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Abstract. In this paper, we study the exact controllability of a second order

linear evolution equation in a domain with highly oscillating boundary with
homogeneous Neumann boundary condition on the oscillating part of boundary.

Our aim is to obtain the exact controllability for the homogenized equation.

The limit problem with Neumann condition on the oscillating boundary is
different and hence we need to study the exact controllability of this new type

of problem. In the process of homogenization, we also study the asymptotic

analysis of evolution equation in two setups, namely solution by standard weak
formulation and solution by transposition method.

1. Introduction. In this article, we analyze the exact internal controllability for
a boundary-value problem in a domain Ωε ⊂ Rn, whose boundary ∂Ωε contains an
oscillating part with respect to ε, as ε→ 0. The oscillating boundary is defined by
a set of cylinders with axis Oxn and ε−periodically distributed on a base Ω−. Each
cylinder has a small cross section of size ε and a fixed height (see Fig.1 for a 3-d
example). Boundary-value problems in a domain with highly oscillating boundary
are models for problems in biology and in industrial applications: motion of ciliated
micro-organisms, flows over rough walls, electromagnetic waves in a region with
a rough interface, structures such as bridges on supports, frameworks of houses,
etc. Another interesting application is the air flow through compression systems
in turbo machines such as jet engine. For example, such a system is modelled by
the Viscous-Moore-Greitzer equation derived from Scaled Navier-Stokes equations
(see [7], [40], [41]). Here the pitch and size of the rotor - stator pair of blades in
the engine provides a small parameter compared to the size of the engine which is
oscillatory as well as rotating (moving). The motion of the stator and rotor blades
in the compressor produces turbulent flow on a fast time scale. When the engine
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Figure 1. Domain Ωε

operates close to the optimal parameters, the flow becomes unstable. This model
motivates to look into control problems described by Partial Differential Equations
(PDEs) of evolution type such as the heat equation or the Navier-Stokes equations.

The computational calculation of the solution of these problems is very com-
plicated, rather impossible due to singularities of the domain. It is much more
delicate for control and controllability problems. Therefore, an asymptotic analy-
sis of boundary value problems in such domains gives the possibility to replace the
original problem by the corresponding limit problem defined in a “simpler” domain.

In this paper, we plan to study the asymptotic behaviour, as ε→ 0, of an exact
controllability for a boundary-value problem described by a hyperbolic equation in a
domain Ωε with oscillating boundary. A homogeneous Neumann condition is given
on the oscillating part of the boundary of the domain. In order to point out the main
difficulties, we consider the wave equation. Our approach to the homogenization
for the exact controllability problem, for a hyperbolic equation consists in applying
the Hilbert Uniqueness Method (HUM) of J.L. Lions (see [32], [33]). The study
of the asymptotic behaviour of viscous fluid flow over very rough boundaries was
considered in [2], [3], [4].

The limit problem of Neumann boundary-value problems in domains with highly
oscillating boundary, that is when the amplitude of the oscillations is constant
with respect to ε, are derived in [5], [8], [9], [14], [28], [30]. In [14], R. Brizzi and
J.P. Chalot derive the limit problem for the Laplace equation with the homogeneous
Neumann boundary condition and with the right-hand side in L2. For the same
problem, a nonoscillating approximation at order O

(
ε1−δ), δ > 0, for the H1-norm

is obtained by T.A. Mel’nyk in [37], under an additional assumption on the right-
hand side. Optimal control problems and the exact controllability in domains with
highly oscillating boundary are considered in [19, 20, 21, 22, 23, 25, 26, 43, 44]. In
[43], [44] A.K. Nandakumaran et. al. have also studied the asymptotic analysis of
an optimal control problem and error estimates were also obtained in the papers.
In [27] L. Faella and C. Perugia have studied the optimal control problem for an
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evolutionary imperfect transmission problem. The p-Laplacian was studied in [17]
by A. Corbo Esposito, P. Donato, A. Gaudiello and C. Picard.

The plan of the paper is as follows. In Section 2, we describe the domain with
appropriate spaces required. In fact, the limit problem with Neumann condition
is different and hence we need different spaces to study it. In the same section,
we introduce the controllability problem and the Hilbert uniqueness method. The
important result we show is that the constant appearing in the observability estimate
is independent of ε. The main homogenization result is also presented here. The
Hilbert uniqueness methods is introduced via a forward and adjoint problem and
one of them is with weak data and hence the solution is defined via transposition
method. We study the homogenization of these systems for both regular and weak
data and this is done in Section 3 . Further, we state the limit controllability
problem also in Section 2 and as this is a new problem, we will study the exact
controllability of the limit problem in Section 4. The proof of homogenization
theorem is then completed in Section 5.

2. Statement of the problem and main results.

2.1. Domain definition and spaces. Let a, b ∈ ]0,+∞[, B and ω be bounded

open smooth subsets of Rn−1 (n ≥ 2) with ω ⊂⊂ ]0, 1[
n−1

, and {ε} be a sequence
of positive numbers converging to zero. We introduce the domain Ωε ⊂ Rn with
highly oscillating boundary (see Fig.1):

Ωε = (B × ]−a, 0[) ∪

( ⋃
k∈Jε

(εω + εk)× [0, b[

)
,

where Jε =
{
k ∈ Nn−1 : εω + εk ⊂⊂ B

}
. Moreover, we also set Ω = B× ]−a, b[ ,

Ω+ = B× ]0, b[ , Ω− = B× ]−a, 0[, Σ = B×{0} , and Ω+
ε = Ωε ∩Ω+. Finally

Γε denotes the interface boundary between Ω+
ε and Ω−, i. e.

Γε =
⋃

k∈Jε

(εω + εk)× {0} . (1)

We recall that

χΩ+
ε
⇀ |ω| weakly ∗ L∞

(
Ω+
)
, χΩε∩Σ ⇀ |ω| weakly ∗ L∞ (Σ) , (2)

where |ω| denotes the (n− 1)−dimensional Lebesgue measure of ω and χA the
characteristic function of a set A. Define the step function

η(x) =

{
|ω| if x ∈ Ω+,
0 if x ∈ Ω−.

(3)

In the sequel, x = (x1, x2, .., xn−1, xn) = (x′, xn) will denote a generic point of
Rn. Moreover, ṽ will denote the zero-extension to Ω (resp. ]0, T [×Ω) of a function
v defined on A (resp. ]0, T [×A) , with A ⊂ Ω. Furthermore, v+ (resp. v−) denote
the restriction of v to Ω+ (resp. Ω−), if v is defined on Ω; the restriction of v to
]0, T [× Ω+ (resp. ]0, T [× Ω−) if v is defined on ]0, T [× Ω.

We now introduce the following spaces.

V (Ωε) =
{
z : z ∈ H1 (Ωε) : z|∂Ω−\Σ

= 0
}
,

V (Ω) =
{
z : z ∈ H1 (Ω) : z|∂Ω−\Σ

= 0
}
,
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V
(
Ω−
)

=
{
z : z ∈ H1

(
Ω−
)

: z|∂Ω−\Σ
= 0
}
,

and

Wε=
{
v : v ∈ L2 (0, T ; V (Ωε)) , v

′ ∈ L2
(
0, T ; L2 (Ωε)

)}
.

We observe that the spaces V (Ωε) , V (Ω−) and V (Ω) endowed with the norm of
gradient in L2 are Hilbert andWε is a Banach space with respect to the graph norm
defined by

‖v‖Wε
= ‖v‖L2(0,T ; V(Ωε)) + ‖v′‖L2(0,T ; L2(Ωε)) .

Since the limit problem is going to be drastically different in the case of Neumann
problem, we also need the following space

V (Ω) =

{
z ∈ L2 (Ω) :

∂z

∂xn
∈ L2 (Ω+) , z ∈ H1 (Ω−) , z+ = z− on Σ, z|

∂Ω−\Σ
= 0

}
.

(4)

The space V (Ω) endowed with the norm

‖z‖2V (Ω) = ‖z‖2L2(Ω+) +

∥∥∥∥ ∂z∂xn
∥∥∥∥2

L2(Ω+)

+ ‖z‖2H1(Ω−) z ∈ V (Ω)

is a Hilbert space and H1 (Ω) is dense in V (Ω) with continuous injection (see [17]).
The dual of V (Ω) is denoted by V (Ω)

′
.

2.2. Exact controllability problem in Ωε. Now, we formulate our exact con-
trollability problem for a hyperbolic equation in Ωε. For a control θε ∈ L2 (0, T ;
L2 (Ωε)

)
, the state uε of the system solves the following problem:

u′′ε −∆uε + uε = θε in ]0, T [× Ωε,

∂uε
∂ν

= 0 in ]0, T [× (∂Ω+
ε \ Γε) ,

uε = 0 in ]0, T [× (∂Ω− \ Σ) ,

uε (0) = u0
ε, u

′
ε (0) = u1

ε in Ωε,

(5)

where (u0
ε, u

1
ε) ∈ H1 (Ωε)×L2 (Ωε), T > 0 and ν denotes the exterior unit normal to

Ωε. It is well known (see [32] Lemma 2.1 p.181) that problem (5) admits a unique
weak solution uε = uε (θε):

uε ∈ Wε,∫ T

0

∫
Ωε

uεzh
′′ +∇xuε∇zh+ uεzh dxdt

=

∫ T

0

∫
Ωε

θεzh dxdt ∀z ∈ V (Ωε) , ∀h ∈ C∞0 (]0, T [) ,

uε (0) = u0
ε, u

′
ε (0) = u1

ε in Ωε.

(6)

Remark 1. Let us point out that the solution uε of problem (5) has more reg-
ularity. In fact, we have uε ∈ C ([0, T ]; V (Ωε)) ∩ C1

(
[0, T ]; L2 (Ωε)

)
and u′′ε ∈

L2
(
0, T ; (V (Ωε))

′)
(see [46], [49]).
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Definition 2.1 (Exact Controllability). We say that system (5) is exactly con-
trollable at time T if for every

(
u0
ε, u

1
ε

)
,
(
v0
ε , v

1
ε

)
∈ V (Ωε)× L2 (Ωε), there exists a

control θε ∈ L2
(
0, T ;L2 (Ωε)

)
such that the corresponding solution of problem (5)

satisfies

uε (T ) = v0
ε , u′ε (T ) = v1

ε .

It is well known that for the above linear system, driving the system to any
state is equivalent of driving the system to null state and this is known as null
controllability. In other words, (5) is null controllable if there exists a control
θε ∈ L2

(
0, T ;L2 (Ωε)

)
such that uε (T ) = u′ε (T ) = 0.

A constructive method to determine the control θε such that uε (T ) = 0 and
u′ε (T ) = 0 is the Hilbert Uniqueness Method (HUM) introduced by Lions (see [32],
[33]). The idea is to build a control as the solution of a transposed problem associ-
ated to some initial conditions. These initial conditions are obtained by calculating
at zero time the solution of a backward problem. The source term of the backward
problem is the unique solution of the transposed problem. The control obtained by
HUM is also a energy minimizing control. We briefly outline the HUM procedure.
Let

(
ϕ0
ε, ϕ

1
ε

)
∈ L2 (Ωε)× (V (Ωε))

′
and consider the problem

ϕ′′ε −∆ϕε + ϕε = 0 in ]0, T [× Ωε,

∂ϕε
∂ν

= 0 in ]0, T [× (∂Ω+
ε \ Γε) ,

ϕε = 0 in ]0, T [× (∂Ω− \ Σ) ,

ϕε (0) = ϕ0
ε, ϕ

′
ε (0) = ϕ1

ε a.e. in Ωε.

(7)

Since the initial data is in a weak space, one need to apply the so called trans-
position method (see [36], Example 4 p. 296) to obtain a unique solution ϕε ∈
C
(
[0, T ]; L2 (Ωε)

)
∩ C1

(
[0, T ]; (V (Ωε))

′)
to the problem (7). Now, let ψε ∈

C ([0, T ]; V (Ωε))∩C1
(
[0, T ]; L2 (Ωε)

)
be the unique solution of the backward prob-

lem 

ψ′′ε −∆ψε + ψε = −ϕε in ]0, T [× Ωε,

∂ψε
∂ν

= 0 in ]0, T [× (∂Ω+
ε \ Γε) ,

ψε = 0 in ]0, T [× (∂Ω− \ Σ) ,

ψε (T ) = 0, ψ′ε (T ) = 0 in Ωε,

(8)

where ϕε is the solution of the problem (7). The weak formulation of problem (8)
(see [49]) is given by

ψε ∈ Wε,∫ T

0

∫
Ωε

ψεzh
′′ +∇xψε∇zh +ψεzh dxdt

= −
∫ T

0

∫
Ωε

ϕεzh dxdt ∀z ∈ V (Ωε) , ∀h ∈ C∞0 (]0, T [) ,

ψε (T ) = 0, ψ′ε (T ) = 0 in Ωε.

(9)
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Inspired by HUM, we introduce the linear operator

Λε : L2 (Ωε)× (V (Ωε))
′ −→ L2 (Ωε)× V (Ωε)

by setting for all
(
ϕ0
ε, ϕ

1
ε

)
∈ L2 (Ωε)× (V (Ωε))

′
,

Λε
(
ϕ0
ε, ϕ

1
ε

)
= (−ψ′ε (0) , ψε (0)) , (10)

where ψε is the solution of the problem (8) . Moreover, it results〈
Λε
(
ϕ0
ε, ϕ

1
ε

)
,
(
ϕ0
ε, ϕ

1
ε

)〉
=
〈
(−ψ′ε (0) , ψε (0)) ,

(
ϕ0
ε, ϕ

1
ε

)〉
=
〈
ϕ1
ε, ψε (0)

〉
(V(Ωε))′, V(Ωε)

−
∫

Ωε

ϕ0
εψ
′
ε (0) dx,

(11)

for every
(
ϕ0
ε, ϕ

1
ε

)
∈ L2 (Ωε)× (V (Ωε))

′
.

Remark 2. For each ε > 0, the operator Λε is linear, continuous and injective. If
Λε is surjective then, we define the control θε ∈ L2 ((0, T )× Ωε) by θε = −ϕε, where
ϕε is the solution of the problem (7) with initial data

(
ϕ0
ε, ϕ

1
ε

)
= Λ−1

ε

(
−u1

ε, u
0
ε

)
.

The state is given by uε = ψε, where ψε is the solution of the problem (8). So we
obtain the exact controllability in V (Ωε)× L2 (Ωε) at time T for the system (5) .

The aim of this paper is to study the asymptotic behaviour, as ε → 0, of the
sequence of the control pairs {(uε, θε)}ε , under the following assumptions:

ũ0
ε ⇀ (|ω|χΩ+ + χΩ−)u0 = ηu0 weakly in L2 (Ω) ,

ũ1
ε ⇀ (|ω|χΩ+ + χΩ−)u1 = ηu1 weakly in L2 (Ω) ,

(12)

where η is defined as in (3).

2.3. Limit controllability problem. We now introduce the limit exact control-
lability problem: Given control θ, consider the exact controllability for the following
problem: 

u
′′ − ∂2u

∂x2
n

+ u = θ in ]0, T [× Ω+,

u
′′ −∆u+ u = θ in ]0, T [× Ω−,

u+ = u−, |ω| ∂u
+

∂xn
=
∂u−

∂xn
on ]0, T [× Σ,

∂u

∂xn
= 0 on ]0, T [× (B × {b}) ,

u = 0 on ]0, T [× (∂Ω− \ Σ) ,

u (0) = u0, u′ (0) = u1 in Ω.

(13)

The above exact controllability problem is new and we will prove in Section 4,
the exact controllability for the system. We now state the main result regarding
the homogenization which will be proved in Section 5.



EXACT INTERNAL CONTROLLABILITY FOR THE WAVE EQUATION 331

Theorem 2.2. Assume (12) and let T > 0 be the controllability time. Let uε be
the solution of the controllability problem (5) where θε is the exact control given by
HUM. Then, there exists θ ∈ L2

(
0, T ;L2 (Ω)

)
such that

θ̃ε ⇀ (|ω|χΩ+ + χΩ−) θ = ηθ weakly in L2
(
0, T ;L2 (Ω)

)
(14)

where θ is the exact control for the homogenized system (13) and η is defined as in
(3).

Moreover

ũε (θε) ⇀ |ω|u (θ) weakly in L2
(
0, T ;L2 (Ω+)

)
,

uε (θε) ⇀ u (θ) weakly in L2
(
0, T ;H1 (Ω−)

)
,

ũ′ε (θε) =
(
ũε (θε)

)′
⇀ |ω| (u (θ))

′
weakly in L2

(
0, T ;L2 (Ω+)

)
,

ũ′ε (θε) =
(
ũε (θε)

)′
⇀ (u− (θ))

′
weakly in L2

(
0, T ;L2 (Ω−)

)
,

(15)

where u (θ) is the unique solution of the problem (13) .

To consider the weak formulation of problem (13) , we recall that any function
in L2 (Ω+) having weak derivative with respect to xn in L2 (Ω+) admits a trace on
Σ. We need the space V (Ω) introduced earlier.

The weak formulation of problem (13) is the following one:

u ∈ L2 (0, T ;V (Ω)) , u′ ∈ L2
(
[0, T ];L2 (Ω)

)
,

|ω|
∫ T

0

∫
Ω+

uzh
′′

+
∂u

∂xn

∂z

∂xn
h+ uzh dxdt+

∫ T

0

∫
Ω−
uzh

′′
+ ∇xu∇zh+ uzh dxdt

= |ω|
∫ T

0

∫
Ω+

θzh dxdt+

∫ T

0

∫
Ω−
θzh dxdt ∀z ∈ V (Ω) , ∀h ∈ C∞0 (]0, T [) ,

u (0) = u0, u′ (0) = u1 in Ω.
(16)

The following lemma provides an explicit formula for the operator Λε.

Lemma 2.3. Let us fix
(
ϕ0
ε, ϕ

1
ε

)
∈ L2 (Ωε)× (V (Ωε))

′
. Let ϕε be the corresponding

solution of problem (7). Then the following identity holds〈
Λε
(
ϕ0
ε, ϕ

1
ε

)
,
(
ϕ0
ε, ϕ

1
ε

)〉
=

∫ T

0

∫
Ωε

|ϕε|2 dxdt. (17)

Proof. Multiplying equation in (7) by ψε yields

0 =

∫ T

0

∫
Ωε

(ϕ′′ε −∆ϕε + ϕε)ψεdxdt =

∫
Ωε

(ϕ′ε (T )ψε (T )− ϕε (T )ψ′ε (T )) dx

−
∫

Ωε

(ϕ′ε (0)ψε (0)− ϕε (0)ψ′ε (0)) dx+

∫ T

0

∫
Ωε

(ψ′′ε −∆ψε + ψε)ϕεdxdt.

Moreover, by virtue of (8) and (11) , identity (17) follows.
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As we have mentioned above, our first aim will be to prove that the operator Λε is
an isomorphism from L2 (Ωε)× (V (Ωε))

′
to L2 (Ωε)×V (Ωε) for every ε and obtain

the estimates independent of ε. This amounts to show the following observability
estimate.

Proposition 1. Let us fix
(
ϕ0
ε, ϕ

1
ε

)
∈ L2 (Ωε)×(V (Ωε))

′
. Let ϕε be the correspond-

ing solution of problem (7) . Then, there exists a positive constant C, independent
of ε such that ∥∥ϕ0

ε

∥∥2

L2(Ωε)
+
∥∥ϕ1

ε

∥∥2

(V(Ωε))′
≤ C

∫ T

0

∫
Ωε

|ϕε|2 dxdt, (18)∥∥Λ−1
ε

∥∥
L(L2(Ωε)×V(Ωε), L2(Ωε)×(V(Ωε))′)

≤ C, (19)

for every ε.

2.4. Proof of Proposition 1. Let us establish a preliminary result.

Lemma 2.4. Let us fix
(
ϕ0
ε, ϕ

1
ε

)
∈ V (Ωε)× L2 ( Ωε) . Then the solution is defined

via the standard weak formulation and let ϕε be the corresponding solution of (7) .
Then, there exists a positive constant C, independent of ε such that

E (0) ≤ C
∫ T

0

∫
Ωε

|ϕ′ε|
2
dxdt (20)

for every ε, where E (0) =
1

2

∫
Ωε

∣∣∇ϕ0
ε

∣∣2 +
∣∣ϕ0
ε

∣∣2 +
∣∣ϕ1
ε

∣∣2 dx.
Proof. First note that since

(
ϕ0
ε, ϕ

1
ε

)
∈ H1 (Ωε)×L2 ( Ωε), we can define the solution

ϕε of (7) by the usual weak formulation.

Then, the energy E (t) =
1

2

∫
Ωε

|∇xϕε (t)|2 + |ϕε (t)|2 + |ϕ′ε (t)|2 dx is conserved

(see [32], Lemma 1.2 p. 183), that is

E (t) = E (0) , for every t ∈ [0, T ] . (21)

Let ρ (t) be the function defined by

ρ (t) = t2 (T − t)2
,

for every t ∈ [0, T ] . By choosing ηε (x, t) = ρ (t)ϕε (x, t) as a test function in (7)
and integrating by parts, we obtain∫ T

0

∫
Ωε

ρ (t)
∣∣ϕ′ε∣∣2 dxdt+

∫ T

0

∫
Ωε

ρ′ (t)ϕεϕ
′
εdxdt=

∫ T

0

∫
Ωε

ρ (t)
(
|∇xϕε|2 +|ϕε (t)|2

)
dxdt.

(22)

Then, by making use of the Young’s inequality, we get∫ T

0

∫
Ωε

ρ′ (t)ϕεϕ
′
εdxdt ≤γ

∫ T

0

∫
Ωε

ρ (t) |ϕε (t)|2 dxdt+ C (γ)

∫ T

0

∫
Ωε

|ϕ′ε|
2
dxdt

≤γ
∫ T

0

∫
Ωε

ρ (t)
(
|∇xϕε|2 + |ϕε (t)|2

)
dxdt

+ C (γ)

∫ T

0

∫
Ωε

|ϕ′ε|
2
dxdt

(23)
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where γ > 0 and C (γ) = 1
4γ

∥∥∥∥ (ρ′)
2

ρ

∥∥∥∥
L∞(0,T )

. From (22) and (23), it follows that

(1− γ)

∫ T

0

∫
Ωε

ρ (t)
(
|∇xϕε|2+|ϕε (t)|2

)
dxdt≤

∫ T

0

∫
Ωε

ρ (t) |ϕ′ε|
2
dxdt

+ C (γ)

∫ T

0

∫
Ωε

|ϕ′ε|
2
dxdt

for every 0 < γ < 1. Thus, there exists a positive constant C, independent of ε such
that ∫ T

0

∫
Ωε

ρ (t)
(
|∇xϕε|2 + |ϕε (t)|2

)
dxdt ≤ C

∫ T

0

∫
Ωε

|ϕ′ε|
2
dxdt. (24)

Multiplying the equation in (21) by ρ (t) and integrating from 0 to T , we obtain

E (0)

∫ T

0

ρ (t) dt =
1

2

(∫ T

0

ρ (t)

∫
Ωε

(
|∇xϕε (t)|2 + |ϕε (t)|2 + |ϕ′ε (t)|2

)
dx

)
dt.

(25)
By virtue of (24) and (25) , estimate (20) follows.

Now, let us fix
(
ϕ0
ε, ϕ

1
ε

)
∈ L2 ( Ωε)× (V (Ωε))

′
. Let πε ∈ H1 (Ωε) be the unique

solution of the problem 

−∆πε + πε = ϕ1
ε in Ωε,

πε = 0 in ∂Ω− \ Σ,

∂πε
∂ν

= 0 on ∂Ω+
ε \ Γε.

There exists a positive constant C, independent of ε such that

‖πε‖V(Ωε) ≤ C
∥∥ϕ1

ε

∥∥
(V(Ωε))′

. (26)

Let ϕε be the transposition solution of (7) corresponding to the initial date
(
ϕ0
ε, ϕ

1
ε

)
∈ L2 ( Ωε)× (V (Ωε))

′
. Then, the function

wε (x, t) =

∫ t

0

ϕε (x, s) ds+ πε (x)

satisfies the problem

w′′ε −∆wε + wε = 0 in ]0, T [× Ωε,

∂wε
∂ν

= 0 on ]0, T [× ∂Ω+
ε \ Γε,

wε = 0 in ]0, T [× (∂Ω− \ Σ) ,

wε (0) = πε, w
′
ε (0) = ϕ0

ε in Ωε.

(27)

Observe that the solution wε is defined by usual weak formulation. Hence by ap-
plying Lemma 2.4, there exists a positive constant C, independent of ε such that∫

Ωε

(
|∇πε|2 + |πε|2 +

∣∣ϕ0
ε

∣∣2) dx ≤ C∫ T

0

∫
Ωε

|w′ε|
2
dxdt. (28)
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The inequality (18) is then a direct consequence of (26) and (28).
Now, we prove (19). By making use of Young’s inequality, (18) and (17) , it

follows that ∥∥(ϕ0
ε, ϕ

1
ε

)∥∥2

L2( Ωε)×(V(Ωε))′

≤ 2
(∥∥ϕ0

ε

∥∥2

L2( Ωε)
+
∥∥ϕ1

ε

∥∥2

(V(Ωε))′

)
≤ C

∫ T

0

∫
Ωε

|ϕε|2 dxdt

= C
〈
Λε
(
ϕ0
ε, ϕ

1
ε

)
,
(
ϕ0
ε, ϕ

1
ε

)〉
≤ C

∥∥Λε
(
ϕ0
ε, ϕ

1
ε

)∥∥
L2(Ωε)×V(Ωε)

∥∥(ϕ0
ε, ϕ

1
ε

)∥∥
L2(Ωε)×(V(Ωε))′

.

(29)

From (29) and taking into account that Λε is a isomorphism, we obtain∥∥Λ−1
ε

∥∥
L(L2(Ωε)×V(Ωε), L2(Ωε)×(V(Ωε))′)

= sup

{ ∥∥(ϕ0
ε, ϕ

1
ε

)∥∥
L2×(V(Ωε))′

‖Λε (ϕ0
ε, ϕ

1
ε)‖L2(Ωε)×V(Ωε)

:
(
ϕ0
ε, ϕ

1
ε

)
∈ L2 (Ωε)× (V (Ωε))

′

}
≤ C,

from which estimate (19) follows. �

2.5. A priori norm-estimates. In this subsection, we deduce some a priori norm-
estimates for the initial conditions

(
ϕ0
ε, ϕ

1
ε

)
of problem (7) , for the control θε and

for the corresponding solution uε of problem (5) . We have the following proposition
which is a consequence of (19) of Proposition 1.

Proposition 2. Let
(
ϕ0
ε, ϕ

1
ε

)
∈ L2 (Ωε) × (V ( Ωε))

′
be the initial conditions of

problem (7) . Then, there exists a constant C, independent of ε, such that∥∥(ϕ0
ε, ϕ

1
ε

)∥∥
L2( Ωε)×(V(Ωε))′

≤ C, (30)

for every ε.

Proposition 3. Let
(
ϕ0
ε, ϕ

1
ε

)
∈ L2 (Ωε)×V (Ωε)

′
be the initial conditions of problem

(7). Let ϕε and ψε be, respectively, the unique solutions of problems (7) and (8) .
Then, there exists a constant C, independent of ε, such that

‖ϕε ‖L2(0,T ;L2(Ωε)) ≤ C, (31)

‖ϕ′ε ‖L2(0,T ;(V( Ωε))′) ≤ C, (32)

‖ψε ‖L∞(0,T ;V(Ωε)) ≤ C, (33)

‖ψ′ε ‖L∞(0,T ;L2(Ωε)) ≤ C, (34)

for every ε.

Proof. The proof follows by Proposition 2, Remark 9.11 p.290 of [36] and Lemma
2.1 p. 181 of [32].

3. Homogenization of wave equation in domain with oscillating bound-
ary. In this section, we prove two homogenization results, namely one for the wave
equation with regular initial data to obtain the limit equation corresponding to the
solution ψε, where the solution is defined via the standard weak formulation. This
is done in the next subsection. Secondly, we also study the homogenization of the
wave with weak data whose solution is defined by the method of transposition. This
is necessary to obtain the homogenized equation corresponding to ϕε.
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3.1. Homogenization with regular data. Let us consider the problem

y′′ε −∆yε + yε = fε in ]0, T [× Ωε,

∂yε
∂ν

= 0 in ]0, T [× (∂Ω+
ε \ Γε) ,

yε = 0 in ]0, T [× (∂Ω− \ Σ) ,

yε (0) = y0
ε , y

′
ε (0) = y1

ε in Ωε,

(35)

where fε ∈ L2
(
0, T ;L2 (Ωε)

)
and (y0

ε , y
1
ε) ∈ V (Ωε)× L2 (Ωε). It is well known (see

[35]) that problem (35) admits a unique weak solution yε:

yε ∈ Wε,∫ T

0

∫
Ωε

yεzh
′′ +∇xyε∇zh+ yεzh dxdt

=

∫ T

0

∫
Ωε

fεzh dxdt ∀z ∈ V (Ωε) , ∀h ∈ C∞0 (]0, T [) ,

yε (0) = y0
ε in Ωε,

y′ε (0) = y1
ε in Ωε.

(36)

Now, we recall the following result (See [35] Chapter 3, Remark 8.2, Theorem
8.2 and Lemma 8.3).

Lemma 3.1. The solution yε of problem (36) satisfies the following estimate:

‖yε ‖L∞(0,T ;V(Ωε)) + ‖y′ε ‖L∞(0,T ;L2(Ωε)) ≤D
(∥∥y0

ε

∥∥
V(Ωε)

+
∥∥y1
ε

∥∥
L2(Ωε)

+ ‖fε ‖L2(0,T ;L2(Ωε))

)
,

(37)

where D is a positive constant depending on T . Moreover it holds that yε ∈
C (0, T ; V (Ωε)) ∩ C1

(
0, T ; L2 (Ωε)

)
.

As far as the weak formulation of problems (35) is concerned, we prefer to use
the following form which is equivalent to the usual one (see [25], Proposition 3.4):

yε ∈ Wε,

i)

∫ T

0

〈y′′ε (t, ·) , ψ (t, ·)〉((H1(Ωε))′,H1(Ωε)) dt+

∫ T

0

∫
Ωε

∇xyε∇xψ dxdt

=

∫ T

0

∫
Ωε

fεψ dxdt ∀ψ ∈ L2 (0, T ;V (Ωε)) ,

ii) yε (0) = y0
ε , y

′
ε (0) = y1

ε in Ωε.
(38)
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The aim of this section is to study the asymptotic behaviour, as ε → 0, of the
sequence of solutions (yε)ε, under the following assumptions:

ỹ0
ε ⇀ (|ω|χΩ+ + χΩ−) y0 = ηy0 weakly in L2 (Ω) ,

ỹ1
ε ⇀ (|ω|χΩ+ + χΩ−) y1 = ηy1 weakly in L2 (Ω) ,

f̃ε ⇀ (|ω|χΩ+ + χΩ−) f = ηf weakly in L2
(
0, T ;L2 (Ω)

) (39)

where η is defined as in (3).
The above convergence together with Lemma 3.1 gives the following proposition.

Proposition 4. Assume (39) . Let yε be the solution of problem (35) . Then, there
exists a constant C, independent of ε, such that

‖yε‖L∞(0,T ; V(Ωε)) ≤ C, (40)

‖y′ε‖L∞(0,T ; L2(Ωε)) ≤ C, (41)

for every ε.

Now, we give the homogenization of the wave equation (35).

Theorem 3.2. Assume (39) . Let yε be the solution of the problem (35) . Then, we
have 

ỹε ⇀ |ω| y weakly ∗ in L∞
(
0, T ;L2 (Ω+)

)
,

yε ⇀ y weakly in ∗ in L∞
(
0, T ;H1 (Ω−)

)
,

ỹ′ε = (ỹε)
′
⇀ |ω| y′ weakly in ∗ in L∞

(
0, T ;L2 (Ω+)

)
,

ỹ′ε = (ỹε)
′
⇀ (y−)

′
weakly in ∗ in L∞

(
0, T ;L2 (Ω+)

)
,

(42)

where y ∈ L2
(
0, T ;L2 (Ω)

)
∩L2

(
0, T ;H1 (Ω−)

)
is the unique solution of the follow-

ing problem 

y
′′ − ∂2y

∂x2
n

+ y = f in ]0, T [× Ω+,

y
′′ −∆y + y = f in ]0, T [× Ω−,

y+ = y−, |ω| ∂y
+

∂xn
=
∂y−

∂xn
on ]0, T [× Σ,

∂y

∂xn
= 0 on ]0, T [× (B × {b}) ,

y = 0 on ]0, T [× (∂Ω− \ Σ) ,

y (0) = y0, y′ (0) = y1 in Ω.

Proof. See [25] .
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3.2. Homogenization for the transposition solution. In the previous section,
we have obtained the homogenized equation with regular initial data in (V (Ωε))×
L2 (Ωε). Now to study the homogenization of the controllability problem with
the initial data

(
u0
ε, u

1
ε

)
∈ (V (Ωε)) × L2 (Ωε), we have the initial data

(
ϕ0
ε, ϕ

1
ε

)
=

Λ−1
ε

(
−u1

ε, u
0
ε

)
∈ L2 (Ωε)× (V (Ωε))

′
for the problem (7) which eventually gives the

optimal control. Hence we need to study the homogenization of (7) with the weak
data and we do it in this chapter.

From estimates (31) and (32), we deduce that there exist
(
ϕ0, ϕ1

)
∈ L2 (Ωε) ×

(V (Ωε))
′
, and two subsequences of

(
ϕ0
ε

)
and of

(
ϕ1
ε

)
, still denoted by

(
ϕ0
ε

)
and(

ϕ1
ε

)
respectively such that

ϕ̃0
ε ⇀ (|ω|χΩ+ + χΩ−)ϕ0 = ηφ0 weakly in L2 (Ω) ,

ϕ̃1
ε ⇀ (|ω|χΩ+ + χΩ−)ϕ1 = ηφ1 weakly in (V (Ω))

′
(43)

where η is defined as in (3).

Proposition 5. Let ϕε be the unique solution of problem (7) corresponding to the
initial data given above. Then, there exists a subsequence of {ϕε} , still denoted by
{ϕε} such that as ε→ 0

ϕ̃ε ⇀ (|ω|χΩ+ + χΩ−)ϕ weakly in L2
(
0, T ;L2 (Ω)

)
,

ϕ̃′ε = (ϕ̃ε)
′
⇀ (|ω|χΩ+ + χΩ−)ϕ′ weakly in L2

(
0, T ; (V (Ω))

′)
,

(44)

where ϕ is solution of the problem

ϕ′′ − ∂2ϕ

∂x2
n

+ ϕ = 0 in ]0, T [× Ω+,

ϕ′′ −∆ϕ+ ϕ = 0 in ]0, T [× Ω−,

ϕ+ = ϕ−, |ω| ∂ϕ
+

∂xn
=
∂ϕ−

∂xn
on ]0, T [× Σ,

∂ϕ

∂xn
= 0 on ]0, T [× (B × {b}) ,

ϕ = 0 on ]0, T [× (∂Ω− \ Σ) ,

ϕ (0) = ϕ0, ϕ′ (0) = ϕ1 in Ω.

(45)

Proof. Estimates (31) and (32) provide the existence of a subsequence of {ϕε} , still
denoted by {ϕε} , and a function ϕ ∈ L2

(
0, T ;L2 (Ω)

)
with ϕ′ ∈ L2

(
0, T ; (V (Ω))

′)
such that{

ϕ̃ε ⇀ (|ω|χΩ+ + χΩ−)ϕ = ηϕ weakly in L2
(
0, T ;L2 (Ω)

)
,

ϕ̃′ε = (ϕ̃ε)
′
⇀ (|ω|χΩ+ + χΩ−)ϕ′ = ηϕ′ weakly in L2

(
0, T ; (V (Ω))

′)
.
(46)

Let us prove that ϕ is solution of the system (45) . Let ξε ∈ V ( Ωε) be the unique
solution of the system
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
−∆ξε + ξε = −ϕ1

ε in Ωε,
∂ξε
∂ν

= 0 on ∂Ω+
ε \ Γε,

ξε = 0 in ∂Ω− \ Σ.

(47)

Let us consider the function

σε (x, t) =

∫ t

0

ϕε (x, s) ds+ ξε (x) . (48)

We do observe that this transformation leads to a problem for which initial data
are more regular than the initial data

(
ϕ0
ε, ϕ

1
ε

)
of the problem (7) . Indeed, σε is

solution of the problem
σ′′ε −∆σε + σε = 0 in ]0, T [× Ωε,
∂σε
∂ν

= 0 on ]0, T [× (∂Ω+
ε \ Γε) ,

σε = 0 in ]0, T [× (∂Ω− \ Σ) ,
σε (0) = ξε, σ

′
ε (0) = ϕ0

ε in Ωε

(49)

with
(
ξε , ϕ

0
ε

)
∈ V (Ωε)×L2 (Ωε) . Moreover, by (47) and (30) , there exists a positive

constant C, independent of ε such that

‖ξε‖V( Ωε) ≤ C.

Consequently, (see [17] Proposition 2.2) there exists a subsequence of {ξε} , still
denoted by {ξε} , and a function ξ in V (Ω) such that

ξ̃ε ⇀ |ω| ξ weakly in L2 (Ω+) ,
ξε ⇀ ξ weakly in V (Ω−) ,

∂ξ̃ε
∂xn

=
∂̃ξε
∂xn

⇀ |ω| ∂ξ
∂xn

weakly in L2 (Ω+) ,

∂̃ξε
∂xi

⇀ 0 weakly in L2 (Ω+) , for i ∈ {1, ..., n− 1} .

(50)

Then, by (50), (43) and [28] , we have

−∂
2ξ+

∂x2
n

+ ξ+ = −ϕ1 in Ω+,

−∆ξ− + ξ− = −ϕ1 in Ω−,

ξ+ = ξ−, |ω| ∂ξ
+

∂xn
=
∂ξ−

∂xn
on Σ,

∂ξ

∂xn
= 0 on B × {b} ,

ξ = 0 on ∂Ω− \ Σ.

Now, applying Theorem 3.2 to problem (49) , it results σ̃ε ⇀ |ω|σ weakly in L2
(
0, T ;L2 (Ω+)

)
,

σε ⇀ σ weakly in L2 (0, T ;V (Ω−)) ,
(51)
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and σ is the solution of the homogenized system:

σ′′ − ∂2σ

∂x2
n

+ σ = 0 in ]0, T [× Ω+,

σ′′ −∆σ + σ = 0 in ]0, T [× Ω−,

σ+ = σ−, |ω| ∂σ
+

∂xn
=
∂σ−

∂xn
on ]0, T [× Σ,

∂σ

∂xn
= 0 on ]0, T [× (B × {b}) ,

σ = 0 on ]0, T [× (∂Ω− \ Σ) ,

σ (0) = ξ, σ′ (0) = ϕ0 in Ω.

Moreover, by regularity results for hyperbolic equation we have

σ ∈ C
(
0, T ; V

(
Ω−
))
∩ C1

(
0, T ; L2

(
Ω−
))
∩ C2

(
0, T ;

(
V
(
Ω−
))′)

.

Now, we observe that
σ′′ (0) =

∂2σ (0)

∂x2
n

− σ (0) =
∂2ξ+

∂x2
n

− ξ+ = ϕ1 in Ω+,

σ′′ (0) = ∆σ (0)− σ (0) = ∆ξ − ξ = ϕ1 in Ω−

and so it results that

σ′′ (0) = ϕ1 in Ω.

Then the function σ′ = W satisfies the problem

W ′′ − ∂2W

∂x2
n

+W = 0 in ]0, T [× Ω+,

W ′′ −∆W +W = 0 in ]0, T [× Ω−,

W+ = W−, |ω| ∂W
+

∂xn
=
∂W−

∂xn
on ]0, T [× Σ,

∂W

∂xn
= 0 on ]0, T [× (B × {b}) ,

W = 0 on ]0, T [× (∂Ω− \ Σ) ,

W (0) = ϕ0, W ′ (0) = ϕ1 in Ω.

Here W is defined in the sense of transposition. By (48) it results

σ̃′ε = ϕ̃ε.

Moreover, by definition of distributional derivative, one has∫ T

0

∫
Ω+

ε

σ′′ε zh dxdt =

∫ T

0

∫
Ω+

σ̃εzh
′′dxdt (52)
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for every h ∈ D ((0, T )) . Passing to the limit in (52) as ε→ 0, using (51) the right
hand side converges to

|ω|
∫ T

0

∫
Ω+

σzh′′dxdt = − |ω|
∫ T

0

∫
Ω+

σ′zh′dxdt. (53)

Concerning the left hand side of (52) , we have∫ T

0

∫
Ω+

ε

σ′′ε zh dxdt = −
∫ T

0

∫
Ω+

ε

σ̃′εzh
′ dxdt = −

∫ T

0

∫
Ω+

ε

ϕ̃εzh
′ dxdt. (54)

Finally, passing to the limit in (52) as ε→ 0, by (53) , (54) and (44) , we have

W = ϕ in Ω+.

In same way, we have that
W = ϕ in Ω−.

Since the problem (45) admits a unique solution, the convergence (44) holds true
for the whole sequence. The proof is complete.

4. Exact controllability of the limit system (13). We prove the following
controllability result for the limit problem (13) using Hilbert uniqueness method
(HUM). In the process, we need to prove an observability estimate corresponding
to the system (45).

Theorem 4.1. The system (13) is exactly controllable in the space V (Ω)×L2 (Ω) .
That is, for given (u0, u1) ∈ V (Ω) × L2 (Ω), there exists a control θ ∈ L2 (0, T ;
L2 (Ω)

)
such that the solution of the problem (13) satisfies u(T ) = 0 = u′(T ).

We briefly describe HUM to get the right observability estimate to be proved.
Let

(
ϕ0, ϕ1

)
∈ L2 (Ω) × V (Ω)

′
and ϕ be the transposition solution to the system

(45). Now, let ψ ∈ C (0, T ; V (Ω)) ∩ C1
(
0, T ; L2 (Ω)

)
be the solution in the weak

formulation to the adjoint system

ψ′′ − ∂2ψ

∂x2
n

+ ψ = −ϕ in ]0, T [× Ω+,

ψ′′ −∆ψ + ψ = −ϕ in ]0, T [× Ω−,

ψ+ = ψ−, |ω| ∂ψ
+

∂xn
=
∂ψ−

∂xn
on ]0, T [× Σ,

∂ψ

∂xn
= 0 on ]0, T [× (B × {b}) ,

ψ = 0 on ]0, T [× (∂Ω− \ Σ) ,

ψ (T ) = 0 = ψ′ (T ) in Ω.

(55)

At this stage, define an operator Λ as

Λ : L2 (Ω)× (V (Ω))
′ −→ L2 (Ω)× V (Ω)

by setting, for all
(
ϕ0, ϕ1

)
∈ L2 (Ω)× (V (Ω))

′
,

Λ
(
ϕ0, ϕ1

)
= (−ηψ′ (0) , ηψ (0))
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where η is defined as in (3).
Then, we have〈

Λ
(
ϕ0, ϕ1

)
,
(
ϕ0, ϕ1

)〉
=
〈
ϕ1, ηψ(0)

〉
V (Ω)′,V (Ω)

−
∫

Ω

ηϕ0ψ′(0). (56)

Multiply the first and second equations in (45), respectively, by |ω|ψ+ and ψ−

and similarly multiply the first and second equations in (55), respectively, by |ω|ϕ+

and ϕ−, subtracting and using (56) easily we obtain〈
Λ
(
ϕ0, ϕ1

)
,
(
ϕ0, ϕ1

)〉
=

∫
Ω

ηϕ2. (57)

Proof of Theorem 4.1. If the operator Λ is an isomorphism, then the proof of the
theorem is complete. To see this, let (u0, u1) ∈ V (Ω)×L2 (Ω). Since Λ is surjective,
the equation

Λ
(
ϕ0, ϕ1

)
=
(
−ηu1, ηu0

)
has a solution for

(
ϕ0, ϕ1

)
∈ L2 (Ω) × (V (Ω))

′
. For ϕ given by (45) with

(
ϕ0, ϕ1

)
as initial conditions, we consider the corresponding solution ψ of problem (55). By
definition of Λ, we get

Λ
(
ϕ0, ϕ1

)
= (−ηψ′ (0) , ηψ (0)) .

Under the assumption that Λ is an isomorphism, we see that ψ (0) = u0 and ψ′ (0) =
u1. Thus the controllability problem is solved by taking the control −ϕ and the
controlled solution as u = ψ.

Thus remains to show that Λ is an isomorphism which follows from the following
observability estimate

Lemma 4.2. There exists a constant C > 0 such that∥∥ϕ0
∥∥2

L2(Ω)
+
∥∥ϕ1

∥∥2

(V (Ω))′
≤ C

∫ T

0

∫
Ω

η|ϕ|2 (58)

for all
(
ϕ0, ϕ1

)
∈ L2 (Ω) × (V (Ω))

′
, where η is defined as in (3) and ϕ is the

corresponding solution of the system (45).

First, we prove the following proposition with regular data in (45).

Lemma 4.3. Let
(
ϕ0, ϕ1

)
∈ V (Ω)×L2 (Ω). Then the solution ϕ of (45) is defined

via the classical weak formulation and satisfies the estimate∥∥ϕ0
∥∥2

(V (Ω))
+
∥∥ϕ1

∥∥2

L2(Ω)
≤ C

∫ T

0

∫
Ω

η|ϕ′|2, (59)

where C is a positive constant.

Proof. Define the energy E(t) as

E(t) =
1

2

[
‖ηϕ′(t)‖2L2(Ω) + ‖ηϕ(t)‖2L2(Ω) + ‖∇ϕ(t)‖2L2(Ω−) +

∥∥∥∥η ∂ϕ∂xn (t)

∥∥∥∥2

L2(Ω+)

]
.

One can multiply the equations in (45) by ηϕ′ and it is easy to see that the energy
is conserved, that is

E(t) = E(0) =
1

2

[∥∥ηϕ1(t)
∥∥2

L2(Ω)
+
∥∥ηϕ0

∥∥2

L2(Ω)
+
∥∥∇ϕ0

∥∥2

L2(Ω−) +

∥∥∥∥η ∂ϕ0

∂xn
(t)

∥∥∥∥2

L2(Ω+)

]
.
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Now consider the test function h(x, t) = ρ(t)η(x)ϕ(x, t), multiply the equation (45)
by h, integrate by parts to get∫ T

0

∫
Ω

ρ(t)η(x)|ϕ′|2 +

∫ T

0

∫
Ω

ρ′(t)η(x)ϕϕ′

=

∫ T

0

∫
Ω

ρ(t)η(x) |ϕ|2 +

∫ T

0

∫
Ω+

ρ(t)|ω|
∣∣∣∣ ∂ϕ∂xn

∣∣∣∣2 +

∫ T

0

∫
Ω−

ρ(t) |∇ϕ|2

=

∫ T

0

Eρ(t)dt,

(60)

where

Eρ(t) =

∫
Ω

ρ(t)η(x) |ϕ|2 +

∫
Ω+

ρ(t)|ω|
∣∣∣∣ ∂ϕ∂xn

∣∣∣∣2 +

∫
Ω−

ρ(t) |∇ϕ|2 .

Now, ∫
Ω

ρ′(t)η(x)ϕϕ′ =

∫
Ω+

ρ′(t)|ω|ϕϕ′ +
∫

Ω−
ρ′(t)ϕϕ′

≤
[
γ

∫
Ω+

ρ(t)|ω||ϕ|2 + C(γ)

∫
Ω+

|ω||ϕ′|2
]

+

[
γ

∫
Ω−

ρ(t)|ϕ|2 + C(γ)

∫
Ω−
|ϕ′|2

]
≤ γEρ(t) + C(γ)

∫
Ω

η|ϕ′|2,

where γ > 0 is a positive real number and C(γ) =
1

4γ

∥∥∥∥ (ρ′)2

ρ

∥∥∥∥
L∞(0,T )

. Thus for

0 < γ < 1, from (60), it follows that

(1− γ)

∫ T

0

Eρ(t)dt ≤
∫ T

0

∫
Ω

ρ(t)η(x)|ϕ′|2 + C(γ)

∫ T

0

∫
Ω

η|ϕ′|2.

Since ρ is bounded above and γ is fixed, there exists a constant T > 0 such that∫ T

0

Eρ(t)dt ≤ C
∫ T

0

∫
Ω

η|ϕ′|2.

Thus using the conservation of the energy, we have

E(0)

∫ T

0

ρ(t)dt =

∫ T

0

ρ(t)E(t)dt =

∫ T

0

Eρ(t)dt+

∫
Ω

η|ϕ′|2.

It follows, then that

E(0) ≤
∫ T

0

∫
Ω

η|ϕ′|2.

The proof of lemma is complete from the definition of η.

Proof of Lemma 4.2. Now, let
(
ϕ0, ϕ1

)
∈ L2 (Ω) × (V (Ω))

′
and ϕ be the corre-

sponding solution of the system (45). Introduce π ∈ V (Ω) which solves the following
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problem 

−∂
2π+

∂x2
n

+ π+ = −ϕ1 in Ω+,

−∆π− + π− = −ϕ1 in Ω−,

π+ = π, |ω| ∂π
+

∂xn
=
∂π−

∂xn
on Σ,

∂π+

∂xn
= 0 on B × {b} ,

π− = 0 on ∂Ω− \ Σ.

(61)

Define w(x, t) =

∫ t

0

ϕ(x, s)ds+π(x) which satisfies a similar system as in (45) with

the regular data w(0) = π and w′(0) = ϕ0, that is (w(0), w′(0) ∈ V (Ω) × L2 (Ω)
with same system (45). Thus, we can apply Lemma 4.3 to get the estimate

‖π‖2V (Ω) +
∥∥ϕ0

∥∥2

L2(Ω)
≤ C

∫ T

0

∫
Ω

η|w′|2.

Since π is the unique solution of (61) corresponding to the data ϕ1 , we get the
required estimate (58) since w′ = ϕ. This completes the proof of Lemma 4.2 and
hence the exact controllability for the limit system.

Now we can complete the proof of Theorem 2.2.

5. Proof of Theorem 2.2. The proof essentially follows by the convergence anal-
ysis in Section 3 and required estimates in Section 2. Let us consider (u0

ε, u
1
ε) ∈

V (Ωε)× L2 (Ωε) satisfying (12). Let
(
ϕ0
ε, ϕ

1
ε

)
be the unique solution of equation:

Λε
(
ϕ0
ε, ϕ

1
ε

)
=
(
−u1

ε, u
0
ε

)
. (62)

Then the initial condition
(
ϕ0
ε, ϕ

1
ε

)
is uniformly bounded due to the results in Section

2. Let us pose

θε = −ϕε, (63)

where ϕε is the unique solution of problem (7) with initial conditions
(
ϕ0
ε, ϕ

1
ε

)
. By

(10) , it results

(−ψ′ε (0) , ψε (0)) =
(
−u1

ε, u
0
ε

)
,

where ψε is the unique solution of problem (8) . By uniqueness theorem of the
solution of problem (5) , we obtain

uε = ψε. (64)

By final condition of problem (8), (64) and from the continuity of solution, we have

uε (T ) = 0, u′ε (T ) = 0.

And so, θε is the exact control for system (5) . Moreover, by propositions (3) , (63)
and (64) , we have that, up to subsequences,
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

θ̃ε ⇀ (|ω|χΩ+ + χΩ−) θ = ηθ weakly ∗ in L2
(
0, T ;L2 (Ω)

)
,

ũε ⇀ |ω|u weakly ∗ in L∞
(
0, T ;L2 (Ω+)

)
,

uε ⇀ u weakly ∗ in L∞
(
0, T ;H1 (Ω−)

)
,

ũ′ε = (ũε)
′
⇀ |ω|u′ weakly ∗ in L∞

(
0, T ;L2 (Ω+)

)
,

ũ′ε = (ũε)
′
⇀ (u−)

′
weakly ∗ in L∞

(
0, T ;L2 (Ω+)

)
,

(65)

with

θ =

{
− |ω|ϕ in ]0, T [× Ω+,
−ϕ in ]0, T [× Ω−.

(66)

By applying Theorem 3.2 to problem (5) with fε = θε and from convergence (65),
we obtain

ũε ⇀ |ω|u weakly ∗ in L∞
(
0, T ;L2 (Ω+)

)
,

uε ⇀ u weakly in ∗ in L∞
(
0, T ;H1 (Ω−)

)
,

ũ′ε = (ũε)
′
⇀ |ω|u′ weakly ∗ in L∞

(
0, T ;L2 (Ω+)

)
,

ũ′ε = (ũε)
′
⇀ (u−)

′
weakly in ∗ in L∞

(
0, T ;L2 (Ω+)

)
,

where u is the unique solution of the problem (13) , with θ given by (66). Finally,
from (64) and (44) by applying Theorem 3.2 to problem (8) with fε = −ϕε, we
obtain the limit problem for ψ = u as in (55).

In the last section, we have proved that the operator Λ is an isomorphism by
HUM. Let

(
u0, u1

)
be the initial condition for the problem (13) . From the conver-

gence of uε = ψε, it follows that u0 = ψ(0) and u1 = ψ′(0). Thus

Λ
(
ϕ0, ϕ1

)
=
(
−u1, u0

)
.

Hence the limit problem is indeed the exact controllability problem. In other words,
θ = −ϕ is the exact limit control. By uniqueness of the solution of the limit problem

we obtain that the whole sequences
(
θ̃ε

)
and (ũε) converge. The proof of Theorem

2.2 is complete .
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Dunod, Paris (1968).
[36] J. L. Lions and E. Magenes, Non-homogeneous Boundary Value Problems and Applications,

I, II, Springer-Verlag, Berlin Heidelberg, New York, 1972.

[37] T. A. Mel’nyk, Homogenization of the Poisson equation in a thick periodic junction, Z. Anal.
Anwendungen, 18 (1999), 953–975.

[38] T. A. Mel’nyk, Averaging of a singularly perturbed parabolic problem in a thick periodic

junction of the type 3:2:1, Ukrainian Math. J., 52 (2000), 1737–1748.
[39] T. A Mel’nyk and S. A. Nazarov, Asymptotics of the Neumann spectral problem solution in

a domain of ”thick Comb” type, J. Math. Sci., 85 (1997), 2326–2346.
[40] F. K. Moore and E. M. Greitzer, A theory of post-stall transients in axial compression systems:

Part 1 development of equations, Trans. ASME: J. Eng. Gas Turbines Power , 108 (1986),

68–76.
[41] F. K. Moore and E. M. Greitzer, A theory of post-stall transients in axial compression systems:

Part 2 application, Trans. ASME: J. Eng. Gas Turbines Power, 108 (1986), 231–239.

[42] J. Mossino and A. Sili, Limit behavior of thin heterogeneous domain with rapidly oscillating
boundary, Ric. Mat., 56 (2007), 119–148.

[43] A. K. Nandakumaran, Ravi Prakash and J. P. Raymond, Asymptotic analysis and error

estimates for an optimal control problem with oscillating boundaries, Annali dell’Università
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