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STOKES’ SYSTEM IN A DOMAIN WITH OSCILLATING BOUNDARY:
HOMOGENIZATION AND ERROR ANALYSIS OF AN INTERIOR
OPTIMAL CONTROL PROBLEM

A. K. Nandakumaran,1 Ravi Prakash,1 and J.-P. Raymond2

1Department of Mathematics, Indian Institute of Science, Bangalore, India
2Institut de Mathématiques de Toulouse, Université Paul Sabatier & CNRS,
Toulouse Cedex, France

� Homogenization and error analysis of an optimal interior control problem in the framework
of Stokes’ system, on a domain with rapidly oscillating boundary, are the subject matters of
this article. We consider a three dimensional domain constituted of a parallelepiped with a
large number of rectangular cylinders at the top of it. An interior control is applied in a
proper subdomain of the parallelepiped, away from the oscillating volume. We consider two types
of functionals, namely a functional involving the L2-norm of the state variable and another
one involving its H 1-norm. The asymptotic analysis of optimality systems for both cases, when
the cross sectional area of the rectangular cylinders tends to zero, is done here. Our major
contribution is to derive error estimates for the state, the co-state and the associated pressures,
in appropriate functional spaces.

Keywords Adjoint system; Error estimates; Homogenization; Interior control;
Optimal control; Oscillating boundary; Stokes’ system.

Mathematics Subject Classification 35B27; 35B40; 35B37; 49J20; 49K20.

1. INTRODUCTION

In this article, we consider the Stokes’ system in a bounded domain
in �3 whose boundary is rapidly oscillating. The problems in domains
with oscillatory boundaries have important applications in industry. We
basically, consider a three dimensional cube (for simplicity) with, attached
on one side, a large number of square pillars (see Figure 1) of length
O(1), but whose cross sectional area is of order �2. As � → 0, this gives a
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324 A. K. Nandakumaran et al.

FIGURE 1 Domain.

geometrical domain with a rapidly oscillating boundary. Our intention is
to consider a distributed optimal control problem associated to a Stokes’
system in such a domain and to study the relevant homogenization to
obtain the limit system. Our major issue is to obtain some corrector
estimates. The limit analysis of problems posed in domains with rapidly
oscillating boundaries models a large number of physical applications. The
authors recently studied such a homogenization problem for the Laplace
operator in [34].

In particular, the applications include flows with rough boundaries,
rough interface, as well as airflow through compression systems in turbo
machines such as jet engine. The Viscous-Moore-Greitzer equation derived
from Scaled Navier-Stokes equations (see [11, 30, 31]) models such a
situation and, actually, our present and our earlier works are motivated
by these issues. For a detailed analytical treatment of the Navier-Stokes
equations, we refer to [21]. Quite often, such models lead to optimal
control or controllability problems of evolution equations whose boundary
is not only oscillatory, but moving as well. Such boundaries can be modeled
via functions of both spatial and time variables. We do not attempt to do
this in the article, we consider a simple problem described by the Stokes’
system.

The literature on the asymptotic analysis of problems with oscillating
boundaries is extensive and we refer to [1, 3, 5, 8, 12–15, 22, 23, 35], and
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Stokes’ System in a Domain With Oscillating Boundary 325

the references therein. But little work is available for the corresponding
control problems and we refer to [17–19, 34] in that direction. We do not
pretend to be exhaustive. Some standard references in homogenization
theory are [10, 16, 24, 37]. Regarding the homogenization of optimal
control or controllability problems, some of the references are [25, 26, 32,
33]. A few references are concerned with optimal control problems and
derivation of optimality systems, one can refer to [2, 9, 14, 20, 27–29].

In this article, we study optimal control problems for models already
studied in [6]. In [7], the authors derive a wall law for the model
considered here and in [6]. The system associated to this wall law is used
to obtain errors estimates both on the velocity and pressure in �−. Here,
motivated by [4], we use suitable test functions to get error estimates for
the velocity term separately in �+

� and �−, which is not the case in [7].
This article is organized as follows. We describe the geometrical setting

and the control problems we want to deal with in section 2. We introduce
two types of cost functionals, namely a L2 cost functional and a Dirichlet
type cost functional. The limit of the solutions for the control problem
associated with the L2 cost functional, as well as correctors and asymptotic
approximations, are studied in section 3. The corresponding results for the
Dirichlet cost functional are derived in section 4.

2. SETTING OF THE PROBLEMS

2.1. Geometrical Domain

The purpose of this paper is to analyze the asymptotic behavior of
the optimality system associated with the Stokes’ system with an interior
control in a varying domain ��, where � is a positive small parameter,
tending to zero. Here we will discuss two types of cost functionals. The first
one, hereafter called the L2−cost functional, will involve the L2−norm of
the state variable and of the interior control, whereas in the second one,
called the Dirichlet cost functional, we consider the H 1−norm of the state
variable with the L2−norm of the interior control.

To define the domain ��, let us denote A = [0,L1] × [0,L2] and Â =
[a1, b1] × [a2, b2], where 0 < aj < bj < Lj , j = 1, 2, are positive real numbers.
For the future convenience in the conclusion of regularity results, let g be
a smooth function from �2 to �, A-periodic. Using g , we define the lower
boundary of domain ��, namely,

�b = �(x ′, x3) ∈ �3 | x3 = g (x ′), x ′ ∈ A��

Let us set

m := max�|g (x ′) | , x ′ ∈ A��
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326 A. K. Nandakumaran et al.

Further, set A� := �A and Â� := �Â. For M ′ > M > m, define the
A�-periodic function �� from �2 to � by

��
(
x ′) =

{
M ′ if x ′ ∈ Â�,
M if x ′ ∈ A�\Â��

We consider the following domain (see Figure 1) ��, as

�� = �(x ′, x3) ∈ �3 | x ′ ∈ A, g (x ′) < x3 < ��(x ′)��

The oscillating domain �� has a fixed region �− (unaffected by the
oscillating boundary), defined by

�− = �(x ′, x3) | x ′ ∈ A, g (x ′) < x3 < M ��

The upper and lateral boundaries �u , �s of �− can be, respectively,
described as

�u = �(x ′,M ) | x ′ ∈ A�

and

�s = �(x ′, x3) | x ′ ∈ �A, g (x ′) ≤ x3 ≤ M �,

where �A is the boundary of the reference cell A. Let us denote by �+
� the

upper oscillating part of the oscillating volume, that is,

�+
� = �(x ′, x3) ∈ �3 | x ′ ∈ A,M < x3 < ��(x ′)��

Let �� be the interface between �+
� and �−. Consequently, we can write

�� = �− ∪ �� ∪ �+
� �

Analogous to g , the graph of �� constructs the oscillating boundary part of
domain ��, namely,

	� = (
��+

� \�u
) ∪ (

�u\��+
�

)
�

Notice that, �+
� is constituted of cylindrical periodic bumps of rectangular

cross-section, situated at the top of a fixed domain �−. We can also
visualize �� as a domain �− together with a large number of bumps
(O(�−2)) having cross-section of order � and fixed height (M ′ − M ). If we
denote the boundary of �� by ���, then we can decompose it as

��� = �b ∪ �s ∪ 	��
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Stokes’ System in a Domain With Oscillating Boundary 327

Finally, we introduce the full domain � as,

� = �(x ′, x3) ∈ �3 | x ′ ∈ A, g (x ′) < x3 < M ′��

We denote by �̃�, the periodic extension of �� in the x1 and x2 directions.
For this extension, we introduce the notion of �s−periodic functions if
they take same values on both sides of �s . Moreover, Hm

per (��) is the
subspace of functions which can be extended to functions belonging to
Hm

loc

(
�3

)
and which are �s−periodic. The same type of notation is used for

other spaces, in particular for L2 (��).
Let 
 ⊂⊂ �− be a subdomain of �− in which control acts. Without

loss of generality, we assume that


 = �(x ′, x3) | x ′ ∈ A, g (x1) < x3 < M−�,

where M > M− > m.

2.2. Control Problems

For a control function � ∈ (L2
per (
))

3 acting in the sub-domain 
, we
consider the Stokes’ system (� > 0)

−�
y� + �p� = f + ��
in ��,
� · y� = 0in ��,
y� = 0on 	�, y� = uon �b ,∫
�−

p� = 0,

(y�,�p�) is �s − periodic,

(2.1)

where f ∈ (L2
per (�))3 and u ∈ (H 1/2

per (�b))
3 such that u · � = 0, where � is the

outward unit normal at �b .

Theorem 2.1. For all f ∈ (L2
per (�))3, � ∈ (L2

per (
))
3, and u ∈ (H 1/2

per (�b))
3

satisfying u · � = 0, Equation (2.1) admits a unique solution (y�(�), p�(�)) in
(H 1

per (��))
3 × L2

per (��), and

‖y�‖(H 1(��))3 + ‖p�‖L2(�−) ≤ C
(
‖f ‖(L2(�))3 + ‖�‖(L2(
))3 + ‖u‖(H 1/2(�b))

3

)
,

(2.2)

where C is a positive constant independent of �, and

‖p�‖L2(��) ≤ C�

(
‖f ‖(L2(�))3 + ‖�‖(L2(
))3 + ‖u‖(H 1/2(�b))

3

)
, (2.3)

where C� > 0 depends on �.
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328 A. K. Nandakumaran et al.

Proof. For � > 0 small enough, we first introduce the subdomain

�−
� = �(x ′, x3) | x ′ ∈ A, g (x ′) < x3 < M − ��,

and its upper and lateral boundaries �u,� and �s,� defined by

�u,� = �(x ′,M − �) : x ′ ∈ A�

and

�s,� = �(x ′, x3) : x ′ ∈ �A, g (x ′) ≤ x3 ≤ M − ���

Next, we denote by yu the solution to
� · yu = 0 in �−

� ,
yu = 0 on �u,�, yu = u on �b ,
yu is �s,� − periodic�

(2.4)

From [21], it follows that Equation (2.4) admits a solution which satisfies

‖yu‖(H 1(�−
� ))

3 ≤ C‖u‖(H 1/2(�b))
3 � (2.5)

We denote by ỹu the extension of yu by zero to ��\�−
� . We have � · ỹu = 0

in �� and

‖ỹu‖(H 1(��))3 ≤ C‖u‖(H 1/2(�b))
3 � (2.6)

We look for the solution (y�(�), p�(�)) to Equation (2.1) in the form
y�(�) = yu + ��(�). The pair (��(�), p�(�)) satisfies the system

−�
�� + �p� = �
ỹu + f + ��
 in ��,
� · �� = 0in ��,
�� = 0 on 	�, �� = 0 on �b ,∫
�−

p� = 0,

(��,�p�) is �s − periodic�

(2.7)

We set

(H 1
per ,�b

(��))
3 = �z ∈ (H 1

per (��))
3 | z|�b = 0�,
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Stokes’ System in a Domain With Oscillating Boundary 329

and we denote by H −1
per ,�b

(��) its dual. The source term 
ỹu may be
identified with an element in (H −1

per ,�b
(��))

3 by the formula

〈

ỹu ,�

〉 = −
∫
��

� ỹu : ��, for all � ∈ (H 1
per ,�b

(��))
3�

From the variational formulation of Equation (2.7), it follows that

�

∫
��

|���|2 = −�

∫
��

� ỹu : ��� +
∫
��

(f + �
�)���

Thus, with Young’s and Poincaré’s inequalities, it follows that

‖��‖(H 1(��))3 ≤ C
(
‖f ‖(L2(�))3 + ‖�‖(L2(
))3 + ‖ỹu‖(H 1(��))3

)
(2.8)

≤ C
(
‖f ‖(L2(�))3 + ‖�‖(L2(
))3 + ‖u‖(H 1/2(�b))

3

)
�

This gives the following estimate for y�

‖y�‖(H 1(��))3 ≤ C
(
‖f ‖(L2(�))3 + ‖�‖(L2(
))3 + ‖u‖(H 1/2(�b))

3

)
,

where C is independent of �.
The estimate of p� in L2

per (��) may be obtained with Equation (2.7) in a
classical way. But the constant in the estimate depends on the domain, and,
therefore, depends on �. Let us explain how we can obtain an estimate of
p� in L2

per

(
�−)

independent of �. For that, we introduce

(
H 1

per ,�b∪�u (�
−)

)3 = �z ∈
(
H 1

per (�
−)

)3 | z|�b = 0 and z|�u = 0�,

and we denote by (H −1
per ,�b∪�u (�

−))3 the dual of (H 1
per ,�b∪�u (�

−))3. We identify
the restriction of 
y� to �− as an element in (H −1

per ,�b∪�u (��))
3 in the

following way

〈

y�,�

〉 = −
∫
�−

�y� : ��, for all � ∈ (H 1
per ,�b∪�u (��))

3�

Since y� is bounded in (H 1(��))
3 uniformly with respect to �, it is also

bounded uniformly in (H 1(�−))3. Thus, 
y�|�− is bounded in (H 1(�−))3.
From the equality

�p� = f + ��
 + �
y�,
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330 A. K. Nandakumaran et al.

we deduce that �p�|�− is bounded in (H −1
per ,�b∪�u (�

−))3, more precisely

‖�p�|�−‖(
H−1
per ,�b∪�u (�

−)
)3 ≤ C

(
‖f ‖(L2(�))3 + ‖�‖(L2(
))3 + ‖u‖(H 1/2(�b))

3

)
�

Estimate (2.3) may be obtained from the previous one and from the
following inequality

‖p‖L2
per (�

−) ≤ C‖�p‖(
H−1
per ,�b∪�u (�

−)
)3 for all p ∈ L2

per (�
−) obeying

∫
�−

p = 0�

This last inequality may be proved as in [36, Lemma 1.5.4]. �

We consider the following two cost functionals, for which we are going
to analyze optimality issues, namely,

J1,�
(
y�, �

) = 1
2

∫
��

∣∣y� − yd
∣∣2 + �

2

∫



∣∣�∣∣2
and

J2,�
(
y�, �

) = 1
2

∫
��

∣∣� (
y� − yd

)∣∣2 + �

2

∫



∣∣�∣∣2 ,
with � > 0, yd is a given desired state. For the L2−cost functional J1,�,
we assume yd ∈ (L2

per (�))3, while we assume that yd ∈ (H 1
per (�)) for the

Dirichlet cost functional J2,�. Since we are going to see that y� is of order �,
i.e. O(�) in the upper part �+

� , it is reasonable to assume supp (yd) ⊂ �−.
This assumption is in force throughout the article.

We now introduce the following two optimal control problems

inf�J1,�
(
y�, �

) | � ∈
(
L2
per (
)

)3
, (y�, p�, �) solves (2.1)� (P1,�)

and

inf�J2,�
(
y�, �

) | � ∈
(
L2
per (
)

)3
, (y�, p�, �) solves (2.1)�, (P2,�)

corresponding to cost functionals J1,� and J2,�, respectively. Our aim in this
article is to study the asymptotic analysis of the optimal solution (ȳ�, p̄�, �̄�)
for each of these problems.
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Stokes’ System in a Domain With Oscillating Boundary 331

3. L2-COST FUNCTIONAL

In section 3.1, we derive the optimality system for problem (P1,�) and
we introduce the limit system in section 3.2. The passage to the limit in the
optimality system for problem (P1,�), when � goes to zero, is carried out in
section 3.3. In order to obtain correctors and asymptotic approximations,
we introduce test functions in section 3.4. Precise errors estimates are
obtained in section 3.5.

3.1. Optimality System

By standard arguments, we can prove that, for each � > 0,
the minimization problem (P1,�) has a unique minimizer (ȳ�, �̄�) ∈
(H 1

per (��))
3 × (L2

per (
))
3. Let (ȳ�, p̄�) be the solution of (2.1) when � = �̄�.

We call (ȳ�, p̄�, �̄�), the optimal solution of (P1,�), where �̄� is the optimal
control, ȳ� the optimal state and p̄� the corresponding pressure in the
Stokes’ system (2.1). Further, it can be characterized using the adjoint
state (co-state) z̄�, where z̄� along with adjoint pressure q̄� solves the adjoint
problem 

−�
z̄� + � q̄� = ȳ� − yd in ��,

� · z̄� = 0 in ��,

z̄� = 0 on 	� ∪ �b ,∫
�−

q̄� = 0,

(z̄�,� q̄�) is �s − periodic�

(3.1)

Following the classical way for proving the necessary as well as sufficient
conditions for optimality and for setting up the optimality system (see, e.g.,
[27]), one can easily establish the following theorem for (P1,�).

Theorem 3.1. Let f ∈ (L2
per (�))3 and (ȳ�, p̄�, �̄�) be the optimal solution of

(P1,�). Let (z̄�, q̄�) ∈ (H 1
per (��))

3 × L2
per (��) solves (3.1), then the optimal control

is given by

�̄� = −1
�
z̄��
�
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332 A. K. Nandakumaran et al.

Conversely, assume that the pairs (ŷ�, ẑ�) ∈ (H 1
per (��))

3 × (H 1
per (��))

3 and
(p̂�, q̂�) ∈ L2

per (��) × L2
per (��) solve the optimality system

−�
ŷ� + � p̂� = f − 1
�
ẑ��
 in ��,

� · ŷ� = 0 in ��,
ŷ� = 0 on 	�, ŷ� = u on �b ,∫
�−

p̂� = 0,

(ŷ�,� p̂�) is �s − periodic

(3.2)



−�
ẑ� + � q̂� = ŷ� − yd in ��,
� · ẑ� = 0 in ��,
ẑ� = 0 on 	� ∪ �b ,∫
�−

q̂� = 0,

(ẑ�,� q̂�) is �s − periodic�

(3.3)

Then, the triplet (ŷ�, p̂�,− 1
�
ẑ��
) is the optimal solution to (P1,�).

3.2. Limit System

To introduce the limit system, we need to go through a minimization
problem corresponding to the following Stokes’ system in the fixed
domain �−. Given � ∈ (L2

per (
))
3, let (y, p) ∈ (H 1

per (�
−))3 × L2

per (�
−) be the

unique solution to 

−�
y + �p = f + ��
 in �−,
� · y = 0 in �−,
y = 0 on �u , y = u on �b ,∫
�−

p = 0,

(y,�p) is �s − periodic�

(3.4)

Let J1 be the cost functional defined by

J1
(
y, �

) = 1
2

∫
�−

∣∣y − yd
∣∣2 + �

2

∫



∣∣�∣∣2 � (3.5)
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Stokes’ System in a Domain With Oscillating Boundary 333

The corresponding minimization problem is

inf�J1
(
y, �

) | � ∈ (L2
per (
))

3, (y, p, �) obeys (3.4)�, (P1)

As in subsection 3.1, one can ensure the existence and uniqueness

of (ȳ, �̄) ∈ (H 1
per (�

−))3 × (L2
per (�

−))3 as a minimizer of (P1) and
the corresponding pressure p̄ ∈ L2

per (�
−). The optimal control �̄ is

characterized by �̄ = − 1
�
z̄, where z̄ ∈ (H 1

per (�
−))3, q̄ ∈ L2

per (�
−) solve



−�
z̄ + � q̄ = ȳ − yd in �−,
� · z̄ = 0 in �−,
z̄ = 0 on �u ∪ �b ,∫
�−

q̄ = 0,

(z̄,� q̄) is �s − periodic�

(3.6)

Moreover, we have following result analogous to Theorem 3.1.

Theorem 3.2. Let f ∈ L2
per (�) and (ȳ, p̄, �̄) be the optimal solution of (P1). The

optimal control is given by

�̄ = −1
�
z̄�
,

where (z̄, q̄) ∈ (H 1
per (�

−))3 × L2
per (�

−) solves (3.1).
Conversely, assume that the pairs (ŷ, ẑ) ∈ (H 1

per (�
−))3 × (H 1

per (�
−))3 and

(p̂, q̂) ∈ L2
per (�

−) × L2
per (�

−) solve the optimality systems



−�
ŷ + � p̂ = f − 1
�
ẑ�
 in �−,

� · ŷ = 0 in �−,
ŷ = 0 on �u , ŷ = u on �b ,∫
�−

p̂ = 0,

(ŷ,� p̂) is �s − periodic,

(3.7)
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−�
ẑ + � q̂ = ŷ − yd in �−,
� · ẑ = 0 in �−,
ẑ = 0 on �u ∪ �b ,∫
�−

q̂ = 0,

(ẑ,� q̂) is �s − periodic�

(3.8)

Then, the triplet (ŷ, p̂,− 1
�
ẑ�
) is the optimal solution to (P1).

3.3. Estimates and Asymptotic Analysis

We now establish convergence results for the optimal state, co-state,
pressure, adjoint pressure and optimal control corresponding to (P1,�) in
appropriate functional spaces.

Theorem 3.3. Let
(
ȳ�, p̄�, �̄�

)
and

(
ȳ, p̄, �̄

)
be, respectively, the optimal solution

of (P1,�) and (P1). Suppose
(
z̄�, q̄�

)
and

(
z̄, q̄

)
be the co-states and adjoint pressures

appeared in the discussion of problem (P1,�) and (P1), respectively. Then

˜̄y� → ˜̄y strongly in
(
H 1

per (�)
)3

,

p̄� → p̄ strongly in L2
per

(
�−)

,

�̄� → �̄ strongly in
(
H 1

per (
)
)3

,

˜̄z� → ˜̄z strongly in
(
H 1

per (�)
)3

,

q̄� → q̄ strongly in L2
per

(
�−)

,

where

˜̄y =
{
0 in �+,
ȳ in �−,

and ˜̄z =
{
0 in �+,
z̄ in �−�

Moreover,

J1,�
(
ȳ�, �̄�

) −→ J1
(
ȳ, �̄

)
when � −→ 0�

Note: ˜̄y�, ˜̄z�, denote the extension by 0 of ȳ�, z̄�, respectively, to �, and
thus (˜̄y�, ˜̄z�) ∈ (H 1

per (�))3 × (H 1
per (�))3.
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Stokes’ System in a Domain With Oscillating Boundary 335

Proof. Step 1. Uniform estimates. Let
(
ȳ�, p̄�, �̄�

)
be the optimal solution of

(P1,�). If we denote by y�(0) the solution to Equation (2.1) corresponding
to � = 0 in 
, we have

J1,�
(
ȳ�, �̄�

) ≤ J1,�
(
y�(0), 0

)
�

From Theorem 2.1, it follows that

‖�̄�‖(L2(
))3 ≤ 2
�

J1,�
(
y�(0), 0

) ≤ C , (3.9)

where C is independent of �. Still with Theorem 2.1, it follows that

‖˜̄y�‖(H 1(�))3 = ‖ȳ�‖(H 1(��))3 ≤ C , (3.10)

and

‖p̄�‖L2(�−) ≤ C , (3.11)

where the different constants C are independent of �. Applying Theorem
2.1 to the adjoint system (3.1), we obtain

‖z̄�‖(H 1(��))3 ≤ C , (3.12)

and

‖q̄�‖L2(�−) ≤ C , (3.13)

with C > 0 is independent of �. From the characterization of �̄� in
Theorem 3.1, we get

‖�̄�‖(H 1(
))3 ≤ C � (3.14)

Step 2. Passage to the limit. With the above estimates in (3.10)–(3.14),
we can deduce the existence of (y0, p0, �0, z0, q0) ∈ (H 1

per (�))3 × L2
per (�

−) ×
(H 1

per (
))
3 × (H 1

per (�))3 × L2
per (�

−), the existence of subsequences still
indexed by � to simplify the notation, and the following convergence when
� tends to zero

˜̄y� ⇀ y0 weakly in (H 1
per (�))3, (3.15)

p̄� ⇀ p0 weakly in L2
per

(
�−)

, (3.16)

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ite
 P

au
l S

ab
at

ie
r]

 a
t 0

4:
59

 1
8 

Fe
br

ua
ry

 2
01

4 



336 A. K. Nandakumaran et al.

�̄� ⇀ �0 weakly in
(
H 1

per (
)
)3

, (3.17)

˜̄z� ⇀ z0 weakly in
(
H 1

per (�)
)3

, (3.18)

q̄� ⇀ q0 weakly in L2
per

(
�−)

� (3.19)

With (3.17) and (3.18), the characterization of �̄� gives

�0 = −1
�
z0�
� (3.20)

Let ��+
�
be the characteristic function of �+

� ⊂ �+ = �\�−, then as in
other convergence of periodic oscillatory functions, we get

��+
�
⇀ K weakly∗ in L∞ (

�+)
, where K = 1

L1L2
(b1 − a1)(b2 − a2)�

(3.21)

By (3.15) and compact embedding theorems, we have

˜̄y� −→ y0 strongly in
(
L2
per (�)

)3
� (3.22)

Now, according to (3.21) and (3.22), passing to the limit in the equality
˜̄y� = ˜̄y���+

�
, we see that y0 = 0 in �+ since K 
= 0. Similarly, z0 = 0 in �+.

Moreover, z0 = 0 on �b . For � = �̄�, weak formulation of (2.1) gives us

�

∫
�−

� ȳ� · �� −
∫
�−

p̄� (� · �) =
∫
�−

f · � +
∫



�̄� · �

for all smooth function � with compact support in �−. So, with (3.15),
(3.16), and (3.17), we can prove that y0, p0 and �0 satisfy

−�
y0 + �p0 = f + �0�
 in �−,
� · y0 = 0 in �−,
y0 = 0 on �u , y0 = u on �b ,∫
�−

p0 = 0,

(y0,�p0) is �s − periodic�

(3.23)
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Stokes’ System in a Domain With Oscillating Boundary 337

Similarly, we can prove that z0 and q0 satisfy the system

−�
z0 + �q0 = y0 − yd in �−,
� · z0 = 0 in �−,
z0 = 0 on �u ∪ �b ,∫
�−

q0 = 0,

(z0,�q0) is �s − periodic�

(3.24)

Since �0 = − 1
�
z0�
, from the converse part of Theorem 3.2, it follows that

(y0, p0, �0) is the optimal solution to (P1). Thus, we get

y0 = ˜̄y, p0 = p̄, z0 = ˜̄z, �0 = �̄ and q0 = q̄ �

Further

J1,�
(
ȳ�, �̄�

) −→ J1
(
ȳ, �̄

)
when � −→ 0�

In fact, we get the strong convergence of ˜̄y� in (H 1
per (�))3, as well as of

˜̄z�, and, hence, for the control �̄�. By using ȳ� and ȳ as test functions in
(2.1) and (3.4) respectively, and from the convergences stated in (3.15)
and (3.17), we get

lim
�→0

�

∫
�

� ˜̄y� · � ˜̄y� = lim
�→0

∫
�

f · ˜̄y� +
∫



�̄� · ˜̄y� +
〈
�ȳ�
��

,u
〉
(H−1/2(�b))

3
,(H 1/2(�b))

3

=
∫
�

f · ˜̄y +
∫



�̄ · ˜̄y +
〈
�ȳ
��

,u
〉
(H−1/2(�b))

3
,(H 1/23(�b))

3

= �

∫
�

� ˜̄y · � ˜̄y�

Thus, ˜̄y� −→ ȳ strongly in (H 1
per (�))3. A similar analysis will provide the

strong convergence of ˜̄z� in (H 1
per (�))3. The strong convergences of ˜̄y�, ˜̄z�

in (H 1
per (�))3 and of �̄� in (H 1

per (
))
3 will give us the strong convergence of

p̄�, q̄� in L2
per (�

−). Notice

‖� p̄� − � p̄‖(H−1(�−))3 = C‖�
 (
ȳ� − ȳ

) + (
�̄� − �̄

)
�
‖(H−1(�−))3

≤ C
(
‖ȳ� − ȳ‖(H 1(�−))3 + ‖�̄� − �̄‖(H 1(
))3

)
,
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338 A. K. Nandakumaran et al.

which gives � p̄� → � p̄ strongly in
(
H 1(�−)

)3
and p̄� → p̄ strongly in

L2
per

(
�−)

. The strong convergence of q̄� in L2
per

(
�−)

is obtained in a similar
way. The proof is complete. �

3.4. Test Functions and Preliminary Results

In this section, we borrow certain test functions and results from [4],
[6], which will be useful in the asymptotic approximation of the optimal
state variable ȳ� and the corresponding pressure p̄� of optimal control
problem (P1,�). Moreover, these test functions will also be used for the
co-state variable z̄� and the corresponding pressure q̄� appeared in the
adjoint system of optimal control problem (P1,�).

Recall the domains A and Â defined in the introduction. Let �±

be the domains defined by �+ = Â × (0,∞) and �− = A × (−∞, 0) (see
Figure 2), which in some sense have to be seen as an 1/� scaling of Â� ×
(M ,M ′) and �− respectively, and then extended up to infinity. For i = 1, 2,
consider the pairs

(
� i ,+,�i ,+) ∈ (

H 1
(
�+))3 × L2

loc

(
�+)

and
(
� i ,−,�i ,−) ∈

FIGURE 2 Reference domain.
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Stokes’ System in a Domain With Oscillating Boundary 339

(H 1
loc ,per (�

−))3 × L2
loc ,per

(
�−)

satisfying the following Stokes’ system

−�
� i ,± + ��i ,± = 0 in �±,
� · � i ,± = 0 in �±,
� i ,+ = 0 on ��+\ (

Â × �0�
)
,

� i ,− = 0 on (A × 0) \ (
Â × �0�

)
,

� i ,+ = � i ,− on
(
Â × �0�

)
,

�
(
� i ,+,�i ,+)

n = �
(
� i ,−,�i ,−)

n + �e i on
(
Â × �0�

)
,∫

�±
�i ,±dy = 0�

(3.25)

Here, we have used the following notations: n = (0, 0, 1)T , e1 = (1, 0,
0)T , e2 = (0, 1, 0)T , � (� ,�) = −�I + �

(
�� + (��)T

)
, ��+ denotes the

boundary of �+ and I is the 3 × 3 identity matrix. It can be proved (see
[4, 6]) that �� i ,− ∈ (

L2
(
�−))9

. Also observe that, although �+ and �−

are unbounded, the last condition in (3.25) may be satisfied, since other
properties in (3.25) imply that |��i ,±(y′, y3)| ≤ C exp(−c |y3|) in �±, where
C and c are positive constants. We denote by �i the mean of � i ,− over an
horizontal section of �−:

�i(�) = 1
L1L2

∫
A
� i ,−(y′,−�) dy′, � ∈ (0,+∞)� (3.26)

In [4], it is proved that �i = (�i
1, �

i
2, 0), where �i

j ∈ � is independent of
� for i , j = 1, 2 and the solution

(
� i ,±(y′, y3),�i ,±(y′, y3)

)
satisfy the property

of exponential decay as y3 → ±∞. As an immediate consequence of this
result, we have:

Proposition 3.4. For i = 1, 2, let
(
� i ,+,�i ,+)

and
(
� i ,−,�i ,−)

be the solution
of the problem (3.25). Then, there exists a positive constant C , independent of �,
such that∫

�+
�

∣∣∣∣� i ,+
(
x ′

�
,
x3 − M

�

)∣∣∣∣2 dx +
∫
�+
�

∣∣∣∣�i ,+
(
x ′

�
,
x3 − M

�

)∣∣∣∣2 dx ≤ C�,

and∫
�−

∣∣∣∣� i ,−
(
x ′

�
,
x3 − M

�

)
− �i

∣∣∣∣2 dx +
∫
�−

∣∣∣∣�i ,−
(
x ′

�
,
x3 − M

�

)∣∣∣∣2 dx ≤ C��

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ite
 P

au
l S

ab
at

ie
r]

 a
t 0

4:
59

 1
8 

Fe
br

ua
ry

 2
01

4 



340 A. K. Nandakumaran et al.

3.5. Correctors and Asymptotic Approximation

In this section, we plan to derive correctors with the help of test
functions introduced in section 3.4. To obtain error estimates, we need the
following regularity assumptions on the data:

f ∈
(
H 4

per

(
�−))3 ∩

(
L2
per (�)

)3
, g ∈ H 6

per (A),

yd ∈
(
H 4

per

(
�−))3

, u ∈
(
H 7/2

per (�b)
)3

� (3.27)

Remark 3.5. To get error estimates on the optimal state variable ȳ� and
the corresponding pressure p̄� of optimal control problem (P1,�), one will
require (3.27), though for the co-state and adjoint pressure, it is enough
to have f ∈ (H 2

per (�
−))3 ∩ (L2

per (�))3 and u ∈ (H 7/2
per (�b))

3.

Let �− be defined by

�− =
{ (

x ′, x2
) ∈ �3: x ′ ∈ �2, g

(
x ′) < x3 < M

}
�

This is the periodically extended domain �− in the x1, x2 directions. Let
(z̄, q̄) be extended to �− periodically, denoted again by (z̄, q̄). Then the
pair (z̄, q̄) solves the system

(z̄, q̄) ∈
(
H 1

per

(
�−))3 × L2

per

(
�−)

,

−�
z̄ + � q̄ = ȳ − yd in �−,
� · z̄ = 0 in �−,
z̄ = 0 on �2 × �M � ∪ �

(
x ′, g (x ′)

) ∈ �3: x ′ ∈ �2��

(3.28)

Since the control �̄ is located in 
, we only have �̄�
 ∈ L2(
), which is a
source term in (3.23). Therefore, we cannot deduce from the optimality
system (3.23) and (3.24) that

(
ȳ, p̄

) ∈
(
H 6

per

(
�−))3 × H 5

per

(
�−) ⊂

(
C 4

(
�−

))3 × C 3
(
�−

)
� (3.29)

and (
z̄, q̄

) ∈
(
H 8

per

(
�−))3 × H 7

per

(
�−) ⊂

(
C 6

(
�−

))3 × C 5
(
�−

)
� (3.30)

We, need such a regularity for the error estimates. Fortunately, we do not
need such strong smoothness in the entire domain �̄, it is enough to have
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Stokes’ System in a Domain With Oscillating Boundary 341

the regularity in a neighborhood of the upper boundary. In this direction,
we define the band R as

R = �(x ′, x3) | x ′ ∈ A,
M + M−

2
< x3 < M ��

Now, using a truncation argument, we can show that

(
ȳ, p̄

) ∈
(
H 6

per (R)
)3 × H 5

per (R) ⊂ (
C 4

(
R

))3 × C 3
(
R

)
, (3.31)

and (
z̄, q̄

) ∈
(
H 8

per (R)
)3 × H 7

per (R) ⊂ (
C 6

(
R

))3 × C 5
(
R

)
, (3.32)

since the dimension is n = 3. Let, for i = 1, 2,

� i
�(x) =


� i ,+

� (x) = � i ,+
(
x ′

�
,
x3 − M

�

)
in �+

� ,

� i ,−
� (x) = � i ,−

(
x ′

�
,
x3 − M

�

)
− �i in �−,

(3.33)

and

�i
�(x) =


�i ,+

� (x) = �i ,+
(
x ′

�
,
x3 − M

�

)
in �+

� ,

�i ,−
� (x) = �i ,−

(
x ′

�
,
x3 − M

�

)
in �−,

(3.34)

where
(
� i ,+,�i ,+)

and
(
� i ,−,�i ,−)

denote the solution of problem (3.25).
Now we are in a position to introduce the error estimates. We need to

introduce certain test functions. Define B(x ′) = ∑
i=1,2

�z̄i
�x3

(x ′,M )�i for x ′ ∈
A, where �i is given in (3.26), and let us denote by �� and �� the functions
defined in �� by

��(x) =



�+
� (x) =

∑
i=1,2

�z̄i
�x3

(x ′,M )� i ,+
� in �+

� ,

�−
� (x) =

∑
i=1,2

�z̄i
�x3

(x ′,M )� i ,−
(
x ′

�
,
x3 − M

�

)
− B in �−,

=
∑
i=1,2

�z̄i
�x3

(x ′,M )� i ,−
� in �−�

(3.35)
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342 A. K. Nandakumaran et al.

and

��(x) =


�+
� (x) =

∑
i=1,2

�z̄i
�x3

(x ′,M )�i ,+
� in �+

� ,

�−
� (x) =

∑
i=1,2

�z̄i
�x3

(x ′,M )�i ,−
� in �−�

(3.36)

Using these test functions, we are now in position to derive error estimates.

Theorem 3.6. Suppose the regularity assumption (3.27) holds. Let z̄� be the
optimal co-state as in (3.1) and q̄� be the corresponding pressure. Similarly, let z̄ be
the optimal co-state as in (3.6) and q̄ be the corresponding pressure. Assume �� as
defined in (3.35) and �� as in (3.36). Then, there exist positive constants C1, C2,
independent of �, such that

‖z̄� − ��+
� ‖(H 1(�+

� ))
3 + ‖z̄� − z̄ − ��−

� ‖(H 1(�−))3 ≤ C1

(
� + ‖ȳ� − ȳ‖(L2(�−))3

)
and

‖q̄� − q̄‖L2(�−) ≤ C2

(√
� + ‖ȳ� − ȳ‖(L2(�−))3

)
,

for � small enough.

The proof of Theorem 3.6 requires another class of test functions. Let(
�+

� , q
+
�

) ∈
(
H 1

per

(
�+

�

))3 × L2
per

(
�+

�

)
and

(
�−

� , q
−
�

) ∈
(
H 1

per

(
�−))3 × L2

per

(
�−)

be the solution of

−�
�+
� + �q+

� = 0 in �+
� ,

−�
�−
� + �q−

� = 0 in �−,

� · �+
� = −� · �+

� in �+
� ,

� · �−
� = −� · �−

� in �−,

�+
� = −�+

� on 	�\�u , �+
� = �−

� − B on �u\	�,
�

(
�+

� ,�q
+
�

)
n = �

(
�−

� ,�q
−
�

)
n on �u\	�,

�−
� = −�−

� on �b , �−
� = B on 	� ∩ �u ,∫

�−
q−
� dx = −1

�

∫
�−

�−
� dx �

(3.37)
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Stokes’ System in a Domain With Oscillating Boundary 343

Let us also introduce �� and �� defined by

��(x) =
�+

� (x) = z̄� − ��+
� − ��+

� in �+
� ,

�−
� (x) = z̄� − z̄ − ��−

� − ��−
� in �−

(3.38)

and

��(x) =
�+

� (x) = q̄�(x) − q̄(x ′,M ) − �q+
� (x) − �+

� (x) in �+
� ,

�−
� (x) = q̄�(x) − q̄(x) − �q−

� (x) − �−
� (x) in �−�

(3.39)

Let the pair (�, q) ∈ (H 1
per (�

−))3 × L2
per (�

−) solves the Stokes’ system

−�
� + �q = 0 in �−,

� · � = 0 in �−,

� = 0 on �b , � = B on �u ,∫
�−

q dx = 0,

(�,�q) is �s − periodic�

(3.40)

Remark 3.7. Observe that as in [4], it can be seen that B · n = 0 on �u .
Hence, the uniqueness of � is well-defined (see [36]).

Set

�̃ =
{
0 in �+,
� in �−,

q̃ =
{
0 in �+,
q in �−�

(3.41)

These test functions will be used in the error estimates and we need higher
regularity results for these test functions. The regularity assumptions
(3.27), with (3.31) and (3.40), provide the following regularity of

(
�, q

)
(
�, q

) ∈
(
H 5

per

(
�−))3 × H 4

per

(
�−) ⊂

(
C 3

(
�−

))3 × C 2
(
�−

)
� (3.42)

Now, define the space

V (��) =
{
� ∈

(
H 1

per

(
�+

�

))3 : � · � = 0 in ��, �|	�∪�b = 0
}
�
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344 A. K. Nandakumaran et al.

Notice that (��, ��) belongs to V (��) × L2(��), and that normal
traces of their stress tensors coincide at �u\	�, i.e. �(�+

� ,��
+
� )n = �(�−

� ,
��−

� )n in (H
−1
2 (�u\	�))3. Moreover,

∫
�− �−

� dx = 0. For simplicity, we set

�� =
�+

� in �+
� ,

�−
� in �−,

q� =
q+

� in �+
� ,

q−
� in �−�

(3.43)

Proposition 3.8. Suppose the regularity assumption (3.27) holds. Let �� and
�� be, respectively, defined by (3.38) and (3.39). Then, there exist positive
constants C1, C2, independent of �, such that

‖��‖(H 1(��))3 ≤ C1

(
�3/2 + ‖ȳ� − ȳ‖(L2(�−))3

)
,

‖��‖L2(�−) ≤ C2

(
�3/2 + ‖ȳ� − ȳ‖(L2(�−))3

)
,

for � small enough.

Proof. By definition, (��, ��) is a weak solution of the Stokes’ system

−�
�� + ��� =



��
∑
i=1,2




(
�z̄i
�x3

(x ′,M )

)
� i ,+

�

+2��
∑
i=1,2

�

(
�z̄i
�x3

(x ′,M )

)
�� i ,+

�

−
∑
i=1,2

�

(
�z̄i
�x3

(x ′,M )�i ,+
�

)
− �

(
q̄(x ′,M )

) + ȳ� in �+
� ,

��
∑
i=1,2




(
�z̄i
�x3

(x ′,M )

)
� i ,−

�

+2��
∑
i=1,2

�

(
�z̄i
�x3

(x ′,M )

)
�� i ,−

�

−
∑
i=1,2

�

(
�z̄i
�x3

(x ′,M )�i ,−
�

)
+ (

ȳ� − ȳ
)

in �−�

(3.44)
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Stokes’ System in a Domain With Oscillating Boundary 345

Notice, � · �� = 0. Using this fact after choosing �� as a test function in
(3.44) and with integration by parts, we get

‖���‖2

(L2(��))9
=



−��
∑
i=1,2

∫
�+
�




(
�z̄i
�x3

(x ′,M )

)
� i ,+

� · ��

−2��
∑
i=1,2

∫
�+
�

(
�

(
�z̄i
�x3

(x ′,M )

)
���

)
· � i ,+

�

+
∫
�+
�

ȳ� · ��

−��
∑
i=1,2

∫
�−




(
�z̄i
�x3

(x ′,M )

)
� i ,−

� · ��

−2��
∑
i=1,2

∫
�−

(
�

(
�z̄i
�x3

(x ′,M )

)
���

)
· � i ,−

�

+
∫
�−

(
ȳ� − ȳ

) · ���

(3.45)

Using the regularity of z̄ mentioned in (3.31), the Cauchy-Schwarz
inequality and Proposition 3.4, one can easily prove∣∣∣∣∣�� ∑

i=1,2

∫
�+
�




(
�z̄i
�x3

(x ′,M )

)
� i ,+

� · �� (3.46)

−2��
∑
i=1,2

∫
�+
�




(
�z̄i
�x3

(x ′,M )

)
� i ,+

� · ��
∣∣∣∣∣ ≤ C�3/2‖��‖(L2(�+

� ))3 ,∣∣∣∣∣�� ∑
i=1,2

∫
�−




(
�z̄i
�x3

(x ′,M )

)
� i ,−

� · �� (3.47)

−2��
∑
i=1,2

∫
�−




(
�z̄i
�x3

(x ′,M )

)
� i ,−

� · ��
∣∣∣∣∣ ≤ C�3/2‖��‖(L2(�−))3 ,∣∣∣∣∣−2��

∑
i=1,2

∫
�+
�

(
�

(
�z̄i
�x3

(x ′,M )

)
���

)
· � i ,+

�

∣∣∣∣∣ ≤ C�3/2‖���‖(L2(�+
� ))

9

(3.48)

and∣∣∣∣∣−2��
∑
i=1,2

∫
�−

(
�

(
�z̄i
�x3

(x ′,M )

)
���

)
· � i ,−

�

∣∣∣∣∣ ≤ C�3/2‖���‖(L2(�−))9 �

(3.49)
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346 A. K. Nandakumaran et al.

By the Cauchy-Schwarz inequality, we also have∣∣∣∣∫
�+
�

ȳ���

∣∣∣∣ ≤ C‖ȳ�‖(L2(�+
� ))

3‖��‖(L2(�+
� ))

3 (3.50)

and ∣∣∣∣∫
�−

(
ȳ� − ȳ

)
��

∣∣∣∣ ≤ C‖ȳ� − ȳ‖(L2(�−))3‖��‖(L2(�−))3 � (3.51)

Notice that �+
� consists of �-strips of fixed height. Applying Poincaré

inequality in each strip, by summing up, we have

‖��‖(L2(�+
� ))

3 ≤ C�‖���‖(L2(�+
� ))

9 � (3.52)

Considering y� in each strip and using Poincaré’s inequality, we obtain

�‖y�‖(L2(�+
� ))

3 ≤ C�2� (3.53)

In other words, the Poincaré constant is of order � (see [5], [34]).
Combining (3.45)–(3.53), we get

‖���‖(L2(��))9 ≤ C
[
‖ȳ� − ȳ‖(L2(�−))3 + �3/2

]
, (3.54)

which, by Poincaré inequality, provides that

‖��‖(H 1(��))3 ≤ C
(
�3/2 + ‖ȳ� − ȳ‖(L2(�−))3

)
, (3.55)

where C a positive appropriate constant independent of �.
For the domain �−, we now use a test function in the system (3.44) as

�� ∈ (
H 1

0

(
�−))3

satisfying such that � · �� = �� in �− and ‖��‖(H 1(�−))3 ≤
C‖��‖L2(�−), where C > 0 is a constant independent of �, we get

‖��‖2
L2(�−) =



��
∑
i=1,2

∫
�−




(
�z̄i
�x3

(x ′,M )

)
� i ,−

� · ��

−2��
∑
i=1,2

∫
�−




(
�z̄i
�x3

(x ′,M )

)
� i ,−

� · ��

−2��
∑
i=1,2

∫
�−

(
�

(
�z̄i
�x3

(x ′,M )

)
���

)
· � i ,−

�

−�

∫
�−

��� · ��� +
∫
�−

(
ȳ� − ȳ

) · ���

(3.56)
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Stokes’ System in a Domain With Oscillating Boundary 347

Using the regularity of z̄ mentioned in (3.31), the Cauchy-Schwarz
inequality and Proposition 3.4, one can easily prove that∣∣∣∣∣�� ∑

i=1,2

∫
�−




(
�z̄i
�x3

(x ′,M )

)
� i ,−

� · �� (3.57)

−2��
∑
i=1,2

∫
�−




(
�z̄i
�x3

(x ′,M )

)
� i ,−

� · ��

∣∣∣∣∣ ≤ C�3/2‖��‖(L2(�−))3 ,

and∣∣∣∣∣−2��
∑
i=1,2

∫
�−

(
�

(
�z̄i
�x3

(x ′,M )

)
���

)
· � i ,−

�

∣∣∣∣∣ ≤ C�3/2‖���‖(L2(�−))9 �

(3.58)

With the Cauchy-Schwarz inequality, we also have∣∣∣∣−�

∫
�−

��� · ���

∣∣∣∣ ≤ C‖���‖(L2(�−))9‖���‖(L2(�−))9 (3.59)

and ∣∣∣∣∫
�−

(
ȳ� − ȳ

)
��

∣∣∣∣ ≤ C‖ȳ� − ȳ‖(L2(�−))3‖��‖(L2(�−))3 � (3.60)

Combining (3.54), (3.56), and (3.60), we get our desired result

‖��‖L2(��) ≤ C
[
‖ȳ� − ȳ‖(L2(�−))3 + �3/2

]
, (3.61)

where again C a positive appropriate constant independent of �. �

We will borrow the following proposition from [6].

Proposition 3.9. Assume that the regularity assumption (3.27) holds true. Let
��, q� be the functions defined in (3.43), and let �̃, q̃ be defined in (3.41). Then,
there exists a positive constant C , independent of �, such that

‖�� − �̃‖(H 1(��))3 + √
�‖q� − q̃‖L2(�−) ≤ C ,

for � small enough.
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348 A. K. Nandakumaran et al.

Proof of Theorem 3.6.. Notice that{
z̄� − ˜̄z − ��̃ − ��� = �� + �

(
�� − �̃

)
in ��,

q̄� − q̄ − �q − �−
� = �� + �

(
q� − q

)
in �−�

(3.62)

With Propositions 3.8 and 3.9, for � small enough, we can prove that‖z̄� − ˜̄z − ��̃ − ���‖(H 1(��))3 ≤ C1

(
� + ‖ȳ� − ȳ‖(L2(�−))3

)
,

‖q̄� − q̄ − �q − �−
� ‖L2(�−) ≤ C2

(√
� + ‖ȳ� − ȳ‖(L2(�−))3

)
,

(3.63)

where C1, C2 are positive constants, independent of �. But

‖z̄� − ��+
� ‖(H 1(�+

� ))
3 + ‖z̄� − z̄ − ��−

� ‖(H 1(�−))3

≤ ‖z̄� − ��+
� ‖(H 1(�+

� ))
3 + ‖z̄� − z̄ − �� − ��−

� ‖(H 1(�−))3 + ‖��‖(H 1(�−))3

= ‖z̄� − ˜̄z − ��̃ − ���‖(H 1(��))3 + �‖�‖(H 1(�−))3 (3.64)

and

‖q̄� − q̄‖L2(�−)

≤ ‖q̄� − q̄ − �q − �−
� ‖L2(�−) + ‖�q + �−

� ‖L2(�−)

= ‖q̄� − q̄ − �q − �−
� ‖L2(�−) + �‖q‖L2(�−) + ‖�−

� ‖L2(�−)� (3.65)

Again notice that ‖�−
� ‖L2(�−) is of order

√
�. Consequently, the proof of

the theorem follows immediately from (3.63), (3.64), and (3.65). �

To derive similar estimates for the optimal state variable ȳ� and the
corresponding pressure p̄� of optimal control problem (P1,�), we need to
define B̂(x ′) = ∑

i=1,2
�ȳi
�x3

(x ′,M )�i , for x ′ ∈ A, where �i is same as in (3.26).

Let us denote the function �̂�, defined in �� by

�̂�(x) =


�̂+
� (x) =

∑
i=1,2

�ȳi
�x3

(x ′,M )� i ,+
(
x ′

�
,
x3 − M

�

)
in �+

� ,

�̂−
� (x) =

∑
i=1,2

�ȳi
�x3

(x ′,M )� i ,−
(
x ′

�
,
x3 − M

�

)
− B̂ in �−,

(3.66)

where ȳ� is the optimal state variable corresponding to the optimal control
problem (P1), and where, for i=1,2,

(
� i ,+)

and
(
� i ,−)

are defined as the
solution to problem (3.25). Finally, with the same type of proof as done
for Theorem 3.6, we have the following theorem.

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ite
 P

au
l S

ab
at

ie
r]

 a
t 0

4:
59

 1
8 

Fe
br

ua
ry

 2
01

4 



Stokes’ System in a Domain With Oscillating Boundary 349

Theorem 3.10. Suppose that the regularity assumption (3.27) holds true. Let
ȳ� be the optimal state variable and p̄� be the corresponding pressure for the optimal
control problem (P1,�). Again let ȳ be the optimal state and p̄ be the corresponding
pressure for the limit optimal control problem (P1). Then, there exist positive
constants C1, C2, independent of �, such that

‖ȳ� − ��̂+
� ‖(H 1(��))3 + ‖ȳ� − ȳ − ��̂−

� ‖(H 1(��))3 ≤ C1

(
� + ‖z̄� − z̄‖(L2(
))3

)
,

and

‖p̄� − p̄‖L2(�−) ≤ C2

(√
� + ‖z̄� − z̄‖(L2(
))3

)
,

for � small enough, where �̂� is the function defined in (3.66).

4. DIRICHLET COST FUNCTIONAL

In this section, we will focus on the minimization problem (P2,�) which
is regarding the optimality of Dirichlet cost functional. We will first see
the optimality condition as well as optimality system corresponding to
(P2,�). After that, with the help of appropriate estimates we will observe
the asymptotic behavior of the optimal solution, co-state, adjoint pressure
and optimal control of the problem (P2,�). We will conclude this section by
stating results related to asymptotic approximation.

For each � ↓ 0, the minimization problem (P2,�) has a unique
minimizer (ȳ�, �̄�) ∈ (H 1

per (��))
3 × (L2

per (
))
3. The corresponding pressure

in the Stokes’ system (2.1) is denoted by p̄�, and we will say that (ȳ�, p̄�, �̄�)
is the optimal solution of (P2,�). Further, it can be characterized using the
adjoint state (co-state) z̄�, where z̄�, along with adjoint pressure q̄�, solves
the adjoint problem

−�
z̄� + � q̄� = −

(
ȳ� − yd

)
in ��,

� · z̄� = 0, in ��,

z̄� = 0, on 	� ∪ �b ,∫
�−

q̄� = 0,

(z̄�,� q̄�) is �s − periodic�

(4.1)

As in the L2-cost functional case, we have the following optimality
conditions for (P2,�).

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ite
 P

au
l S

ab
at

ie
r]

 a
t 0

4:
59

 1
8 

Fe
br

ua
ry

 2
01

4 



350 A. K. Nandakumaran et al.

Theorem 4.1. Let f belong to
(
L2
per (�)

)3
and let

(
ȳ�, p̄�, �̄�

)
be the optimal

solution of (P2,�). Let
(
z̄�, q̄�

) ∈
(
H 1

per (��)
)3 × L2

per (��) be the solution of
(4.1). Then the optimal control is given by

�̄� = −1
�
z̄��
�

Conversely, assume that the pairs
(
ŷ�, ẑ�

) ∈
(
H 1

per (��)
)3 ×

(
H 1

per (��)
)3

and(
p̂�, q̂�

) ∈ L2
per (��) × L2

per (��) solve the optimality system

−�
ŷ� + � p̂� = f − 1
�
ẑ��
 in ��,

� · ŷ� = 0 in ��,
ŷ� = 0 on 	�, ŷ� = u on �b ,∫
�−

p̂� = 0,

(ŷ�,� p̂�) is �s − periodic�

(4.2)



−�
ẑ� + � q̂� = −

(
ŷ� − yd

)
in ��,

� · ẑ� = 0 in ��,
ẑ� = 0 on 	� ∪ �b ,∫
�−

q̂� = 0�

(ẑ�,� q̂�) is �s − periodic�

(4.3)

Then, the triplet (ŷ�, p̂�,− 1
�
ẑ��
) is the optimal solution to (P2,�).

Following a procedure similar to that in section 3.3, we have following
estimate

‖ȳ�‖(H 1(��))3 + ‖p̄�‖L2(�−) + ‖z̄�‖(H 1(��))3 + ‖�̄�‖(H 1(
))3 + ‖q̄�‖L2(�−) ≤ C ,
(4.4)

where C > 0 is independent of �. As for Theorem 3.3, we can prove the
following theorem.

Theorem 4.2. Let
(
ȳ�, p̄�, �̄�

)
be the optimal solution of (P2,�) then

˜̄y� → ˜̄y strongly in
(
H 1

per (�)
)3

,
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p̄� → p̄ strongly in L2
per

(
�−)

,

�̄� → �̄ strongly in
(
H 1

per (
)
)3

,

˜̄z� → ˜̄z strongly in
(
H 1

per (�)
)3

,

q̄� → q̄ strongly in L2
per

(
�−)

�

where

˜̄y =
{
0 in �+,
ȳ in �−,

˜̄z =
{
0 in �+,
z̄ in �−,

ȳ, z̄ ∈
(
H 1

per

(
�−))3

, along with p̄, q̄ ∈ L2
per

(
�−)

, solves the system



−�
ȳ + �p = f − 1
�
z̄�
 in �−,

� · ȳ = 0 in �−,
ȳ = 0 on �u , ȳ = u, on �b ,∫
�−

p̄ = 0,

(ȳ,� p̄) is �s − periodic,

(4.5)



−�
z̄ + � q̄ = −

(
ȳ − yd

)
in �−,

� · z̄ = 0 in �−,
z̄ = 0 on �u ∪ �b ,∫
�−

q̄ = 0,

(z̄,� q̄) is �s − periodic,

(4.6)

and �̄ = − 1
�
z̄�
� Moreover,

J2,�
(
ȳ�, �̄�

) −→ J2
(
ȳ, �̄

)
when � −→ 0,

where

J2
(
y, �

) = 1
2

∫
�−

∣∣� (
y − yd

)∣∣2 + �

2

∫



∣∣�∣∣2 � (4.7)
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If we consider the minimization problem for cost functional J2 as

inf�J2
(
y, �

) | � ∈
(
L2
per (
)

)3
, (y, p, �) obeys (3.4)�, (P2)

then by our next theorem, the above mentioned pair
(
ȳ, �̄

) ∈(
H 1

per

(
�−))3 ×

(
H 1

per (
)
)3

is the unique solution of (P2).

Theorem 4.3. Let f ∈ L2
per (�) and

(
ȳ, p̄, �̄

)
be the optimal solution of (P2).

Let
(
z̄, q̄

) ∈
(
H 1

per

(
�−))3 × L2

per

(
�−)

solves (4.6), then the optimal control is
given by

�̄ = −1
�
z̄�
�

Conversely, assume that the pairs
(
ŷ, ẑ

) ∈
(
H 1

per

(
�−))3 ×

(
H 1

per

(
�−))3

and(
p̂, q̂

) ∈ L2
per

(
�−) × L2

per

(
�−)

solve the optimality system



−�
ŷ + � p̂ = f − 1
�
ẑ�
 in ��,

� · ŷ = 0 in �−,
ŷ = 0 on �u , ŷ = u on �b ,∫
�−

p̂ = 0,

(ŷ,� p̂) is �s − periodic,

(4.8)

and 

−�
ẑ + � q̂ = −

(
ŷ − yd

)
in �−,

� · ẑ = 0, in �−,
ẑ = 0 on �u ∪ �b ,∫
�−

q̂ = 0,

(ẑ,� q̂) is �s − periodic�

(4.9)

Then, the triplet (ŷ, p̂,− 1
�
ẑ�
) is the optimal solution to (P2).
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Define B̌(x ′) = ∑
i=1,2

�ȳi
�x3

(x ′,M )�i , for x ′ ∈ A , where �i is defined in

(3.26), and let us denote by �̌� the function defined in �� by

�̌�(x) =


�̌+
� (x) =

∑
i=1,2

�ȳi
�x3

(x ′,M )� i ,+
(
x ′

�
,
x3 − M

�

)
in �+

� ,

�̌−
� (x) =

∑
i=1,2

�ȳi
�x3

(x ′,M )� i ,−
(
x ′

�
,
x3 − M

�

)
− B̌ in �−,

(4.10)

where ȳ is the optimal state variable corresponding to the optimal control
problem (P2) and where, for i = 1, 2,

(
� i ,+)

and
(
� i ,−)

are the solution to
problem (3.25). We will have the following theorem, whose proof can be
derived as in the case of the L2-cost functional.

Theorem 4.4. Suppose that the regularity assumption (3.27) holds true. Let
ȳ� be the optimal state variable of optimal control problem (P2,�), and p̄� be the
corresponding pressure. Again let ȳ be of optimal control problem (P2), and let p̄ be
the corresponding pressure. Then, for � small enough, there exist positive constants
C1, C2, independent of �, such that

‖ȳ� − ��̌+
� ‖(H 1(�+

� ))
3 + ‖ȳ� − ȳ − ��̌−

� ‖(H 1(�−))3 ≤ C1

(
� + ‖z̄� − z̄‖(L2(
))3

)
,

and

‖p̄� − p̄‖L2(�−) ≤ C2

(√
� + ‖z̄� − z̄‖(L2(
))3

)
,

for � small enough, where �̌� is defined in (4.10).

Define B̆(x ′) = ∑
i=1,2

�z̄i
�x3

(x ′,M )�i , for x ′ ∈ A, and let us denote by �̆�,
the function

�̆�(x) =


�̆+
� (x) =

∑
i=1,2

�z̄i
�x3

(x ′,M )� i ,+
(
x ′

�
,
x3 − M

�

)
in �+

� ,

�̆−
� (x) =

∑
i=1,2

�z̄i
�x3

(x ′,M )� i ,−
(
x ′

�
,
x3 − M

�

)
− B̆ in �−,

(4.11)

where z̄ is the co-state variable corresponding to the optimal control
problem (P2), and where, for i = 1, 2,

(
� i ,+)

and
(
� i ,−)

are the solutions
to problem (3.25). As in the case of the L2-cost functional, we have the
following theorem.
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354 A. K. Nandakumaran et al.

Theorem 4.5. Suppose that the regularity assumption (3.27) holds true. Let z̄�
be the co-state variable and q̄� the corresponding pressure for the optimal control
problem (P2,�). Again let z̄ be the co-state variable and q̄ the corresponding pressure
for the optimal control problem (P2). Then there exist positive constants C1, C2,
independent of �, such that

‖z̄� − ��̆+
� ‖(H 1(�+

� ))
3 + ‖z̄� − z̄ − ��̆−

� ‖(H 1(�−))3 ≤C1

(
�+ ‖ȳ� − ȳ‖(H 1(�−))3

)
,

and

‖p̄� − p̄‖L2(�−) ≤ C2

(√
� + ‖ȳ� − ȳ‖(H 1(�−))3

)
,

for � small enough, where �̆� is defined in (4.11).
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