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1. Introduction

This paper deals with the homogenization of a class of doubly-nonlinear parabolic equations of the form

Diw, —V -Z, =g(x, t,x/¢)
we € a(lg, X/€) in £2x]0, T|. (1.1)
Z. € y(Vug, x/¢)

Here £2 is a bounded domain of RY, T > 0, and ¢ is a positive parameter. The (possibly multivalued) prescribed mappings
a:RxR¥Y - PR), 7:RVxR'"—= P®RY) (1.2)
are assumed to be maximal monotone with respect to the first variable and periodic with respect to the second one. (By P

we denote the set of the parts.) The known source field g is also periodic with respect to the third argument. We also assume
that
u. =0 onof2x]0,T[,
5 (1.3)
we(x,0) = w (x,x/e) forxe 2,
for a prescribed periodic function w?. All periods are assumed to coincide.
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Problems of the form (1.1) arise in several physical contexts: e.g., this may represent the entropy balance in diffusion
phenomena; o may be the subdifferential of a dissipation potential. Existence of a solution for an associated boundary- and
initial-value problem was proved e.g. by DiBenedetto and Showalter [8] and by Alt and Luckhaus [2].

In the case of single-valued operators, the homogenization of a system similar to (1.1) was already studied by H. Jian [13].
This was also used to model filtration in porous media by A.K. Nandakumaran and M. Rajesh [15,17,16]. More precisely,
in [15] a quasi-linear equation of the form

Oca(ug, x/e) —V -y (U, Vug, x/e, t/e) = g(x, t) (1.4)

was studied with appropriate boundary and initial conditions, thus also accounting for high-frequency oscillations with
respect to time. The same equation was also addressed by A. K. Nandakumaran and M. Rajesh [17,16], dealing with a
porous medium with Neumann and Dirichlet boundary conditions, respectively. In [15,17] two-scale convergence was used
extensively. It should be noticed that the Dirichlet condition on the boundary of the holes may yield different homogenized
problems, that depend on the asymptotic relation between the size of the holes and the period ¢.

The homogenization of quasi-linear equations has been studied by various authors, see e.g. [3,4,11,20]. The homogeniza-
tion of doubly-nonlinear equations of the form (1.1) occurring in electromagnetic processes in composites and in Stefan-type
problems was performed in [22,24].

Each of the inclusions (1.1), and (1.1) 3 is equivalent to a variational inequality. On the basis of the Fitzpatrick theory [10],
here we convert the system (1.1) to a linear PDE coupled with a null-minimization problem, along the lines of [26]. We then
study the limit behavior for vanishing ¢.

This note is organized as follows. First in Section 2 we briefly outline the Fitzpatrick theory for the variational repre-
sentation of maximal monotone operators. In Section 3 we describe the homogenization problem to be studied, and re-
formulate it via the Brezis-Ekeland-Nayroles approach, see Problem 3.2. In Section 4 we prove existence of a solution via
time-discretization, a priori estimates and passage to the limit, see Theorem 4.3. We then let ¢ vanish; in Section 5 we for-
mulate the two-scale Problem 5.1, and in Theorem 5.4 we prove two-scale convergence to a solution of that problem. In
Section 6 we then formulate the single-scale Problem 5.2, and in Proposition 6.4 we prove that it is equivalent to the two-
scale problem. In Theorem 6.5 we then state the desired homogenization theorem. Finally, in an Appendix we briefly review
Nguetseng’s theory of two-scale convergence and related properties of integral functionals; these also include a result in
preparation on the homogenization of maximal monotone operators.

The novelty of this work stays in the use of a Fitzpatrick-type formulation for homogenization, and in the derivation of a
two-scale problem as an intermediate step towards homogenization.

The results of this note may be extended in several directions; for instance explicit dependence on time may be
assumed in the nonlinear operator, and time-homogenization may also be considered. The homogenization of several other
quasilinear equations may also be studied, including doubly-nonlinear systems of the form

we — V-Z, = g(x, t,x/e) (1.5)
w, € o(Delg, x/€) (1.6)
Z, € y(Vug, x/€), (1.7)

with « and y as above. Existence of a solution for an associated boundary- and initial-value problem was proved in [7].

2. Preliminaries

In this section we illustrate the tenets of the Fitzpatrick theory on the variational representation of maximal monotone
operators, that is at the basis of the procedures of the present work. We also illustrate an idea of Brezis, Ekeland and Nayroles
for the variational formulation of monotone flows. We refer the reader e.g. to [27] for a more detailed review.

2.1. Variational representation of maximal monotone operators

Let us first recall the Fenchel system, which is a basic result of the theory of convex analysis, see e.g. [9,21]. Let V be a
separable and reflexive real Banach space with dual V’,let ¥ : V — R U {+00} be a convex and lower semicontinuous
function, and ¥* : V/ — R U {400} be its conjugate function, namely,

Y ==sup {{(V,v) — ¢ (v)} Y eV, (2.1)

veV

It is known that v, ¥* and the subdifferential 9y (see e.g. [9,21]), satisfy the following Fenchel system:

{w(ww*(v

N> ,v) Y, v)eVxV,
v () +yY*) =

v/
(v/,v) ifandonlyifv’ € 9y (v).



16 AK. Nandakumaran, A. Visintin / Nonlinear Analysis 120 (2015) 14-29

Let now « : V x £ (V') be a multivalued mapping. In [10] Fitzpatrick introduced the following convex and lower semi-
continuous function:

fa(v, V) := (', v) + sup {(v' — vy, vo — V) : Yuy € a(vo)}

= sup {{v', vo) — (vy, vo — V) : Vv, € a(vp)} (2.3)

for all (v, v') € V x V’, and proved that, whenever « is maximal monotone,

faw, ) > (0, v) Y(,v) eV xV,
/

fu(v,v') = (v, ) ifand onlyifv’ € a(v). (2.4)
This system obviously extends (2.2). Nowadays f, is called the Fitzpatrick function of .
The inclusion v’ € a(v) is thus equivalent to
fa, V) — (v, v) = inf {fo(r,7") — (', 1) 2 (r, 1) € V x V'} =0, (2.5)

that we label as a null-minimization problem.
Next we review the notion of (variational) representation of monotone operators.

Definition 2.1. We shall say that a lower semicontinuous convex functionf : V xV’ — RU{+o0c} (variationally) represents
a (necessarily monotone) operator « : V. — £ (V') in the sense of Fitzpatrick, whenever

:f(v, v) > W, v) Y(,v) eV xV, (2.6)

fv,v) = (v',v) ifandonlyifv’ € a(v).

Such a function is called a representative function. For instance, because of (2.3)-(2.5), « is represented by the function f,.
If « = 9, then because of (2.2) « is also represented by the Fenchel function g, (v, v') = ¥ (v) + ¥* ().

2.2. The Brezis-Ekeland-Nayroles variational formulation of flows

Let us assume that we are given a triplet of (real) Banach spaces

V CH=H c V' with continuous and dense injections. (2.7)

On the basis of the Fenchel system (2.2), under suitable restrictions, for any prescribed lower semicontinuous and convex
function ¢ : V — RU{+4o0},any u* € [?(0, T; V') and any u® € H, Brezis and Ekeland [5] and Nayroles [ 18] independently
reformulated the gradient flow

Diu+ 0y (u) =u* in]0, T[
{u(O) =u’ (2.8)
as the null-minimization of the functional
T 1
@@mﬂ=/[WW+¢@“4MMM+5WMD%—WM@—Wﬂw, (2.9)
0

asvrangesin H'(0, T; V/)NIL%(0, T; V) (C C°([0, T]; H)) (here by (-, -) we denote the duality pairing between L?(0, T; V')
and [%(0, T; V)). More generally, see [24], for any maximal monotone « : V — £ (V’), denoting by f, a representative
function of «, the monotone flow

{Dtu +a@ =u* in]0,T[

2(0) — 1 (2.10)

may be represented as the null-minimization of the functional

t 1
@wmﬂ=/amw—mwm+;wmﬁ—mM$—wm» (2.11)
0
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3. Weak formulation of the ¢-problem

In this section we provide two equivalent formulations of the system (1.1) coupled with appropriate initial- and
boundary-conditions in a periodic medium.

As the (possibly multivalued) mapping « (-, y) acts on scalar variables, with no loss of generality we may assume that it
coincides with the subdifferential d¢(-, y) of a convex function, fora.e.y € Y.

Let Y = 10, 1[N be the unit cell, and assume that (denoting by B8(R) and £(Y) the o-algebras of Borel- and Lebesgue-
measurable functions),

¢ :RxY — RU{4+o0} ismeasurablew.r.t. 8(R) ® L(Y),

¢(-,y) 1isconvex and lower semicontinuous for a.e. y, (3.1)
dci, 0 >0: Vv eR, o,y < c1|v|2 +c, foraeyevy. (3.2)
By definition of the convex conjugate function ¢*(-, y) (see e.g. [9,21]), it follows that
IA,M>0:YveR, |p v, y)|>Lv]>—M forae.yceY. (3.3)
Let us assume that
):) ‘RN x Y - P£(R") ismeasurable w.r.t. B(RY) @ L(Y), (3.4)
y(-,y) is maximal monotone for a.e.y,
and that there exist nonnegative constants k, a, b such that
Zl <k(1+1Z) Y(.2) € graph(¥ (-, y)), forae.y, (3.5)
Z-¢ = a(ZP + 15 —b V() € graph(7 (-, y)), forae.y. (36)
Let us also assume that £2 is a bounded domain of RV of Lipschitz class, and that, setting 27 := 2 x]0, T[,
h:2r xY—RY ismeasurable w.r.t. 8(2r) ® L(Y),
h(-,-,y) € 2(2p)" forae.y, (3.7)
w®: 2 xY > R ismeasurable w.r.t. 8(2) ® £L(Y),
w(-,y) e [*(£2) forae.y. (38)
We extend all of these functions Y-periodically to RN with respect to the argument y, and set
@ (v, X) == @(v,x/e) Vv eR, forae.xecR, (3.9)
Ye(v, %) == y(v,x/e) Vv eRN forae xeR", (3.10)
he(x, t) == h(x, t,x/e) forae. (x,t) € £2r, (3.11)
wg(x) = w'(x, x/e) forae.x € £2. (3.12)
We shall deal with the homogenization of the following doubly-nonlinear system:
Diw, —V -7, =V-h, inD'(2), ae.in]o,T[, (3.13)
wy € 0. (Ug,X) a.e.in 27, (3.14)
Z. € y.(Vu,,x) a.e.in Qr, (3.15)
u, =0 ae.ond2x]0,T[, (3.16)
we(-,0) =w? ae.in 2. (3.17)
Examples of data include the following ones:
e (v, x) = agv® + ai(x/e)lv] Yv € R, fora.e.x € £, (3.18)
Ve (0, X) = [bg + b1(x/€)13|v| + A(x/e) - U Vv € RV, forae.x € £2, (3.19)
flg(x, t) = Ho(x, t) + c(x/s)ﬁl(x, t) forae. (x,t) € £27. (3.20)

Thus d¢, (v, X) = 2agv + a;(x/g)sign(v), 9|v| = v/|v| if v # 0, and 8|0] is the whole ball of RV with center the origin and
radius 1. Here aq, by are positive constants and hg, h; € L?(£2r)N. Moreover, a;, by, ¢ : RY — Rand A : RV — RV*N are
prescribed Y-periodic functions, with a;, b; > 0 and A positive-definite. A need not be symmetric, so that y, may have no
potential.
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By applying Lemma A.6 with D = £2 and either B = [?(£2) or B = L?(£2)", we see that there exist measurable selections
we € 3¢, (U, -) and Z, € y:(Vug, -). (The same will apply repeatedly in this work.)
Next we introduce the Hilbert triplet

V=Hy(R2)CH=[*(2)=H cV =H'(2) (3.21)

(with continuous and dense injections), and reformulate the system (3.13)-(3.17) in weak form as follows, for any ¢ > 0.

Problem 3.1. Find (u,, w,, Z;) € [*(0, T; V) x L*(£21) x L*(§27)N such that

/ [(w® — w)Dv + Ze + h,) - Vuldxdt =0 Vv € H'(0,T; V), v(-, T) =0, (3.22)
2r

we € 0. (Ug, x) a.e.in 27, (3.23)
Ze € y.(Vu,,x) ae.in Q5. (3.24)

Eq. (3.22) yields
Diwe —V-Z. =V -h, inV/, ae.in]o,Tl. (3.25)
By comparing the terms of this equation we get D,w, € L?>(0, T; V'), whence
w, € H'(0, T; V') ¢ €°([0, T]; V') (by an obvious identification). (3.26)

Eq. (3.22) then also entails (3.17). Conversely, (3.17) and (3.25) yield (3.22).
Next we reformulate (3.23) and (3.24) via the Fitzpatrick theorem (2.4). First we denote by f5, (-, -, X) a representative
function of y, (-, x) for a.e. x. For any (u, w, Z) that satisfies (3.22), we set

D, (U, w,2) = f [ (u, X) + ¢ (w, x) — wu + f7, (Vu, Z, x) — Vu - Z] dxdt, (3.27)
Q2r

where ¢, is defined as in (3.9). We then define the infinite-dimensional manifold
X, = {(w,, Ze) € [2(£27) x L2(£27)N that fulfill (3.22)}. (3.28)
For any & > 0 we shall consider the following problem, in which a PDE is coupled with a null-minimization problem.
Problem 3.2. Find u, € [*(0,T; V) and (w, Z:) € X, such that
D, (Ug, We, Ze) = inf @, =0. (3.29)

L2(0,T;V)xXe

Theorem 3.3. For any € > 0, Problems 3.1 and 3.2 are mutually equivalent.

Proof. By the Fenchel and Fitzpatrick systems (2.2) and (2.4), the functional @, is nonnegative. The null-minimization (3.29)
is thus equivalent to the inequality

D (U, We, Ze) < 0, (3.30)

or also to the system of the two inequalities

/ [ (ug, x) + </’:(wg, X) — wellg ] dxdt <0, (3.31)
Qr

/ (fy. (Vue, Z., x) — Vu, - Z.] dxdt < 0. (3.32)
Q2r

The integrand of either functional is pointwise nonnegative, so that by (2.2) and (2.4) these inequalities are respectively
equivalent to (3.23)and (3.24). O

4. Existence of a solution of the e-problems

In this section we prove existence of a solution of Problem 3.1. Although this result has already been proved e.g. in [8],
here we present an argument based on the equivalence with Problem 3.2. We do so for the sake of completeness, and also
because this argument provides the uniform estimates that we shall use in the homogenization procedure in the next section.
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4.1. Approximation by time-discretization

Let us fixany ¢ > 0,any m € N, setk = T/m and
R 1 nk R
hl = —/ ho(-,t)dt (e *(2)Y) forn=1,...,m. (4.1)
k Jn—1yk

For any ¢ > 0 and any m, let us then consider the following time-discretized problem.

Problem 4.1. Find (u”,,, w?,,Z" ) € V x H x HY (n = 1,..., m), such that, setting w®, = w?,forn =1,...,m

n >n _ on—1 mn : ’
wy, —kV -z, =w,, +kV-h, inV,

Wy, € 09, (Uy,, X) ae.in §2,
zZ; € y.(Vuy,,x) ae.in.

Defining A (v) = d¢:(v,x) — kV - 3. (Vv,x) € P(V') for any v € V, the system (4.2)-(4.4) is equivalent to

A )3 w1 +kV R inV, n=1...,m (45)

By the assumptions (3.1)-(3.8), for any &, m the operator A, ,, : V — &£ (V') is maximal monotone and coercive. The in-
clusion (4.5) has then at least one solution, and this solves Problem 4.1.

Let us now define time-interpolate functions as follows. For any family {v}} },=0,...m C R, let us denote by v, the piece-

.....

wise-linear time-interpolate of v,% = 0, v,}?, ..., vy a.e. in £2. Let us denote by v, the corresponding piecewise-constant
interpolate function, that is, v, (t) == v}, if (n — Dk <t <nkforn=1,...,m.

The system (4.2)-(4.4) then also reads

Diwey — V - gem =V. Egm inV/,ae.in]0, T[,

We € ¢, (Ugm, X) a.e.in 27,
Zem € Ve(Vilgm, X)  ace.in £2r,

Wem (-, 0) = wg inV’,

which is equivalent to the approximate weak equation
/ [(wg — Wem)Dev + (Em + Esm) -Vuldxdt =0 YveH'(0,T;V),v(,T)=0. (4.10)
Qr

By mimicking the procedure of Theorem 3.3, it is promptly checked that (4.7) and (4.8) may be replaced by the two
inequalities

/ [@e (Ugm, X) + (p:(ﬁ)smy X) — Wepllem] dxdt < 0, (4.11)

2r

/ [fs. (Vilems Zem» X) — Vilgm - Zem] dxdt < 0. (4.12)
2T

Defining &, as in (3.27) and the space

Xem = {(Wm, Zm) € L2(£27) x [2(2p)" that fulfill (4.10)}, (4.13)

we conclude that Problem 4.1 is equivalent to the following null-minimization problem:

Problem 4.2. Find u,,, € [*(0, T; V) and (Wem, Zem) € Xem such that

D (Ugm, Wem, Zem) = inf @, =0. (4.14)
L2(0,T;V)xXem
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4.2. A priori estimates

By the Fenchel inequality (2.2), the inequality (4.11) is tantamount to (4.7). By (4.10) and (4.7)
- T =4
— // Vilgm - Zem dxdt = / (Dtwem, Uem)v v dt + // Vigm - hem dxdt
27 Q2r

0
- [ Deg* (Wem (X, £), X) dxdt + f f Vil - hom dxdt
QT QT

=/[¢§(wm(x, T),X)—wi(wE,X)]dX+// Vilg - hem dxdt.
Q 27

By (3.3)

/ 8" (Wem(x, T), x/€) dx > L/ |@em (-, TI> = M| 2]
2 2

(4.15)

(4.16)

On the other hand, as the function f;, represents the operator ¥, (in the sense of the theory of Fitzpatrick), (3.6) yields

%

- T -
/ ff/g (Vﬁw 287 X) dxdt / (Vﬁema Eem) dt
2r 0

v

@ (IVen % gy + el gy ) = 121

By (4.12), then

a (”Vﬂsm”fz(g) + ”;sm”fz(Q)N) - b|Q| + L/ |a)sm(” T)|2 - M|S2|
2

= f @r (w;) dx — f/ Egm - Vilgy, dxdt
2 Qr

= f sﬂf(wf) dx + ||hem||L2(.QT)N ”ﬁsm”LZ(o,T;v)-
Q2
As in these inequalities one may replace T by any t €]0, T], we get the uniform estimates

luemllizo,:vy < C1s 1Zemll2@pn < Cos

where by Cq, C,, ... we denote constants independent of ¢. By the above computation, we also infer that

lWemllroo0.1:1) < Cs,
and by comparing the terms of (4.6) we conclude that w,,, € H'(0, T; V') and

lwemlly1o,7:vy < Ca-

(4.17)

(4.18)

(4.19)

(4.20)

(4.21)

Analogous estimates to (4.19) and (4.20) hold for the piecewise interpolate functions, that is, Wem, Usm, Zem. On the other

hand, obviously (4.21) does not apply to w,y,.

4.3. Passage to the limit

On the basis of the above a priori estimates, there exist u,, w,, Z, such that, up to extracting subsequences,’

Ugm = Ug  INL*(0, T; V),
* s 100 1 /
Wem — w, InL™(0,T;HYNH (0,T; V"),
Zem — Z, inL*(2)N.
Moreover,
Ham - Ha in LZ(QT)N7

wl — w? in[*(R2).

1 With standard notation, we shall denote the (single-scale) strong and weak convergence by — and —, respectively.

(4.22)

(4.23)
(4.24)
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By passing to the limit in (4.10), we get Eq. (3.22); namely, (w,,Z;) € X.. Let us next derive (4.14) by passing to the
inferior limit in (3.29). By the sequential weak lower semicontinuity of ¢, and by (4.15), we have

lim inf — // Vil - Zem dxdt > /[goj(wg(x, T),x)—wj(wg,x)]dx-i-// Vu, - h, dxdt
Qr 2 2

e—0
T -
= /(the,ue)vavdf-l-// Vu, - b, dxdt
0 Qr

G2 _ / / Vu, -7, dxdt. (4.27)
Qr

By the sequential weak lower semicontinuity of ¢;, ¢} and f;, we then infer that

/ [@e (U, X) + @; (we, X) — weu ] dxdt <0, (4.28)
Qr
/ [f. (Vug, Ze, X) — Vu - Z] dxdt < 0, (4.29)
Qr
namely
D (Uy, We, Zg) < 0; (4.30)

that is, (u., w,, Z,) solves Problem 3.2. We have thus proved the following assertion.

Theorem 4.3. Let the conditions (3.1)-(3.8) be fulfilled for any fixed ¢ > 0, and that

he e ()N, w®el?(R)

4.31
and are uniformly bounded w.r.t. € in these spaces. ( )

The solutions (Ugm, Wem, Zem) Of Problem 4.1 then satisfy the uniform estimates (4.19)-(4.21). Therefore there exists (U, W,, Z)
such that, up to extracting subsequences, (4.22)-(4.24) hold.

The triplet (u,, w,, Z) is then a solution of Problem 3.2 (equivalently, of Problem 3.1). Finally, the following uniform estimates
hold:

lluellizo.r.v)s ||zs||L2(QT)N, lwe Il oo 0. 7:1)nH1 0,1:v7) < Constant. (4.32)

5. Two-scale formulation

In this section we introduce two mutually equivalent two-scale formulations, that we then derive by passing to the limit
as & — 0in Problem 3.1 (or 3.2).

We shall denote by H;(Y) the subspace of the functions of H'(Y) that have equal traces on opposite faces of Y; these
coincide with the restrictions of the Y-periodic functions of H' (RV).

We introduce two equivalent two-scale formulation, in which the constitutive relations are respectively expressed either
as inclusions or as null-minimization principles.

Problem 5.1. Find

uel’0,T;V),  uyel(Qr;HI(Y)),

. (5.1)
wel*(2r x Y)NHY O, T; [2(Y: V"), Zel?@2r xY)N,
such that
/// [(wo —w)Div+ Z+ ﬁ) - (Vv + Vyv1)] dxdtdy = 0
.QTXY
Vv e H'(0,T: V), v|=r =0, Yv; € L*(2r; H}(Y)), (5.2)
w € dp(u,y) a.e.in 2y x Y, (5.3)

Zey(Vu+Vyu,y) aeinf2r xY.
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Let us next define the spaces
S=1*(0,T: V) x *(2r;: H)(Y)),  Xo = {(w,Z)asin (5.1) that fulfill (5.2)}, (5.5)
and the functional
Do(u, uy, w,2) = /// o, y) + ¢*(w,y) — wu+f3(Vu+ Vyuy,Z,y)
QTXY
— (Vu+ Vyuy) - Z]dxdtdy V(u, up) € S,V(w, 2) € Xo. (5.6)
We are now able to introduce our second two-scale formulation.
Problem 5.2. Find (u, u;) € S and (w, Z) € Xg such that
<1>0(u, up, w, E) = inf Dy = 0. (57)
SXXO

Proposition 5.3. The two-scale Problems 5.1 and 5.2 are mutually equivalent.

Proof. This argument mimics that of Theorem 3.3. The null-minimization of @& is equivalent to the system of the two
inequalities

/f/ [o(u,y) + ¢*(w,y) — wu] dxdtdy < 0, (5.8)
QTXY

/f [fy (Vu + Vyuy, Z,y) — (Vu + Vyuy) - Z ] dxdtdy < 0, (5.9)
QT xY

which are respectively equivalent to (5.3) and (5.4). O

Theorem 5.4. Let the assumptions (3.1)-(3.8), (4.31) be fulfilled. For any € > 0, let (u., we, Z;) be a solution of Problem 3.1 or

equivalently of Problem 3.2 (this exists by Theorem 4.3). Then there exist u, w, Z as in (5.1) such that, as ¢ — 0 along a suitable
sequence,

U — uin [*(0,T; V), (5.10)
Vu, - Vu+ Vyu, in*(£2r x V)N, (5.11)
we— w in (27 x Y), (5.12)
Ze - Z inl?(2r x Y)V. (5.13)

Moreover, (u, u;, w, Z) is then a solution of Problem 5.1, or equivalently of Problem 5.2.

Proof. (i) By Theorem 4.3 the family of solutions {(u,, w,, Z,)} fulfills the uniform estimates (4.32). By Theorems A.2 and
A.5 in the Appendix, then there exist u, w, Z as in (5.1) that fulfill (5.10)-(5.13) as € — 0 along a suitable sequence. By (3.11)
and (3.12)

ES—; h inl2(2r x V)V, (5.14)
w§—2> w® inl*(£2 x Y). (5.15)

By passing to the limit in (3.22) we then get Eq. (5.2).
(ii) Next we prove (5.3). The null-minimization (4.14) is tantamount to

/ [@e (U, X) + @; (We, X) — weue]dxdt =0, (5.16)
2r

/ (fy. (Vue, Z,, x) — Vu, - Z.] dxdt = 0. (5.17)
Qr

By (5.10) and (5.12), recalling that {w,} is also uniformly bounded in H'(0, T; V'), we have

// wel, dxdt — /f/ wu dxdtdy. (5.18)
2r QrxY
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By (5.16) and (A.12), we then infer that

/// [o(u,y) + ¢*(w,y) — wu]dxdtdy <0, (5.19)
.QTXY

and this is equivalent to (5.3).
(ii) We are left with the proof of (5.4). By (A.12)

lim iglf/ f3. (Vug, Zg, x) dxdtdy > /// f3 (Vu+ Vyuy, Z, y) dxdtdy. (5.20)
&> 2T QrxY

On the other hand, using (3.13) and (3.23) and mimicking (4.27), we have

T
— // Vu, - Z, dxdt = / (Drwe, ug)yr y dt + // Vu, - h, dxdt
27 Q2r

0
= f Dy} (we (x, t), x) dxdt + / / Vu, - h, dxdt
27 Qr

= /[(p:(wg(x, T),x) — ¢f (w?, x)] dx—l—// Vu, - h, dxdt. (5.21)
Q Q7
By (5.11), (5.12) and (A.12),

limi(1]1f{ f [0 (e (x, T), X) — @ (WP, )] dx + / / vu, - b, dxdt}
e=0 Lo or

> // [p*(w(x, T)) — ¢*(w°)] dxdy + /// (Vu+ Vyuy) - dedtcly. (5.22)
2xY rxY

Here also we may drop the term in Vyu;. Moreover, by (5.2) and (5.3), recalling that Vu is independent of y,
- /// (Vu+ Vyuy) - Z + h) dxdtdy
QT xY

T
_ f dy / (Dew, wyry dt = / / f Do (w(x, y, 1)) dxdedy
Y 0 QTXY

= / /9 [p*(w(x,y, T)) — ¢*(w°(x, y))] dxdy. (5.23)
xY

By (5.21), using (5.22) and (5.23), we have

lim inf—// Vu, - Z, dxdt > —// Vu - Z dxdt. (5.24)
e—0 27 27

By passing to the inferior limit in (5.17) and using (A.12), we then get

/f [fy (Vu + Vyuy, Z,y) — (Vu + Vyuy) - Z ] dxdtdy <0, (5.25)
27 xY

which is tantamount to (5.4). O

6. Single-scale formulation (homogenization)

In this section we derive a single-scale formulation (i.e., a homogenized problem) from the two equivalent two-scale
Problems5.1and 5.2, and prove a homogenization theorem. Along the lines of the previous sections, we introduce two equiv-
alent formulations, in which the constitutive relations are respectively expressed either as inclusions or as null-minimization
principles.

Let the convex function ¢y and the maximal monotone map j; be respectively defined as in (A.16) and (A.17). Here is
our first single-scale formulation.

Problem 6.1. Find
uel?0,T;V), w e L*(2r)NHY 0, T; V), Zel*>@)V, (6.1)
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such that
// [(wo — w)Dv + (Z + h) - Vv]dxdt =0 Vv e H'(0,T;V), v|—r =0, (6.2)
2r
w € dpo(u) a.e.in 27, (6.3)

Z € 3p(Vu) ae.in 2r.

We already know that the weak equation (6.2) is equivalent to the PDE
Diw—V-Z=V-h inV, aein]0,Tl, (6.5)
coupled with the initial condition
w(-,0)=w’ ae.in. (6.6)
Let us next define the space
Xo = {(w, Z) as in (6.1) that fulfill (6.2)}, (6.7)
the mutually orthogonal spaces

W= (V¢ :¢eW, (V)

. , . (6.8)
Z= {veLp(Y):fw@)dy:O,V-v:O},
y
and the functionals
Fo(€.7) = _ inf /f;(% +3). 7+ @), y)dy YE.ijeR", (6.9)
veW,weZ Jy

Do(u, w,7) = / [o (1) + ¢ (w) — wu + Fy(Vu,Z) — Vu-Z]dxdt Yu e [*(0,T; V), Y(w,2) € Xo. (6.10)
2r
We are now able to introduce another single-scale formulation.

Problem 6.2. Find u € [2(0, T; V) and (w, Z) € X, such that

So(u,w,7) = inf _ Py =0. (6.11)
[2(0,T;V)xXg

Proposition 6.3. The single-scale Problems 6.1 and 6.2 are mutually equivalent.

Proof. This argument mimics that of Theorem 3.3. The null-minimization of @y is equivalent to the system of the two
inequalities

/ [po(w) + ¢p(w) — wul dxdt <0, (6.12)
Qr

/ [Fo(Vu,Z) — Vu-Z | dxdt <0, (6.13)
Qr

which are respectively equivalent to (6.3) and (6.4). O

We shall use the two-scale decomposition

/E(x) = [,U(X’ y) dyA forae. (x,y) € 2 x Y. (6.14)
ux,y) = ux,y) —u(x)

Proposition 6.4. If (u, u;, w, Z) is a solution of Problem 5.1 or equivalently of Problem 5.2 (such a solution exists
by Theorem 5.4), then (u, W, Z) is a solution of Problem 6.1 or equivalently of Problem 6.2.
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Proof. Selecting either v = 0 or v; = 0in Eq. (5.2), we respectively get

// [(@o — W)Dev+ Z+h) - Vv]dxdt =0 ¥v e H'(0,T; V), vl—r =0, (6.15)

Qr

/// G +h) - Vyurdxdidy =0 Vo, € (253 HA (). (6.16)
.QTXY

These integral equations respectively correspond to the following coarse- and fine-scale PDEs:

D —V-Z=V-h inV, ae.in]0,T[, (6.17)
~V,-Z=V,-h inHX(Y),ae. in 2. (6.18)

By Propositions A.8 and A.9, the single-scale constitutive relations (6.3) and (6.4) follow from (5.3) and (5.4). O

Theorem 6.5. Let the assumption (3.1)-(3.8), (4.31) be fulfilled. For any & > 0, let (u,, w,, Z,) be a solution of Problem 3.1 or
equivalently of Problem 3.2 (this exists by Theorem 4.3). Then there exist u, w, Z as in (6.1) such that, as ¢ — 0 along a suitable
sequence,

u, — u inl*@©,T;V), (6.19)
w, — w inL®(0,T; H)yNH'(0,T; V'), (6.20)
Z. — 7 inl*(2p)N. (6.21)

This entails that (u, w, Z) is a solution of the homogenized Problem 6.1, or equivalently of Problem 6.2.

Acknowledgments

This work was initiated during the visit of A.V. at the Department of Mathematics of the Indian Institute of Science in
Bangalore, and was continued during the visit of A.K.N. at the Dipartimento di Matematica dell’'Universita di Trento. Support
and hospitality of both institutions are warmly acknowledged. The work of A.V. was also partially supported by the MIUR-
PRIN’'10-11 grant for the project “Calculus of Variations” (Protocollo 2010A2TFX2_007). A.K.N. would like to acknowledge
the support of UGC for CAS, Dept. of Maths, IISC, Bangalore. The authors gratefully acknowledge some useful remarks of the
Reviewer.

Appendix

Here we briefly review the notion of two-scale convergence, and some related properties of integral functionals.

A.1. Two-scale convergence

This notion was introduced by Nguetseng [19], and was further developed by Allaire and others, see e.g. [1]; see also the
survey [14].

Let us denote by Y = 10, 1[N the fundamental periodicity-cell, and by ¢ > 0 a small parameter which we shall let
eventually vanish. Let us fix any p €]1, +oo[ and define the conjugate index p’ := p/(p—1). Let us denote by C; (Y) (Wﬁ]’p(Y),
resp.) the space of continuous (Wﬁl‘p ,resp.) functions RV — R that are Y-periodic and have equal traces on opposite faces of
Y. By the index * we shall denote subspaces of functions with vanishing average: e.g., L1 (Y) = {w € L'(Y) : fy w(y) dy = 0}.

Definition A.1 (Weak Two-Scale Convergence). We shall say that a sequence {u.} of functions in L?(£2) weakly two-scale
converges to a limit function u € IP(£2 x Y), and write u, —2\ u, whenever

/ U, (x)p(x, x/e) dx — // ulx,y)¢px,y)dxdy V¢ € Lp/(.Q; Gi(Y)). (A.1)
2 2xy
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For instance, x sin(2mwx/¢) ? xsin(2rry) inLP(]0, 1[xY) forany p €]1, +o0l[. Notice that the weak two-scale limit is unique,

if it exists.
This definition is trivially extended to time-dependent functions. For any p, r €]1, +o¢[, we shall say that a family {u,}
of functions in L' (0, T, LP($2)) weakly two-scale converges to a limitu € L' (0, T, [P(£2 x Y)) whenever

/ f Ue (x, )P (x, x/e, t) dxdt — f / f ux, y, P, y, t) dxdydt Vo € L (0, T, [P (2; Cx(Y))). (A2)
Qr rxY
The results that follow also trivially take over to time-dependent functions.

Theorem A.2. If {u.} is a bounded sequence in [ (£2) (p €]1, +00[), then there existsu € [ (§2 x Y) such that, as ¢ — 0 along
a suitable subsequence, u, —2\ uinlP(2 xY).

For any measurable function u : £2 x Y — R such that u(x, -) € L'(Y) for a.e. x € 2, we define the average component
 and the fluctuating component U as follows:

Etj(x) = /Yu(x,y) dyA forae. (x,y) € 2 x Y. (A.3)
u(x,y) = u(x,y) —u(x)

Thus T(x, -) € LL(Y) fora.e.x € 2.

Proposition A.3. If {u.}is a sequence in [P (£2) (p €]1, +oo[) that two-scale converges to u € [P(£2 x Y), then

li?liéif”UaHLp(m > ullpexy) = Ullpe)- (A4)

Definition A.4 (Strong Two-Scale Convergence). We shall say that a sequence {u.} of functions in [P(£2) (p €]1, +o0[)
strongly two-scale converges to u = u(x, y) in [P (£2 x Y), and write u, —2> u, whenever

U — u inl’(2 xY), and |lugllp) = lullw@xy)-

For instance the sequence x sin(2x/¢) strongly two-scale converges to x sin(277y), whereas x sin(27x/&)+x sin(2mwx/e?)
just weakly two-scale converges to x sin(2wy).
The next result is one of the major tools for the application of two-scale convergence to the homogenization of PDEs.

Theorem A.5. Let {u,} be a bounded sequence in W'P(£2) (p €]1, +oo[). Then there exist (u,u;) € W'P(2) x I[P(£2,
W;’p (Y)) such that, as ¢ — 0 along a suitable subsequence,

U — u inWhP (),
U — u inI?(£2),

Vu, - Vu+ Vyu, inP(2)V.

A.2. On the measurability of multivalued mappings

Let us assume that D is a domain of RN (e.g., referring to previous notation, D = £2 or D = Y). Let us denote by 8(D) and
£(D) the o -algebras of Borel- and Lebesgue-measurable functions D — R, respectively, and by 8(B) ® £(D) the o -algebra
generated by the Cartesian product. Let B be a separable and reflexive real Banach space with dual B'. We remind the reader
that a multivalued mapping g : D — £ (B') is called measurable if

g 'R ={xeD:g(x) NR+# ¥} ismeasurable, for any opensetR C B'. (A.6)

By a classical theorem of Pettis, see e.g. [28], it is equivalent to refer to measurability with respect to the weak or to the
strong topology of the separable space B'.

Moreover g is called closed-valued if g(x) is closed for a.e. x € D. It is known that if g is closed-valued and measurable,
then it has a measurable selection, see e.g. Section II.2 of [6] or Section 8.1 of [ 12]. This means that there exists a measurable
single-valued mapping f : D — B’ such that f(x) € g(x) for a.e. x € D.
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Lemma A.6. Let us assume that

o« :BxD— P(B) ismeasurablew.r.t. B(B) ® L(D),

A7
a (&, x) is closed for any & and a.e. x. (A7)

For any £ (D)-measurable mapping v : D — B, the multivalued mapping 8 : D — £ (B') : x — a(v(x), x) is then closed-valued
and measurable.

Proof. Let us set y,(x) = (v(x), x) for any x € D, so that 8 = « o y, in D. The mapping yx : D — B x D is clearly mea-
surable. Because of (A.7) , the set B(x) is closed for a.e. x. For any open set R C B, by (A.7);a~'(R) € B8(B) ® L(D). By the
£ (D)-measurability of v, we conclude that B7'(R) = y, (@ '(R)) = {x € D: (v(x),x) e " '(R)} € £L(D). O

A.3. Two-scale limit of integral functionals

Proposition A.7 ([23]).

(i) If ¢ : RN x Y — RU {400} is B(R") ®) L(Y)-measurable, then for any measurable function v : 2 — R, the mappings
x+— ¢ (v(x),x/e)and (x,y) — ¢(v(x,y),y) are measurable.
(i) Let ¢ be also convex with respect to the first variable for a.e. y, and assume that there exist C € RN and h € L'(Y) such that

¢(0,y) >C-v+h(y) YveRN, foraeyey. (A.8)
Let us define the functionals ¥, : [P(2)N — RU {4+oo}and ¥ : [P(2 x Y)N — R U {400} by
v, (V) = / P (x), x/e)dx Vv e [P(2)V, (A.9)
2
y ) = / d(W(x,y),y)dxdy Yo elP(2 x V)N, (A.10)
2xY

These functionals are well-defined, convex and lower semicontinuous, respectively in IP(£2)N and LP(£2 x Y)N.
(iii) Under the above assumptions, for any sequence {v,} in [P ()",

U, > U inlPR2xY)N = w.(,) > v@), (A11)

1, - i inl’(2xy)N= limiglfllff(f)g) > (D). (A.12)
E—>

It is known that the convex conjugate functionals ¥ and ¥* then coincide with the integral functionals of the convex
conjugate of the respective integrands.

A.4. Scale-integration of cyclically maximal monotone operators

Let us first set
W={Vg:peW (), Z={pell(Y):V-3=0} (A.13)
and notice the following orthogonality relation:

/a@) By dy =0 ViieW. Vi ez, (A14)
Y

Let us assume that

@ RY x Y - R is measurable w.r.t. 8(RY) ® £L(Y),

- " . - (A.15)
Ip €1, +ool, Jer, ..., 4> 0: 1€ — 0 < @&, y) < sl€P +cs VE €RY, foraey ey,
and set
w0 = inf [ 0@ +5m0)dy VE R (A16)
v Y

Vo) = 12;/ e*(+ V(). y)dy VieRN. (A.17)
v Y
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Proposition A.8 ([25]). The function g is the convex conjugate of .
IfielP(Y)Y and w € [P (Y)N are such that (using the notation (6.14))

iew, wez, (A.18)
w(y) € dp(u(y),y) foraeyey, (A.19)
then
W e dpo(), 1€ (), (A.20)
oo = / oW dy,  Yo(®) = / o (@DO). ) dy. (A21)
Y Y

(The reader will notice that the vectors w and i are constants.)
Next we see that this result takes over to noncyclically maximal monotone operators.

A.5. Scale-integration of maximal monotone operators

Let us assume that

y RV xY - P£@®") is measurable w.r.t. B(R") ® £(Y), is maximal monotone w.r.t. the first argument

fora.e.y € Y, and is represented by a function f; (-, y) fora.e.y € Y. (A.22)
Defining W and Z as in (A.13), let us then set
RED =il [HE+50).7+ 0.0 ViR (A23)
veW,weZ Jy
As f; is a representative map, for any E, 7, D, W as above we have
> - S - - S (A14) 2
[5E+30.0+ 0. 0a = [E+T00- G+ Bw1ey LE 5 (A24)
Y Y
By taking the infimum with respect to v € W and w € Z we thus get
Fo6,7) = &7 VE 7 eRr" (A25)

so that Fy is also a representative function.

Proposition A.9. The function F, represents a maximal monotone map 7 : RN — P@®N). If &i € [P(Y)N and w € L[” (Y)N are

such that
5 e W, W e Z, (A26)
wey,y) foraeyey, (A.27)
then
W € o). (A28)

(Here also with constant vectors w and 1.)

References

[1] G. Allaire, Homogenization and two-scale convergence, SIAM ]. Math. Anal. 23 (1992) 1482-1518.

[2] HW. Alt, S. Luckhaus, Quasilinear elliptic-parabolic differential equations, Math. Z. 183 (3) (1983) 311-341.

[3] M. Avellaneda, F.H. Lin, Compactness methods in the theory of homogenization, Comm. Pure Appl. Math. 40 (1987) 803-847.

[4] M. Brahim-Omsmane, G.A. Francfort, F. Murat, Correctors for the homogenization of wave and heat equations, J. Math. Pures Appl. 71(1992) 197-231.

[5] H.Brezis, I. Ekeland, Un principe variationnel associé a certaines équations paraboliques. L. Le cas indépendant du temps, C. R. Acad. Sci., Paris Sér. A-B
282 (1976) 971-974;
H. Brezis, I. Ekeland, Un principe variationnel associé a certaines équations paraboliques. II. Le cas dépendant du temps, C. R. Acad. Sci., Paris Sér. A-B
282 (1976) 1197-1198.

[6] C.Castaing, M. Valadier, Convex Analysis and Measurable Multifunctions, Springer, Berlin, 1977.

[7] P. Colli, A. Visintin, On a class of doubly nonlinear evolution problems, Comm. Partial Differential Equations 15 (1990) 737-756.

[8] E.DiBenedetto, R.E. Showalter, Implicit degenerate evolution equations and applications, SIAM J. Math. Anal. 12 (1981) 731-751.

[9] I. Ekeland, R. Temam, Analyse Convexe et Problémes Variationnelles, Dunod, Gauthier-Villars, Paris, 1974.

[10] S. Fitzpatrick, Representing monotone operators by convex functions, in: Workshop/Miniconference on Functional Analysis and Optimization

(Canberra, 1988), in: Proc. Centre Math. Anal. Austral. Nat. Univ., vol. 20, Austral. Nat. Univ, Canberra, 1988, pp. 59-65.



AK. Nandakumaran, A. Visintin / Nonlinear Analysis 120 (2015) 14-29 29

[11] N. Fusco, G. Moscariello, On the homogenization of quasilinear divergence structure operators, Ann. Mat. Pura Appl. 146 (1987) 1-13.

[12] A.D. Ioffe, V.M. Tihomirov, Theory of Extremal Problems, North-Holland, Amsterdam, 1979.

[13] H.Jian, On the homogenization of degenerate parabolic equations, Acta Math. Appl. Sin. Engl. Ser. 16 (2000) 100-110.

[14] D. Lukkassen, G. Nguetseng, P. Wall, Two-scale convergence, Int. J. Pure Appl. Math. 2 (2002) 35-86.

[15] A.K.Nandakumaran, M. Rajesh, Homogenization of a nonlinear degenerate parabolic differential equation, Electron. J. Differential Equations 17 (2001)
19. (electronic).

[16] A.K. Nandakumaran, M. Rajesh, Homogenization of a parabolic equation in perforated domain with Dirichlet boundary condition, in: Spectral and
Inverse Spectral Theory (Goa, 2000), Proc. Indian Acad. Sci. Math. Sci. 112 (3) (2002) 425-439.

[17] AK. Nandakumaran, M. Rajesh, Homogenization of a parabolic equation in perforated domain with Neumann boundary condition, in: Spectral and
Inverse Spectral Theory (Goa, 2000), Proc. Indian Acad. Sci. Math. Sci. 112 (1) (2002) 195-207.

[18] B. Nayroles, Deux théorémes de minimum pour certains systémes dissipatifs, C. R. Acad. Sci., Paris Sér. A-B 282 (1976) A1035-A1038.

[19] G. Nguetseng, A general convergence result for a functional related to the theory of homogenization, SIAM J. Math. Anal. 20 (1989) 608-623.

[20] O.A. Oleinik, S.M. Kozlov, Zhikov, On G-convergence of parabolic operators, Ouspekhi Math. Naut. 36 (1981) 11-58.

[21] R.T. Rockafellar, Convex Analysis, Princeton University Press, Princeton, 1969.

[22] A. Visintin, Homogenization of a doubly-nonlinear Stefan-type problem, SIAM ]. Math. Anal. 39 (2007) 987-1017.

[23] A. Visintin, Two-scale convergence of some integral functionals, Calc. Var. Partial Differential Equations 29 (2007) 239-265.

[24] A. Visintin, Electromagnetic processes in doubly-nonlinear composites, Comm. Partial Differential Equations 33 (2008) 808-841.

[25] A. Visintin, Scale-integration and scale-disintegration in nonlinear homogenization, Calc. Var. Partial Differential Equations 36 (2009) 565-590.

[26] A. Visintin, Structural stability of doubly nonlinear flows, Boll. Unione Mat. Ital. (9) IV (2011) 363-391.

[27] A. Visintin, Variational formulation and structural stability of monotone equations, Calc. Var. Partial Differential Equations 47 (2013) 273-317.

[28] K. Yosida, Functional Analysis, Springer, Berlin, 1971.



