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Abstract. The method of unfolding is used to study optimal control problem in a domain with oscil-
lating boundary. We consider Neumann condition on the oscillating part of the boundary and the rest
is more interesting than the Dirichlet condition. Hence the limit problem consists of two parts, namely
in the lower part and upper part with appropriate interface conditions. In this article, we have con-
sider two cost functionals, namely L? and Dirichlet cost functional. Interior and boundary unfolding
operator are introduced in the process.

1 Introduction

In this article, we plan to study a distributed optimal control problem in an oscillating domain with
Neumann condition on the oscillating part. The controls are applied away from the oscillating bound-
ary. This article is a continuation of our earlier work where we have studied [31], [32], Laplacian
and stokes problem with Dirichlet boundary conditions. The Neumann problem is more interesting,
difficult and produces nice limit problem. Our aim is to use the method of unfolding introduced by

2010 Mathematics Subject Classification:
Keywords: Optimal control and optimal solution, homogenization, oscillating boundary, interior control, adjoint system,
unfolding operator, boundary unfolding.



230 A. K. Nandakumaran, Ravi Prakash ,Bidhan Chandra Sardar

Cioranescu et. al. in [12] and developed by Damlamian [13], [14], for periodic unfolding. We further
refer to the paper by A. Damlamian and K. Peterson [15]. There is also a large amount of literature
on the homogenization with oscillating boundaries which has tremendous applications as well. For
example (see [1],[31.[4], [5], [8], [9], [10], [18], [19], [31]). Regarding optimal control/ controlla-
bility result in domain with oscillating boundary are concerned refer to [16], [27], [28], [31], [32],
[33]. In [28], an exact controllability problem has been studied where as in [33] an optimal control
problem for a fourth order problem has been investigated. One can look into [21], [22], [29], [30] for
homogenization of optimal control and controllability, [7], [11], [20], [35] for general homogeniza-
tion and [2], [6], [9], [23], [24], [25], [26] for reference in optimal control problems and derivation of
optimality systems.

The layout of this paper is as following. After a brief introduction in this section, we go to Section 2
where we describe the required domain and its boundaries. We describe the optimal control problems
with respect to two different cost functional in Section 3. One is called as L’-cost functional and
another is called as Dirichlet cost functional. We defined periodic unfolding, boundary unfolding
operator and its properties in Section 4. In Section 5, we do the convergence analysis and find the limit
optimal control problem for the case of L?-cost functional. Similarly for Dirichlet cost functional, we
derived the homogenized optimal control problem in Section 6.

2 Oscillating Boundary Domain

In this paper, we consider the same domain as in [31]. For the sake of completeness, here we would
like to describe the oscillating boundary domain once again. For a small parameter € = %, NeZ", we
consider a oscillating domain Q¢ as given in the Figure 1. We now describe mathematically the domain
Q¢ and its boundaries. Let L > 0 and g : R — R be a smooth and periodic function with periodic L.
This domain is nearly a two-dimensional rectangular region with oscillating part on one side of the
region. One can also see it as a transverse cross section of a three- dimensional slab perpendicular to
the plane. The oscillating part is sitting at the top of a rectangular region of the domain.
Let 0 < a < b < L and 1 be the eL-periodic function defined on [0,€L] by

Ne(xr) = {g’ l:f x1 € (ea,eb),
if x; €[0,eL)\(ga,eb),

with M’ > M > m, where m is the maximum value of the smooth function g in [0,L]. We can write
the domain Q¢ as Qe = {(x1,x2) €R?: 0 < x; <L, g(x1) <x2 <Me(x1)}. The top boundary of Q¢ is
denoted by Y, and defined as V. = {(x1,x2) : x1 € [0,L], x2 =Me(x1)}. The bottom boundary I';, of Q¢
is defined as I', = {(x1,x2) : x2 = g(x1), x1 € [0,L]}. Let Q is the top part of the domain Q. which
is the union of slabs of height (M’ — M) and width €(b — a). It can defined as

N-1
Qf = | (keL+ea,keL+¢b) x (M,M').
k=0
Denote Q™ as fixed a part of the domain ¢ which is described by
Q7 ={(x1,x2):0<x; <L, g(x1) <x2 <M}.

The vertical and top boundary of Q™ denoted by I'y and I" defined as
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Iy ={(0,x2) : 8(0) <x2 < M}U{(L,x2) : g(L) <xp <M}

and ' = {(x;,M) : 0 < x; < L} respectively. The common boundary between Q7 and Q™ is denoted

by I'; and defined as
N—1

Ie = | J (keL+ea, keL+eb).
k=0
We can also write Q¢ as Q¢ = Int (Qér U Q*) . Let ® be the sub-domain of Q~, In this sub-domain

control acts. Without loss of generality, we can consider
O={(x1,x2):0<x; <L, glx;) <xa <M}

where M > M~ > m. Our full domain will be denoted by Q (see Figure 2). Mathematically we can
write
Q={(x1,x2):0<x <L, glx1) <xp <M'}.

The bottom part of the boundary of Q is same as €. We still denote it by I';,. The vertical boundary
of Q is denoted by I'y and can be written as

Iy ={(0,x2): g(0) <xa <M'JU{(L,x2): g(L) <xa <M'}.

The top boundary of Q is denoted by I, = {(x;,M’) : 0 < x; < L}. If we denote Q" as QF =
{(x1,x2) : 0 < x; <L,M < x; <M’} then we can write Q = Int (Q*UQ"). Let L3,,(Q¢) =
{f € L*(Qe), f(x1 +kL,x2) = f(x1,x2) Vk € Z}, H},,(Q) = {f : f € H'(Qe), f(x1 +kL,x2) =
f(x1,x2) Yk € Z}. We call function are I's-periodic, which are taking the same value on the both
side of I'.

3 Problem description

We consider the following control problem:
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_Aug == f + eXu) il’l Qg,

ou
a—ve =0 onYe,ue =h onT}, 3.1

ue isI's — periodic.

Here, 8 € L?(®) is a control function acting in the sub-domain ® and g, is the characteristic function

(Q) and & in H;({rz (Tp). It is known that if © € L}, (), then

H},,(Qe) that satisfies ue|r, = h. The solution
Q) x L2, (o) into H),,(Qe),i.e

per per

of ®. We consider source term f in Lpe,
(3.1) admits a unique solution us (depending on 0) in

operator is linear and continuous from Lper(

el (0e) < CUUf (@) + 181l 2(0) + llrr2ry)) 3.2)

where C > 0 is independent of €. For regularization parameter 3 > 0, let us consider two cost func-
tionals, first one known as L?-cost functional, more precisely,

Jls ug,0 /‘us_”d‘z B/92

where the desired state u; € H,,,(Qe¢) satisfies uy|r, = h. With this cost functional, we consider the

optimal control problem

per (

inf{J) ¢(ue,0)|0 € L*(®), (ue, ) obeys (3.1)}. (Pre)

We also consider the Dirichlet cost functional given by

J28 ug, /|Vug Vud|2 B/ez

with desired state u; € Q). The corresponding minimization problem is

per(
inf{Js¢(ute,0)| 0 € L*(®), (ue,0) obeys (3.1)}. (Pog)

Itis well known that (P1¢) and (P, ¢) admit unique solution (see [14], [34]).
Let (ug, 6¢) be the optimal solution to (P ¢). The following theorem will give us the characteriza-

tion of 8 with the help of adjoint state Ve € H per(Qg) which solves the partial differential equation

_AVQ — ﬁg — Ug in Qg,

v,
% =0 onvYe, Ve =0 on I}, (3.3)

Ve is I'y — periodic.

Theorem 3.1. Let f € L>(Q), h € H'/?(T,) and (7, 8¢) be the optimal solution of (P;¢). Let V¢ €
per(Qg) solves (3.3), then the optimal control is given by

— 1
eg - — BVQX(D.

Conversely, assume that a pair (i, Ve) € per(Qg) pe,(Qg) solves the coupled optimality system
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(3.4)
ﬁg — h,\,)g — O on Fb,

ilg, Ve is I'y — periodic.
Then, the pair (de, —éﬁgxm) is the optimal solution to (P; ¢).

Similarly if (ig,8¢) optimal solution to the problem (P, ¢) then optimal control 8 will be charac-
terized with the help of adjoint state V¢, that solves the partial differential equations

_AVQ — _A(ﬁg - ud) il’l QE?
ov

Ve=0 onIy,

= (Vﬁg — Vud) V. on YSa (35)

ve is I'y — periodic.

Theorem 3.2. Let f € L>(Q), h € H'/?(T,) and (7, 8¢) be the optimal solution of (P, ). Let V¢ €
H},,(Q) solves (3.5), then the optimal control is given by

— 1
0 = — BVSXW

Conversely, assume that a pair (#g, Ve) € Hlﬁer(Qg) X ngr(Qg) solves the coupled optimality system

—Adle = f = § Ve, —APe = —A(lle — tg) in Qe,
di ", X

l/’ig :h,\’}\g :O Orll—‘b7

(3.6)
ile, Ve is I'y — periodic.

Then, the pair (i, —%ﬁgxw) is the optimal solution to (P¢).

4 Unfolding operator and its properties

In this section, we introduce periodic unfolding operator and present some interesting properties (see
[15]). Let [0,L] be a reference cell as in Section 2. For x € R, we write [x], as the integer part of x
with respect to L, that is [x];, = kL, where k is the largest integer such that kL < x.

Definition 4.1. (The Unfolding operator) Let ¢ : Q" x (a,b) — Q/ be defined by x — (€[], +&x3,x2).
The e-unfolding of a function u : QF — R is the function uo ¢ : QT x (a,b) — R. The operator which
maps every function u : QF — R to its € unfolding is called the unfolding operator. Let the unfolding
operator be denoted by T¢, i.e.

T¢: {u:Qf - R} — {v:Q" x (a,b) - R}

defined by
T u(x1,x2,x3) = uod®(x1,x2,x3) = u (8 [%} —I—EX3,x2> )
L
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If U is an open subset of R? containing Q and u is real valued function on U, T¢u will mean T°¢
acting on the restriction of u to Q. We would like to state few properties of the unfolding operator
T¢ as following.

Proposition 4.1. The unfolding operator T¢ is linear and for functions u,v from Qf — R, we have
T¢(uv) =T%(u)TE(v).
Proposition 4.2. Let u € L'(Q/). Then

/ Tsudx—L/udx

Qtx(a,b)
Proof.
M b 1(k+1)
/ Teudx = / / Z / u(keL + €x3,x2) dxydxadxs

Qtx(a,b) xx=Mx3=a kioxl =keL

N_1 M’ keL+eb
=L Z / / u(xy,x2) dxydxy = L/u(x) dx.

- xz—Mxl =keL+€a QF

Proposition 4.3. Letu € L*(Qf). Then T®u € L*(Q* x (a,b)) and || T%ul| ;20  (a,p)) = VL]l 120z
Proof. Proof follows from the above proposition , because |u|* € L' (Qf)
Proposition 4.4. Let u € H'(Q7). Then T®u € L*(0,L;H' ((M,M’) x (a,b))). Moreover

d e, ¢ OU 0 .. ¢ OU
aix2T =T ax2 and ai_x3T u==eT ax1 (41)

Proof. By definition of Tu, it is easy to see (4.1). Now

1T el 22 0.2t (0007 () :/HTSuHIZLIl((M,M/)X(a,b) dxy
_ € 2 2 2
S G R T
Qtx(a,b)
L [ (eI ) as
o

< LHMH]qu(QS) < ee.

Proposition 4.5. Let u € L>(Q"). Then T®u — u in L*(Q" x (a,b)).
Proof. Its easy to prove. First for u € D(Q) and by density argument follows the result.

Proposition 4.6. Let ue — u in L>(Q*). Then Tue — u in L*(Q* x (a,b)).
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Proof. Suppose that ue — u in L*(Q").

IT%ue — ull 20 x(ap)) = (T e = Tu+ T u—ul| 20+ x(ap)
< T ue — T¥ull 120 x(ap)) + 1T 1 — ull 200+ x (ap))
= VL|ue — ull 2 (o) + 1T = ]l 2@+ ¢ (ap))
< VL|lte — ull 2 (@) + 1 T — ull 2 (@ ¢ (ap)
—0as e—0.

Proposition 4.7. Let ue € L?(QZ) be such that T%u — u weakly in L?(Q* x (a,b)). Then

1 b
ﬁs—\z/udxg
a

weakly in L?(Q7), where i is the extension by 0 outsides Q.
Proposition 4.8. Let u. € H'(QZ) for every € > 0 be such that T¢u; — u weakly in L?((0,L) x

(a,b);H'((M,M"))) Then i — %fbu dxs weakly in L>((0,L); H' (M, M"))).

Proof. Given that Tue — u weakly in L>((0,L) x (a,b); H' ((M,M"))) implies
Teue — uweakly inL>((0,L) x (M,M') x (a,b))

and

J €. _ u T2 /
TmT Ug ax2 inL ((O,L)X(M,M)X(a,b))
ie 3 3
g Olle N u . 2 !
T e~ oy ML (O.L) X (M.M) X (a.)).

- b ad b9
Using Proposition 4.7 we get it — + [u dx3 in L*(Q") and e fa—u dxs in L*(Q*). But
a a 0X2

1
X L

de  due

b
o o Hence i — %afudx_o, weakly in L2((0,L); H' (M, M"))).

4.1 Unfolding on the boundary:

For our analysis, we also need to unfold the common boundary of QF and Q™. So we define the
boundary unfolding operator on I.

Definition 4.2 Let ¢f,_,, : (0,L) x (a,b) — T be defined by x — (e [%] n 8)63) . The e-unfolding

L
of a function u : I'e — R is the function uo¢,_,, : (0,L) x (a,b) — R denoted by T, that is 7 : {u:
Te — R} — {v: (0,L) x (a,b) — R} by TS _,u = uodt,_,, = u <£ [%} +aX3) .
L
If U is an open subset of R? such that e C U and u : U — R then T;fu = T (ulr,)

The properties of boundary unfolding are given below without proof.

Proposition 4.9. (i) T is linear and for functions u,v from I'y — R, we have T (uv) = T (u) T (v).
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(ii) Let u € L*(T¢). Then Tu € L2((0,L)

x (a,b)) and || T§ ”HLZ (0,L)x

= VL|lull2(r,)

0 a
(iii) Letu € H'(T¢). Then Tu € L*(0,L; H' ((a,b)))and =—Tfu = sTra—.
X1

(iv) Let ug — uin L*(0,L). Then Tifue — u in L*((0,L)
(v) Let ug is a sequence in L*(T¢) such that Tifue — u weakly in L*((0,L) x

b

1

7 /u dxsweakly in L*(0,L).
a

5 [2-cost Functional

5.1 Homogenized System

Consider the space

W(Q)={yeL*(Q): ylo- €H'(Q),

and

Wo(Q) ={yeL*(Q): ylo- eH'(Q)

0x3

" Oxy

% (a,b)).

— € L*(Q) and y|r, = h}

€ L*(Q) and y|r, = 0}.

The spaces W (Q) and Wy(Q) are Hilbert spaces with respect to the norm defined by

oV
V100 = ¥+

12(Q) H 0x

V|a-

@)

(a,b)). Then ug —

We, now define the limit equations. Given 6 € L?(w) and h € H'/?(T'},), consider the partial dif-

ferential equation

where

*ut
Tx% =f inQ",
—Au" =f+0), inQ
aau\:r =0 onl,,
ut =u" b_ay—ald;onf
"L oxp 0x, ’
“=h on Ty,

u is I'y — periodic.

_ JutifxeQt
u(x)—{u ifxeQ

6D

(5.2)

The variational formulation of the problem (5.1) is given as: Let f € L?(Q). Find u € W(Q) such that

du’ oy
L 8xz axz

+/Vu Yy — /axZ b= a/fw+/f\|1+/9w (5.3)
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for all y € W(Q). The solution operator of (5.1) is linear and taking y = u as a test function in (5.3),
we will have the continuity of the solution operator. Moreover,

lullw@) < C(flz2(@) + 181l z2(w) + Mallz12(ry) (5.4)

where C is independent of €. Existence and uniqueness of u € W(Q) as a solution of (5.3) is well
known. Now consider the L?-cost functional J; defined by

1 b—a
Jl(u,e)zz/(LxQ++xQ-> \u—ud12+§/92. (5.5)
Q [0}

Associated with this cost functional, we introduce the optimal control problem as
inf{J; (u,0)| 8 € L*(w), (u,0) obeys (5.1)}. (P1)

This problem admits a unique solution say (i, 8). As we characterized earlier, for 8¢, we now charac-
terize optimal control 6 of the problem (P;) using adjoint state v, in a similar fashion. The co-state v
solves the adjoint problem

*vt
- =@ —uy) inQ",
ox3
—AV =(u —uy) inQ,
vt
v~ onhe (5.6)
v b—aovt oJv r
vV =V, ———=—o0n
"L ox, ox ’
v =0 on I},
[V is Uy — periodic.

Theorem 5.1. Let f € L?(Q), h € H'/>(T'}) and (i, 8) be the optimal solution of (P;). Let v € W ()
solves (5.6), then the optimal control is given by

1

6 — _BVX(D.
Conversely, assume that a pair (4, 7) € W(Q) x Wp(Q) solves the coupled optimality system
o*at 9%9~
0x3 ox3 ( @)
—A1T = = §P Yo, —AVT = (A—ug) Q7
ant vt
S —0,2—=0 onT
v o on (5.7)
v .. b—aodd™ oa~ .,  b—adb" 0V r
=0, —s—=5—,0"=0V, —=s—=—-—on
’ L axz sz ’ ’ L aXQ aXQ ’
- =hyv =0 on I}y,
i,vis I'y — periodic.
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5.2 Convergence Analysis

Assume that (%, 0;) is the optimal solution of (P; ¢). Let us(0) be the solution of the problem (3.1)
corresponding to 6 = 0, then from (3.2) we get

e (0)[ 111 (@) < C (5.8)

where C > 0 is independent of €. Using optimality of the solution (g, 8¢ ), we get

_ =2
/(ug —ud)Z—l—g/Gg < /(ug(O) —ug)* <C. 5.9
Qe &) Qe
Thus we have
18ell2() < C and [[tze || 2(q,) < C. (5.10)

We know h € H,le/rz(l“b), by trace map there exist z in H}\,,(Q") such that z|r, = 0 and z|r, = h. Let

K={¢ € H' (Qe¢): 0|1, =0} Set tiz =Z+7,, where 7 is an extension by zero on Q¢ and y, € K solves
the following partial differential equations

—AVe = [+ 0o +AZ inQ,

Ve
v 0o (.11
ye =0 onT'p,
Y. is 'y — periodic.
Then variational formulation of the above problem (5.11). Find y, € K such that
[vrevo= [ o [vEvos [oo (5.12)
Qe Qe Qe ®

for all ¢ € K.
We use the following lemma to prove next theorem.

Lemma 5.2. (see [15]) Let, m be a fixed integer, {Ocn}n for k=1, 2 ,m be m bounded sequence of

real numbers and o be m real numbers. Suppose that Z ok — Z o and for every k =1,2,.
k=1

liminf,_ e Oc > o, Then im0 oc = o for every k_l 2 .,m.
We now state and prove the main theorem of this section.

Theorem 5.3 (Main Theorem). Let (#,0¢) and (%,0) be the optimal solution of (P; ) and of (Py),
respectively. Then

0, — 0 weakly in H'(®),
—~— b-ua

Ug|gr —

it|o+ weakly in L*(0,L;H' (M, M")),

)

Uglo- — ﬁ|97 strongly in H'(Q
b—

(
)

v‘g’g;r — v|g+ weakly in L*(0,L; H' (M, M")),
)

Velo- — Vo strongly in H'(Q

)
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where 6 = —%me and Vg, ¥ is the solution of (3.3) and (5.6) respectively. Moreover,

J1 ¢ (e, 0¢) — J1 (11,0) as € — 0.

Proof. Stepl(boundedness of i, 8 ): We can conclude from the continuity of solution operator and
by (5.10) that

7|11 () < C. (5.13)
From the weak formulation of the adjoint problem (3.3), we have
Vel |t () < C (5.14)

where C is independent of €. Since (i, 0 ) is the optimal solution of (P; ¢). By Theorem 3.2 we have

1
0 = —BVsz- By estimate (5.14) gives

18|71 () < C- (5.15)

Eberlein-Smuljan theorem ensure the existence of subsequence (6;) (still denote by €) and a function
8p € H'(w) such that

0, — 8 weakly in H' (). (5.16)

Let us denote e ™ = @i+ and e~ = 7e|q-. Using the estimate (5.13), we have the boundedness
of e~ in the space H' (™). Thus upto a subsequence (still denote by €)

e — uy weakly in H'(Q") (5.17)
for some u, € H'(Q™). We observe that

| 7% ) < L[tel[1 g, - (5.18)

4112

HLz(o,L;Hl (MM") % (a,b)
Step2 (convergence): The boundedness of the sequence T€%* in L?(0,L; H' (M, M) x (a,b)) fol-
lows from (5.13) and (5.18). By weak compactness, there exist a subsequence (still denoted by €)
such that

T%he " — ug weakly in L*(0,L; H' (M, M') x (a,b))), (5.19)
which implies
0 dul 9 ou .
Tue™ — ug, ETE*S+ — a—x(;, F St — ﬁ weakly in L2(Q" x (a,b)),
That is
ot ouf
Sa”—;z -~ aLxZ weakly in L2(Q* x (a,b)), (5.20)
ot ouf
et 2% M0 weakly in L2(QF x (a,b)) (5.21)

0x 1 ox 3
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From the Proposition 4.3, we have

’ ¢ Ollg ™ _ \f‘ Ot
Ix1 | 2@t x(a,b)) I {20
< \FH”‘SHHI(QS)-

ot
Again (5.13) implies the boundedness of the sequence T°® e in the space L2(Q* x (a,b)).

Bxl

=0 and thus ”0 is independent of x3. From the Proposition 4.8 and con-

+
a"«s

vergence (5.19), we have

+ N / dX’),

ot
We know that T¢ “
X1

element P € L?(Q7" x (a,b)) such that up to subsequence,

From (5.21) we have —

% u weakly in L2(0,L; H' (M, M")) (5.22)

is bounded in L2(Q* x (a,b)). Hence by weak compactness, there is an

o+
Tsaaug —~ Pweakly in L2(Q" x (a,b)). (5.23)
X1
Define ug as
+ +
Juy ifxeQr,
to () = {”6 ifxeQ . (524

Step3 (Claim the function 1y € W () and satisfies the limit problem (5.3)):

duy
Proof: clearly ug € L*(Q) and u, € H'(Q™). To prove uy € W(L), we need to show a— € L*(Q).
29)
d

dug dug
Recall that ug is independent of x3 and a— € L*(Q") and a—uo € L*(Q7). Thus BL € L*(Q) if we
X2 X2 X>
prove trace of ug and u, are equal on I',. Since % *|r, = e~ |r, implies the equality of trace for the
boundary unfolding operator. More precisely we have

TE (et |r,) = T¢ (e |r.) (5.25)
Observe that T (% *|r,) = (T%(%e ™)) |x,=m- So, the equation (5.25) becomes
(T8@: ")) |r = T (e |r, ) - (5.26)
From the continuity of trace operator we can write
(T%(@e ")) |r — ug |r weakly in L*((0,L) x (a,b))

and from (5.17), we get
fe |r — u~|r strongly in L*(0,L).
This implies
Tf (@ |r) — uy e in L2((0,L) x (a,b)).
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Passing to the limit in (5.26) as € — 0, we get
Fl =l in 72
Uy v =ug [rin L7(0,L)

since ua' and u, are independent on x3 variable.
Step4 (Identiﬁcation of the limit P in (5.23)): Let e = Z+ ¥,, where Z has in Section 5.2 and
e € H),,(Qe) satisfies (5.11) for 6 = 8. We observe that " is equal to ¥¢ |, say ¥ . So ¥ have

per
the same convergence as g ', i.e.
. oug
Teay—;z - 8”72 weakly in L2(Q* x (a,b)) (5.27)
eaye—i— : 20+
T T P weakly in L(Q" X (a,b)). (5.28)
X1

For ¢ € D(Q™) and y(z) € C*[0,L), choose a test function
€ o X1
0°(x) = e0 (v ({5} (5.29)

in such a way that ¢° is continuous on Q . From the definition of e-unfolding of ¢° and by Proposition
4.4, we get

T¢0® = S(I)( [ } +SX3,x2> W(x3),

gﬂ: = iai = ( [ } +9~x3,x2> (x3)+¢( R:l} +8x3,x2) ?g(m),
"5 Ol hw)

This equations gives us

T0® — 0 strongly in L*(Q" x (a,b)) (5.30)

€
d
T: — % — O(x1,x2) Il[(xg) strongly in L2(Q" x (a,b)) (5.31)
8x1 dz

t

T¢ aq’ — 0 strongly in L2(Q" x (a,b)) (5.32)
X2

as € — 0. From the variational formulation (5.12) for 8 = 8, we get

nm/Vye-vq?s:lim /f&—/vw.v&+/ésq>~8 . (5.33)
e—0 e—0
Qe Q o
Now notice that
o~ 1 OV a¢ Ve ", . 00°
V V¢ = — € TS € TS
/ Ve q) L / ( Bxl axl + BXQ ax2
Qtx(a,b)
1 dy
- = Po(x1,x)—(x3) ase — 0. (5.34)
L dz

Qtx(a,b)
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and

L
Qtx(a,b)

/f&—/VZ-Vq?w/ésq?e:/me:l / TEFTE0F = 0 ase — 0.
Qe Qe ® o

Combing (5.34), (5.35), from (5.33) we get,

d—w(m) =0

Po(x1,x2) =

Qtx(a,b)

which implies
/ /P xl,XQ,X3 (Xg)dX3 ¢(x1,x2)dx1dx2 =0, V(l) S Q)(Q+)
That is

/P xl,xz,x3 (X3)dX3 Oa.e. (x1,x) € Q"

(5.35)

H _ : + : g dug : 2(0+ .
ence, we get P =0 a.e. in Q" X (a,b) equivalently 75t — 0 weakly in L*(Q" x (a,b)). Step5:
Again taking another test function ¥ € {¢ € C*(Q)| ¢|r, = &} in the variational formulation of (3.1)

for @ = O, we get

Olle ot ™ 8\|I dugt .oy
Vi. -V ey € € € €T
/ He VW= / h= / (T 8 T Bxl +T axz T sz
Q*X(u,b)
d
vy [
Q- F;,
1 Bug all! - al/t()
A T AR b .
QO+ x(a,b) Q- T,
and
/fw+/egw = - / Tsz€w+/f\v+/§ew
Q*x a,b)
s fw+/fw+/eo\u
Q+>< a,b)
Hence

1 auo oy auo 1
L / 8x2 ax2+/ Vit~ VY = / T L / f\IH_Q/ fW+/ Oow
- (O]

Qtx(a,b Qtx(a,b)

which implies

(5.36)

(5.37)
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b—a [ duj oy _ diig-, b—a
0 gt Ve v [ Sen= "1 [rvs [ [ ooy
+ Q- Q+ Q- ©

Q Iy

Vy € {0 € C°(Q)| d|r, = h} and hence for all ¥ in W(Q) since {¢ € C*(Q)| ¢|r, = h} is dense in
W (Q) (see[17]). Therefore uy satisfies the differential equation (5.1) for 6 = 8y.
Similarly, we find the following convergence for the adjoint state v, describe in (3.3).

T¢ (V| Q) — volo+ weakly in LIQT x (a,b))

v v
T < 8|Q§> 0, T < s|ng> _. Mlor weakly in LIQ" x (a,b))

ax] a)CQ a)CQ
—  b-a cr2 1 /
Velgr — vo|o+ weakly in L°(0,L;H' (M, M"))

Velo- — volq- weakly in H' (Q™)

where vy € Wy(Q) satisfies (5.6), when # is replaced by uy.
Regarding the optimal control, we have 0 = ——VeXw and the convergence 0, — Bg in Lz(co),

B

Ve|o- — volo- in H'(Q7). Implies that

1
90 = —BVOX(,). (5.38)

Thus (ug,v0.0¢) satisfies the optimality system corresponding to the minimization problem (P;). Ac-

1
cording to Theorem 5.1, its optimal solution is given by (u9, — = Vo)) Thus, by uniqueness, we have

p
_ _ — 1
Uu=ug, v=v9 and® =0y = —Bvoxm.
Step 6 (Claim: lirr(l) J1¢(te,0¢) = J1 (,0)): To prove this, let
e~0
2 2 2
diig ™ _ |l e 0me™ _ 7 |l eue- o |lewe
og:’Tagx] . ,ocg—‘Tﬁa”xz , o =L| %G| 7,0@‘8‘_L‘ 5|, and
(@Fx(a,b)) L2(Q% x (a,0)) (@) 12(0-)
2 2
1 _ 2 _ 2 _ ||ou” 3 __ ou_ 4 _ du_ .
o = [Pl 72 x (ap) = 0, &7 = ‘ 9 || 20 x () o —L‘ 7 || 2y o —L‘ 9% || 2 Then, with

the help of Proposition 4.3, we get
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4
Yo =L /|Vﬁg+\2+/\VE{]2
k=1 Q;r o-

—L /fg +/fa +/eg - augﬁ;

— L +/f—i—/9u—/—ﬁ ase—0
b—a

= Vi |2

L L axz /| @l

o+

4
= Zak‘ (5.39)

k=1

Thus, Z ok — Z o as € — 0. By weak lower semi-continuity, 11m1nf ok > o forevery k=1,2,3,4.
k=1 k=1
Hence by Lemma 5.2, we conclude

ou dug™  odut
T® au; — 0, T Bu):z — BMTZ strongly in L*(Q" x (a,b) (5.40)
oug~  ou~ dug~  ou N P
-— — st 1 L7 (Q7). 5.41
o, —  on — o strongly in L~(Q™) ( )

Therefore (5.17) and (5.41) gives

fie|o — Ti|q- strongly in H'(Q7). (5.42)
Similarly, one can prove

Velo- — V|- strongly in H'(Q7). (5.43)

Choosing ¢ = e — uy in the variational formulation of the problem (3.3) gives

o
/‘ﬁg_ud‘ /VVE d)_ %h
Q¢
b —a [ovt ou" oV
L 8xz (a)Q a)C2 +/Vv . u _ud)_ Wh
Qf T,
b —da _ 2
= /<L Ao+ +xg> | —uq|”. (5.44)
Q

Therefore using (5.44) we get
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. _ A 71 . _ 2 B . =2
a8 = 5 i | e+ i [
Qe [

71 b—a _ 2 [3 =2
= 2/( T XQ++XQ> |7 — uql +2/9
Q 0]

=J1<ﬁ,é).

This completes the proof of the theorem.

6 Dirichlet Cost Functional

Recall the Dirichlet cost functional

1
Jz’g(ug,e) = 2/’VM£—Vud’2+§/e2
Qe ®

given in the Section 3. We now prove the analogous results as in the previous section corresponding
to the cost functional.

6.1 Homogenized System
Define the limit Dirichlet cost functional J, as

1 rb—a
J(u,0) ==
2(”3 ) 2 / L
ot

Define the optimal control problem as follows: Find (&,0) such that

Julg+ duy

2

1 » B 2
o R LS
Jo(1,8) = inf{J>(u,0)| 6 € L*(®), (u,0) obeys (5.1)} (P2)

The problem (P) has a unique solution (%, 8). Then the optimal control 8 characterized using adjoint
state v, given by

(9%t 92
_ —t - O+
—aixg——aix%(u —Md) ll’lQ N
—AV =—Au" —ug) inQ,
W (VEt—Vug)-v on T
av (62)
phoy, bmadt v
v Vo L 8xz 8xz ons

v-=0 on Iy,

visT'y — periodic.

The following theorem is standard and can be proved using classical methodology (see [14], [34]).
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Theorem 6.1. Let f € L>(Q), h € H'/?(I',) and (7, 8) be the optimal solution of (P;). Let v € W (Q)
solves (6.2), then the optimal control is given by

1

6 == _BVX(D.
Conversely, assume that a pair (@, 7) € W(Q) x Wy(Q) solves the optimality system
r 82ﬁ+ 829+ 82
= f = —— (" —uy) inQF,
0x3 / ox3 Bx%( 2
1
A = g o AV = A ) in €
on+ ot
8”7\’ =0, BVT = (Vat —Vuy)-v on T, (6.3)
.. b—aodt 94~ ., . b—adbt I0” r
it =0 — = pt=9p, —— =" on
"L dxa  ox v "L dxp ox ’

i =hv =0 on I}y,

= )
i,V is 'y — periodic,

1
Then, the pair (4, —B\?xm) is the optimal solution to (P).

6.2 Convergence Analysis

Assume that (%, 0;) is the optimal solution of (Ps¢). Let ue(0) be the solution of the problem (3.1)
corresponding to 6 = 0, then from (3.2) we get

(| (0)[| g1 (o) < C, 6.4)

where C > 0 is independent of €. Using optimality of the solution (g, 6 ), we get
_ )
[P+ [8 < [1vio) —up <c (65)

Thus, as previously, we have
el 12(0) < C, lltte]l g1 (0p) < € and [[Vel| g1 (0 < C. (6.6)

where V¢ solves adjoint problem. The variational formulation of v is given by:
Find v € {v € H'(Q¢) : v|r, = 0} such that

/ Vo - Vo dx = / Vite - Vo dx 6.7)
Qe Qe

for all ¢ € H'(Qe) that satisfies ¢|r, = 0. We now state the main theorem of this section.

Theorem 6.2 (Main Theorem). Let (ize,0¢) and (%,0) be the optimal solution of (P,¢) and (P2),
respectively. Then
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0, — 0 weakly in H'(m),
—~ b-a_. —~— b-

av\m weakly in L2(0,L;H1(M7M/))v

Ug|gr — o+, Velgr — i3
Tie|o — Tlo-, Velo- — V|q- strongly in H' (Q7),
= 1
where 6 = —BVX(,) and Vg, V is the solution of (3.5) and (6.2) respectively. Moreover

Joe(lte,0¢) — Jo(1,0) whene — 0.

Proof. We only sketch of the proof. Since (i, 0¢) is the optimal solution of (Py¢). By Theorem 3.2

— 1
we have 0 = — = Ve) - By estimate (6.6) gives

B
18|71 () < C- (6.8)

Thus, 8 — 6y weakly in H'(®) along a subsequence for ). The convergence of #, will take place in
similar fashion as we did in Theorem 5.3. Here we elaborate briefly the technique used to prove the

convergence of Ve. Let us denote v ™ is the restriction of Ve in QJ and v~ is the restriction of V¢ in
Q7. Now

e +|2 5. 112
HT Ve HLZ(O,L;H'((M,M’)x(a,b)) < L“VS”H‘(%'

So, the sequence T¢v¢" is bounded in L*(0,L; H((M,M’) x (a,b)) follows from (6.6). By weak
compactness, there exist a subsequence (still denoted by €) such that

TV = v weakly in L2(0, L H' (M, M') x (a,))) (6.9)
which implies
T " — v weakly in L*(Q" x (a,b)), (6.10)
sa;;: — ?)g weakly in L2(Q" x (a,b)) 6.11)
S%Vj — gvx(z weakly in L2(Q" x (a,b)). (6.12)

.t
The boundedness of the sequence ng—s in L?(Q7F x (a,b)) follow from Proposition 4.3 and

X1
vt
(6.6). From (6.12) we have av—o = 0. Thus with the help of Proposition 4.8, convergence (6.12) and
X3

independents of var from x3 variable, we conclude that

—~ b—a

vt — v§ weakly in L*(0,L; H' (M, M")). (6.13)
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v,
Since T® 88 is bounded in L?(Q7F x (a,b)), by weak compactness there is an element R €
L?(QF x (a,b)) such that upto subsequence (still denoted by €),
aavﬁ+ n72(0tF
T — Rweakly inL*(Q" x (a,b)). (6.14)
X1

Also the sequence e~ is bounded in H' (Q™), follows from estimate of |[Ve|| 71 (q, ), Ve~ is bounded in
H'(Q™). Thus upto a subsequence (still denoted by €)

Ve — v, weakly in H'(Q7). (6.15)
Define vg as,
+ +
vy ifxeQm,
vo(x) = {vg ifxeQ . (6.16)

As we proved earlier uy € W(Q), one can show vo € Wy(2). Now our claim is that vy satisfies the
limit problem (6.2). We choosing the same test function ¢° described in (5.29). From L.H.S of (6.7),

we have
_ ~ 1 ove" . 00° ove™ . 0¢°
. e — _ g€ € evVe €
Q/VVS ve L / (T ox; d oxy d ox, d 8x2>

Qtx(a,b)

1

- = / Rq)(xl,xz)d—w()@) ase—0 (6.17)

L dz
Qtx(a,b)

and from R.H.S of (6.7), we get

[R i oL [ (e a0

Z x| ox; ox, oxp
Qtx(a,b)
1 duy dy
- -7 F (I)(xl,xz)d—z()@) ase— 0. (6.18)
Qtx(a,b)
Ase—0in (6.7), (6.17) and (6.18) give us,
u d
[ (R 52) ot Y =0
z
Qtx(a,b)
/ dug\ d
(/ R(x1,x2,%x3) + ad> %(Xs)dxa O(x1,x2) dxidx, =0V € D(Q)
Q+

(R X1,X2,X3) 1) d\g()@)d)g Oa.e. (x1,x) €QT

:>R:—a—textae in Q" x (a,b). (6.19)
X1
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equivalently TS% — gﬁd weakly in L2(Q" x (a,b)). Taking v € {¢ € C*(Q)| 0|r, = 0} in the
L.H.S of (6.7) gives

o IECRSE VI TR
/Vvs.V\yfz / (T e aszaxz /va Vy

Qe Q'+ x(a,b)
1 duy oY avo oy
—— Vv~ -V 2
L 8x1 8x1 + / axz 8x2 +/ V() v (6 0)
Qtx(a,b) Q+ x (a,b)
and from the R.H.S of (6.7), we can write
_ al/lg a‘.lf aug
V (te — T® T8 / Vue™ -V

/ (e —ua) L / ( 0x| axl + x> axz te VY

Qe Q+x(a,b)
1 dug oY dug oy
- Vuy~ -V 21

~ L / 8x1 Bxl + / sz sz +/ uo 4 (6 )
Qtx(a,b) Q+ x (a,b)
Hence

1 avo oy 1 d(ug —uq) oW

- Vg~ -Vy = — T %) V(ug™ —ug)-V

L / dxy Oxy * / o VW= L / ox; o * / (0™ = tta)- V¥

Qtx(a,b) Qtx(a,b)
which gives
avo oy b—a

o(ug
+/VV° V=7 / axz ax2+/v”° —ta) VY
Q

Vy e {0 € C*(Q)| 0[r, = 0}. Density argument tell us that the above argument is true for all y €
Wo(Q) since {¢ € C*(Q)| ¢|r, = 0} is dense in Wp(Q) (see[17]). Therefore vy € Wy(Q) satisfies the
following problem

L oxy 0x)
Qt

*vo (T —uq) O

S =" 2 in ,
2 2

—Avy = —A(M07 - “d) inQ,

avo

3 = (Vu" —Vuy)-v onT,, (6.22)
I b—aavoJr_aVo* onT

0 =0 L dx N ox, ’

vo=0 on I,

vo is I'y — periodic.

1 _
—BVSXQ, and the convergence result 8¢ — 8y strongly in L?(®), Ve|q- — volo- weakly
in H'(Q7). Hence we get

We have 6; =

90 = —5VoXo- (6.23)
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Therefore (ug, vo,00) satisfies the optimality system corresponding to the minimization problem (P).

1
According to Theorem 6.1, its optimal solution is given by (uo, —Bvoxw).

Thus, by uniqueness we have

— 1
uUu=ug, v=vp and 0 = 0y = — = VYo

B

As we proved strong convergence of 7" in H'(Q ™), similarly we get
Velo- — V]o- strongly in H'(Q™). (6.24)
Also

. — = 1., — 2 B . =2
el 0) = 3 limy | 90—+ iy [
Qe @)

1|b—a 2 2 B =2
= V(g — L

21 / +/! (Glo- —uq)| +2/9
Qt Q- ®

= J,(u,0). (6.25)

dlo:  ug

oxy x>

Therefore, we have lir% J2¢ (e, 0) = J2(u,0). Hence the theorem.
E—
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