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A FRAMEWORK FOR THE ERROR ANALYSIS OF DISCONTINUOUS
FINITE ELEMENT METHODS FOR ELLIPTIC OPTIMAL CONTROL
PROBLEMS AND APPLICATIONS TO C° IP METHODS

Sudipto Chowdhury, Thirupathi Gudi, and A. K. Nandakumaran

Department of Mathematics, Indian Institute of Science, Bangalore, India

O In this article, an abstract framework for the error analysis of discontinuous Galerkin
methods for control constrained optimal control problems is developed. The analysis establishes
the best approximation result from a priori analysis point of view and delivers a reliable
and efficient a posteriori error estimator. The vesults are applicable to a variety of problems
Jjust under the minimal regularity possessed by the well-posedness of the problem. Subsequently,
the applications of C° interior penalty methods for a boundary conirol problem as well as a
distributed control problem governed by the biharmonic equation subject lo simply supported
boundary conditions ave discussed through the abstract analysis. Numerical experiments
llustrate the theoretical findings.

Keywords Biharmonic; COTP method; Discontinuous Galerkin; Error bounds; Finite
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1. INTRODUCTION

The optimal control problems have been playing a very important role
in the modern scientific world. The numerical analysis for this class of
problems dates back to the 1970s [19, 28]. There are many landmark
results on the finite element analysis of optimal control problems. It is
difficult to cite all of the articles here, but the relevant work can be
found in the references of some of the articles that we discuss. We refer
to the monograph [41] for the theory of optimal control problems and
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their numerical algorithmic aspects. Therein, the primal-dual active set
algorithm developed in [29] is also discussed in the context of the optimal
control problems. Also refer to the books [31, 36] for the theory and
numerical analysis of optimal control problems. Apart from this, we refer
to [38] for a super-convergence result using a post-processed control
for constrained control problems. A variational discretization method is
introduced in [30] to derive optimal error estimates by exploiting the
relation between the control and the adjoint state. For the numerical
approximation of Neumann boundary control problem with graded mesh
refinement refer to [1], and for the numerical treatment of the Dirichlet
boundary control problems refer to [12, 15, 27, 37, 39] and references
there in. Simultaneously, there has also been a lot of interest in the
numerical approximation of the state constrained control problems, for
examples see [14, 26, 40] and references therein. On the other hand, while
the adaptive finite element methods based on a posteriori error estimators
have grown in popularity, the study of a posteriori error analysis for optimal
control problems has also gained a lot of interest in the recent years.
In particular, the control in control constrained problem can exhibit
kinks and hence lacks smoothness. In this context, adaptive finite element
methods would be useful to enhance accuracy. An a posteriori error analysis
of a conforming finite element method for control constrained problems is
derived in [32]. Recently, a general framework for a posteriori error analysis
of conforming finite element methods for optimal control problems with
constraints on controls is derived in [35]. The result therein is obtained by
the help of appropriate auxiliary linear problems. In the context of higher
order problems, recently in [10, 18], mixed finite element methods have
been proposed and analyzed for a distributed control problem governed
by the biharmonic equation subject to the Dirichlet boundary conditions,
while a C" interior penalty method is analyzed in [24] for the clamped
plate control problem.

There are only a handful of results on the analysis of discontinuous
Galerkin (DG) methods for optimal control problems, in particular for
higher order problems. In this article, we develop an abstract framework
for the error analysis of discontinuous finite element methods applied
to control constrained optimal control problems. The outcome of the
result is a best approximation result for the numerical method and a
reliable and efficient a posteriori error estimator. It is important to note
that these best approximation results are key estimates in establishing the
optimality of adaptive finite element methods, see for examples [11, 33].
Also it is worth noting that the standard error analysis of DG methods
require additional regularity which does not exist in several cases, for
example in simply supported plates or mixed boundary value problems,
e.g., see the discussions in [8, 9, 22, 23]. Therefore, the error analysis of
DG methods has to be treated carefully. To this end, we introduce two
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auxiliary problems; one dealing with a projection in « priori analysis and
the other is based on a reconstruction in a posteriori analysis. Subsequently,
Theorem 2.2 and Theorem 2.5 are proved, which play an important role in
the analysis. We believe that the results in this article present a framework
for the error analysis of discontinuous finite element methods for control
problems with limited regularity. Moreover, the a posteriori error estimator
is useful in adaptive mesh refinement algorithms.

C' interior penalty methods became very attractive in the recent
past for approximating the solutions of higher order problems [5, 7-
9, 17, 23]. This is due to the fact that the conforming and mixed
methods are complicated and the nonconforming methods do not come
in a natural hierarchy. In this article, we propose and analyze a C°
interior penalty method for optimal control problems (both distributed
and Neumann boundary control) governed by the biharmonic equation
subject to simply supported boundary conditions. Note that the analysis of
Dirichlet boundary control problems in general is a subtle issue, since the
arguments for that particular problem need to be addressed using a very
weak formulation or an equivalent one, e.g., see [12, 37]. The analysis in
this article differs from the one in [24], in particular an abstract framework
for obtaining energy norm estimates, and in a posteriori error analysis. Also,
we analyze here the boundary control problems. It is shown in [34] that
the C° interior penalty solution of the biharmonic problem has connection
to the divergence-conforming solution of the Stokes problem. Therefore,
our results will also be useful in the context of control problems for Stokes
equations.

In summary, the results in the article are outlined as follows:

e An abstract framework for the error analysis of discontinuous Galerkin
methods for elliptic optimal control problems with control constraints
is derived. The results are applicable to the classical nonconforming
methods, and the discontinuous Galerkin methods applied to 2k-th
order elliptic control problems, where k£ > 1.

e The best approximation error estimates are derived under the minimum
regularity on the state and the costate variables. These results have
implications in the optimality of adaptive algorithms.

e The analysis also provides a framework for the derivation of a posteriori
error estimates.

e Applications of the abstract analysis are discussed for a simply supported
plate control problem with control acting through either an interior
force or a Neumann boundary condition.

e Numerical experiments are performed to illustrate the theoretical
results for both the distributed and the boundary control problems.
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The rest of the article is organized as follows. In Section 2, we
set up the abstract framework for the error analysis of discontinuous
finite element methods and derive therein some abstract error estimates
that form the basis for @ priori and a posteriori error analysis. Section
3 introduces two model examples that are under discussion. In Section
4, we develop the discrete setting and discuss the applications to the
model problems introduced in Section 3. In Section 5, we present some
numerical examples to illustrate the theoretical results. Finally we conclude
the article in Section 6.

2. ABSTRACT SETTING AND ANALYSIS

In this section, we develop an abstract framework for the error analysis
of discontinuous and nonconforming methods for approximating the
solutions of optimal control problems with either boundary control or
distributed control. All the vector spaces introduced below are assumed to
be real.

Let V be a Sobolev-Hilbert space with the norm | - |, and with the
dual denoted by V'. The space V will be an admissible space for state and
adjoint state variables. Let W be a Hilbert space such that V.C W C V'
(Gelfand triplet) and the inclusion is continuous. The inner product and
norm on W is denoted by (+,-) and || - |lw, respectively. Let Q be a Hilbert
space that will be used for seeking the control variable. The norm and the
inner-product on Q will be denoted by || - [|p and (-, -) respectively. Let B :
V — Q be a linear and continuous operator. Let 0,; C () be a nonempty,
closed and convex subset.

Assume that (u, [, q) € V x V x Q,, solve the system

a(u,v) = f(v) + (¢, Bv) VYveV, (2.1)
a(v, ) =(u—uy,v) YveV,
(BU4+ g, p—q) >0 Vpe Qu,
where f e V', u, € W, [1> 0 are given and a: V x V — R is a continuous
and elliptic bilinear form in the sense that there exist positive constants C
and ¢ such that
la(u, v)| < Cllwllv lvllvy  Yu, veV,
a(v,v) > cllv|};, VYve VD
Next, we introduce the corresponding discrete setting. Let V, C W be a

finite dimensional (finite element) subspace and there is a norm | - ||,
on V, 4+ V such that ||v|, = ||v|ly forall ve V. Let @, : V, x V, — R be a
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continuous and elliptic bilinear form, i.e., there exist positive constants C
and ¢ such that

|ah(uh7 vh)l =< C”u”h ”"U”],, Vu/w U, € ‘/h’

ay(vp, vp) > E||'Uh||?2 Vv, € V, L

Similarly, assume that Q, C Q is a finite dimensional (finite element)
subspace and Qa”d C O, is a nonempty, closed and convex subset of 0,.
Further assume that f € V.

Suppose that the discrete variables (w,, [, ¢;) € V, x V, x Q% solve the
system

ay(uy, vp) = [ () + (qu, Bavn) Yo, €V, (2.4)
a;,,(v;,,, Dh) = (u/, — Uy, ‘1)/7,) V‘l)/,, (S Vh, (25)
(Billy + Lgno o — qu) = 0 Vp, € Q1 (2.6)

where B, : V, + V — @, is a discrete counterpart of B such that B,v = Bv
forall ve V.

Throughout this section, we assume that the following hold true:
Assumption (P-T): There hold

lollw < Cliolly Yo e V4V, (2.7)

IBi(v —u)llg < Cllv—wlly,  forveV, v, € V,U (2.8)

It will be seen in subsequent sections that (2.7) corresponds to a Poincaré
type inequality and (2.8) corresponds to a trace inequality on broken
Sobolev spaces.

We need the Q-projection defined by the following: For given ¢ € Q,
let U,q € O, be the solution of

(Ung—q,pu) =0 Vp, € QL1 (2.9)

Assumption (Q): Assume that (1,9 € Q" whenever q € Q.
We turn to deriving some abstract a priori error analysis. To this end,
we introduce some projections as follows: Let P,u € V, and P, € V, solve

ar(Pyu, vp) = f(vn) +(q, Byuy) Vv, € V), (2.10)
(l][,("U][,,P],, D) — (’LL — Ug, vh) Vvh € ‘/h’ (211>

respectively.
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The following lemma is a key in the error analysis:
Lemma 2.1.  There holds
(Bi(Dh — Pi0), g — qu) = Ulg — %H?Q + Byl + L ¢ — 1)
+ (Bi(0—P,0).g—qi) Yy € Qo

Proof. Since Q! C Q,; and B, = B on V, we find from (2.3) and (2.6)
that

By + Cgns g — qa) > (Bulh+ g, g — 1) VYo € QL0
—(ByU+ g, g — q) = 00

We find by adding the above two inequalities that

Bu(h— D)+ U —9).q—qu) = (Bilh+ Lo g — i) Vo € Q.
which implies
(Bp(h — P/;,D), q— l]h) = Ellq - %HZ) + (B, + L, q — Ph,)
+(B(U=PL).g— @) Vi€ Qul)

This completes the proof. O

The following theorem derives an abstract a priori error estimate for
the control.

Theorem 2.2. There holds
O O
Yy _
g — @l + e — w3 < C IBO— O(BOIS + g — Dol + 10— B0

+ Cllu— Pyl ©
Proof. From (2.4-2.5) and the definition of P,, we have

ay(Pye — up, ) = (q — qu, Byvy) Yo, € Vp, (2.12)
(lh,(v/nPhD - Dh) — ('LL — Uy, vh) Vvh S ‘//ID (213)

Take v, = Pou— w, in (2.13), v, = P,0J— [J, in (2.12) and subtract the
resulting equations to find

((] bl l]/,,, Bh(PhD bl Dh)> bl (u — Uy, P,,,u bl u/,) = OD
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This implies
(q — s B/L(D/L - P/LD)) + ”P/Iu - uh”%v = (u - Phu’ Uy, — Phu) 0

Using Lemma 2.1 with p, = [, ¢, we find that

IA

—(Byh + Ui, g — pu) — (Bu(D = Py1)), ¢ — 1)
+ (u — Pyu, u, — Pyu)
= —(BU+ L. g = pu) = (Bi(D = Bil)), g — qu)
= Bu(Lh =)+ — 0)r g = pu)
+ (u — Pyu, wy, — Pyu)
= —(BU= 1 (BI) + (g — 1), ¢ — pu)
— (Bi((1= Py, ¢ — qu) + (u — Py, w, — Pyu)
— (Bi(Lh — L) + Wgn — 0)- 0 — p)
= —(BU— U, (BL) + (g — pn), ¢ — P
— (By(O—=P,00), ¢ — qu) + (u — Pyu, up, — Pyu)
—D(Bh(Dh — )+ Hpr—q9)q— pw)

C 1BU— Uu(BO)IIG + g — pullg,
0
+IBi(D = PO G,

g = gully + 1Pyu = wyll3,

IA

0 , 0

+C 1B(U—= ) llo lg — pallo + lu — Pyully,
1 O o

+§||uh—Phu||%4r+§||f1_%HQD (2.14)

From the error equation (2.13), we have
a (P — Uy, P — 1) = (w— w, B0 — 1) < Cllu — willwll B0 — Dyl
By assumption (2.7) and the ellipticity of @, we find
1Py = Calls < Cllu = gy (2.15)
Now using assumption (2.8) and (2.15), we find
1Bi(C = U)llg < ClI = ylly < ClID = Byl + CIR D = Dyl
SC||DD—PhD||h+C||U—Uh||W .
< C 0= B0+ lu = Poullw + [[1Pou — wllw 0

Using this estimate in (2.14), we complete the proof. O
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We now derive the error estimates for the state and the adjoint state
variables.

Theorem 2.3. There hold

O _ O
10— alln < CD||D_PhD”h+”BD_Dh(BD)||Q+||q_Dhq||g+”u_Phu||WD,
lu—wll, < C 10=PB0ll+ 1BO— 0u(BO)lg+ 1lg — Daqllg + e — Pyull, O

Proof. The estimate in (2.15) together with the estimate in Theorem 2.2
and the triangle inequality imply

10— Calle < 110 = Pyl + 1Py — Dl
< ||D—Ph,D||h, + Cllu — wpllw
0 _ |
< C 10=P0l+ I1BO=04(BD) g +1lg— Tagllo + llw— Prullw [

The error equation (2.12) and the assumption (2.8) imply

a]L(P/Lu - uh’Ph,u - uh) = (q - qh’Bh(Phu - uh))
= {q — qu, By(Pryu — u)) + (g — g4, By(u — w;))
< C(llu— Pyullp + llu—wln) lg— qullo

The rest of the proof follows from Theorem 2.2. O

Next, we will develop an abstract setting for a posteriori error control.
To this end, define the reconstructions Ru € V and R[] € V by

a(Ru,v) = f(v) + (qu, Bv) YveV, (2.16)
a(v,RL) = (w, — ug,v) VYo e VL (2.17)

From the above definitions and (2.1)-(2.2), we have

a(u — Ru,v) = (q — ¢, Bu) Vv eV, (2.18)
a(v,)—RL) = (u—w,v) Yve VL (2.19)

The following lemma will be useful in the subsequent a posteriori error
analysis:
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Lemma 2.4. There holds

(B(RU—1),q— @) = Llg — @ull§ + (Bl + L, ¢ — pu)
+ (By(RU— 1), g — @) Ypu e Q4L

Proof. Using the assumptions Q" C Qu, B,=B on V, and the
inequalities (2.3) and (2.6), we find

(Bilh+ Lgi ¢ — @) = (Bil + Lo g — pu) - Vi € QU
—(BU+ Lg,q— qu) = 00
Add the above two inequalities and find
(BT = ) + s — ) g — i) = Bl + Lgun g — pu) - Vu € Quyl!
This trivially implies
(B(RO— 1), ¢ — g} = Ulg — @ully + (B + s g — pu)
+(BU(RO= 1), g —q1) Ypu € QL

Hence the proof. U

The first result that will be useful in a posterior: error estimates for the
control is the following:

Theorem 2.5. There holds
d _ O
lg — gillo + lu — Rullw < G ||[Ru — w,llw + [|RC = Tylls
+ ClIB, — (B g

Proof. Taking v = u — Ru in (2.19) and v = [J— R in (2.18) and then
subtracting the resulting equations,

(g — g B(— RC)) — (u— wy, u — Ru) =0
trivially implies
(g — qu, BLRU = ) + lu — Ru|l3, = —(Ru — w,, u — Ru) ]
Using the estimate in Lemma 2.4 in the above equation, we find

g — qullfy + llw — Rull}y, < —(Ru — wi, u — Ru) — (B, + Ly, ¢ — pu)
— (B(RU=104), g — i) ¥pu € Q0
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Let j]h = Dhq € Q. Then

L(’[ .

(Byly + Ugn, g — Lag) = ((By Ly — (B h), ¢ — Lag)
= (B, — Un(Brh), ¢ — qu)

The proof then follows from the Cauchy-Schwarz inequality and
assumption (2.8). O

Next, the result that will be useful in the a posteriori error analysis of
the state and the adjoint states is derived below.

Theorem 2.6. There holds
O _ O
lw—wlln+ 10—l < C |Ru — wll, + RO — [ l4
+ ClIBy Uy — Da(By ) I D
Proof. By the triangle inequality,
lu—wlln < lw— Rull) + |Ru — w0

Taking v = u — Ru in (2.18) and since || - ||, = || - |y on V, we find by using
the continuity of the operator B that

lu — Rullv < Cllg — gallo =

The bound for u — u, then follows by using Theorem 2.5. Similarly by the
triangle inequality

10— ulls < 0= RO, + IR = D, 1,0

Taking v = [J— R[] in (2.19) and again since || - |, = || - |lv on V, we find
by using the continuous imbedding of V in W that

I0 = ROy < Cllw — wyllw O

The rest of the proof follows from assumption (2.7) and the estimate for
Il — wupll5- L]

3. MODEL EXAMPLES

In this section, we present two model problems arising from the
optimal control of simply supported plate problem. One deals with the
distributed control problem and the other with the boundary control
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problem. In subsequent sections, we discuss the applications of the abstract
error analysis developed in Section 2 to these two model problems
approximated by the CY interior penalty method. However, the abstract
analysis that we have developed in Section 2 is not only limited to these
problems. Indeed, it can be applied to second and sixth order problems
and to the classical nonconforming and discontinuous Galerkin methods.
In what follows, we introduce the common data used by the two model
problems.

Let [ C [1? be a bounded domain with polygonal boundary [ Assume
that there is some m > 1 such that the boundary [1is the union of some
line segments [}’s (1 < i < m) whose interior in the induced topology are
pair-wise disjoint. Let the admissible space V := H?([1) N Hy(]). Denote
the L,(L) and Ly(L) inner-products by (-,-) and (-, -), respectively. Let [ €
H7'(J), uy € Lo([]) and a real number [1> 0 be given. Define the bilinear
forma:V xV — R by

a(w, v) = (D*w, D*v), (3.1)
where D’w = [y, ]1<i <2 is the standard Hessian of w.

Remark 3.1. We may assume that the load function f € V*, the dual
of V. In that case, the numerical method will have to be modified. The
analysis in such cases can be handled as in [2, 25].

Model Problem 1. Define the quadratic functional J : V x Ly([) — R by

1 . o
JG.p) = glw = wali,ey + gl weVope (DD (32)

For given ¢, ¢ € 0 U [Hoolwith ¢ < g, define the admissible set of controls
by a B

Q= pels(l):g=p(x) <qforae xe I

Consider the optimal control problem of finding « € V and ¢ € Q, such
that

J(u,q) = min_J(w,p), (3.3)

weV,pe Q)

subject to the condition that w € V satisfies

a(w,v) = f(v) + (p, vl [n) VYve VL (3.4)
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Note that the optimal solution (u, ¢) € V x @, whenever it exists, satisfies
a(u,v) = f(v) + (g, vl h) Yve VL (3.5)

In order to establish the existence of a solution to (3.3), note that
the model problem (3.4) has a unique solution w € V for given p € Ly([).
Define this correspondence as Sp = w. From the stability estimates of the
solution w, it is easy to check that S : I5() — (1) defines a continuous
affine operator. Using the operator S, the minimization problem (3.3) can
be written in the reduced form of finding ¢ € Ly([) such that

. — min i(»). 36
7(q) ﬁgﬂw (3.6)
where
. 1 ) -
j(p) = §||Sl7 - ud”]a(f) + §||[7||L2()D (3.7)

Using the theory of elliptic optimal control problems [41], the following
proposition on the existence and uniqueness of the solution can be proved
and the optimality condition can be derived.

Proposition 3.2. The control problem (3.6) has a unique solution q and
correspondingly there exists a unique state uw = Sq of (3.5). IPurthermore, by
introducing the adjoint state 1 € V such that

a(v, ) = (u—uy,v) YveV, (3.8)
the optimality condition that j'(q)(p — q) = 0, Vp € Qy, can be expressed as
(L n+Lg,p—q) =0 Vpe QL (3.9)

The strong formulation of the optimality conditions satisfied by (u, L, ¢) is
given by the following system of equations:

Pu=f in [,

Pl=w—u, in L[],

0, 21 M
u ,—— = on S
[(n? 1
KN
D_O,@=O on [D,
O O

0 101 0
qg= - on ,
q lg.q1 R

where [J),5¢(x) is defined by [}, g(x) = minld, max[a, g(x) 11
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Model Problem 2. In this example, we consider the model of a distributed
control problem. For this, define the quadratic functional J : V x Ly,(L[1)
— R by

1 0
J@w.p) = Sllw = wallfyy + GG,y we Ve peL(D)T (3.10)

Let ¢, g€ with ¢< g be given. Define Q; = [p € Ly(1]) : ¢ < p(x)
<7q for a.e. x € [J[] The distributed control problem consists of finding
u € V and g € Q; such that

JCuq) = min J(wp), (3.11)
where w € V satisfies
a(w,v) = f(v) + (p,v) Yve VD (8.12)

It is clear that whenever it exists the optimal solution (u,q) € V x Q,
satisfies

a(u,v) = f(v) +(¢,v) VYve VL (3.13)

Note that the model problem (3.12) has a unique solution w € H*([)
for given p € Ly(L)). Setting this correspondence as Sp = w and using
the stability estimates of w, it is obvious that S: Ls([J) — Lo([J) defines
a continuous affine operator. Then, the minimization problem (3.11) is
reduced to find ¢ € Ly(J) such that

J(q) = min j(p), (3.14)
el
where
. 1 9 o
) = 5”511 - u{l”?,_,(f) + §||ll||};_,(7)D (3.15)

Again, the theory of elliptic optimal control problems [41] implies that
the problem (3.14) has a unique solution ¢. The corresponding solution
of (3.13) is denoted by u. Moreover, as in the earlier case there exists an
adjoint state L1 € V such that

a(v, ) = (u—uy,v) YveV, (3.16)
and

(U+Lg,p—q) =0 Vpe QL (3.17)
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Similar to the boundary control problem, it can be checked that
the strong formulation of the optimality system satisfied by the solution
(u, [0, ) is given by

Pu=f+¢q in [,

(PO0=wu—wu, in [,

Fu
u=0,— =0 on L[,
B?/'
KN
DZO’_[MQ =0 on 1],
O O

1 .
q: D[g,m __DD m D,

where we recall that [,,g(x) is defined by L[, ,;g(x) = minld, max
La, g(x) 1L

Remark 3.3. The quadratic functionals J in (3.2) or (3.11) may consists
of |lw — uyllpry for k=1 or 2. The analysis in the forthcoming section
can easily be extended to these cases as well.

4. DISCRETE PROBLEMS
4.1. Notations

Denote the norm and semi-norm on H*(D) (k> 0) for any open
domain D C [I* (s > 1) by [|v||yp and |v|;p. Note that the semi-norm | - |y -
defines a norm on V = H?([1) N H,([1) which is equivalent to | - [|o.. Let
[, be a regular simplicial subdivision of [I. Denote the set of all interior
edges/faces of [, by [/, the set of boundary edges/faces by (17, and define
Uy =8 U ). Let hy=diam(T) and h = max[ky : T € [J,[] The diameter of
any edge/face ¢ € [, will be denoted by 4,. We define the Sobolev space
H*([,[,) associated with the subdivision [J, as follows:

H'(O,0) =wel(0): vlp e H(T)Y T € 0,1
The discontinuous finite element space is
Vi=we H([): vy € o(T)Y T e, (4.1)
where [Jo(D) is the space of polynomials of degree less than or equal to

2 restricted to the set D. It is clear that V, C Hy (1)) N H*([1, [};) for any
positive integer s.
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For any e € [}, there are two elements 7, and 7T_ such that e = [T, N
LI_. Let n_ be the unit normal of ¢ pointing from 7_ to T and set ny =
—n_. For any v € H*([1,[};), we define the jump of the normal derivative
of v on e by

[Cv] = DU+HE- ny + D'I},He~ n_

where vy = UH,&. For any v € H*([,],), we define the mean and jump of
the second order normal derivative of v across ¢ by

10 U
1120/ R (1= 3 ol n® + ol 0,
and
9 O 9 o
[0 T = Fod n® — Boln®
respectively, where n is either n, or n_ (the sign of n will not change the
above quantities).

For notational convenience, we also define jump and average on the
boundary edges. For any ¢ € [?, there is an element T € [, such that e =
LT N L. Let n, be the unit normal of e that points outside 7. For any
v € H*(T), we set on ¢

[Mv[= Uv - n,,
and for any v € H*(T), we set
BN 9 ‘)[D 9 9
ol Ln® = Fol LRl

We require the following trace inequality [20]:

Lemma 4.1.  There holds for v € H*([)) N H) (1)) that

ol [,y < Cllvllen Y1 < i < ml]
We also use the following inverse inequality on V,, [6, 13]:
Lemma 4.2. For v, € V,, there holds

lvnllra < Ch 2 Nonllrgry YT € Ly,

wheve e is an edge of T
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4.1.1. Enriching Map

Let V., C H*(LJ)NH, (1) be the Hsieh-Clough-Toucher C' finite
element space associated with the triangulation [, (see [6, 9, 13]). In
the error analysis of discontinuous Galerkin methods, we use an enriching
map F, : V, — V, that plays an important role. As it is done in [9], we
define E; : V, — V. as follows: Let N be any degree of freedom of V,, i.e.,
N is either the evaluation of a shape function, its first order derivatives at
any vertex, or the evaluation of the normal derivative of shape function at

the midpoint of any edge in LJ,. Then, for any v € Vj,

1 U
N(E,v) = m N(vp)0
N

Telly

where [y is the set of triangles sharing the degree of freedom N and |[y]|
denotes the cardinality of [y.

The following lemma states the approximation properties satisfied by
the map E, [9], also see [7]:

Lemma 4.3. Let v e V,. It holds that
( . )
O < o , O 10
hit | Eyo — 1’”5] + h ol Eyy — v) g < cl m Eﬂj@mﬁ )

Tely, [,672 0,¢

YvelV,

and

( |
0 ) i EE@ME |
o = ley < €L 50 Vel

Tel, el O

Following [9], the bilinear form for the numerical method is defined by

g U g U | |
a(w,v) = D?*w : D*vdx — Pwl n®  [Mv(ds
Tely, r I'E,;.L
m R o Y
— Fol (n® Mw(llds + — MwIMvOds, (4.2)

G ;e
2 i
FE,}[ ﬂG,h
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where [1> 0 is a real number. Define the following norm for v € H*(L1, [J,)
for s > 2:
( |
0 g O

2 2 0
oz = 1D, + = ot as)

reny, et}

We refer to [5, 9] for a proof of the following lemma.
Lemma 4.4. [t holds that
an(w,v) < Clw|pllvll, Yw, v e V]

For sufficiently large L] it holds that

toll? < a(v,v) Yue V0

4.2. Discrete Boundary Control Problem

The model we study in this case is the Model Problem 1 described
in Section 3. In this model, the space V = H?*(1)NH, (1) and V, is
the one defined in (4.1). The space Q = I[»([) and W = I([1). Set
Qe = Oy, where Q, is defined in Section 3. The discrete control space
Q, is defined by Q, = [P, € Lo(L) : pul. € Ps(e), Ve € [} 1and define the
admissible set Q" = [p, € Q,: ¢ < p, < gl It is clear that Q", C Q. and
Lq € Qahd whenever g € Q. The operator B: V — (@ is nothing but the
piece-wise ([}-wise) normal derivative on [J and B, : V, = Q, is defined
by the piecewise (edge-wise) normal derivative, i.e., B,v|, = ([vr/ [n) |.,
where vy = v|y and T are the triangle having the edge ¢ on its boundary.
We now verify assumptions (2.7) and (2.8). The inequality (2.7) follows
from the results on Poincaré type inequalities in [4]. The estimate in (2.8)
follows from the well-known trace inequality on H?([]) and the properties
of enriching function E, as follows: Let v € V and v, € V,. Then

O g O
(v —w) nll;, <2 v —Ewv) Cnlly, + | (vn — Eyui)! Cnllj,
ae,b (»e,b
I L
- 2
=2 ||E(U_Ehvh)/ Dn”o,ﬂ-

1<i=m

+92 | C(on — Fnos)/ B””g,em
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Since (v — E,u;) € H*([1) N H)([1), the trace inequality in Lemma 4.1
implies that

U
1o — )] (g, < Cllo = Evonlls . +2 1w, — Eyon)! [nllg,,

b b

€€ e€

then the triangle inequality yields

( )
9 0 2
1o —v) 2, <CUllv—wl24+ (o —Ew)l nl2,) 0

2 3 2
Le,h ee

O

i
The trace-inverse inequality in Lemma 4.2 on discrete spaces and
Lemma 4.3 complete the proof of (2.8).

The abstract error estimates in Theorem 2.2 and Theorem 2.3 are valid
to the model problem under discussion.

Using the error analysis in [9] and [8, 25], we deduce the following

error estimates for the projections P,u and P,
O O
lu — Pull, < C inf lu—vlls + 2lfll=0 + h'"* inf lg — pullo,o
Vi Phen

upEV),

I0—PO,<C inf ||L— Olln + ¥ Jw =gl O
UREVh

Using these estimates, Theorem 2.2, and Theorem 2.3, we obtain the
following error estimate:

lg — Qh%oi‘l' lw — wpll, + 11U — Uglls

=C inf lU—wl,+ inf flu— Ol A P2l — wgllo A RIS
YhEVh

v, eV),

0 L e — (0 [@Ho,, +1llg — Uagllo,-

2 . _
+h f’iggh lg — pallo.n L

Now we can apply the elliptic regularity to derive concrete error estimates.
Note that by the well-posedness of the problem, u, [l € H*([!) and g €
L,(D). Then the optimality condition (3.9) implies that

U U
100

=0Opq ——— O
q lg,q1 O
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The elliptic regularity on polygonal domains [3, 21] implies that [e
H?*"(11) for some s € (0,1], which depends on the interior angles of the

domain . Then
ql, € H'*(J) foralll <i<m,

since ([1/[n)|, € H"*™(}) for 1<i<m. Using this and since
#ul Th® = ¢ on [1], we also deduce that u € H**([1).

Thus we have proved the following theorem:
Theorem 4.5. Let s € (0, 1] be the elliplic regularily index. Then there holds

lg — qullo, + llu — willp + 110 — Dills

O
= O Nwllyvs + 1 ogs + 2llw — uallo,
U U

i
+Ch* RNl + R gl O

i=1

Define the estimators

O n U0 g O 0
3 = RAAfIG + + h, Pul n® " 4+ b7 M, ds
Tell ee,z ¢
U
0 O
+ b Pl (n® — qh@ ds,
el ¢
and
O o Bo o O
2= Rl — wgllg 7 + h, ﬁmh/ (n? T b7, ds
Tel, r»E,;.I ¢
0 O @
+ h, ET’Dh/ (h?
et

Again, the error analysis in [9] conclude the following error estimates:

[Ru — wlln = CL,

|RO — Ol < COLTI
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The following theorem is the consequence of the above two estimates,
Theorem 2.5, and Theorem 2.6:

Theorem 4.6. There holds

O O
lg — gullo,+ llw — wpllp + 10— Cilly < € O+ 0
+C|ILL/ U — L (LG i) [lo,

Define the oscillations of a given function g € Ly(7T) by
osc(g, T) = min — g O
(g, 7) = min lig —glor

The local efficiency of the error estimators is presented in the following
theorem:

Theorem 4.7. Let [, be the set of two iriangles sharing the edge e € [1},. Then
there hold
g U
hrlfllor = C DIu — wlyr + Fose(f, T) .
hepllwy = wallor < G lw— wylor + 10— Dhlor + osc(ug, T)

K2 mﬁ/ 2 <CDD— TD
A wl [n® g, < lw— wylor + osd(f, T)

Tell,

O

1/2 MD‘? / 2[[” <C O _ _ T 0
Rl Ul D™ lo, < lu — wplor + | — Uplor + osc(uq, T)

Tell,
g
1L/ D= L (L Er) llo,e < € 1E(E, — L)/ Loflo,e + 1LY L

O
= (L ) llo.e
forall e € [ and T € U,. Further for any boundary edge ¢ € [, there hold

12 2 O a
B2 Rl 0 — qullo. < C Dlu — Wilor + Ilg — qullo,. + osc(f, T) :
RPNE 0 Do, < € Ju— wplog + |0 = Oylag + ose(ug, T)

where T € U, is the triangle sharing the edge e.

Proof. Firstly, note that the triangle inequality and the stability of the
projection L, imply
0 T — (10 D) o
< IE/ T — T Cllo,e + 120 T — D4 (C0 Tr) llo,e
+ 1D a(E ) — 05 (C0G Cn) o
< 2|1/ T = L Enllo, 4+ 10/ T — O, (CL D) flo, L
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This proves the efficiency of the term involving the projection [,. The
proof of the remaining estimates of the theorem follow by the standard
bubble function techniques. g

4.3. Discrete Distributed Control Problem

The model problem in this subsection is Model Problem 2 introduced
in Section 3. Set V = H*([1) N H}([1), W = I,(1) and Q = Ly([]). The
set Q. = Q,, where @, is defined in Section 3. The discrete set V, is
the same as in (4.1). Define the discrete space Q, = [P, € Lo([1) : pulr €
Py(T), VT € [,Jand the admissible set Q" = (p, € Q,: g < p, <Gl It is
casy to check that Q% ¢ Q,, and [J,q € Q", for ¢ € Q,,. The operator B :
V — Q and By, : V,, = @, are inclusion (identity) maps. Assumptions (2.7)
and (2.8) are the Poincaré type inequalities derived in [4].

The error analysis in [9] and [8, 25] implies the following error
estimates for the projections P,u and P,[:

U U

lw— Pyull, < C inf lu— v, + 2llfll=,0 + thirelgj lg — pallo

vpEV),
0 0
10 =Py < € inf 10— vyl + A2 llw = wgllo )

vpEV),

Using Theoremz 2.2, Theorem 2.3, and above estimates, we find

||’] - ’]h”o,, + ||u - uh”h + ”D - D/L”h
U

<C inf |O=ollp+ inf Ju— ol + 2w — wallo + ISl
v, €V, €V},
0

0= Mo + lg = Dagllo, + A% inf |lg — pullo.. [
brheQn

We invoke the elliptic regularity now to derive the concrete error estimates.
Note that
O O

1
=llq —=0 [
q lg.q) 0

By the elliptic regularity [21], there is some s € (0, 1] which depends on
the interior angles of the domain [ such that u, [l € H?"([J) and hence
q € Whe(1).

Thus we deduce the following theorem as in the case of a boundary
control problem.
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Theorem 4.8. Let s € (0, 1] be the elliptic regularity index. Then there holds

llg — gullo, + e — wylly + 10— il
O O
<GB Nullors, + 1 EMows, o + 1w — uallo,
O 9 O
+ Ch |[fll=1.c + A7 Mlglho C

Define the estimators

o, o 0o, g :
2= RS+ gl 4 + he Bl tn® " 4 27 M, B ds
ey et
0
0
+ h, 2wl DnQst,
('E,Z ¢
and
N , o tHopg 03 R
3= Rl — wally 7 + hy (2040 In® " 4 B 00,0 ds

Tely ('Efz ¢
0
a 0
+ he 20,1 EW@dsD

b 4

eslly

As in the case of a boundary control problem, the following theorem
on a posteriori error estimates is a consequence of the results in [9],
Theorem 2.5, and Theorem 2.6:

Theorem 4.9. There holds
O O
g — qullo,n + 1w —wlly + 10— Tyl < C T4+ CF 4 10 — Ual) o, [

The following theorem on the local efficiency can be deduced by the
standard bubble function techniques:

Theorem 4.10. Let [, be the set of two triangles sharing the edge e € ). Then

there hold
O O
hT”f + q/L”O,T S (J D|u - uh|2,T + ||q - qh”(),T + OSC(f, T) )
hpllwy, — wallor < C Ju— wplor + 1L — Uplor + oseuq, TY)
O

2 Hﬁ /mn?Eﬂ <C Tt = il — TD
Ll D, lo. < lu — wplor + 1qg — qullor + ose(f, T)

Tell,

P P 0o - .=
hg ” D/L Lh ”0,0 =< Cc |u u/L|O,T+|D Dhl?,T—I_osc(ud’ ) )

Tell,
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g U
15 = Ualallor = G 1 = Dllor + 10— L4 0llor
forall e € [ and T € U),. Further for any boundary edge e € [, there hold
o s 9 g 0
BN Fwd T llo, < € Ju=wlor +llg =gl +oslf, T)
h3/2||ﬁmh/ 0o, < C Ju— wlor + 10— hlor + osd{ug, T)

where T € U, is the triangle sharing the edge e.

5. NUMERICAL EXPERIMENTS

In this section, we present some numerical experiments to illustrate the
theoretical results derived in the article. In all of the examples below, we
choose the penalty parameter (1= 10. The discrete solution is computed
by using the primal-dual active set algorithm in [41]. For each of the
examples below, we test the order of convergence obtained on a sequence
of uniformly refined meshes with mesh parameter % as is shown in Table 1
and Table 2. Further, we test the performance of the a poslerior: error
estimator on a sequence of adaptively refined meshes using the following
adaptive refinement algorithm:

SOLVE — ESTIMATE — MARK — REFINE

We compute the discrete solutions, and then we compute the error
estimator and mark the elements using the Dorlfer marking technique
[16] with bulk parameter [J= 0(3. We refine the marked elements using
the newest vertex bisection algorithm and obtain a new mesh.

Example 1. In this example, we consider a model of distributed optimal
control problem with homogeneous simply supported plate boundary
conditions. The computational domain is chosen to be [ = (0, 1)*. We set
the parameters ¢ = —750, ¢ = —50 and 1= 107". The data of the model
problem is constructed in such a way that the exact solution is known. This
is done by choosing the state variable u and the adjoint variable L] as

u(x,y) = O(x,9) = sin”( [ix) sin?’(Dy),

TABLE 1 Errors and orders of convergence for Example 1

h e — 2wyl order 10— Cella order lg — gnllo, order
1/8 6.5598 - 6.5644 - 58.6117 -

1/16 3.3721 0.9600 3.3808 0.9573 29.7993 0.9759
1/32 1.6701 1.0187 1.6719 1.0158 14.6533 1.0241
1/64 0.8286 1.0112 0.8289 1.0123 7.3130 1.0027

1/128 0.4133 1.0037 0.4133 1.0040 3.6581 0.9994
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TABLE 2 Errors and orders of convergence for Example 2

h lu — uplln order 10— Calla order Ilg = qullo, order
1/8 37.6642 - 0.0867 - 6.1533¢+002 -

1/16 7.8031 2.2711 0.0363 1.2563 3.4702e+002 0.8264
1/32 2.0838 1.9049 0.0178 1.0256 1.8139e+002 0.9359
1/64 0.9318 1.1611 0.0090 0.9830 9.2646e+001 0.9693
1/128 0.2908 1.6799 0.0045 1.0008 4.6435¢+001 0.9965

O O
and the control ¢ as ¢(x) = U_750,_50) —{D(x) . The source term f and
the observation u, are then computed by using

f:DQU—(], ug = u — [P0

The exact errors and orders of convergence have been computed on a
sequence of uniformly refined meshes and shown in Table 1. The results
clearly predict the linear rate of convergence derived in Theorem 4.8.
Now, we test the performance of the a posteriori error estimator in
Theorem 4.9 for the above distributed control problem. Note that the
state and the adjoint state are smooth but not the control. Figure 1
shows the behavior of the estimator and the errors ||u — u|l || — Opylls
and |lg — ¢xllo,, with the increasing number of degrees of freedom N

10 T T T i
10° ¢ 5
k]
w
£
5
w9
- 10 4
o 3
(]
e
e
i}
—— Estimator
10° F —— Error in State and Adj State 4
—@— Error in Control
—— Optimal Rate
=1
10 e | i PRy | i i Pa— P | L PR | P
10’ 10° 10° 10* 10°
Degrees of Freedom

FIGURE 1 Errors and estimator for Example 1.
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FIGURE 2 Efficiency Index for Example 1.
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FIGURE 3 Adaptive mesh refinement for Example 1.
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(number of unknowns for state variable). We observe that the estimator
is reliable. The errors in state, adjoint state, and control converge at the
optimal rate of 1/ /N - The efficiency of the estimator is depicted through
the efficiency indices estimator/ ([[u — wylls + |00 — Tills + Il — qullo.n) in
Figure 2. Finally, Figure 3 shows the adaptive mesh refinement.

Example 2. In this example, we consider a boundary control problem
defined on a square domain [J = (0,1) x (0,1). In order to form the
problem with known solution, we slightly modify the model problem to the
following:

Pu=f in 0,
Pu
u =0, @ZQ-F% on [1],

where ¢, is a given function. We set the state variable to be u(x,y) =
sin(Llx)sin(Ly), the adjoint variable to be [(x,y) = (x — 2x° + x*) (y—
2y® 4+ y*), and the control to be
O O
_ 1[0
q= 1500.2000] T

where [1=10"*. The data of the problem is then computed by

Pu
N2

f:Dgu, ud:u—DgD, and ¢, = —qU

In the first experiment, we test the order of convergence on a sequence
of uniform meshes. The linear rate of convergence can be observed in
Table 2 as it is derived in Theorem 4.5.

In the second experiment, we test the performance of the error
estimator in Theorem 4.5 using the adaptive algorithm. Figure 4 illustrates
the reliability of the error estimator and the optimal rate of convergence
of the adaptive refinement algorithm. Efficiency of the error estimator is
shown in Figure 5. The local mesh refinement on the boundary is realized
near the kinks of the control, see Figure 6.

Example 3. In this example, we test the performance of the a posterior:
error estimator for a distributed control problem in the presence of re-
entrant corners. The domain [J is set to be L—shaped as is shown in
Figure 8. We set the source term f =1 and the observation u, = 1. The
parameters ¢, ¢ and []are taken as in Example 1. In this case, since we
do not have exact solutions at hand, we test the optimal convergence of
the error estimator and its performance in capturing the re-entrant corner.
The numerical experiment shows that the error estimator converges
optimally (see Figure 7) and refines the mesh locally at the re-entrant
corner (see Figure 8) as is expected.
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FIGURE 4 Errors and estimator for Example 2.
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FIGURE 5 Efficiency index for Example 2.
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FIGURE 6 Adaptive mesh refinement for Example 2.
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FIGURE 7 Errors and estimator for Example 3.

Example 4. Similar to Example 3, we test the performance of the a posteriori
error estimator for a boundary control problem on the L—shape shown
in Figure 10. We consider the source term f =1 and the observation
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FIGURE 8 Mesh refinement for Example 3.
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FIGURE 9 Errors and estimator for Example 4.

ug; = 1. We test the optimal convergence of the error estimator and
its performance in capturing the re-entrant corner and possibly the
singularities in the control on the boundary. We consider the parameters
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FIGURE 10 Mesh refinement for Example 4.

g =—200, ¢ =200 and U= 10~3. The experiment shows the optimal
convergence of the error estimator (see Figure 9) and the local mesh
refinement at the re-entrant corner (see Figure 10) and on the boundary.

6. CONCLUSIONS

We have developed a framework for the error analysis of discontinuous
finite element methods for linear elliptic optimal control problems with
control constraints. The abstract analysis provides the best approximation
results, which will be useful in convergence of adaptive methods
and delivers a reliable and efficient a posteriori error estimator. The
results are applicable to a variety of discontinuous Galerkin methods
(including classical nonconforming methods) applied to elliptic optimal
control problems (distributed and Neumann) with constraints on
control. Applications to C” interior penalty methods for optimal control
problems governed by the biharmonic equation with simply supported
boundary conditions are established. Numerical experiments illustrate the
theoretical findings. The results in the article will not directly cover the
analysis of nonlinear elliptic optimal control problems, however they will
be useful to analyze the nonlinear problems.
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