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Abstract. The method of unfolding is used to study optimal control problem in a domain with oscil-
lating boundary. We consider Neumann condition on the oscillating part of the boundary and the rest
is more interesting than the Dirichlet condition. Hence the limit problem consists of two parts, namely
in the lower part and upper part with appropriate interface conditions. In this article, we have con-
sider two cost functionals, namely L2 and Dirichlet cost functional. Interior and boundary unfolding
operator are introduced in the process.

1 Introduction

In this article, we plan to study a distributed optimal control problem in an oscillating domain with
Neumann condition on the oscillating part. The controls are applied away from the oscillating bound-
ary. This article is a continuation of our earlier work where we have studied [31], [32], Laplacian
and stokes problem with Dirichlet boundary conditions. The Neumann problem is more interesting,
difficult and produces nice limit problem. Our aim is to use the method of unfolding introduced by
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Cioranescu et. al. in [12] and developed by Damlamian [13], [14], for periodic unfolding. We further
refer to the paper by A. Damlamian and K. Peterson [15]. There is also a large amount of literature
on the homogenization with oscillating boundaries which has tremendous applications as well. For
example (see [1],[3],[4], [5], [8], [9], [10], [18], [19], [31]). Regarding optimal control/ controlla-
bility result in domain with oscillating boundary are concerned refer to [16], [27], [28], [31], [32],
[33]. In [28], an exact controllability problem has been studied where as in [33] an optimal control
problem for a fourth order problem has been investigated. One can look into [21], [22], [29], [30] for
homogenization of optimal control and controllability, [7], [11], [20], [35] for general homogeniza-
tion and [2], [6], [9], [23], [24], [25], [26] for reference in optimal control problems and derivation of
optimality systems.

The layout of this paper is as following. After a brief introduction in this section, we go to Section 2
where we describe the required domain and its boundaries. We describe the optimal control problems
with respect to two different cost functional in Section 3. One is called as L2-cost functional and
another is called as Dirichlet cost functional. We defined periodic unfolding, boundary unfolding
operator and its properties in Section 4. In Section 5, we do the convergence analysis and find the limit
optimal control problem for the case of L2-cost functional. Similarly for Dirichlet cost functional, we
derived the homogenized optimal control problem in Section 6.

2 Oscillating Boundary Domain

In this paper, we consider the same domain as in [31]. For the sake of completeness, here we would
like to describe the oscillating boundary domain once again. For a small parameter ε= 1

N , N ∈Z+, we
consider a oscillating domain Ωε as given in the Figure 1. We now describe mathematically the domain
Ωε and its boundaries. Let L > 0 and g : R→ R be a smooth and periodic function with periodic L.
This domain is nearly a two-dimensional rectangular region with oscillating part on one side of the
region. One can also see it as a transverse cross section of a three- dimensional slab perpendicular to
the plane. The oscillating part is sitting at the top of a rectangular region of the domain.

Let 0 < a < b < L and ηε be the εL-periodic function defined on [0,εL] by

ηε(x1) =

{
M′ i f x1 ∈ (εa,εb),
M i f x1 ∈ [0,εL)\(εa,εb),

with M′ > M > m, where m is the maximum value of the smooth function g in [0,L]. We can write
the domain Ωε as Ωε = {(x1,x2) ∈R2 : 0 < x1 < L, g(x1)< x2 < ηε(x1)}. The top boundary of Ωε is
denoted by γε and defined as γε = {(x1,x2) : x1 ∈ [0,L], x2 = ηε(x1)}. The bottom boundary Γb of Ωε
is defined as Γb = {(x1,x2) : x2 = g(x1), x1 ∈ [0,L]}. Let Ω+

ε is the top part of the domain Ωε which
is the union of slabs of height (M′−M) and width ε(b−a). It can defined as

Ω+
ε =

N−1∪
k=0

(kεL+ εa,kεL+ εb)× (M,M′).

Denote Ω− as fixed a part of the domain Ωε which is described by

Ω− = {(x1,x2) : 0 < x1 < L, g(x1)< x2 < M}.

The vertical and top boundary of Ω− denoted by Γs and Γ defined as
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Fig. 1 Ωε

Fig. 2 Ω

Γs = {(0,x2) : g(0)≤ x2 ≤ M}∪{(L,x2) : g(L)≤ x2 ≤ M}

and Γ = {(x1,M) : 0 ≤ x1 ≤ L} respectively. The common boundary between Ω+
ε and Ω− is denoted

by Γε and defined as

Γε =
N−1∪
k=0

(kεL+ εa,kεL+ εb).

We can also write Ωε as Ωε = Int
(

Ω+
ε ∪Ω−

)
. Let ω be the sub-domain of Ω−, In this sub-domain

control acts. Without loss of generality, we can consider

ω = {(x1,x2) : 0 < x1 < L, g(x1)< x2 < M−}

where M > M− > m. Our full domain will be denoted by Ω (see Figure 2). Mathematically we can
write

Ω = {(x1,x2) : 0 < x1 < L, g(x1)< x2 < M′}.

The bottom part of the boundary of Ω is same as Ωε. We still denote it by Γb. The vertical boundary
of Ω is denoted by Γs′ and can be written as

Γs′ = {(0,x2) : g(0)≤ x2 ≤ M′}∪{(L,x2) : g(L)≤ x2 ≤ M′}.

The top boundary of Ω is denoted by Γu = {(x1,M′) : 0 ≤ x1 ≤ L}. If we denote Ω+ as Ω+ =
{(x1,x2) : 0 < x1 < L, M < x2 < M′} then we can write Ω = Int

(
Ω+∪Ω−

)
. Let L2

per(Ωε) =

{ f ∈ L2(Ωε), f (x1 + kL,x2) = f (x1,x2) ∀k ∈ Z}, H1
per(Ωε) = { f : f ∈ H1(Ωε), f (x1 + kL,x2) =

f (x1,x2) ∀k ∈ Z}. We call function are Γs-periodic, which are taking the same value on the both
side of Γs.

3 Problem description

We consider the following control problem:
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−∆uε = f +θχω in Ωε,
∂uε

∂ν
= 0 on γε,uε = h on Γb,

uε is Γs − periodic.

(3.1)

Here, θ ∈ L2(ω) is a control function acting in the sub-domain ω and χω is the characteristic function
of ω. We consider source term f in L2

per(Ω) and h in H1/2
per (Γb). It is known that if θ ∈ L2

per(ω), then
(3.1) admits a unique solution uε (depending on θ) in H1

per(Ωε) that satisfies uε|Γb = h. The solution
operator is linear and continuous from L2

per(Ω)×L2
per(ω) into H1

per(Ωε), i.e.

∥uε∥H1(Ωε) ≤C(∥ f∥L2(Ω)+∥θ∥L2(ω)+∥h∥H1/2(Γb)
) (3.2)

where C > 0 is independent of ε. For regularization parameter β > 0, let us consider two cost func-
tionals, first one known as L2-cost functional, more precisely,

J1,ε(uε,θ) =
1
2

∫
Ωε

|uε −ud|2 +
β
2

∫
ω

θ2

where the desired state ud ∈ H1
per(Ωε) satisfies ud|Γb = h. With this cost functional, we consider the

optimal control problem

inf{J1,ε(uε,θ)|θ ∈ L2(ω),(uε,θ) obeys (3.1)}. (P1,ε)

We also consider the Dirichlet cost functional given by

J2,ε(uε,θ) =
1
2

∫
Ωε

|∇uε −∇ud |2 +
β
2

∫
ω

θ2

with desired state ud ∈ H1
per(Ωε). The corresponding minimization problem is

inf{J2,ε(uε,θ)| θ ∈ L2(ω), (uε,θ) obeys (3.1)}. (P2,ε)

It is well known that (P1,ε) and (P2,ε) admit unique solution (see [14], [34]).
Let (uε,θε) be the optimal solution to (P1,ε). The following theorem will give us the characteriza-

tion of θε with the help of adjoint state vε ∈ H1
per(Ωε) which solves the partial differential equation

−∆vε = uε −ud in Ωε,
∂vε

∂ν
= 0 on γε, vε = 0 on Γb,

vε is Γs −periodic.

(3.3)

Theorem 3.1. Let f ∈ L2(Ω), h ∈ H1/2(Γb) and (uε,θε) be the optimal solution of (P1,ε). Let vε ∈
H1

per(Ωε) solves (3.3), then the optimal control is given by

θε =−1
β

vεχω.

Conversely, assume that a pair (ûε, v̂ε) ∈ H1
per(Ωε)×H1

per(Ωε) solves the coupled optimality system



Homogenization of an optimal control problem 233

−∆ûε = f − 1
β v̂εχω,−∆v̂ε = ûε −ud in Ωε,

∂ûε

∂ν
= 0,

∂v̂ε

∂ν
= 0 on γε,

ûε = h, v̂ε = 0 on Γb,

ûε, v̂ε is Γs −periodic.

(3.4)

Then, the pair (ûε,− 1
β v̂εχω) is the optimal solution to (P1,ε).

Similarly if (uε,θε) optimal solution to the problem (P2,ε) then optimal control θε will be charac-
terized with the help of adjoint state vε, that solves the partial differential equations

−∆vε =−∆(uε −ud) in Ωε,
∂vε

∂ν
= (∇uε −∇ud) ·ν on γε,

vε = 0 on Γb,

vε is Γs −periodic.

(3.5)

Theorem 3.2. Let f ∈ L2(Ω), h ∈ H1/2(Γb) and (uε,θε) be the optimal solution of (P2,ε). Let vε ∈
H1

per(Ωε) solves (3.5), then the optimal control is given by

θε =−1
β

vεχω.

Conversely, assume that a pair (ûε, v̂ε) ∈ H1
per(Ωε)×H1

per(Ωε) solves the coupled optimality system

−∆ûε = f − 1
β v̂εχω,−∆v̂ε =−∆(ûε −ud) in Ωε,

∂ûε

∂ν
= 0,

∂v̂ε

∂ν
= (∇ûε −∇ud) ·ν on γε,

ûε = h, v̂ε = 0 on Γb,

ûε, v̂ε is Γs −periodic.

(3.6)

Then, the pair (ûε,− 1
β v̂εχω) is the optimal solution to (P2,ε).

4 Unfolding operator and its properties

In this section, we introduce periodic unfolding operator and present some interesting properties (see
[15]). Let [0,L] be a reference cell as in Section 2. For x ∈ R, we write [x]L as the integer part of x
with respect to L, that is [x]L = kL, where k is the largest integer such that kL ≤ x.

Definition 4.1. (The Unfolding operator) Let ϕε : Ω+×(a,b)→Ω+
ε be defined by x→

(
ε
[ x1

ε
]

L + εx3,x2
)
.

The ε-unfolding of a function u : Ω+
ε →R is the function u◦ϕε : Ω+×(a,b)→R. The operator which

maps every function u : Ω+
ε → R to its ε unfolding is called the unfolding operator. Let the unfolding

operator be denoted by T ε, i.e.

T ε : {u : Ω+
ε → R}→ {v : Ω+× (a,b)→ R}

defined by
T εu(x1,x2,x3) = uoϕε(x1,x2,x3) = u

(
ε
[x1

ε

]
L
+ εx3,x2

)
.
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If U is an open subset of R2 containing Ω+
ε and u is real valued function on U , T εu will mean T ε

acting on the restriction of u to Ω+
ε . We would like to state few properties of the unfolding operator

T ε as following.

Proposition 4.1. The unfolding operator T ε is linear and for functions u,v from Ω+
ε → R, we have

T ε(uv) = T ε(u)T ε(v).

Proposition 4.2. Let u ∈ L1(Ω+
ε ). Then∫

Ω+×(a,b)

T εu dx = L
∫

Ω+
ε

u dx

Proof.

∫
Ω+×(a,b)

T εu dx =

M′∫
x2=M

b∫
x3=a

N−1

∑
k=0

(k+1)εL∫
x1=kεL

u(kεL+ εx3,x2) dx1dx2dx3

= L
N−1

∑
k=0

M′∫
x2=M

kεL+εb∫
x1=kεL+εa

u(x1,x2) dx1dx2 = L
∫

Ω+
ε

u(x) dx.

Proposition 4.3. Let u∈ L2(Ω+
ε ). Then T εu∈ L2(Ω+×(a,b)) and ∥T εu∥L2(Ω+×(a,b)) =

√
L∥u∥L2(Ω+

ε )

Proof. Proof follows from the above proposition , because |u|2 ∈ L1(Ω+
ε )

Proposition 4.4. Let u ∈ H1(Ω+
ε ). Then T εu ∈ L2(0,L;H1((M,M′)× (a,b))). Moreover

∂
∂x2

T εu = T ε ∂u
∂x2

and
∂

∂x3
T εu = εT ε ∂u

∂x1
. (4.1)

Proof. By definition of T εu, it is easy to see (4.1). Now

∥T εu∥2
L2(0,L;H1((M,M′)×(a,b))) =

L∫
0

∥T εu∥2
H1((M,M′)×(a,b) dx1

=
∫

Ω+×(a,b)

T ε
(

ε2| ∂u
∂x1

|2 + | ∂u
∂x2

|2 + |u|2
)

dx

= L
∫

Ω+
ε

(
ε2| ∂u

∂x1
|2 + | ∂u

∂x2
|2 + |u|2

)
dx

≤ L∥u∥2
H1(Ωε)

< ∞.

Proposition 4.5. Let u ∈ L2(Ω+). Then T εu → u in L2(Ω+× (a,b)).

Proof. Its easy to prove. First for u ∈ D(Ω) and by density argument follows the result.

Proposition 4.6. Let uε → u in L2(Ω+). Then T εuε → u in L2(Ω+× (a,b)).
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Proof. Suppose that uε → u in L2(Ω+).

∥T εuε −u∥L2(Ω+×(a,b)) = ∥T εuε −T εu+T εu−u∥L2(Ω+×(a,b))

≤ ∥T εuε −T εu∥L2(Ω+×(a,b))+∥T εu−u∥L2(Ω+×(a,b))

=
√

L∥uε −u∥L2(Ω+
ε )
+∥T εu−u∥L2(Ω+×(a,b))

≤
√

L∥uε −u∥L2(Ω+)+∥T εu−u∥L2(Ω+×(a,b))

→ 0 as ε → 0.

Proposition 4.7. Let uε ∈ L2(Ω+
ε ) be such that T εuε ⇀ u weakly in L2(Ω+× (a,b)). Then

ũε ⇀
1
L

b∫
a

u dx3

weakly in L2(Ω+), where ũε is the extension by 0 outsides Ω+
ε .

Proposition 4.8. Let uε ∈ H1(Ω+
ε ) for every ε > 0 be such that T εuε ⇀ u weakly in L2((0,L)×

(a,b);H1((M,M′))) Then ũε ⇀
1
L

b∫
a

u dx3 weakly in L2((0,L);H1((M,M′))).

Proof. Given that T εuε ⇀ u weakly in L2((0,L)× (a,b);H1((M,M′))) implies

T εuε ⇀ u weakly inL2((0,L)× (M,M′)× (a,b))

and
∂

∂x2
T εuε ⇀

∂u
∂x2

in L2((0,L)× (M,M′)× (a,b))

i.e

T ε ∂uε

∂x2
⇀

∂u
∂x2

in L2((0,L)× (M,M′)× (a,b)).

Using Proposition 4.7 we get ũε ⇀
1
L

b∫
a

u dx3 in L2(Ω+) and
∂̃uε

∂x2
⇀ 1

L

b∫
a

∂u
∂x2

dx3 in L2(Ω+). But

∂ũε

∂x2
=

∂̃uε

∂x2
. Hence ũε ⇀

1
L

b∫
a

u dx3 weakly in L2((0,L);H1((M,M′))).

4.1 Unfolding on the boundary:

For our analysis, we also need to unfold the common boundary of Ω+
ε and Ω−. So we define the

boundary unfolding operator on Γε.

Definition 4.2. Let ϕε
x2=M : (0,L)× (a,b)→ Γε be defined by x →

(
ε
[x1

ε

]
L
+ εx3

)
. The ε-unfolding

of a function u : Γε → R is the function uoϕε
x2=M : (0,L)× (a,b)→ R denoted by T ε

Γ , that is T ε
Γ : {u :

Γε → R}→ {v : (0,L)× (a,b)→ R} by T ε
x2=Mu = uoϕε

x2=M = u
(

ε
[x1

ε

]
L
+ εx3

)
.

If U is an open subset of R2 such that Γε ⊂U and u : U → R then T ε
Γ u = T ε

Γ (u|Γε)
The properties of boundary unfolding are given below without proof.

Proposition 4.9. (i) T ε
Γ is linear and for functions u,v from Γε →R, we have T ε

Γ (uv) = T ε
Γ (u)T

ε
Γ (v).
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(ii) Let u ∈ L2(Γε). Then T ε
Γ u ∈ L2((0,L)× (a,b)) and ∥T ε

Γ u∥L2((0,L)×(a,b)) =
√

L∥u∥L2(Γε)

(iii) Let u ∈ H1(Γε). Then T ε
Γ u ∈ L2(0,L;H1((a,b)))and

∂
∂x3

T ε
Γ u = εT ε

Γ
∂u
∂x1

.

(iv) Let uε → u in L2(0,L). Then T ε
Γ uε → u in L2((0,L)× (a,b)).

(v) Let uε is a sequence in L2(Γε) such that T ε
Γ uε ⇀ u weakly in L2((0,L)× (a,b)). Then ũε ⇀

1
L

b∫
a

u dx3weakly in L2(0,L).

5 L2-cost Functional

5.1 Homogenized System

Consider the space

W (Ω) = {ψ ∈ L2(Ω) : ψ|Ω− ∈ H1(Ω−),
∂ψ
∂x2

∈ L2(Ω) and ψ|Γb = h}

and

W0(Ω) = {ψ ∈ L2(Ω) : ψ|Ω− ∈ H1(Ω−),
∂ψ
∂x2

∈ L2(Ω) and ψ|Γb = 0}.

The spaces W (Ω) and W0(Ω) are Hilbert spaces with respect to the norm defined by

∥ψ∥2
W (Ω) = ∥ψ∥2

L2(Ω)+

∥∥∥∥ ∂ψ
∂x2

∥∥∥∥2

L2(Ω)

+

∥∥∥∥∂ψ|Ω−

∂x1

∥∥∥∥2

L2(Ω−)

.

We, now define the limit equations. Given θ ∈ L2(ω) and h ∈ H1/2(Γb), consider the partial dif-
ferential equation 

−∂2u+

∂x2
2

= f in Ω+,

−∆u− = f +θχω in Ω−,
∂u+

∂ν
= 0 on Γu,

u+ = u−,
b−a

L
∂u+

∂x2
=

∂u−

∂x2
on Γ,

u− = h on Γb,

u is Γs′ − periodic.

(5.1)

where

u(x) =
{

u+ i f x ∈ Ω+

u− i f x ∈ Ω− (5.2)

The variational formulation of the problem (5.1) is given as: Let f ∈ L2(Ω). Find u ∈W (Ω) such that

b−a
L

∫
Ω+

∂u+

∂x2

∂ψ
∂x2

+
∫

Ω−

∇u− ·∇ψ−
∫
Γb

∂u−

∂x2
h =

b−a
L

∫
Ω+

f ψ+
∫

Ω−

f ψ+
∫
ω

θψ (5.3)
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for all ψ ∈W (Ω). The solution operator of (5.1) is linear and taking ψ = u as a test function in (5.3),
we will have the continuity of the solution operator. Moreover,

∥u∥W (Ω) ≤C(∥ f∥L2(Ω)+∥θ∥L2(ω)+∥h∥H1/2(Γb)
), (5.4)

where C is independent of ε. Existence and uniqueness of u ∈ W (Ω) as a solution of (5.3) is well
known. Now consider the L2-cost functional J1 defined by

J1(u,θ) =
1
2

∫
Ω

(
b−a

L
χΩ+ +χΩ−

)
|u−ud |2 +

β
2

∫
ω

θ2. (5.5)

Associated with this cost functional, we introduce the optimal control problem as

inf{J1(u,θ)| θ ∈ L2(ω), (u,θ) obeys (5.1)}. (P1)

This problem admits a unique solution say (u,θ). As we characterized earlier, for θε, we now charac-
terize optimal control θ of the problem (P1) using adjoint state v, in a similar fashion. The co-state v
solves the adjoint problem 

−∂2v+

∂x2
2

= (u+−ud) in Ω+,

−∆v− = (u−−ud) in Ω−,
∂v+

∂ν
= 0 on Γu,

v+ = v−,
b−a

L
∂v+

∂x2
=

∂v−

∂x2
on Γ,

v− = 0 on Γb,

v is Γs′ − periodic.

(5.6)

Theorem 5.1. Let f ∈ L2(Ω), h ∈ H1/2(Γb) and (u,θ) be the optimal solution of (P1). Let v ∈W (Ω)
solves (5.6), then the optimal control is given by

θ =−1
β

vχω.

Conversely, assume that a pair (û, v̂) ∈W (Ω)×W0(Ω) solves the coupled optimality system

−∂2û+

∂x2
2

= f ,−∂2v̂−

∂x2
2

= (û−−ud) in Ω+,

−∆û− = f − 1
β v̂−χω,−∆v̂− = (û−ud) in Ω−,

∂û+

∂ν
= 0,

∂v̂+

∂x2
= 0 on Γ,

û+ = û−,
b−a

L
∂û+

∂x2
=

∂û−

∂x2
, v̂+ = v̂−,

b−a
L

∂v̂+

∂x2
=

∂v̂−

∂x2
on Γ,

û− = h, v̂− = 0 on Γb,

û, v̂ is Γs′ − periodic.

(5.7)

Then, the pair (û,− 1
β v̂εχω) is the optimal solution to (P1).
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5.2 Convergence Analysis

Assume that (uε,θε) is the optimal solution of (P1,ε). Let uε(0) be the solution of the problem (3.1)
corresponding to θ = 0, then from (3.2) we get

∥uε(0)∥H1(Ωε) ≤C, (5.8)

where C > 0 is independent of ε. Using optimality of the solution (uε,θε), we get∫
Ωε

(uε −ud)
2 +

β
2

∫
ω

θ2
ε ≤

∫
Ωε

(uε(0)−ud)
2 ≤C. (5.9)

Thus we have

∥θε∥L2(ω) ≤C and ∥uε∥L2(Ωε) ≤C. (5.10)

We know h ∈ H1/2
per (Γb), by trace map there exist z in H1

per(Ω−) such that z|Γu = 0 and z|Γb = h. Let
K = {ϕ ∈ H1(Ωε) : ϕ|Γb = 0} Set uε = z̃+yε, where z̃ is an extension by zero on Ωε and yε ∈ K solves
the following partial differential equations

−∆yε = f +θχω +∆z̃ in Ωε,
∂yε
∂ν

= 0 on γε,

yε = 0 on Γb,

yε is Γs − periodic.

(5.11)

Then variational formulation of the above problem (5.11). Find yε ∈ K such that∫
Ωε

∇yε ·∇ϕ =
∫
Ωε

f ϕ−
∫
Ωε

∇z̃ ·∇ϕ+
∫
ω

θϕ (5.12)

for all ϕ ∈ K.
We use the following lemma to prove next theorem.

Lemma 5.2. (see [15]) Let, m be a fixed integer, {αk
n}n for k = 1,2, ...,m be m bounded sequence of

real numbers and αk be m real numbers. Suppose that
m
∑

k=1
αk

n →
m
∑

k=1
αk and for every k = 1,2, ...,m,

liminfn→∞ αk
n ≥ αk. Then limn→∞ αk

n = αk for every k=1,2,...,m.

We now state and prove the main theorem of this section.

Theorem 5.3 (Main Theorem). Let (uε,θε) and (u,θ) be the optimal solution of (P1,ε) and of (P1),
respectively. Then

θε ⇀ θ weakly in H1(ω),

ũε|Ω+
ε
⇀

b−a
L

u|Ω+ weakly in L2(0,L;H1(M,M′)),

uε|Ω− → u|Ω− strongly in H1(Ω−),

ṽε|Ω+
ε
⇀

b−a
L

v|Ω+ weakly in L2(0,L;H1(M,M′)),

vε|Ω− → v|Ω− strongly in H1(Ω−),
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where θ =− 1
β vχω and vε, v is the solution of (3.3) and (5.6) respectively. Moreover,

J1,ε(uε,θε)→ J1(u,θ) as ε → 0.

Proof. Step1(boundedness of uε, θε ): We can conclude from the continuity of solution operator and
by (5.10) that

∥uε∥H1(Ωε) ≤C. (5.13)

From the weak formulation of the adjoint problem (3.3), we have

∥vε∥H1(Ωε) ≤C (5.14)

where C is independent of ε. Since (uε,θε) is the optimal solution of (P1,ε). By Theorem 3.2 we have

θε =−1
β

vεχω. By estimate (5.14) gives

∥θε∥H1(ω) ≤C. (5.15)

Eberlein-Šmuljan theorem ensure the existence of subsequence (θε) (still denote by ε) and a function
θ0 ∈ H1(ω) such that

θε ⇀ θ0 weakly in H1(ω). (5.16)

Let us denote uε
+ = uε|Ω+

ε
and uε

− = uε|Ω− . Using the estimate (5.13), we have the boundedness
of uε

− in the space H1(Ω−). Thus upto a subsequence (still denote by ε)

uε
− ⇀ u−0 weakly in H1(Ω−) (5.17)

for some u−0 ∈ H1(Ω−). We observe that∥∥T εuε
+
∥∥2

L2(0,L;H1((M,M′)×(a,b))) ≤ L∥uε∥2
H1(Ωε)

. (5.18)

Step2 (convergence): The boundedness of the sequence T εuε
+ in L2(0,L;H1((M,M′)× (a,b)) fol-

lows from (5.13) and (5.18). By weak compactness, there exist a subsequence (still denoted by ε)
such that

T εuε
+ ⇀ u+0 weakly in L2(0,L;H1((M,M′)× (a,b))), (5.19)

which implies

T εuε
+ ⇀ u+0 ,

∂
∂x2

T εuε
+ ⇀

∂u+0
∂x2

,
∂

∂x3
T εuε

+ ⇀
∂u+0
∂x3

weakly in L2(Ω+× (a,b)),

That is

T ε ∂uε
+

∂x2
⇀

∂u+0
∂x2

weakly in L2(Ω+× (a,b)), (5.20)

εT ε ∂uε
+

∂x1
⇀

∂u+0
∂x3

weakly in L2(Ω+× (a,b)) (5.21)
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From the Proposition 4.3, we have∥∥∥∥T ε ∂uε
+

∂x1

∥∥∥∥
L2(Ω+×(a,b))

=
√

L
∥∥∥∥∂uε

+

∂x1

∥∥∥∥
L2(Ω+

ε )

≤
√

L∥uε∥H1(Ωε).

Again (5.13) implies the boundedness of the sequence T ε ∂uε
+

∂x1
in the space L2(Ω+× (a,b)).

From (5.21) we have
∂u+0
∂x3

= 0 and thus u+0 is independent of x3. From the Proposition 4.8 and con-

vergence (5.19), we have

ũε
+ ⇀

1
L

b∫
a

u+0 dx3 =
b−a

L
u+0 weakly in L2(0,L;H1(M,M′)) (5.22)

We know that T ε ∂uε
+

∂x1
is bounded in L2(Ω+× (a,b)). Hence by weak compactness, there is an

element P ∈ L2(Ω+× (a,b)) such that up to subsequence,

T ε ∂uε
+

∂x1
⇀ P weakly in L2(Ω+× (a,b)). (5.23)

Define u0 as

u0(x) =
{

u+0 i f x ∈ Ω+,
u−0 i f x ∈ Ω−.

(5.24)

Step3 (Claim the function u0 ∈W (Ω) and satisfies the limit problem (5.3)):

Proof: clearly u0 ∈ L2(Ω) and u−0 ∈ H1(Ω−). To prove u0 ∈ W (Ω), we need to show
∂u0

∂x2
∈ L2(Ω).

Recall that u0 is independent of x3 and
∂u0

∂x2
∈ L2(Ω+) and

∂u0

∂x2
∈ L2(Ω−). Thus

∂u0

∂x2
∈ L2(Ω) if we

prove trace of u+0 and u−0 are equal on Γu. Since uε
+|Γε = uε

−|Γε implies the equality of trace for the
boundary unfolding operator. More precisely we have

T ε
Γ
(
uε

+|Γε

)
= T ε

Γ
(
uε

−|Γε

)
(5.25)

Observe that T ε
Γ (uε

+|Γε) = (T ε(uε
+)) |x2=M. So, the equation (5.25) becomes(

T ε(uε
+)

)
|Γ = T ε

Γ
(
uε

−|Γε

)
. (5.26)

From the continuity of trace operator we can write(
T ε(uε

+)
)
|Γ ⇀ u+0 |Γ weakly in L2((0,L)× (a,b))

and from (5.17), we get
uε

−|Γ → u−|Γ strongly in L2(0,L).

This implies
T ε

Γ
(
uε

−|Γ
)
→ u−0 |Γ in L2((0,L)× (a,b)).
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Passing to the limit in (5.26) as ε → 0, we get

u+0 |Γ = u−0 |Γ in L2(0,L)

since u+0 and u−0 are independent on x3 variable.
Step4 (Identification of the limit P in (5.23)): Let uε = z̃ + yε, where z̃ has in Section 5.2 and
yε ∈ H1

per(Ωε) satisfies (5.11) for θ = θε. We observe that uε
+ is equal to yε|Ω+

ε
, say yε

+. So yε
+ have

the same convergence as uε
+, i.e.

T ε ∂yε
+

∂x2
⇀

∂u+0
∂x2

weakly in L2(Ω+× (a,b)) (5.27)

T ε ∂yε
+

∂x1
⇀ P weakly in L2(Ω+× (a,b)). (5.28)

For ϕ ∈ D(Ω+) and ψ(z) ∈C∞[0,L), choose a test function

ϕε(x) = εϕ(x)ψ
(
{x1

ε
}
)
, (5.29)

in such a way that ϕε is continuous on Ω+
ε . From the definition of ε-unfolding of ϕε and by Proposition

4.4, we get

T εϕε = εϕ
(

ε
[x1

ε

]
+ εx3,x2

)
ψ(x3),

T ε ∂ϕε

∂x1
=

1
ε

∂
∂x3

T εϕε = ε
∂ϕ
∂x1

(
ε
[x1

ε

]
+ εx3,x2

)
ψ(x3)+ϕ

(
ε
[x1

ε

]
+ εx3,x2

) dψ
dz

(x3),

T ε ∂ϕε

∂x2
= ε

∂ϕ
∂x2

(
ε
[x1

ε

]
+ εx3,x2

)
ψ(x3).

This equations gives us

T εϕε → 0 strongly in L2(Ω+× (a,b)) (5.30)

T ε ∂ϕε

∂x1
→ ϕ(x1,x2)

dψ
dz

(x3) strongly in L2(Ω+× (a,b)) (5.31)

T ε ∂ϕε

∂x2
→ 0 strongly in L2(Ω+× (a,b)) (5.32)

as ε → 0. From the variational formulation (5.12) for θ = θε, we get

lim
ε→0

∫
Ωε

∇yε ·∇ϕ̃ε = lim
ε→0

∫
Ωε

f ϕ̃ε −
∫
Ωε

∇w̃ ·∇ϕ̃ε +
∫
ω

θεϕ̃ε

 . (5.33)

Now notice that ∫
Ωε

∇yε ·∇ϕ̃ε =
1
L

∫
Ω+×(a,b)

(
T ε ∂yε

+

∂x1
T ε ∂ϕε

∂x1
+T ε ∂yε

+

∂x2
T ε ∂ϕε

∂x2

)

→ 1
L

∫
Ω+×(a,b)

Pϕ(x1,x2)
dψ
dz

(x3) as ε → 0. (5.34)
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and ∫
Ωε

f ϕ̃ε −
∫
Ωε

∇z̃ ·∇ϕ̃ε +
∫
ω

θεϕ̃ε =
∫

Ω+
ε

f ϕε =
1
L

∫
Ω+×(a,b)

T ε f T εϕε → 0 as ε → 0. (5.35)

Combing (5.34), (5.35), from (5.33) we get,∫
Ω+×(a,b)

Pϕ(x1,x2)
dψ
dz

(x3) = 0

which implies

∫
Ω+

 b∫
a

P(x1,x2,x3)
dψ
dz

(x3)dx3

ϕ(x1,x2)dx1dx2 = 0, ∀ϕ ∈ D(Ω+)

That is

b∫
a

P(x1,x2,x3)
dψ
dz

(x3)dx3 = 0 a.e. (x1,x2) ∈ Ω+

Hence, we get P = 0 a.e. in Ω+× (a,b) equivalently T ε ∂u+ε
∂x1

⇀ 0 weakly in L2(Ω+× (a,b)). Step5:
Again taking another test function ψ ∈ {ϕ ∈C∞(Ω)| ϕ|Γb = h} in the variational formulation of (3.1)
for θ = θε, we get∫

Ωε

∇uε ·∇ψ−
∫
Γb

∂uε

∂ν
h =

1
L

∫
Ω+×(a,b)

(
T ε ∂uε

+

∂x1
T ε ∂ψ

∂x1
+T ε ∂uε

+

∂x2
T ε ∂ψ

∂x2

)

+
∫

Ω−

∇uε
− ·∇ψ−

∫
Γb

∂uε
−

∂ν
h

→ 1
L

∫
Ω+×(a,b)

∂u+0
∂x2

∂ψ
∂x2

+
∫

Ω−

∇u0
− ·∇ψ−

∫
Γb

∂u0
−

∂ν
h (5.36)

and ∫
Ωε

f ψ+
∫
ω

θεψ =
1
L

∫
Ω+×(a,b)

T ε f T εψ+
∫

Ω−

f ψ+
∫
ω

θεψ

→ 1
L

∫
Ω+×(a,b)

f ψ+
∫

Ω−

f ψ+
∫
ω

θ0ψ. (5.37)

Hence

1
L

∫
Ω+×(a,b)

∂u+0
∂x2

∂ψ
∂x2

+
∫

Ω−

∇u0
− ·∇ψ−

∫
Γb

∂u0
−

∂ν
h =

1
L

∫
Ω+×(a,b)

f ψ+
∫

Ω−

f ψ+
∫
ω

θ0ψ

which implies
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b−a
L

∫
Ω+

∂u+0
∂x2

∂ψ
∂x2

+
∫

Ω−

∇u−0 ·∇ψ−
∫
Γb

∂u0
−

∂ν
h =

b−a
L

∫
Ω+

f ψ+
∫

Ω−

f ψ+
∫
ω

θ0ψ

∀ψ ∈ {ϕ ∈ C∞(Ω)| ϕ|Γb = h} and hence for all ψ in W (Ω) since {ϕ ∈ C∞(Ω)| ϕ|Γb = h} is dense in
W (Ω) (see[17]). Therefore u0 satisfies the differential equation (5.1) for θ = θ0.

Similarly, we find the following convergence for the adjoint state vε describe in (3.3).

T ε (vε|(Ω+
ε
)
⇀ v0|Ω+ weakly in L(Ω+× (a,b))

T ε
(∂vε|Ω+

ε

∂x1

)
⇀ 0, T ε

(∂vε|Ω+
ε

∂x2

)
⇀

∂v0|Ω+

∂x2
weakly in L(Ω+× (a,b))

ṽε|Ω+
ε
⇀

b−a
L

v0|Ω+ weakly in L2(0,L;H1(M,M′))

vε|Ω− ⇀ v0|Ω− weakly in H1(Ω−)

where v0 ∈W0(Ω) satisfies (5.6), when u is replaced by u0.

Regarding the optimal control, we have θε = −1
β

vεχω and the convergence θε → θ0 in L2(ω),

vε|Ω− ⇀ v0|Ω− in H1(Ω−). Implies that

θ0 =−1
β

v0χω. (5.38)

Thus (u0,v0.θ0) satisfies the optimality system corresponding to the minimization problem (P1). Ac-

cording to Theorem 5.1, its optimal solution is given by (u0,−
1
β

v0χω). Thus, by uniqueness, we have

u = u0, v = v0 and θ = θ0 =−1
β

v0χω.

Step 6 (Claim: lim
ε→0

J1,ε(uε,θε) = J1(u,θ)): To prove this, let

α1
ε =

∥∥∥T ε ∂uε
+

∂x1

∥∥∥2

L2(Ω+×(a,b))
, α2

ε =
∥∥∥T ε ∂uε

+

∂x2

∥∥∥2

L2(Ω+×(a,b))
, α3

ε = L
∥∥∥ ∂uε

−

∂x1

∥∥∥2

L2(Ω−)
, α4

ε = L
∥∥∥ ∂uε

−

∂x2

∥∥∥2

L2(Ω−)
and

α1 = ∥P∥2
L2(Ω+×(a,b) = 0, α2 =

∥∥∥ ∂u−
∂x2

∥∥∥2

L2(Ω+×(a,b)
, α3 = L

∥∥∥ ∂u−
∂x1

∥∥∥2

L2(Ω−)
, α4 = L

∥∥∥ ∂u−
∂x2

∥∥∥2

L2(Ω−)
. Then, with

the help of Proposition 4.3, we get
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4

∑
k=1

αk
ε = L

∫
Ω+

ε

|∇uε
+|2 +

∫
Ω−

|∇uε
−|2


= L

∫
Ω+

ε

f uε
++

∫
Ω−

f uε
−+

∫
ω

θεuε
−−

∫
Γb

∂uε
−

∂ν
uε

−


→ L

b−a
L

∫
Ω+

f u++
∫

Ω−

f u−+
∫
ω

θu−−
∫
Γb

∂u−

∂ν
u−

 as ε → 0

= L

b−a
L

∫
Ω+

∣∣∣∣∂u+

∂x2

∣∣∣∣2 + ∫
Ω−

|∇u−|2


=
4

∑
k=1

αk. (5.39)

Thus,
4
∑

k=1
αk

ε →
4
∑

k=1
αk as ε → 0. By weak lower semi-continuity, liminf

ε→0+
αk

ε ≥αk for every k = 1,2,3,4.

Hence by Lemma 5.2, we conclude

T ε ∂uε
+

∂x1
→ 0, T ε ∂uε

+

∂x2
→ ∂u+

∂x2
strongly in L2(Ω+× (a,b) (5.40)

∂uε
−

∂x1
→ ∂u−

∂x1
,

∂uε
−

∂x2
→ ∂u−

∂x2
strongly in L2(Ω−). (5.41)

Therefore (5.17) and (5.41) gives

uε|Ω− → u|Ω− strongly in H1(Ω−). (5.42)

Similarly, one can prove

vε|Ω− → v|Ω− strongly in H1(Ω−). (5.43)

Choosing ϕ = uε −ud in the variational formulation of the problem (3.3) gives∫
Ωε

|uε −ud |2 =
∫
Ωε

∇vε ·∇(uε −ud)−
∫
Γb

∂vε

∂ν
h

→ b−a
L

∫
Ω+

∂v+

∂x2
· (∂u+

∂x2
− ∂u+

∂x2
)+

∫
Ω−

∇v− ·∇(u−−ud)−
∫
Γb

∂v−

∂ν
h

=
∫
Ω

(
b−a

L
χΩ+ +χΩ−

)
|u−ud |2 . (5.44)

Therefore using (5.44) we get
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lim
ε→0

J1,ε(uε,θε) =
1
2

lim
ε→0

∫
Ωε

|uε −ud |2 +
β
2

lim
ε→0

∫
ω

θ2
ε

=
1
2

∫
Ω

(
b−a

L
χΩ+ +χΩ−

)
|u−ud|2 +

β
2

∫
ω

θ2

= J1(u,θ).

This completes the proof of the theorem.

6 Dirichlet Cost Functional

Recall the Dirichlet cost functional

J2,ε(uε,θ) =
1
2

∫
Ωε

|∇uε −∇ud |2 +
β
2

∫
ω

θ2

given in the Section 3. We now prove the analogous results as in the previous section corresponding
to the cost functional.

6.1 Homogenized System

Define the limit Dirichlet cost functional J2 as

J2(u,θ) =
1
2

∫
Ω+

b−a
L

∣∣∣∣∂u|Ω+

∂x2
− ∂ud

∂x2

∣∣∣∣2 + 1
2

∫
Ω−

|∇u|Ω− −∇ud|2 +
β
2

∫
ω

θ2. (6.1)

Define the optimal control problem as follows: Find (u,θ) such that

J2(u,θ) = inf{J2(u,θ)| θ ∈ L2(ω), (u,θ) obeys (5.1)} (P2)

The problem (P2) has a unique solution (u,θ). Then the optimal control θ characterized using adjoint
state v, given by 

−∂2v+

∂x2
2

=− ∂2

∂x2
2
(u+−ud) in Ω+,

−∆v− =−∆(u−−ud) in Ω−,
∂v+

∂ν
= (∇u+−∇ud) ·ν on Γu,

v+ = v−,
b−a

L
∂v+

∂x2
=

∂v−

∂x2
on Γ,

v− = 0 on Γb,

v is Γs′ − periodic.

(6.2)

The following theorem is standard and can be proved using classical methodology (see [14], [34]).
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Theorem 6.1. Let f ∈ L2(Ω), h ∈ H1/2(Γb) and (u,θ) be the optimal solution of (P2). Let v ∈W (Ω)
solves (6.2), then the optimal control is given by

θ =−1
β

vχω.

Conversely, assume that a pair (û, v̂) ∈W (Ω)×W0(Ω) solves the optimality system

−∂2û+

∂x2
2

= f ,−∂2v̂+

∂x2
2

=− ∂2

∂x2
2
(û+−ud) in Ω+,

−∆û− = f − 1
β

v̂−χω,−∆v̂− =−∆(û−−ud) in Ω−,

∂û+

∂ν
= 0,

∂v̂+

∂ν
= (∇u+−∇ud) ·ν on Γu,

û+ = û−,
b−a

L
∂û+

∂x2
=

∂û−

∂x2
, v̂+ = v̂−,

b−a
L

∂v̂+

∂x2
=

∂v̂−

∂x2
on Γ,

û− = h, v̂− = 0 on Γb,

û, v̂ is Γs′ − periodic,

(6.3)

Then, the pair (û,−1
β

v̂χω) is the optimal solution to (P2).

6.2 Convergence Analysis

Assume that (uε,θε) is the optimal solution of (P2,ε). Let uε(0) be the solution of the problem (3.1)
corresponding to θ = 0, then from (3.2) we get

∥uε(0)∥H1(Ωε) ≤C, (6.4)

where C > 0 is independent of ε. Using optimality of the solution (uε,θε), we get∫
Ωε

|∇(uε −ud)|2 +
β
2

∫
ω

θ2
ε ≤

∫
Ωε

|∇(uε(0)−ud)|2 ≤C. (6.5)

Thus, as previously, we have

∥θε∥L2(ω) ≤C, ∥uε∥H1(Ωε) ≤C and ∥vε∥H1(Ωε) ≤ C. (6.6)

where vε solves adjoint problem. The variational formulation of vε is given by:
Find vε ∈ {v ∈ H1(Ωε) : v|Γb = 0} such that∫

Ωε

∇vε ·∇ϕ dx =
∫
Ωε

∇uε ·∇ϕ dx (6.7)

for all ϕ ∈ H1(Ωε) that satisfies ϕ|Γb = 0. We now state the main theorem of this section.

Theorem 6.2 (Main Theorem). Let (uε,θε) and (u,θ) be the optimal solution of (P2,ε) and (P2),
respectively. Then
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θε ⇀ θ weakly in H1(ω),

ũε|Ω+
ε
⇀

b−a
L

u|Ω+ , ṽε|Ω+
ε
⇀

b−a
L

v|Ω+ weakly in L2(0,L;H1(M,M′)),

uε|Ω− → u|Ω− , vε|Ω− → v|Ω− strongly in H1(Ω−),

where θ =−1
β

vχω and vε, v is the solution of (3.5) and (6.2) respectively. Moreover

J2,ε(uε,θε)→ J2(u,θ) when ε → 0.

Proof. We only sketch of the proof. Since (uε,θε) is the optimal solution of (P2,ε). By Theorem 3.2

we have θε =−1
β

vεχω. By estimate (6.6) gives

∥θε∥H1(ω) ≤C. (6.8)

Thus, θε ⇀ θ0 weakly in H1(ω) along a subsequence for θ0. The convergence of uε will take place in
similar fashion as we did in Theorem 5.3. Here we elaborate briefly the technique used to prove the
convergence of vε. Let us denote vε

+ is the restriction of vε in Ω+
ε and vε

− is the restriction of vε in
Ω−. Now

∥∥T εvε
+
∥∥2

L2(0,L;H1((M,M′)×(a,b)) ≤ L∥vε∥2
H1(Ωε)

.

So, the sequence T εvε
+ is bounded in L2(0,L;H((M,M′)× (a,b)) follows from (6.6). By weak

compactness, there exist a subsequence (still denoted by ε) such that

T εvε
+ ⇀ v+0 weakly in L2(0,L;H1((M,M′)× (a,b))) (6.9)

which implies

T εvε
+ ⇀ v+0 weakly in L2(Ω+× (a,b)), (6.10)

T ε ∂vε
+

∂x2
⇀

∂v+0
∂x2

weakly in L2(Ω+× (a,b)) (6.11)

εT ε ∂vε
+

∂x1
⇀

∂v+0
∂x3

weakly in L2(Ω+× (a,b)). (6.12)

The boundedness of the sequence T ε ∂vε
+

∂x1
in L2(Ω+ × (a,b)) follow from Proposition 4.3 and

(6.6). From (6.12) we have
∂v+0
∂x3

= 0. Thus with the help of Proposition 4.8, convergence (6.12) and

independents of v+0 from x3 variable, we conclude that

ṽε
+ ⇀

b−a
L

v+0 weakly in L2(0,L;H1(M,M′)). (6.13)
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Since T ε ∂vε
+

∂x1
is bounded in L2(Ω+ × (a,b)), by weak compactness there is an element R ∈

L2(Ω+× (a,b)) such that upto subsequence (still denoted by ε),

T ε ∂vε
+

∂x1
⇀ R weakly inL2(Ω+× (a,b)). (6.14)

Also the sequence vε
− is bounded in H1(Ω−), follows from estimate of ∥vε∥H1(Ωε), vε

− is bounded in
H1(Ω−). Thus upto a subsequence (still denoted by ε)

vε
− ⇀ v−0 weakly in H1(Ω−). (6.15)

Define v0 as,

v0(x) =
{

v+0 i f x ∈ Ω+,
v−0 i f x ∈ Ω−.

(6.16)

As we proved earlier u0 ∈W (Ω), one can show v0 ∈W0(Ω). Now our claim is that v0 satisfies the
limit problem (6.2). We choosing the same test function ϕε described in (5.29). From L.H.S of (6.7),
we have ∫

Ωε

∇vε ·∇ϕ̃ε =
1
L

∫
Ω+×(a,b)

(
T ε ∂vε

+

∂x1
T ε ∂ϕε

∂x1
+T ε ∂vε

+

∂x2
T ε ∂ϕε

∂x2

)

→ 1
L

∫
Ω+×(a,b)

Rϕ(x1,x2)
dψ
dz

(x3) as ε → 0 (6.17)

and from R.H.S of (6.7), we get∫
Ωε

∇(uε −ud) ·∇ϕ̃ε =
1
L

∫
Ω+×(a,b)

(
T ε ∂(uε

+−ud)

∂x1
T ε ∂ϕε

∂x1
+T ε ∂(uε

+−ud)

∂x2
T ε ∂ϕε

∂x2

)

→ −1
L

∫
Ω+×(a,b)

∂ud

∂x1
· ϕ(x1,x2)

dψ
dz

(x3) as ε → 0. (6.18)

As ε → 0 in (6.7), (6.17) and (6.18) give us,∫
Ω+×(a,b)

(
R+

∂ud

∂x1

)
ϕ(x1,x2)

dψ
dz

(x3) = 0

⇒
∫

Ω+

 b∫
a

(
R(x1,x2,x3)+

∂ud

∂x1

)
dψ
dz

(x3)dx3

ϕ(x1,x2)dx1dx2 = 0 ∀ϕ ∈ D(Ω+)

⇒
b∫

a

(
R(x1,x2,x3)+

∂ud

∂x1

)
dψ
dz

(x3)dx3 = 0 a.e. (x1,x2) ∈ Ω+

⇒ R =−∂ud

∂x1
texta.e. in Ω+× (a,b). (6.19)
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equivalently T ε ∂uε
+

∂x1
⇀ − ∂ud

∂x1
weakly in L2(Ω+ × (a,b)). Taking ψ ∈ {ϕ ∈ C∞(Ω)| ϕ|Γb = 0} in the

L.H.S of (6.7) gives∫
Ωε

∇vε ·∇ψ =
1
L

∫
Ω+×(a,b)

(
T ε ∂vε

+

∂x1
T ε ∂ψ

∂x1
+T ε ∂vε

+

∂x2
T ε ∂ψ

∂x2

)
+

∫
Ω−

∇vε
− ·∇ψ

→ −1
L

∫
Ω+×(a,b)

∂ud

∂x1

∂ψ
∂x1

+
1
L

∫
Ω+×(a,b)

∂v+0
∂x2

∂ψ
∂x2

+
∫

Ω−

∇v0
− ·∇ψ (6.20)

and from the R.H.S of (6.7), we can write∫
Ωε

∇(uε −ud) ·∇ψ =
1
L

∫
Ω+×(a,b)

(
T ε ∂uε

+

∂x1
T ε ∂ψ

∂x1
+T ε ∂uε

+

∂x2
T ε ∂ψ

∂x2

)
+

∫
Ω−

∇uε
− ·∇ψ

→ 1
L

∫
Ω+×(a,b)

∂ud

∂x1

∂ψ
∂x1

+
1
L

∫
Ω+×(a,b)

∂u+0
∂x2

∂ψ
∂x2

+
∫

Ω−

∇u0
− ·∇ψ (6.21)

Hence

1
L

∫
Ω+×(a,b)

∂v+0
∂x2

∂ψ
∂x2

+
∫

Ω−

∇v0
− ·∇ψ =

1
L

∫
Ω+×(a,b)

∂(u+0 −ud)

∂x2

∂ψ
∂x2

+
∫

Ω−

∇(u0
−−ud) ·∇ψ

which gives

b−a
L

∫
Ω+

∂v+0
∂x2

∂ψ
∂x2

+
∫

Ω−

∇v0
− ·∇ψ =

b−a
L

∫
Ω+

∂(u+0 −ud)

∂x2

∂ψ
∂x2

+
∫

Ω−

∇(u0
−−ud) ·∇ψ

∀ψ ∈ {ϕ ∈ C∞(Ω)| ϕ|Γb = 0}. Density argument tell us that the above argument is true for all ψ ∈
W0(Ω) since {ϕ ∈C∞(Ω)| ϕ|Γb = 0} is dense in W0(Ω) (see[17]). Therefore v0 ∈W0(Ω) satisfies the
following problem



−∂2v0

∂x2
2
=−∂2(u0

+−ud)

∂x2
2

in Ω+,

−∆v0 =−∆(u0
−−ud) in Ω−,

∂v0

∂ν
= (∇u+−∇ud) ·ν on Γu,

v0
+ = v0

−,
b−a

L
∂v0

+

∂x2
=

∂v0
−

∂x2
on Γ,

v0 = 0 on Γb,

v0 is Γs′ − periodic.

(6.22)

We have θε =−1
β

vεχω and the convergence result θε → θ0 strongly in L2(ω), vε|Ω− ⇀ v0|Ω− weakly

in H1(Ω−). Hence we get

θ0 =−1
β

v0χω. (6.23)
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Therefore (u0,v0,θ0) satisfies the optimality system corresponding to the minimization problem (P2).

According to Theorem 6.1, its optimal solution is given by (u0,−
1
β

v0χω).

Thus, by uniqueness we have

u = u0, v = v0 and θ = θ0 =−1
β

v0χω.

As we proved strong convergence of uε
+ in H1(Ω−), similarly we get

vε|Ω− → v|Ω− strongly in H1(Ω−). (6.24)

Also

lim
ε→0

J2,ε(uε,θε) =
1
2

lim
ε→0

∫
Ωε

|∇(uε −ud)|2 +
β
2

lim
ε→0

∫
ω

θ2
ε

=
1
2

b−a
L

∫
Ω+

∣∣∣∣∂u|Ω+

∂x2
− ∂ud

∂x2

∣∣∣∣2 + ∫
Ω−

|∇(u|Ω− −ud)|2
+

β
2

∫
ω

θ2

= J2(u,θ). (6.25)

Therefore, we have lim
ε→0

J2,ε(uε,θε) = J2(u,θ). Hence the theorem.

References

[1] Y. Achdou, O. Pironneau, and F. Valentin, Effective boundary conditions for laminar flows over periodic rough bound-
aries, J. Comput. Phys. 147 (1998), no. 1, 187218.

[2] G. Allaire and M. Amar, Boundary layer tails in periodic homogenization, ESAIM Control Optim. Calc. Var. 4 (1999),
209243 (electronic).

[3] Y. Amirat and O. Bodart,Boundary layer correctors for the solution of Laplace equation in a domain with oscillating
boundary, Z. Anal. Anwendungen 20 (2001), no. 4, 929940.

[4] Y. Amirat, O. Bodart, U. De Maio, and A. Gaudiello, Asymptotic approximation of the solution of the Laplace equation
in a domain with highly oscillating boundary, SIAM J. Math. Anal. 35 (2004), no. 6, 15981616 (electronic).

[5] J. M. Arrieta and S. M. Bruschi, Rapidly varying boundaries in equations with nonlinear boundary conditions. The
case of a Lipschitz deformation, Math. Models Methods Appl. Sci. 17 (2007), no. 10, 15551585.

[6] V. Barbu, Mathematical methods in optimization of differential systems, Mathematics and its Applications, vol. 310,
Kluwer Academic Publishers Group, Dordrecht, 1994, Translated and revised from the 1989 Romanian original.

[7] A. Bensoussan, J.-L. Lions, and G. Papanicolaou,Asynptotic analysis for periodic structures, North Holland, Amster-
dam, 1978.

[8] J. F. Bonder, R. Orive, and J. D. Rossi, The best Sobolev trace constant in a domain with oscillating boundary,
Nonlinear Anal. 67 (2007), no. 4, 11731180.

[9] R. Brizzi and J.-P. Chalot, Boundary homogenization and Neumann boundary value problem, Ricerche Mat. 46 (1997),
no. 2, 341387 (1998).
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