
Ultrasound-modulated optical tomography:
direct recovery of elasticity distribution
from experimentally measured intensity
autocorrelation
K. P. MOHANAN,1 A. K. NANDAKUMARAN,2 D. ROY,3 AND R. M. VASU1,*
1Department of Instrumentation and Applied Physics, Indian Institute of Science, Bangalore 560012, India
2Department of Mathematics, Indian Institute of Science, Bangalore 560012, India
3Computational Mechanics Lab, Department of Civil Engineering, Indian Institute of Science, Bangalore 560012, India
*Corresponding author: vasu@isu.iisc.ernet.in

Received 4 December 2014; revised 23 March 2015; accepted 23 March 2015; posted 24 March 2015 (Doc. ID 229022); published 29 April 2015

Based on an ultrasound-modulated optical tomography experiment, a direct, quantitative recovery of Young’s
modulus (E) is achieved from the modulation depth (M) in the intensity autocorrelation. The number of detector
locations is limited to two in orthogonal directions, reducing the complexity of the data gathering step whilst
ensuring against an impoverishment of the measurement, by employing ultrasound frequency as a parameter to
vary during data collection. TheM and E are related via two partial differential equations. The first one connects
M to the amplitude of vibration of the scattering centers in the focal volume and the other, this amplitude to E. A
(composite) sensitivity matrix is arrived at mapping the variation of M with that of E and used in a (barely
regularized) Gauss–Newton algorithm to iteratively recover E. The reconstruction results showing the variation
of E are presented. © 2015 Optical Society of America
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tics; (170.6960) Tomography; (170.3010) Image reconstruction techniques; (170.4580) Optical diagnostics for medicine.
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1. INTRODUCTION

In ultrasound-modulated optical tomography (UMOT) [1,2] a
focused ultrasound (US) beam has been introduced to mark out
a localized region in a biological object for imaging with coher-
ent light. Since the US beam can be tightly focused in tissue, a
remedy for poor spatial resolution in the optical contrast recov-
ery in diffuse optical tomography can be had through UMOT.
The US beam introduces a modulation of the refractive index,
n�r�, and additional dynamics, over and above the tempera-
ture-induced Brownian motion, to the scattering centers in the
focal region referred to as the region of interest (ROI) in the
object [3,4]. Owing to these, a coherent light beam interrogat-
ing the object picks up a phase modulation from the insonified
ROI, which appears as a modulation on the overall decay of the
specific intensity, I�r; k̂s ; τ�. The specific intensity I�r; k̂s ; τ� is
derived from the mutual coherence function of light,
hEa�ra; t�E�

b �rb; t � τ�i expressed in center of gravity coordi-
nates (i.e., r � �ra � rb∕2�, with k̂s representing the normal-
ized scattered light propagation vector in the direction rb − ra).
The property of light followed here is an angle-averaged version
of I�r; k̂s ; τ�, called the amplitude autocorrelation,G�r; τ�. The

intensity autocorrelation g2�r; τ� which is the experimental
measurement, is related to g1�r; τ� � �G�r; τ�∕G�r; 0�� and
has a modulation, M , owing to the phase modulation picked
up by the specific intensity of light in its passage through the
ROI. From M , the optical and mechanical properties of the
material in the ROI can be reconstructed. The typical mechani-
cal property is the Young’s modulus which influences the am-
plitude of oscillation of the scattering centers. In an earlier work
[5], we demonstrated the recovery of p�r�, the distribution of
the mean-squared amplitude of vibration of the scattering cen-
ters in the object undergoing nearly sinusoidal oscillation under
local US forcing (i.e., p�r� � hjA2�r�ji, where A�r� is the am-
plitude of vibration and hi represents averaging over a volume
�l��3 with l� denoting the transport-mean-free path of pho-
tons) fromM . The readily measured quantity in an experiment
is g2�r; τ� on the boundary of the object, from which M (the
experimental measurement) can be computed (see [6] for the
relation between g1 and g2). Since the local absorption coeffi-
cient μa�r�, p�r� and n�r� influenceM , it should be possible (at
least theoretically) to recover all the above three parameters per-
taining to the ROI fromM . For this, a perturbation equation is
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set up from the correlation diffusion equation (CDE) describ-
ing the propagation of G�r; τ� in a turbid medium [5], thus
connecting the US-induced perturbations in the ROI [which
are in n�r� and mechanical vibration of the scattering centers]
to M , which is the perturbation of G�r; τ�. This equation, re-
lating p�r� nonlinearly to M (as in [5]), is solved either as it is,
or, for ease of computation, after linearization at p � 0. The
solution involves finding p�r� which minimizes ε�p� �
1
2 ‖M −M‖2, where M is the experimentally measured modu-
lation depth and M its computationally obtained counterpart
[M may be looked upon as a function of p�r�]. In [5], the
above minimization is achieved by employing an iterative regu-
larized Gauss–Newton algorithm.

Even though p�r� gives an indication of the mechanical
stiffness of the object, a more appropriate parameter to recover
is Young’s modulus (E). With this in mind, this work demon-
strates the direct recovery of E from experimentally measured
M without recovering p�r� en route. An additional partial dif-
ferential equation (PDE) is required, the momentum balance
equation connecting A�r� to E�r�. The last equation may be
viewed as a constraint that p�r�, entering the propagation equa-
tion of G�r; τ�, should satisfy. We note in passing that in this
work we do not approach the inverse problem of recovery of
E�r� fromM as a PDE-constrained optimization problem (as is
done in the context of diffuse optical tomography in [7,8]);
instead, we employ the two PDEs to arrive at a composition
to compute M given E�r� and also the required sensitivity
matrices. The Jacobian matrix giving the rate of change of
M with respect to E is obtained as a composition of the sen-
sitivity ofM with respect to p and p with respect to E wherein
the measurement operator connecting A to p is also employed.
For the recovery of E we follow the Gauss–Newton algorithm
which sets up and solves a perturbation equation by locally
linearizing the equation connecting M to E at the current
estimate of E .

Apart from the direct recovery of E , a novelty of this work is
the introduction of a greatly simplified data collection modal-
ity. In order to gather a sufficiently large set of orthogonal data,
we do not so much increase the number of detectors, but scan
the frequency of the ultrasound source, resulting in a set of
measurements, M , whilst limiting the number of detectors.
Since a measurement with good signal-to-noise ratio requires
painstaking alignment of a single speckle to a single-mode op-
tical fiber, for a tomography experiment using many detectors,
maintenance of a multitude of detectors in proper alignment is
too cumbersome to be practically realizable. This justifies the
reduction of the number of detectors and the introduction of
another parameter, namely, the US frequency, by the variation
of which, as shown in this work, we could gather sufficient in-
dependent data to make the inverse problem computationally
tractable. If p�r� is retained as the primary unknown, along
with the acoustic frequency, the dimension of the problem also
increases posing a challenge to an accurate reconstruction.
However, by projecting p�r� to E�r�, the latter being invariant
to the acoustic frequency, through the momentum balance
equation applied to the vibrating US focal region, we escape
the growth of the problem dimension and the consequent in-
stability of the inversion algorithm. As mentioned earlier, the

experimental simplification achieved, as seen in Section 4
below, is that we get enough independent data with barely
one, or at most two, detectors. (The concept of varying the
ultrasound frequency was introduced in an earlier work by
some of us [9] in the context of UMOT. In this, the objective
was to recover the elastic modulus of the insonified region, con-
sidered homogenous with a single value, from the measured
natural frequency of the vibrating region obtained from the
peak of the speckle modulation depth. In the present work
the insonified region is inhomogenous and our objective is
to recover E�r� tomographically from a set of modulation
depths measured around this peak.)

The rest of the paper is organized as follows. In Sections 2
and 3 the forward models connecting the measurement to E via
the US-induced amplitude of vibration are introduced. With
these as the forward models, Section 4 gives the recovery of
E�r� by solving a mean-square error minimization problem us-
ing an appropriately regularized Gauss–Newton algorithm. The
computation of the Jacobian matrix, a major step in the iter-
ation, is fully described, wherein the forward PDE’s and their
adjoints are made use of. The experiments, done using
composite (poly) vinyl alcohol (PVA) with inhomogeneous
stiffness distribution in the central region, are given in
Section 5. Reconstruction results are discussed in Section 6
and compared with those from numerically simulated data.
Conclusions are put forth in the last section, Section 7.

2. PDE MODEL FOR CORRELATION
PROPAGATION

The basic quantity related to the coherence of light, the specific
intensity I�r; k̂s ; τ� at point r and time τ in the direction given
by the unit vector, k̂s, propagates through a turbid medium
obeying the correlation transport equation (CTE) [10]. In a
medium where scattering predominates, an angle-averaged
version of I�r; k̂s ; τ� given by G�r; τ� � R

4π I�r; k̂s ; τ�dk̂s
and referred to as the amplitude autocorrelation, obeys the fol-
lowing diffusion equation:

−∇ · κ∇G�r; τ� � �μa � 2μ 0
s k20DBτ�G�r; τ� � S0�r − r0�:

(2.1)

Here κ � 1
3�μa�μ 0

s � is the optical diffusion coefficient, and μa and
μ 0
s are the optical absorption and (reduced) scattering coeffi-

cients, respectively. Moreover, DB is the particle diffusion co-
efficient of the medium, k0 is the modulus of the light
propagation vector, and S0 is the strength of the isotropic point
source at r0. The term 2μ 0

s k20DBτ is owing to the Brownian
motion of the scattering centers induced by the background
temperature and we denote it by B�r; τ�. When a focused
US beam insonifies the object, it produces in the focal region
(the ROI) a refractive index modulation �Δn� and leaves a com-
plex dynamics which looks like noisy aperiodic oscillations in
the scattering centers therein. The ROI is approximately hyper-
boloidal in shape whose volume and length-to-width ratio can
be tailored by the parameters such as the focal length f and
f ∕no of the focusing US transducers [11]. Considering the
tissue-like medium almost incompressible with a Poisson ratio
close to 0.5, we neglect Δn and consider only the dynamics of
the scattering centers resulting in a perturbation term in
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Eq. (2.1). The result is that G�r; τ� is perturbed to G�r; τ� �
Gδ�r; τ� and Eq. (2.1) becomes

− ∇ · κ∇�G � Gδ��r; τ� � �μa � B�r; τ�
� A�τ�χI p�r; τ���G � Gδ��r; τ� � S0�r − r0�: (2.2)

Here the perturbation term on the left-hand side is denoted
by A�τ�χI p�r; τ�, where A�τ� � c sin2 ωaτ

2 and χI is the char-
acteristic function over I , the insonified ROI. Furthermore, ωa
is the acoustic frequency in radians and c is a constant depend-
ing on l�, the acoustic wave vector ka, the viscoelastic and the
elasto-optic coefficients of the material of the object [12]. We
note that the representation of the dynamics by sin2 ωaτ

2 is at
best an inadequate approximation. For a correct model one
needs to take into account the behavior of scattering centers
in a typical viscoelastic medium. A generalized Langevin equa-
tion (GLE), which takes into account the history-dependent
behavior of the particle wherein the interaction of the particle
with the surrounding bath particles is modeled by a multipli-
cative noise affecting the stiffness constant in the model, is re-
quired. This derivation of the appropriate GLE and its solution
are beyond the scope of the present work. Details of such a
model for a typical scattering particle executing temperature-
induced fractional Brownian motion in the presence of an ex-
ternal sinusoidal forcing can be found in [13]. In the absence of
such a model, we rely on the sinusoidal approximation of A�τ�
given above. Equation (2.2) is supplemented with the Robin-
type boundary condition

�G � Gδ��r; τ� � κ
∂�G � Gδ��r; τ�

∂n
� 0: (2.3)

With the material properties of the ROI and the US-induced
oscillations as input data, Eqs. (2.2) and (2.3) can be solved to
get �G � Gδ��r; τ� which is the forward solution of the
UMOT problem. This facilitates computing M , which is
the measurement given by

M�p; r;ω� �
����
Z

∞

0

�G � Gδ��r; τ�e−iωτdτ
����
ω�ωa

: (2.4)

Yet another related measurement is obtained from Gδ�r; τ�
that is readily computable from the perturbation Eqs. (2.6) and
(2.7) (to be given below):

M 1�p; r;ωa�jr∈∂Ω �
����
Z

∞

0

Gδ�r; τ�e−iωτdτ
����
ω�ωa

: (2.5)

In an experiment, intensity autocorrelation is measured, from
which M�p; r;ω� is computed; however, M 1 is easily obtained
from M by subtracting the background pedestal from M at
ω � ωa. With this measurement, (a part of) the inverse prob-
lem of UMOT is the recovery of p�r� given M 1�p; r;ωa�,
where Eqs. (2.2) and (2.3) represent the forward model of cor-
relation diffusion in a turbid object. In order to facilitate this
inversion, we first rewrite the forward equation as

− ∇ · κ∇Gδ�r; τ� � �μa � B�r; τ� � A�τ�χI p�r; τ��Gδ�r; τ�
� A�τ�χI p�r; τ�G�r; τ�; (2.6)

with the boundary condition

Gδ�r; τ� � κ
∂Gδ�r; τ�

∂n
� 0; r ∈ ∂Ω: (2.7)

The above equation connects p�r; τ� nonlinearly to Gδ�r; τ�
because of the presence of a term containing p�r; τ� on the left-
hand side (LHS) of it. If we neglect the term containing the
product ofGδ�r; τ� and p�r; τ� from the LHS of Eq. (2.6), then
it becomes linear in the unknown p rendering the inversion of p
using Eqs. (2.6) and (2.7) computationally more expedient.
When we use the linearized perturbation equation given by

−∇ · κ∇Gδ�r; τ� � �μa � B�r; τ��Gδ�r; τ�
� A�τ�χI p�r; τ�G�r; τ�; (2.8)

the following simplifications in the computation accrue [5]. For
example, the derivatives once evaluated at the start need not be
updated at the end of each iteration, but only measurement
error M −M�p�i. Also the PDE part of the Frechet derivative
operator retains the structure of the forward propagation PDE
[Eq. (2.1)]. Consequently, for the computation of the Jacobian
one can use the adjoint of Eq. (2.1). The finite element (FE)
discretization of the PDE [Eqs. (2.6) and (2.7)] leads to a set of
linear algebraic equations represented by

K �p�Gδ � q; (2.9)

where K �p� is the system matrix and q is the source vector. As
indicated earlier, we have used this equation, derived from the
linearized version of the perturbation equation [Eq. (2.8)], in
our inversion scheme. In accordance with the simplified data
collection strategy (i.e., of measuring modulation depth for a
set of US frequencies at only one or two detector locations)
we sweep the US frequency. When the forcing frequency is
changed the amplitude of vibration of the scattering centers
change, resulting for each frequency a set of new p�r�‘s for
a given E�r�. To compute the dataM 1 we use these p�r�’s first
in Eq. (2.8) and then in Eq. (2.5).

3. MOMENTUM BALANCE EQUATION

Here, the object under consideration is only the ROI, Ωf , the
portion insonified by the focusing US transducer where the dis-
placement is nonzero. In contrast, the focal region is defined to
be the support of the US transducer-induced radiation force.
To find Ωf , we first compute the US force [14] corresponding
to an approximated focal region (e.g., by incorporating the
nodes where the force exceeds a small fraction of its maximum
in a central node) and then solve for displacement via the mo-
mentum balance equation for the entire object, now considered
an infinite medium vis-à-vis the focal region. The internal
Dirichlet boundary ∂Ωf thus separates the zero-displacement
region of the object from the rest.

Toward computing the displacement field via an inversion
of the momentum balance equation, a plane stress approach
based on a 2D linear elasticity setup is adopted, with the
ROI material being assumed to be nearly incompressible.
Under strictly sinusoidal US forcing and the linear elasticity
framework, the vibrating ROI would exhibit sinusoidal re-
sponse with the frequency of the excitation once the transients
die out. Accordingly, the so-called mixed form of the governing
equations [in terms of the amplitude u0�r� of the displacement
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vector field u�r; t� � �u�r; t�; q�r; t��T and the pressure field
q�r�] takes the form [15]

ρω2u0 � ∇ ·

�
−qI � E

2�1� ν� �∇u0 � �∇u0�T �
�

� f 0;

r ∈ Ωf ; (3.1a)

∇ · u0 �
q�1� ν��1 − 2ν�

Eν
; r ∈ Ωf ; (3.1b)

u0 � 0 for r ∈ ∂Ωf : (3.1c)

Here E denotes Young’s modulus, ν Poissons ratio, ρ the
material density, f 0�r� the forcing amplitude, and q the pres-
sure, all referred to the undeformed configuration. Finally, ω
denotes the US forcing frequency. Within the FE method,
Eq. (3.1) may be successfully solved via a mixed weak formu-
lation even as the material approaches the incompressibility
limit, i.e., as ν approaches 0.5. The problem involved in the
weak formulation is to find u � �u0; q� ∈ H 1�Ωf � ×
L2�Ωf �∕R so as to satisfy

B�w; u� � �w; f 0�; ∀ w � �w;φ� ∈ H 1
0�Ωf � × L2�Ωf �:

(3.2)

Here �w; f 0� �
R
Ωf

w · f 0dΩf is the linear form and B�w; u�
the bilinear form defined as

B�w; u� �
Z
Ωf

�
ρω2w · u0 − �∇w� ∇wT �

:

�
E

4�1� ν� �∇u0 � �∇u0�T �
��

dΩf

�
Z
Ωf

�
�∇ · w�q � φ∇ · u0 �

φq
βE

�
dΩf ; (3.3)

where β is a large scalar multiplier ensuring that the bulk modu-
lus is much higher than E . Indeed, the pressure q can be elim-
inated using Eq. (3.1b) and one can get a weak formulation for
u0 alone. In the FE implementation, Eq. (3.2) may finally be
reduced to the matrix-vector equation given by

K huh � sh; (3.4)

where h denotes the characteristic element size, K h the so-called
stiffness matrix, uh the unknown vector (in general consisting of
both the nodal displacement amplitudes and pressure), and sh

the source vector. Equation (3.4) is inverted for uh

and p�r� ≅ hjuh�r�j2i.

4. DIRECT RECOVERY OF YOUNG’S MODULUS
FROM MODULATION DEPTH

We introduce the operator F 1�μa; p; κ� � Gδ through
Eq. (2.8) and the measurement operator M 1�Gδ� � M 1

through Eq. (2.5). Then the composite operator FA � M 1 ∘
F 1 maps p to M 1. Similarly, we introduce F 2�E; ρ; ν� � u us-
ing Eq. (3.1), the measurement operator M 2�u� � p through

p�r� � hju�r�j2i, and the composite operator FB � M 2 ∘ F 2

which maps E to p�r�. With these, we define the operator F �
FA ∘ FB which maps E to M 1, the measurement from the
UMOT experiment. Our attempt is to recover E from M 1

through the (direct) inversion of F .
We invert the equation F � M 1�E� for E by solving the

following nonlinear minimization problem:

minimize
E∈L∞�Ωf �

Θ�E� � 1

2
‖F�E� −M 1‖2L2�∂Ωf � �

λ

2
‖E‖2L2�Ωf �:

(4.1)

Here λ is an appropriate regularization parameter. We em-
ploy the Gauss–Newton algorithm to accomplish this minimi-
zation through the iteration

Ei�1 � Ei − �H �Ei��−1G�Ei�; (4.2)

where H and G are the Hessian and gradient, respectively, of
the error functional Θ evaluated at Ei using

H �E�δE � �DF��E�DF �E� � λI�δE (4.3a)

and

G�E� � DF��F�E� −M 1�: (4.3b)

Here I denotes the identity matrix, δE is an increment in E ,
andDF andDF� are, respectively, the Frechet derivative and its
adjoint of F . The Frechet derivative, or more appropriately its
finite dimensional equivalent, the Jacobian, is a matrix whose
elements are the rate of change of measurement(s) with respect
to nodal values of E . This is obtained by combining the deriv-
atives of M 1 with respect to p [which is the discretized version
of p�r�] and those of E with respect to p.

From the CDE we have derivatives of the type ∂M 1i
∂pj

, the
computation of which should involve two forward solves of
the CDE. A complete row of the Jacobian matrix can be com-
puted with only one forward solve of the CDE and its adjoint,
making use of the reciprocity relation which light diffusion
obeys [5]. Similarly, for ∂pi

∂Ej
, the momentum balance equation

[Eq. (2.3)] and its adjoint as given in [15] can be made use of.
However, since the number of unknowns in Ωf and the num-
ber of measurements are equal, the computational advantage of
using the adjoint formulation, in this case, is little; therefore, for
this part, we use the perturbation scheme which involves two
forward solves for each nodal unknown.

In order to compute a typical element of the Jacobian matrix
J � f∂M 1i

∂Ej
g one should consider the fact that a change in E at a

typical node, δEj, necessarily results in changes of p at all nodes.
Therefore, �∂M 1i∕∂Ej� �

Pk�N
k�1 �∂M 1i∕∂pk��∂pk∕∂Ej�; the

evaluation of this requires all the N derivatives of the type
∂pk
∂Ej
, where N is the number of nodes. The set of all derivatives

is evaluated using the appropriate forward Eqs. (2.6), (2.7),
and (3.1).

Once the derivatives are computed, Eq. (4.3) is set up and
the ith increment, δEi , is obtained from it. A direct inversion of
H �Ei� is not attempted; instead a second optimization step
using a conjugate gradient search to reach the optimal point
is employed. The algorithm is stopped when the norm of
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the error between the experimental measurement and its com-
puted counterpart falls below a preset small value.

5. EXPERIMENTS USING PVA PHANTOMS

A. Details of Phantom Fabrication

The PVA phantoms are fabricated using the method described
in [16,17]. We rely on only the air bubbles trapped during the
cooling–thawing cycles to give the phantom a tissue-like scat-
tering coefficient �μs� and do not introduce additional scatter-
ing centers. Therefore, the �μ 0

s � (reduced scattering coefficient)
obtained is only approximately 8.0 cm−1 and not high enough
to mimic human tissue. Similarly, an external absorber like
India ink was not added, with the result that the absorption
coefficient �μa� is uniform at a low value 0.1 cm−1. The
mechanical properties of the fabricated samples are density
�ρ� � 1000 Kgm−3, ν � 0.49, E � 11.3, and 22.39 kPa.
The objects were fabricated as slabs of dimension 3.5 cm ×
3.5 cm × 3.5 cm. The two composite slabs are made by sand-
wiching first a thin slice (thickness 0.5 cm) of 22.39 kPa
material in between two slabs of background Young’s modulus
of 11.3 kPa and then two slices of 22.39 kPa (thickness 0.5 cm)
at the ends of a single slab of background Young’s modulus of
11.3 kPa, to make the composite of thickness 3.5 cm.

B. Experimental Setup and Data Collection

The schematic diagram of the experimental setup is given in
Fig. 1. The PVA phantom is insonified by a two-region con-
focal US transducer. The two regions are driven by power am-
plifiers that take inputs from the same ultrastable, dual channel
function generator, at frequencies of 1 MHz and 1 MHz�
Δf Hz. The difference Δf can be varied from a few tens of
Hz to 1–2 kHz. At the common focal region, the ROI, the
two acoustic waves interfere producing also a force field, at
the difference frequency, which is assumed to be almost
sinusoidal. An unexpanded laser beam (from a He–Ne laser
of 15 mW, Thorlabs) is introduced from one side of the slab.
On the diametrically opposite side, a single-mode fiber is

carefully aligned to capture one laser speckle to maximize
the signal-to-noise ratio of the detected modulated intensity.
The focal region of the US transducer is approximately hyper-
boloidal in shape of length and width of the waist region
≈1.42 cm and 0.2 cm, respectively. For acoustic impedance
matching, both the transducer and the composite slab are
immersed in water. The transducer itself is mounted on a ro-
tation-cum-translation stage and aligned such that the ROI in-
tercepts the region where the inhomogeneity is [see Figs. 1(a)
and 1(b)]. In the first experiment, as shown in Fig. 1(a), the US
transducer is aligned so that the laser beam passes through a
central hole in the transducer and diffuses along its axis.
The modulated intensity, as captured by the single-mode
fiber from a single speckle is given to a photon-counting
photo-multiplier tube (PMT), Hamamatsu H7360-03. The
current from the PMT is given to a signal conditioner and con-
verted into voltage and given to a hardwired autocorrelator.
From the autocorrelator we get intensity autocorrelation,
g2�τ� �

R∞
0 I�t�I�t � τ�dt ≡ hI�t�I�t � τ�i. From g2�τ�,

g1�τ� is computed using the Seigert relation [6]. [The hard-
wired autocorrelator is a digital device which samples the in-
coming signal and computes g2�τ� for a specified duration.
Here we have set this duration as 15–20 min. We can also
set the sampling time depending upon the maximum frequency
of the signal of our interest. We have chosen 100 μs as the
sampling time. The finite memory in the autocorrelator and
the selected sampling time put a limit on the number of sam-
ples of g2�τ� one can gather. In our case, this number �L� was
kept at 2048.]

The data, which is the modulation depth in g1�τ� �M� is
obtained as the modulus of the Fourier transform of g1�τ�
evaluated at Δf Hz. From M , the data M 1 is computed as de-
scribed in Section 2. As stated earlier, we enrich the data set by
varying Δf . The collected set of M 1 as Δf is swept from 200
to 700 Hz is shown in Figs. 2 and 3. The variation of M 1 is
considerable in the range of Δf used in the experiment; in fact,
M 1 goes through resonance-like peaks in this range (for exam-
ple, Fig. 3).

Fig. 1. Unexpanded beam from the laser source L illuminates the ROI insonified by a confocal ultrasound transducer (UST). The scattered
intensity of the light is detected by the photo-multiplier tube (PC-PMT) and given to the correlator DAC and then to a computer C. The UST is
driven by power amplifiers (PA) that take input from a dual-channel function generator (DCFG).
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Since, from our experience, data from a single source posi-
tion is found to be not quite adequate for a proper recovery of
E , we have also collected data from a second detector position
[see Fig. 1(b)]. Since the alignment of the single-mode fiber is
very cumbersome, it was decided to rotate the US transducer by
90° and acquire a new set of data. These experiments are
repeated with both the composite phantoms, fabricated as de-
scribed in Section 5.A. Data collected with this arrangement are
shown in Figs. 4 and 5.

The hyperboloidal shape of the focal region of the US trans-
ducer is verified through solving the Westervelt equation [14]
dealing with high-intensity acoustic wave propagation. The
pressure gives rise to acoustic radiation force in the focal region,
which is computed and shown in Fig. 6.

In addition to the experimental data, we have also collected
data from numerical simulations. We have employed the same
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Fig. 2. Experimental measurements (M 1) corresponding to object
1 with illumination as in Fig. 1(a).
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Fig. 3. Experimental measurements (M 1) corresponding to object
2 with illumination as in Fig. 1(a).
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Fig. 4. Experimental measurements (M 1) corresponding to object
1 with illumination as in Fig. 1(b).
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Fig. 5. Experimental measurements (M 1) corresponding to object
2 with illumination as in Fig. 1(b).

Fig. 6. Computed ultrasound force density distribution. It is seen
that the focal region is approximately hyperboloidal.
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geometry and objects (same shape, size, and optical as well as
mechanical properties) as used in the experiments, in the
numerical simulations. Keeping up with the experiments, data
were collected only at two detectors kept 90° apart. For this, we
have solved the CDE, Eq. (2.8) and its discretized version
Eq. (2.9) as well as the momentum balance equation
[Eq. (3.1) and its discretized version Eq. (3.4)].

In all the numerical algorithms, both for generating data
and for inverting the numerically simulated and experimen-
tally generated data using the Gauss–Newton algorithm, we
have used 2D objects which are cross sections of the hyper-
boloidal ROI containing the US transducer axis. We note that
a plane stress approximation is not necessarily valid for any
cross section of the ROI. However, to demonstrate the recov-
ery of both the location and quantitative variation therein of
the inhomogeneities in E in a computationally expedient
manner, we chose to restrict ourselves to tackling the inverse
problem corresponding to the recovery of 2D objects in the
present work. The rectangular object region of dimension
3.5 cm × 3.5 cm is discretized using an FE mesh with
13,168 triangular elements and 6740 nodes. For this object
with the mechanical and optical properties specified, the mea-
surement is computed by solving the two forward equations.
By varying the beat frequency, Δf , (in our case from 300
to 700 Hz) we have generated a set of M 1 using the two
detectors. The numerical data is obtained from M 1 by adding
1%–4% noise to it.

The data generated, both through numerical simulations
and experiments, are input to the Gauss–Newton algorithm
as developed in Section 4 to recover E . The updates for E
are obtained by inverting the perturbation equation
[Eq. (4.3)], one of the important steps in the inversion algo-
rithm. Equation (4.3) is solved for δE using the conjugate gra-
dient search scheme. The perturbation equation itself is
updated at the end of each iteration through recomputing
the Jacobian and the computed M 1 corresponding to the
E�r�. A regularization term, λI (here λ is the regularization
parameter and I is the identity matrix) is formally employed
in Eq. (4.3), wherein λ is taken negligibly small, i.e., 3.2116 ×
10−54 at the start of the inner iteration, and reduced by a factor
of 1.5 at each iteration.

6. RESULTS AND DISCUSSION

The results of iterative recovery are presented in two separate
sets of figures which correspond to the two different inhomo-
geneity distributions shown in Fig. 7. The cross sections,
through the center of the inhomogeneity, of the reconstruc-
tions obtained from simulated data are shown in Figs. 8 and
9 when the noise in data is increased from 1% to 4%. In
all the cases the algorithm converged in 6–10 iterations when
the mean-squared error in the measurement space
[ε�n� � ‖Me

1 −M
Cn
1 ‖2, where Me

1 is the experimental mea-
surement and MCn

1 is its computed counterpart at the nth iter-
ation] decreased to 1.2935 × 10−17 for case (a) and to
6.5435 × 10−18 for case (b). From this exercise we see that
the reconstruction algorithm has a robust behavior against data
noise and the contrast recovery in the inhomogeneous inclusion
is reasonably good.

The experimental data from the two views of Fig. 1 (alto-
gether 126 measurements with 63 from each view) are also
input to the Gauss–Newton algorithm. Reconstructions,
gray-scale images, for the two objects are shown in Figs. 10
and 11 (original gray-scale images in Figs. 12 and 13). The
corresponding cross-sectional plots through the center of the
inhomogeneous inclusion are in Figs. 8 and 9. The data do-
main mean-square error plots with iteration number, for the
two objects considered, are shown in Figs. 14 and 15. It is seen
that the error reduced to 2.0 × 10−24 (in 11 iterations) for ob-
ject (a) and to 3.0 × 10−23 (in 6 iterations) for object (b). The
cross-sectional plots are a pointer to the faithfulness of recovery
of E . We have thus proven that by scanning the US frequency
it is possible to generate linearly independent data sets for
UMOT which goes a long way in making the experimental
data collection less tedious; and they are good enough for a

Fig. 7. Cross section of the composite PVA phantom showing the
inhomogeneity and the ultrasound focal region. The hatched region
has storage modulus 22.39 kPa and the other 11.3 kPa. (a) Object 1
and (b) object 2.
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Fig. 8. Cross section through the center of the reconstruction
shown in Fig. 10 compared with that of original shown in
Fig. 12.
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Fig. 9. Same as that of Fig. 8 corresponding to the reconstruction
shown in Fig. 11.
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Fig. 10. Reconstruction in the ROI for object 1 corresponding to
the inhomogeneity distribution shown in Fig. 12.
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Fig. 11. Reconstruction in the ROI for object 2 corresponding to
the inhomogeneity distribution shown in Fig. 13.

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

cm

cm

12

13

14

15

16

17

18

19

20

21

22

kPa

Fig. 12. Elasticity distribution of object 1 [Fig. 2(a)] in the focal
region of the US transducer.
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Fig. 13. Same as Fig. 12 but for object 2 shown in Fig. 7(b).

1 2 3 4 5 6 7 8 9 10 11
2

4

6

8

10

12

14

16
x 10

−24

Iteration number

E
rr

or

Fig. 14. Data domain mean-square error versus iteration number
whilst reconstructing object 2.

962 Vol. 32, No. 5 / May 2015 / Journal of the Optical Society of America A Research Article



reasonably accurate, spatially resolved tomographic recovery of
E�r� in the US focal region.

7. CONCLUSIONS

We have devised a new scheme to recover Young’s modulus
distribution from experimental UMOT data, gathered only
at two detector locations but at many acoustic frequencies.
When the US frequency varies, so does the amplitude of
mechanical oscillations the US force produces in the scattering
centers. Therefore, if one retains p�r� as the set of unknowns,
which is related to the above amplitude, the reconstruction
problem becomes too ill-conditioned to be amenable to any
meaningful solution. We, in this work, prevented this blow-
off of the set of unknowns by projecting p�r� via the momen-
tum balance equation to the material property E�r�, which
remains invariant to the US frequency sweep. This along with
the consequent simplification achieved in the experimental data
collection are the new contributions of the present work. With
reconstructions from numerical data, it is shown that, within
reasonable limits, the algorithm is insensitive to variations in
noise levels in the data.

The Gauss–Newton algorithm is dependent on the sensitiv-
ity of the data-to-material property distribution. Because light
travels through a multitude of paths owing to diffusion, this
sensitivity can be greatly compromised when dealing with
interior nodes far removed from the boundary. Here, one of
our recently developed algorithms using a stochastic search
scheme which does not explicitly use a derivative, has been
shown to be of great use to recover the unknowns belonging
to such interior nodes, in the context of photoacoustic tomog-
raphy [18]. Replacement of the Gauss–Newton scheme with

such a stochastic optimization scheme, it is hoped, might
improve the reconstruction in the present case as well.
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Fig. 15. Data domain mean-square error versus iteration number
whilst reconstructing object 1.
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