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Abstract. We study a hyperbolic problem in the framework of periodic
homogenization assuming a high contrast between the diffusivity coeffi-
cients of the two components Mε and Bε of the heterogeneous medium.
There are three regimes depending on the ratio between the size of the
period and the amplitude αε of the diffusivity in Bε. For the critical
regime αε ' ε, the limit problem is a strongly coupled system involving
both the macroscopic and the microscopic variables. We also include
the results in the non critical case.

1. Introduction

Multi-scale problems have been studied extensively in the last four decades
using classical homogenization(see [2, 8, 23, 25] and the references therein).
But a direct approach of homogenization fails in many interesting problems
and homogenization of periodic composites with highly contrasting diffusive
properties falls in this category. To be more precise, we consider a bounded
domain Ω ⊂ Rn which is a periodic composite of the form Ω = Mε

⋃
Bε,

ε > 0 a small parameter, is the period of the composite distribution. Here,
Mε is the material with O(1) conductivity and Bε is the material with O(ε2)
conductivity. This constitutes a composite with highly contrasting conduc-
tivities. Studying homogenization of problems in such domains requires re-
fined methods. Observe that the problem looses its uniform ellipticity with
respect to the small parameter ε as ε→ 0 due to the high contrast between
the diffusivity of the two media under consideration. Other references in
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this direction may be found in [3], [5], [6], [18], [19] [21], [24] and refer-
ences therein. On the other hand, homogenization of hyperbolic equation in
composites with imperfect inclusions can be found in [10], [11].

Taking terminologies from elasticity, the part Bε is referred to as soft
component as it allows large deformations compared to the part Mε which
in turn is known as stiff component (matrix part). The literature is mainly
available for second order elliptic problems with high contrast in coefficients.
In this article, we plan to study such a high contrast problem for a hyperbolic
equation. In the sequel, we see that the hyperbolic problem poses new
challenges for the future. In fact, it turns out that the only reasonable way
to formulate the homogenized problem, at least in the critical case, is the
coupled limit system involving the microscopic variable y together with the
macroscopic one x in contrast with the stationary case, (see for instance [1]
and [20]). Indeed, the main part of the article is when the soft material Bε
has conductivity O(ε2). But, it is also possible to consider the two other
regimes α = 0 and α = +∞, that is, Bε has conductivity O(α2

ε), where
α := limε

αε
ε . We discuss these two regimes in Section 5.

1.1. Notations. Let Ω ⊂ Rn be the reference domain of the periodic com-
posite. Let Y = (−1

2 ,
1
2)n be the basic cell and B = B(0, r) ⊂ Y be the

ball of radius r with 0 < r < 1
2 which eventually gives the soft part of the

composite and the stiff part will be obtained from M = Y \ B̄. Define the
ε periodic cells Y k

ε = εY + εk for all k ∈ Zn. The set of inclusions Bε and
matrix Mε are defined as

Bε =
⋃
k∈Iε

Bk
ε , Mε = Ω \ B̄ε =

⋃
k∈Iε

Mk
ε ,

where k ∈ Iε = {k ∈ Zn : Y k
ε ⊂ Ω}, Bk

ε = εB(0, r) + εk, Mk
ε = Y k

ε \ B̄k
ε .

We denote C#(Y ), the space of continuous functions defined on Y which
are Y− periodic. We also use standard Sobolev spaces like H1(Ω), H1

0 (Ω)
etc. and the spaces required for studying time dependent problems like
Lp(0, T, Lq(Ω)), more generally Lp(0, T,X) with appropriate norms. Let
A(x, y) = [aij(x, y)] be a smooth, periodic in y and elliptic matrix, that is,
A satisfies: ∃m > 0, for almost all x ∈ Ω, y ∈ Y and for all ξ ∈ Rn{

y → aij(x, y) is Y − periodic

aij ∈ L∞(Ω;C#(Y )), A(x, y)ξ · ξ ≥ m|ξ|2.
(1.1)

For any set E, we denote χE , the characteristic function of E, while C
denotes any positive constant the value of which may change from a line to
another.
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2. Problem Description and Apriori Estimates

In this article, we consider the following hyperbolic equation with high
contrast diffusivities, namely,

(Pε)

{
Lεuε := u′′ε − div

(
aε(x)A

(
x, xε

)
∇uε

)
+ uε = fε in ΩT ,

uε = 0 on (0, T )× Γ, uε(0) = u0
ε, u

′
ε(0) = u1

ε,

where ΩT = (0, T )×Ω and Γ = ∂Ω. We assume that the coefficient aε takes
the form

aε(x) = ε2χBε + χMε, (2.1)

and A is uniformly elliptic as in (1.1) which gives the high contrasting prop-
erties in Bε and Mε. Notice that as in the elliptic case (see [20]), one can
consider other situations assuming the coefficient aε given by

aε(x) = α2
εχBε + χMε , (2.2)

where αε is a positive sequence which goes to zero when ε → 0. Then, we
should have to consider the three cases α = 0; α = +∞ and 0 < α < +∞
where α := limε

αε
ε . For the sake of brevity, we only write the complete

proof of the results in the critical case 0 < α < +∞ assuming without loss
of generality that αε = ε for every ε while we will only state and sketch the
proofs for the two other cases. Our aim is to study the limiting behavior of
the solution of the above system and obtain the homogenized equation. We
make the following assumptions on the data

(A1)

∫
Ω
|u0
ε|2 +

∫
Bε

ε2|∇u0
ε|2 +

∫
Mε

|∇u0
ε|2 +

∫
Ω
|u1
ε|2 < C

(A2) ‖fε‖L2(ΩT ) ≤ C,

where C is a positive constant independent of ε. The assumption (A1) on
the initial values is natural and it is based on energy estimates which we are
going to see shortly while deriving the apriori estimates. However, in order
to make more precise the homogenized problem, we assume in addition that
the initial data (u0

ε, u
1
ε) are given in the space H2(Ω) ∩H1

0 (Ω)×H1
0 (Ω) and

that fε is given in W 1,1(0, T ;L2(Ω)); it is then well known that under this
assumption, for each ε > 0, the problem (Pε) admits a unique solution uε
with the regularity

(R1) uε ∈ C2([0, T ];L2(Ω) ∩ C1([0, T ];H1
0 (Ω) ∩ C([0, T ];H2(Ω)).

Of course, due to the degenerating character of the problem, uniform
estimates with respect to ε in the above spaces are out of reach. To get the
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limit problem, we only need the natural assumption (A1) on (u0
ε, u

1
ε) and

(A2) on fε.
The following (weak) formulation of (Pε) will be helpful when we will seek

for the initial data of the limits:∫
ΩT

uεφ
′′
dxdt+

∫
Ω

(u0
εφ
′
(0, x)− u1

εφ(0, x)) dx (2.3)

+

∫
ΩT

aε(x)A
(
x,
x

ε

)
∇uε∇φdxdt+

∫
ΩT

uεφ dxdt =

∫
ΩT

fεφ dxdt,

∀φ ∈ C∞([0, T ];H1
0 (Ω), φ(T, x) = 0. The solution uε is uniformly bounded

only in L2(ΩT ) and we represent the L2 weak limit u in a convenient way.
Even though, the solution is not uniformly bounded in L∞(0, T ;H1

0 (Ω)), we
do get uniform bound of the matrix (stiff) part. We use this property to
study the limiting analysis. In the remaining part of this section, we give
apriori estimates. We also recall the preliminaries required for our analysis.
Our main tool is two-scale convergence together with an extension lemma.
In Section 3, we prove the required convergence and identify the limits. Sec-
tion 4 is devoted to the passage to the limit and study the homogenization
theorem (Theorem 4.1). Decomposition of the two-scale system is also pre-
sented here. In section 5, we state and sketch the proofs in the cases α = 0
and α = +∞.

2.1. Apriori Estimates. We define the energy of the system as

Eε(t) =
1

2

{∫
Ω
|u′ε(t)|2 +

∫
Ω
|uε(t)|2 +

∫
Ω
ε2χBεA

(
x,
x

ε

)
∇uε · ∇uε (2.4)

+

∫
Ω
χMεA

(
x,
x

ε

)
∇uε · ∇uε

}
= E1

ε (t) + E2
ε (t) + E3

ε (t) + E4
ε (t),

where Eiε(t), i = 1, 2, 3, 4 are the respective terms in order. At this stage,
we remark that the assumption (A1) is nothing but the boundedness of the
initial energy Eε(0). As a first step, we have the following energy estimates.

Proposition 2.1. There exists a constant C > 0 independent of ε such that
Eε(t) ≤ C.

The above proposition will give us the following estimates

Proposition 2.2. There exists a constant C > 0 independent of ε such that

‖uε‖L∞t L2
x
≤ C, ‖u′ε‖L∞t L2

x
≤ C, (2.5)

‖ε∇uε‖L∞t L2
x(Bε) ≤ C, ‖∇uε‖L∞t L2

x(Mε) ≤ C.
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Note that the short notation L∞t L
2
x represent the space with respect to

the time domain [0, T ] and spatial domain Ω.
For example, L∞t L

2
x = L∞(0, T ;L2(Ω)). When the domain is not the full

domain Ω, we use L∞t L
2
x(Bε) = L∞(0, T ;L2(Bε)). We use these notations

when there is no confusion.

Remark 2.3. Thus, we have the correct L2 estimates for the solution and
its time-derivative. Also gradient estimate in the stiff part. The difficulty in
this problem is that the gradient estimate in the soft inclusions is of order
ε−1 and hence, in general H1 estimate is of order ε−1. This also motivates
the assumption (A1) on the initial data.

Since the gradient estimate in the stiff part is bounded, we use the exten-
sion operators (see [7] ) to extend the solution from the stiff part to the soft
part in a continuous and bounded way. This is required for our analysis. Our
second main tool is the two-scale convergence introduced by G. Nguetseng
[16] and developed by G. Allaire [1]. For more details see [17]. Also see A.
K. Nandakumaran et. al [13], [14], [15], [12] for the application of two scale
convergence. Since there is no oscillations with respect to t ∈ (0, T ), we will
use an adapted definition of two-scale convergence in which the variable t
plays a role of parameter as presented in the work by G.W. Clark and L.A.
Packer [9], also used in the work by M. Sfaxi and A. Sili [21]. We recall the
extension operators and two-scale convergence in the preliminaries.

Proof of Propositions 2.1 and 2.2. The method is standard for hyper-
bolic equations. Multiply the equation (Pε) by u′ε and integrate by parts to
get ∫ t

0

∫
Ω

1

2

d

dt
|u′ε(t)|2 +

1

2

d

dt

[(
ε2χBε + χMε

)
A
(
x,
x

ε

)
∇uε · ∇uε

]
+

∫ t

0

∫
Ω

1

2

d

dt
|uε(t)|2 =

∫ t

0

∫
Ω
fεu
′
ε.

The left hand side of the expression is Eε(t) − Eε(0). Now, using the as-
sumption (A1) and (A2), we get

Eε(t) ≤ C1 + C2

∥∥u′ε∥∥L∞t L2
x
.

Using the first term in Eε(t), we have∥∥u′ε(t)∥∥2

L2(Ω)
≤ C(1 +

∥∥u′ε∥∥L∞t L2
x
),

for some constant C > 0 which implies the estimate in the Proposition 2.1.
Rewriting, we get the Proposition 2.2. �
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2.2. Preliminaries. In the weak convergence, the weak limit averages out
all the oscillations present and the two-scale convergence is introduced to
capture the oscillations through the limit and hence the limit is defined on
the fast and slow variables. See the references given earlier. In the sequel
we adopt the definition of two-scale convergence given in [9] or in [21] which
is more convenient for our evolution problem without oscillations in time.

Definition 2.1 (Two-scale convergence). A sequence of functions {vε} in
L2(ΩT ) is said to two-scale converge to a limit v ∈ L2(ΩT × Y ) (denoted as

vε
2s
⇀⇀ v) if∫

ΩT

vεφ
(
t, x,

x

ε

)
dx dt→

∫
ΩT

∫
Y
v(t, x, y)φ(t, x, y) dy dx dt

∀φ ∈ L2
(
ΩT ;C#(Y )

)
. Further, if v0 is the weak limit of {vε} in L2(ΩT ),

then

v0(t, x) =

∫
Y
v(t, x, y)dy.

We have the following compactness theorem.

Theorem 2.4 (Compactness). For any bounded sequence vε in L2(ΩT ),
there exist a subsequence and v ∈ L2(ΩT × Y ) such that, vε two-scale con-
verges to v along the subsequence. Also, if vε is bounded in L2(0, T ;H1(Ω)),
then v is independent of y and is in L2(0, T ;H1(Ω)), and there exists a
v1 ∈ L2(ΩT ;H1

#(Y )) such that, up to a subsequence, ∇vε two-scale converges
to ∇v +∇yv1.

Note that the proof of Theorem 2.4 is exactly the compactness theorem
given in [1] replacing the open domain Ω by the cylinder ΩT . There are
many interesting properties of two-scale convergence and the reader can see
the references cited above.

We also need the following extension lemma which is available for instance
in Cioranescu-Donato [7].

Lemma 2.5 (Extension Operator). There exists a linear continuous opera-
tor P ε : L∞(0, T ;Hk(Mε))→ L∞(0, T ;Hk(Ω)), that is,

P ε ∈ L
(
L∞(0, T ;Hk(Mε)); L

∞(0, T ;Hk(Ω))
)
,

where k = 0, 1 such that, for some constant C independent of ε: for any
φ ∈ L∞(0, T ;Hk(Mε));

P εφ = φ in Mε × (0,T), Pεφ′ = (Pεφ)′ in Ω× (0,T),

‖P εφ‖L∞(0,T ;L2(Ω)) ≤ C ‖φ‖L∞(0,T ;L2(Mε)) ,
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L∞(0,T ;L2(Ω))

≤ C
∥∥φ′∥∥

L∞(0,T ;L2(Mε))
,

‖∇(P εφ)‖L∞(0,T ;L2(Ω)) ≤ C ‖∇φ‖L∞(0,T ;L2(Mε)) .

3. Convergence

Using the assumption (A2) and two-scale convergence, we get fε ⇀ f

in L2(ΩT ) weak and fε
2s
⇀⇀f0, where f ∈ L2(ΩT ) and f0 = f0(t, x, y) ∈

L2(ΩT × Y ). Hence,

f(t, x) =

∫
Y
f0(t, x, y)dy. (3.1)

We denote u0M
ε = u0

ε|Mε and uMε = uε|Mε , respectively, the restrictions
of the initial data u0

ε and the solution uε to Mε. We extend u0M
ε and uMε

to all of ΩT using the extension Lemma 2.5. Denote the extensions as ũ0
ε =

Pεu
0M
ε and ũε = Pεu

M
ε . Then, using assumption (A1), apriori estimates and

extension lemma, it follows that ‖ũ0
ε‖H1(Ω) ≤ C and

‖ũε‖L∞(0,T ;H1
0 (Ω)) ≤ C and ‖ũ′ε‖L∞(0,T ;L2(Ω)) ≤ C. (3.2)

Thus, we can deduce that

ũε ⇀ u weak∗ in L∞t H
1
0 (Ω), ũ′ε ⇀ u′ weak∗ in L∞t L

2
x(Ω). (3.3)

This implies that, extracting a subsequence, (see [22], Corollary 4, p. 85)

ũε → u strongly in C([0,T],L2(Ω)). (3.4)

In particular, we get from (3.4) that

ũε(0, x)→ u(0, x) strongly in L2(Ω). (3.5)

On the other hand, from equation (Pε), we deduce the estimate

‖u′′ε‖L∞(0,T ;H−1(Ω)) ≤ C,
which implies

‖ũ′′ε‖L∞(0,T ;H−1(Ω)) ≤ C;

taking into account the second estimate in (3.2), we can therefore use [22],
Corollary 4, p. 85, to get that

ũ′ε → u′ strongly in C([0,T],H−1(Ω)). (3.6)

As a consequence of (3.6), we infer

ũ′ε(0, x)→ u′(0, x) strongly in H−1(Ω). (3.7)

Now, we will look into the two-scale convergence of uε. Since uε, ε∇uε
are bounded in L2(ΩT ), we apply two-scale convergence to get

v0 = v0(t, x, , y) ∈ L2(ΩT ;H1
] (Y )), v′0 ∈ L2(ΩT × Y ),
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such that

uε
2s
⇀⇀v0, ε∇uε

2s
⇀⇀∇yv0, u

′
ε

2s
⇀⇀v′0. (3.8)

Note that the third convergence in (3.8) is a consequence of the boundedness
of u′ε in L∞t (L2(Ω)) together with the first convergence in (3.8).

Remark 3.1. The following proposition shows that, as it can be expected,
the function v0 depends on the variable y only inside the part B of the cell Y
since in Bε only ε∇uε is bounded in L2 while in the region Mε, the sequence
∇uε is bounded in L2.

Proposition 3.2. The limit v0 given by (3.8) satisfies

∇yv0(t, x, y) = 0 in Ω×M. (3.9)

In addition, the function v0 is such that

v0 ∈ L2(ΩT ;H1
] (Y )) ∩ L∞t (L2(Ω;H1(M)) and (3.10)

v′0 ∈ L∞t (L2(Ω×M)) ∩ L2(ΩT × Y ).

Proof. Observe that χMε∇uε is bounded in L2(ΩT ). Choose test functions
of the type φ = φ(t, x, y) ∈ (D(ΩT ×M))n, then∫

ΩT

χMε∇uε · φ
(
t, x,

x

ε

)
=
∑
i

∫
ΩT

χM i
ε
∇uε · φ

(
t, x,

x

ε

)
= −

∑
i

∫
ΩT

χM i
ε
uε

(
divxφ

(
t, x,

x

ε

)
+ ε−1divyφ

(
t, x,

x

ε

))
dx dt

= −
∫

ΩT

χMεuε

(
divxφ

(
t, x,

x

ε

)
+ ε−1divyφ

(
t, x,

x

ε

))
dx dt.

Multiplying by ε and passing to the limit, we get∫
ΩT

∫
Y
χM (y)v0(t, x, y)divyφ(x, y)dxdydt = 0.

Since φ is arbitrary, we have (3.9). One can precise (3.10) by passing to
the limit in the equality ũεχMε = uεχMε . Indeed, thanks to convergence
(3.4) and (3.8) together with the two-scale convergence of χMε to χM (y), we
get at the limit uχM (y) = v0χM (y), which means that v0(t, x, y) = u(t, x)
in ΩT × M . The L∞ regularity (3.10) is then a consequence of the L∞

regularity (3.3) of u. Thus, the proposition. �

Define now the function

v(t, x, y) := v0(t, x, y)− u(t, x) for (t, x, y) ∈ ΩT × Y. (3.11)
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From the previous considerations, we have v ∈ L2(ΩT ;H1
0 (B)), v′ ∈ L2(ΩT×

Y ); u ∈ L∞t H1
0 (Ω), u′ ∈ L∞t (L2(Ω)) while the first convergence in (3.8) takes

the form uε
2s
⇀⇀u(t, x) + v(t, x, y).

Our aim now is to look for a two scale limit system satisfied by the pair
(u(t, x), v(t, x, y)).

3.1. Identification of the limits of χMε∇uε and εχBε∇uε. From the
second convergence in (3.8), we get with the help of (3.11)

εχBε∇uε
2s
⇀⇀χB(y)∇yv. (3.12)

Let K(t, x, y) be the two-scale limit of χMε∇uε. Take any smooth vector
function φ = φ(t, x, y) such that suppφ(t, x, ·) ⊂ M and divyφ(t, x, ·) = 0.
Then ∫

ΩT

χMε∇uε · φ
(
t, x,

x

ε

)
= −

∫
ΩT

χMε ũεdivxφ(t, x, y),

since divyφ(t, x, ·) = 0. Indeed, the term on the left hand side converges to∫
ΩT

∫
Y
χM (y)K(t, x, y)φ(t, x, y).

On the other hand, the term on the right hand side converges to

−
∫

ΩT

∫
Y
χM (y)u(t, x)divxφ(t, x, y) =

∫
ΩT

∫
Y
χM (y)∇xu(t, x) · φ(t, x, y).

Thus, we have,∫
ΩT

χM (y) (K(t, x, y)−∇xu(t, x)) · φ(t, x, y) = 0,

for all φ as above. Hence, by defining the space H1
#(M) (recall that M =

Y \B) as H1
#(M) := {u ∈ H1(M)), u isY −periodic}, one can conclude that

there exists u1 ∈ L2(ΩT ;H1
#(M)) such that

K(t, x, y)−∇xu(t, x) = ∇yu1(t, x, y) in ΩT ×M. (3.13)

Hence, K(t, x, y) is given by the equality

K(t, x, y) = ∇xu(t, x) +∇yu1(t, x, y) in ΩT ×M. (3.14)

In order to state the homogenized system, we first need to introduce the
following matrix A∗: Introduce first, for a.e., x ∈ Ω, wi(x, ·), the solution of
the cell problem in M as{

−divy (A(x, y)(∇ywi(x, ·) + ei)) = 0 inM

wi(x, ·) isY − periodic, wi(x, y) = 0 on ∂B,
(3.15)
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where {ei} is the canonical basis of Rn. Then the entries of the matrix A∗

are given by

A∗i,j(x) =

∫
M
A(x, y)(∇ywj(x, ·) + ej) · (∇ywi(x, ·) + ei)dy. (3.16)

4. Homogenization in the critical case

Having obtained the required limits, we now state and prove the main
theorem of this article. Let u0 = u0(x, y) and u1 = u1(x, y) be the two-scale
limits of the initial values u0

ε and u1
ε, respectively, that is,

u0
ε

2s
⇀⇀u0, u1

ε
2s
⇀⇀u1. (4.1)

Theorem 4.1 (Homogenization). Let the given data fε, u
0
ε, u

1
ε satisfy the

assumptions (A1) and (A2), aε be given as in (2.1). Let uε be the unique

solution to the problem (Pε). Then, uε
2s
⇀⇀u(t, x) +v(t, x, y), where the pair

(u, v) ∈ L∞(0, T ;H1
0 (Ω))× L2(ΩT ;H1

0 (B))

is the unique solution of the coupled system

u ∈ L∞(0, T ;H1
0 (Ω)), u′ ∈ L∞(0, T ;L2(Ω)),

u′′ + u+

∫
B

(
v′′ + v

)
dy − divxA

∗(x)∇u =

∫
Y
f0dy in ΩT ,

u(0, x) = −
∫
M
u0(x, y) dy in Ω,

u′(0, x) = −
∫
M
u1(x, y) dy in Ω,

v ∈ L2(ΩT ;H1
0 (B)), v′ ∈ L2(ΩT × Y ),

v′′ + v + u′′ + u− divyA(x, y)∇yv = f0 in ΩT ×B,

v(0, x, y) = u0(x, y)−−
∫
M
u0(x, y) dy in Ω×B,

v′(0, x, y) = u1(x, y)−−
∫
M
u1(x, y) dy in Ω×B.

(4.2)

Note that by virtue of (3.5) and (3.7), the initial conditions u(0, x) and
u′(0, x) are well defined; for v(0, x, y), one can remark that since v ∈ L2(ΩT ;
H1

0 (B)), v′ ∈ L2(ΩT × Y ), we have v ∈ C([0, T ];L2(Ω × Y )) (see [22],
Lemma 4), on the other hand, the second equation in (4.2) shows that
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v′′ ∈ L2(0, T ;H−1(Ω × B)) so that v′ ∈ C([0, T ];H−1(Ω × B)). Hence,
the initial conditions arising in (4.2) are well defined.

Proof. Consider the test functions of the form

φε(t, x) = ū(t, x) + εū1

(
t, x, xε

)
+ v̄

(
t, x, xε

)
,

where ū ∈ D(ΩT ), ū1 ∈ D(ΩT × M) and v̄ ∈ D(ΩT × B) are arbitrary.
Multiplying the equation in (Pε) by φε and integrating by parts, we may
write Iε1 + Iε2 + Iε3,1 + Iε3,2 = Iε. Here, Iε, Iεi are given by

Iε =

∫
ΩT

fε(t, x)φε(t, x), Iε1 = 〈u′′ε , ū+ εū1 + v̄〉, Iε2 = 〈uε, ū+ εū1 + v̄〉

Iε3,1 =

∫
ΩT

ε2χBεA
(
x,
x

ε

)
∇uε ·

(
∇ū+∇v̄ + ε−1∇yv̄

)
,

Iε3,2 =

∫
ΩT

χMεA
(
x,
x

ε

)
∇uε · (∇ū+ ε∇ū1 +∇yū1) .

4.1. Passage to the limit term by term. The term Iε1

Iε1 =

∫
ΩT

uεū
′′ +

∫
ΩT

εuεū
′′
1

(
t, x,

x

ε

)
+

∫
ΩT

uεv̄
′′
(
t, x,

x

ε

)
,

which converges to∫
ΩT

∫
Y

(u+ v) ū′′ + 0 +

∫
ΩT

∫
Y

(u+ v) v̄′′. (4.3)

Thus,

Iε1 → I0
1 :=

∫
ΩT

∫
Y

(u+ v) (ū+ v̄)′′. (4.4)

Now,

Iε2 → I0
2 :=

∫
ΩT

∫
Y

(u+ v) (ū+ v̄), Iε → I0,1 :=

∫
ΩT

∫
Y
f0(ū+ v̄),

Iε3,1 → I0
3,1 := 0 + 0 +

∫
ΩT

∫
Y
χB(y)A(x, y)∇yv · ∇yv̄.

Similarly,

Iε3,2 → I0
3,2 :=

∫
ΩT

∫
Y
χM (y)A(x, y)(∇xu+∇yu1) · (∇xū+∇yū1).

Thus, we have the system

I0
1 + I0

2 + I0
3,1 + I0

3,2 = I0,1, (4.5)
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for all test functions ū, ū1, v̄ as taken earlier. We represent the limit I0
3,2

using the solutions wi of the cell problem. If we take ū = 0 and v̄ = 0 in the
above equation, (4.5) becomes∫

ΩT

∫
M
A(x, y)(∇xu+∇yu1) · ∇yū1 = 0.

At this stage, choose ū1 of the form, ū1 = ū1(x, y)s(t) with ū1 ∈ D(Ω×M)
and s ∈ D(0, T ), then the above equation becomes∫

ΩT

∫
M
A(x, y)∇yu1(t, x, y) · ∇yū1(x, y)s(t)

= −
∫

ΩT

∫
M
A(x, y)∇xu · ∇yū1(x, y)s(t).

Assuming u is known, for a.e., x ∈ Ω, t ∈ (0, T ), the above equation is the
elliptic weak formulation for u1(t, x, ·) in M . Hence, using the test function
wi introduced by (3.15), we may represent u1 as

u1(t, x, y) =

n∑
i=1

∂u

∂xi
(t, x)wi(x, y). (4.6)

Thus, we have a representation for ū1 and now consider (4.5) with ū1 = 0.
In this case, using (4.6), I0

3,2 becomes

I0
3,2 =

∫
ΩT

∫
M
A(x, y)

(
∇xu+

n∑
i=1

∂u

∂xi
∇ywi

)
· ∇ū =

∫
ΩT

A∗(x)∇u · ∇ū,

where A∗ is given by (3.16). By representing u1 in terms of u, we essentially
eliminated the test function ū1 in the weak formulation (4.5). Thus, for all
test functions ū ∈ D(ΩT ) and v̄ ∈ D(ΩT × B), we get the two-scale limit
system∫

ΩT

∫
Y

(u+ v) (ū+ v̄)′′ +

∫
ΩT

∫
Y

(u+ v) (ū+ v̄) (4.7)

+

∫
ΩT

∫
B
A(x, y)∇yv · ∇yv̄ +

∫
ΩT

A∗(x)∇u · ∇ū =

∫
ΩT

∫
Y
f0(ū+ v̄).

The first Euler equation arising in (4.2) is then easily obtained from (4.7)
by choosing v̄ = 0 while we obtain the second Euler equation of (4.2) with
the choice ū = 0 in (4.7). It remains to identify the initial conditions on u
and v.
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The sequence u0
ε(x)χMε two-scale converges to u0(x, y)χM (y) and there-

fore weakly converges in L2(Ω) to∫
Y
u0(x, y)χM (y) dy =

∫
M
u0(x, y) dy.

On the other hand, the sequence χMε weakly converges in L2(Ω) to |M | (the
measure of M). We can therefore pass to the limit in the equality

ũε(0, x)χMε = u0
ε(x)χMε ,

with the help of the convergence (3.5) to get the first initial condition on u.
In a similar way, using the equality

ũ′ε(0, x)χMε = u1
ε(x)χMε ,

we can pass to the limit with the help of convergence (3.7) to get

u′(0, x)|M | =
∫
Y
u1(x, y)χM (y) dy =

∫
M
u1(x, y) dy,

which is nothing but the second initial condition on u.
To identify the initial condition on v, the lack of compactness in Bε leads

us to proceed differently. Taking φ(t, x) = v̄(t, x, xε ) in (2.3), with

v̄ ∈ C∞(0, T ;D(Ω×B)), v(T ) = 0,

and passing to the limit, we get∫
ΩT

∫
Y

(u+ v) v̄′′ +

∫
Ω

∫
Y

(u0(x, y)v̄′(0, x, y)− u1(x, y)v̄(0, x, y)) (4.8)

+

∫
ΩT

∫
Y

(u+ v) v̄ +

∫
ΩT

∫
B
A(x, y)∇yv · ∇yv̄ =

∫
ΩT

∫
Y
f0v̄.

On the other hand, multiplying the second equation of (4.2) by the same
test function v̄, we obtain after an integration by parts∫

ΩT

∫
Y

(u+ v)v̄′′ +

∫
Ω

∫
Y

(u(0)v̄′(0, x, y) + v(0)v̄′(0, x, y)) (4.9)

−
∫

Ω×Y
(u′(0)v̄(0, x, y) + v′(0)v̄(0, x, y)) +

∫
ΩT

∫
Y

(u+ v) v̄

+

∫
ΩT

∫
B
A(x, y)∇yv · ∇yv̄ =

∫
ΩT

∫
Y
f0v̄.

From (4.8) and (4.9), we deduce (recall that supp v̄ ⊂ B)∫
Ω

∫
B

(u0(x, y)v̄′(0, x, y)− u1(x, y)v̄(0, x, y)) (4.10)
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=

∫
Ω

∫
B

(
u(0)v̄′(0, x, y) + v(0)v̄′(0, x, y))− u′(0)v̄(0, x, y)− v′(0)v̄(0, x, y)

)
.

We then derive the initial conditions on v by the use of the expressions of
u(0, x) and u′(0, x) found above.

4.2. Existence and Uniqueness. The equation (4.7) defines a hyperbolic
system with appropriate elliptic part. Denote X = H1

0 (Ω),
Z = L2(Ω;H1

0 (B)), then (u, v) ∈ L∞(0, T ;X)× L2(0, T ;Z).

Elliptic Bilinear Form: Define A : X × Z → R by

A(U1, U2) =

∫
Ω
u1u2 +

∫
Ω×B

v1v2 +

∫
Ω
A∗(x)∇u1 · ∇u2

+

∫
Ω×B

A(x, y)∇yv1 · ∇yv2,

where Ui = (ui, vi) ∈ X × Z for i = 1, 2. Define the norm on X × Z as

‖U‖2X×Z := ‖u‖2H1
0 (Ω) + ‖v‖2L2(Ω×B) + ‖∇yv‖2L2(Ω×B) ,

which is equivalent to ‖∇xu‖2L2(Ω) +‖∇yv‖2L2(Ω×B) . Clearly, A is continuous.

Further,

A(U,U) =

∫
Ω
|u|2 +

∫
Ω×B
|v|2 +

∫
Ω
A∗(x)∇u · ∇u+

∫
Ω×B

A(x, y)∇yv · ∇yv

≥ C
[∫

Ω
|∇u|2 +

∫
Ω×B
|∇yv|2

]
≥ C‖U‖2X×Z .

Thus, we have the hyperbolic Euler system in the standard form

U ′′ +AU = F, U(0), U ′(0), are given

so that the existence and the uniqueness of the solution of (4.7) follow.

Remark 4.2. In contrast with the elliptic case (see [20]), we do not know
how to separate u and v so that we have a complete homogenized equation
involving the macro variable alone, namely an equation for u by eliminating
v using cell problems. This is due to the term u′′ in the second equation
involving v. Hence, for a given u and unless to use the expression of the
unitary group associated to the operator

−divyA(x, .)∇y + Id,

(v solves a so-called Klein Gordon equation for given u and given f), we
cannot give a simple expression of v in terms of u even in the particular case
f0 = f0(x). It is not clear from the numerical point of view that the use of
the above unitary group would lead to a numerical solution without a high
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cost in the calculations. Hence, it appears that for the critical hyperbolic
case, the only reasonable limit model is system (4.7) which involves both the
macroscopic variable and the microscopic one.

Remark 4.3. Note also that we did not study in this paper the effect of the
oscillations of the initial data on the behavior of the solution uε or on the
behavior of the associated sequence of energies; this question was addressed
in the non-periodic setting but for equicoercive and equibounded operators
in [4], while for a periodic fibered medium case and for degenerate parabolic
operators the problem was considered in [21].

5. Homogenization for the two other regimes

We are interested in this section in the case where aε is given by (2.2)

when α := lim
ε

αε
ε

= 0 or α = +∞. We only sketch the proofs.

5.1. The case α = 0. In this case, instead of the sequence ε∇uεχBε of the
above critical case, we have to consider the sequence αε∇uεχBε which is
easily seen to be bounded in L∞t (L2(Ω)). Note that all the results obtained
above for the stiff part Mε remain valid by the use of the extension theorem.

Let us prove that since αε is too small compared to the size ε of the period,

αε∇uεχBε

2s
⇀⇀ 0.

The sequence αε
ε uε converges strongly (and then two-scale converges) to zero

in L2(ΩT ) since uε is bounded in L2(ΩT ). On the other hand, the sequence

ε∇(
αε
ε
uε) = αε∇uε,

is bounded in L2(ΩT ); hence from a classical result of two-scale convergence,

there exists a function k(t, x, y) ∈ L2(ΩT ;H1
#(Y )) such that

αε
ε
uε

2s
⇀⇀k and

ε∇(
αε
ε
uε)

2s
⇀⇀ ∇yk. Since k = 0, we have the desired result. The next step

is to take a test function φε(t, x) = ū(t, x)+εū1

(
t, x, xε

)
+ v̄
(
t, x, xε

)
as above

and then to pass to the limit; we obtain the variational equation∫
ΩT×Y

[(u+v)(ū+v̄)′′+(u+v)(ū+v̄)]+

∫
ΩT

A∗(x)∇u·∇ū =

∫
ΩT×Y

f0(ū+v̄).

(5.1)
Choosing ū = 0, we get

(u+ v)′′ + u+ v = f0 in ΩT ×B. (5.2)
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This equation provides the expression of∫
B

(v′′ + v) dy,

in terms of f0 and of u, u′′. Turning back to the equation satisfied by u
(obtained from (5.1) with the choice v̄ = 0), we get the final homogenized
equation

(1− |B|)(u′′ + u)− divxA
∗(x)∇u =

∫
M
f0 dy, in ΩT , (5.3)

with the same initial conditions as in the section above. The contribution of
the soft part Bε in the homogenized equation is seen through the measure
of B in the final macroscopic equation.

5.2. The case α = +∞. This case corresponds to the best compactness
compared to the two previous cases. Due to the a priori estimates, the
sequence αε∇uεχBε is still bounded in L2(ΩT ) so that

ε∇uεχBε =
ε

αε
(αε∇uεχBε),

strongly converges to zero in L2(ΩT ). Hence, the two-scale limit v0 defined
in Section 3 devoted to the critical case is now constant with respect to y
over the whole of Y since

ε∇uεχBε

2s
⇀⇀∇yv0χB(y) = 0 = ∇yv0χM (y).

Consequently, we obtain v0(t, x, y) = u(t, x) in ΩT × Y so that the func-
tion v := v0(t, x, y) − u(t, x) defined in Section 3 is now equal to zero and

the following two-scale convergence holds uε
2s
⇀⇀u(t, x). To get the varia-

tional limit equation we need to identify the two-scale limit of the sequence
αε∇uεχBε . To that aim (see [20]), we first prove that the sequence

wε :=
∑
i∈Iε

αε
ε

(uε −−
∫
Bi

ε

uε dx)χBi
ε
,

is bounded in L2(ΩT ) and it two-scale converges to some w ∈ L2(ΩT × Y ).
We then prove that actually w ∈ L2(ΩT ;H1(B)) and that

αε∇uεχBε

2s
⇀⇀∇yw.

Taking a test function φ in the form

φ = ū(t, x) + εū1(t, x, xε ) +
ε

αε
w̄(t, x, xε ),
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with w̄ in the space D(ΩT × B̄) which is dense in L2(ΩT ;H1(B)), we can
pass to the limit to get the variational equation∫

ΩT

u(ū′′+ ū)+

∫
ΩT

A∗(x)∇u ·∇ū+

∫
ΩT×B

A(x, y))∇yw ·∇yw̄ =

∫
ΩT×Y

f0ū.

(5.4)
Taking w̄ = w, ū = 0 in equation (5.4), we get w = 0; hence this regime
coincides with the classical one for which the sequence of gradient of the
solutions uε is bounded in the whole of ΩT : the macroscopic equation for
this regime is the classical one:

u′′ + u− divxA
∗(x)∇u =

∫
Y
f0 dy, in ΩT , (5.5)

with the same initial conditions as in the critical case.
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