the
convergence of the algorithm to reach this minimum. En route to proving this convergence we have
proven (i) the existence and Fréchet differentiability of the forward operator and (ii) the continuity
of the Fréchet derivative and its adjoint. We have proven the working of the algorithm by numeri-
cal reconstruction of particle diffusion coefficient from simulated boundary field correlation data. A
complete application of the numerical procedure to reconstruct both mechanical and optical properties
will appear in another publication.
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