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An optimal boundary control problem in a domain with oscillating boundary has been investigated in this paper. The
controls are acting periodically on the oscillating boundary. The controls are applied with suitable scaling parameters.
One of the major contribution is the representation of the optimal control using the unfolding operator. We then study the
limiting analysis (homogenization) and obtain two limit problems according to the scaling parameters. Another notable
observation is that the limit optimal control problem has three controls, namely, a distributed control, a boundary control,
and an interface control. Copyright © 2016 John Wiley & Sons, Ltd.
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1. Introduction

We discuss the homogenization of an optimal control problem associated with the Laplacian in a two-dimensional domain with an
oscillating boundary. The domain is a standard one considered by many authors in the literature. See, for example [1–9], and so on.
The domain �� consists of bottom and upper parts, respectively, denoted by �� and �C� (Figure 1). The region �� is fixed, whereas
�C� has an oscillatory (rugose) boundary. In fact, the two-dimensional domain �� can be thought of as a cross section of a three-
dimensional oscillatory domain (Figure 2). Refer to [10, 11] for the homogenization results in three-dimensional domains. But here, we
restrict to the two-dimensional domain, although the results may be extended to three-dimensional domains.

We introduce optimal control problem in �� for the Laplacian operator. The novelty of this article is the consideration of periodic
controls acting on the boundary of the oscillating part with appropriate scalings. Another important point is that the periodic controls
come from the boundary of a fixed periodic cell (Figure 4), which may be useful in numerics as well. In this article, we characterize
the optimal controls via the unfolding operator. This new characterization is also used to study the homogenization of the optimal
system and subsequently the limit optimal control problem. We obtain a relation between optimal control and adjoint system using
characterization. We remark that different scaling leads to different optimality system.

The motivation of studying a problem defined on oscillatory domain comes from various applications; for example, the need to
understand flows in channels with rough boundary and heat transmission in domain with rough interface, to name a few.

In [5–8] and [12, 13], the authors have studied controls problems with control acting away from the oscillating part of the domain.
In this paper, we consider controls on the boundary of the oscillating part through Neumann condition which seems to be more
complicated. Unlike Dirichlet condition, the limit problem is different in the case of Neumann problem. As remarked earlier, the charac-
terization of the optimal control is given via the unfolding operator. The method of unfolding is introduced and developed in [14–17],
and it is well-developed and applied to many problems. Particularly, in [17], the method adapted to oscillatory boundaries. In the past
40 years, several methods have been introduced to study homogenization problems, but we feel that the unfolding method seems to
be more amenable in the present situation. We do not find any other way of characterizing optimal controls. In addition to the charac-
terization of optimal controls and difficulties in oscillating domain, we also have to homogenize a coupled optimality system involving
optimal state, adjoint state, optimal control, and cost functional.

We briefly describe the layout of the paper. A detailed configuration of the domain is given in Section 2. The minimization problems is
described in Section 3 together with the proof of existence and uniqueness of the optimal solution (optimal control and corresponding
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Figure 1. The two-dimensional domain�� .

Figure 2. The three-dimensional domain�� .

state) with periodic controls arising from the boundary of a fixed cell. We do use appropriate scaling parameters �˛ with ˛ � 1. Two
types of unfolding operators (internal and boundary) are reproduced from [17] (see also [8]) in Section 4. All the results, namely, the
optimality system and characterization of optimal controls (Theorem 5.1) and the limit system and two homogenization theorems
(Theorem 5.4 for the critical case ˛ D 1 and Theorem 5.5 for ˛ > 1) are presented in Section 5. In the critical case ˛ D 1, the controls on
the oscillating boundary splits into three controls in the limit system: a distributed control on the upper part of the domain, a control
on the upper boundary, and finally, an interface control between the upper and lower domains. On the other hand ˛ > 1, there is no
distributed control. The proofs of the theorem can be found in Section 6.

There is also a large amount of literature on the homogenization with oscillating boundaries, which has tremendous applications
as well (for example, [1–13], [17–26], and [27]). For some recent work on oscillating boundaries, see [9] and [28–32]. For general lit-
erature in homogenization, we refer to [33–36] and the reference therein. Some references regarding the homogenization of the
optimal control/ controllability, the reader can refer to [10, 11] and [37–40]. See [41–45] for optimal control problems and derivation of
optimality systems.

2. Description of an oscillating domain and notations

The description of the oscillatory domain�� � R2 is given in the succeeding paragraphs. For a fixed parameter � D 1
m with m 2 N , we

consider an oscillating domain�� as given in Figure 1. This can be viewed as the cross section of Figure 2. Let g : R! R be a smooth
(say, Lipschitz) periodic function with periodic 1 (in fact, one can use any period) and 0 < p < q < 1. Let #� be a periodic function
defined on Œ0, 1�, with periodic �, defined on Œ0, �� by

#�.x1/ D

�
h2 if x1 2 .�p, �q/,
h1 if x1 2 Œ0, �/n.�p, �q/,
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with h2 > h1 > h0. Here, h0 is the maximum value of the smooth function g in Œ0, 1�. We take the domain�� as

�� D
˚
.x1, x2/ 2 R2 : 0 < x1 < 1, g.x1/ < x2 < #�.x1/

�
.

We decompose the boundary of the domain �� , @�� into three disjoint parts as @�� D �b [ �s [ �� , where the bottom boundary
�b and side boundaries �s of�� are given by

�b D f.x1, x2/ : x2 D g.x1/, x1 2 Œ0, 1�g,

�s D f.0, x2/ : g.0/ � x2 � h1g [ f.1, x2/ : g.1/ � x2 � h1g.

The top boundary �� is given by �� D @�� n .�b[�s/. Let�C� be the top part of the domain�� , which is the union of slabs of height
.h2 � h1/ and width �.q � p/, that is

�C� D

m�1[
kD0

.k� C �p, k� C �q/ � .h1, h2/.

Denote��, the fixed part of the domain�� , which is described by

�� D f.x1, x2/ : 0 < x1 < 1, g.x1/ < x2 < h1g .

Now note the boundary of��, namely, @�� D �s [ �b [ �c, where top boundary of�� is given by

�c D f.x1, h1/ : 0 � x1 � 1g.

We can also write�� as�� D Int
�
�C� [�

�

�
. We denote the full domain� (Figure 3) as �Df.x1, x2/ : 0 <x1<1, g.x1/ < x2<h2g.

The bottom part of the boundary of � is same as �� , which is �b. The vertical and top boundaries of � denoted by �s0 and �u,
respectively, are given by

�s0 D f.0, x2/ : g.0/ � x2 � h2g [ f.1, x2/ : g.1/ � x2 � h2g

and

�u D f.x1, h2/ : 0 � x1 � 1g.

Denote �C as �C D f.x1, x2/ : 0 < x1 < 1, h1 < x2 < h2g, then we can write � D Int
�
�C [��

�
. Let � be the reference

boundary (Figure 4), defined as

� D �1 [ �2 [ �3 [ �4,

where

�1 D f.y1, h1/ : 0 � y1 � pg [ f.y1, h1/ : q � y1 � 1g,

�2 D f.y1, h2/ : p � y1 � qg, �3 D f.p, y2/ : h1 � y2 � h2g,

�4 D f.q, y2/ : h1 � y2 � h2g.

Figure 3. The domain�.
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Figure 4. The fixed boundary � D
S4

iD1 �i .

Let ��1 :D �� \ �c, ��2 D �� \ �u, and the common boundary between�C� and�� denoted by ��3 is defined as

��3 D

m�1[
kD0

.k� C �p, k� C �q/ � fh1g.

Notation: Let A1 D �1, A2 D �2 , and A3 D .p, q/�fh1g. Let H1
� be the space of H1� periodic functions, which vanishes on the bottom

boundary �b. A function defined in �� is called �s-periodic, if they take the same value on both side of �s. For any function u defined
on�� , we denote Qu extension of u by 0 to the hole domain�.

3. Description of an optimal control problem

For � 2 L2
per.�/, define �� D .��1 C �

˛��3 C ��2 C �
˛��4/ � 2 L2

per.�/, where the scaling parameter ˛ � 1. For any set E, �E is the

characteristic function of the set E. We define the periodic oscillatory controlsc�� 2 L2.��/ such that

c��.x1, x2/ D �
�
� x1

�
, x2

�
. (3.1)

For f 2 L2
per.�/ andc�� 2 L2.��/ defined earlier, consider the following control problem:8̂̂̂<̂

ˆ̂:
��u� C u� D f in �� ,
@u�
@	
Dc�� on �� ,

u� D 0 on �b,
u� is �s-periodic.

(3.2)

A variational formulation is given as follows: find u� in H1
� such thatZ

��

ru� � r
 C

Z
��

u�
 D

Z
��

f
 C

Z
��

c��
 (3.3)

for all 
 2 H1
� . It is known that ( 3.2 ) admits a unique weak solution u� in H1

� . The solution operator is linear and continuous from
L2

per.�/ � L2
per.��/ into H1

� , that is

ku�kH1.��/ � C�
�
kfkL2.�/ C k

c��kL2.��/

�
, (3.4)

where, in general, C� > 0 depends on �. Let us consider an L2-cost functional functional:

J�.u� , �/ D
1

2

Z
��

ju� � udj
2 C

ˇ

2

Z
�

j� j2,
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where � 2 L2
per.�/, u� D u�.�/ is the solution state of ( 3.2 ) corresponding to � and ˇ > 0 is a regularization parameter. The desired

state is denoted by ud 2 L2
per.�/. With this cost functional, we consider the following optimal control problem:

inf
n

J�.u� , �/ : � 2 L2.�/,
�

u� ,c��� satisfies .3.2/
o

. .P�/

Now, we show that the optimal control problem .P�/ admits a unique solution.

Theorem 3.1
For each � > 0, the minimization problem .P�/ admits a unique solution.

Proof
Because the functional J�.u� , �/ � 0, there exists the infimum m� :D inf

�2L2.�/
J�.u� , �/. Indeed, 0 � m� <1because m� � J�.u� , �/ for

any fixed � 2 L2.�/, in particular, m� � J�.u� , 0/. Hence, there exists a minimizing sequence .�n,�/n�1 2 L2.�/ such that J�.un
� , �n,�/!

m� as n ! 1. Without loss of generality, we can suppose that J�.un
� , �n,�/ � J�.u0

� , 0/ for n large enough. Here, un
� , u0

� are solutions
of ( 3.2 ) corresponding to the data �n,� , � D 0, respectively. When � D 0, we have the corresponding c�� D 0. Then, it is easy to see
that the constant in ( 3.4 ) is independent of �, that is, ku0

�kH1.��/ � C. This implies k�n,�kL2.�/ � C. So there exists a subsequence still
denoted by .�n,�/n, which converges weakly to some �� in L2.�/, that is, �n,� * �� in L2.�/. Using the fact that L2-norm is weakly lower
semi-continuous, we have Z

�

j��j
2 � lim inf

n!1

Z
�

j�n,�j
2. (3.5)

We know from norm estimate ( 3.4 ) that kun
�kH1.��/ � C� , which implies up to a subsequence un

� * u� in H1.��/ as n!1.

Claim: The limit u� is the weak solution corresponding to f andc��� , that is, u� D u�.f ,c��� /.
We know un

� solves the partial differential equation ( 3.2 ) forc�� Db��n,� , and we have the following variational formulation:

Z
��

run
� � r
 C

Z
��

un
�
 D

Z
��

f
 C

Z
��

b��n,�
, (3.6)

8
 2 H1
� . To prove our claim, we need to show the following variational formulation:Z

��

ru� � r
 C

Z
��

u�
 D

Z
��

f
 C

Z
��

c��� 
 8
 2 H1
� . (3.7)

Using the convergence un
� * u� in H1.��/ and Trace theorem, we obtain

lim
n!1

Z
��

run
� � r
 C

Z
��

un
�
 D

Z
��

ru� � r
 C

Z
��

u�
 (3.8)

It remains to prove that

lim
n!1

Z
��

b��n,�
 D

Z
��

c��� 
 for 
 2 L2.��/. (3.9)

Now, to compute the limit, let

Z
��

b��n,�
 D

m�1X
kD0

 Z k�C�p

k�

b��n,�.x1, h1/
.x1, h1/dx1 C

Z h2

h1

b��n,�.k� C �p, x2/
.k� C �p, x2/dx2

C

Z k�C�q

k�C�p

b��n,�.x1, h2/
.x1, h2/dx1 C

Z h1

h2

b��n,�.k� C �q, x2/
.k� C �q, x2/dx2

C

Z .kC1/�

k�C�q

b��n,�.x1, h1/
.x1, h1/dx1

!

D �

Z p

0
�n,�.y1, h1/

m�1X
kD0


.k� C �y1, h1/dy1 C �
˛

Z h2

h1

�n,�.p, x2/
.k� C �p, x2/dx2

C �

Z q

p
�n,�.y1, h2/

m�1X
kD0


.k� C �y1, h2//dy1 C �
˛

Z h1

h2

�n,�.q, x2/
.k� C �q, x2/dx2

C �

Z 1

q
�n,�.y1, h1/

m�1X
kD0


.k� C �y1, h1/dy1.
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Taking limit as n!1, we obtain

lim
n!1

Z
��

b��n,�
 D �

Z p

0
��.y1, h1/

m�1X
kD0


.k� C �y1, h1/dy1 C �
˛

Z h2

h1

��.p, x2/
.k� C �p, x2/dx2

C �

Z q

p
��.y1, h2/

m�1X
kD0


.k� C �y1, h2/dy1 C �
˛

Z h1

h2

��.q, x2/
.k� C �q, x2/dx2

C �

Z 1

q
��.y1, h1/

m�1X
kD0


.k� C �y1, h1/dy1.

(3.10)

On the other hand

Z
��

c��� 
 D m�1X
kD0

 Z k�C�p

k�
���

� x1

�
, h1

�

.x1, h1/dx1 C �

˛

Z h2

h1

��� .k� C �p, x2/
.k� C �p, x2/dx2

C

Z k�C�q

k�C�p
���

� x1

�
, h2

�

.x1, h2/dx1 C �

˛

Z h1

h2

��� .k� C �q, x2/
.k� C �q, x2/dx2

C

Z .kC1/�

k�C�q
���

� x1

�
, h1

�

.x1, h1/dx1

!
.

By resealing each term, we will end up with the same expression as in ( 3.10 ). Hence, ( 3.9 ) proved.
Because un

� * u� in H1.��/, by weakly lower semi-continuity of L2� norm givesZ
��

ju� � udj
2 � lim inf

n!1

Z
��

jun
� � udj

2 . (3.11)

Hence, combining ( 3.5 ) and ( 3.11 ), we obtain J�.u� , ��/ � lim inf
n!1

J�.un
� , �n,�/ D m� .

Therefore, .u� , ��/ is a solution to problem .P�/. Uniqueness follows from the strict convexity of the L2-cost functional.

In the next section, we introduce the unfolding operator and its properties required for our article. Then using these operators, we
derive the optimality system and characterize the optimal control using unfolding operators.

4. Unfolding operators and its properties

We define periodic unfolding operator and some of its properties without proof. The proofs can be found in [17] (see also in [8]). For
x 2 R, we write Œx� as the integer part of x, that is, Œx� D k, where k is the largest integer such that k � x and fxg D x � Œx�.

Definition 4.1
(The unfolding operator) Let 
� : �C � .p, q/ ! �C� be defined by .x1, x2, x3/ 7!

�
�
�

x1
�

�
C �x3, x2

	
. The �-unfolding of a function

u : �C� ! R is the composite function uı
� : �C� .p, q/! R. The operator that maps every function u : �C� ! R to its �-unfolding
is called the unfolding operator, which we denote by T� , that is

T� :
n

u : �C� ! R
o
!
n

v : �C � .p, q/! R
o

defined by

T�u.x1, x2, x3/ D u ı 
�.x1, x2, x3/ D u
�
�
h x1

�

i
C �x3, x2

�
.

If U is an open subset of R2 containing�C� and u a is real valued function on U, then T�u will mean T� acting on the restriction of u
to�C� . The following prosperities of T� can be obtain from [17].

Proposition 4.2

(i) T� is linear.
(ii) Let u1, u2 be two functions from�C� ! R. Then T�.u1u2/ D T�.u1/T�.u2/.

(iii) Let u 2 L1.�C� /. Then Z
�C�.p,q/

T�u dx D

Z
�
C
�

u dx.
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(iv) Let u 2 L2.�C� /. Then T�u 2 L2.�C � .p, q// and kT�ukL2.�C�.p,q// D kuk
L2.�

C
� /

.

(v) Let u 2 H1.�C� /. Then T�u 2 L2.0, 1; H1..h1, h2/ � .p, q///. Moreover,
@

@x2
.T�u/ D T�



@u

@x2

�
,
@

@x3
.T�u/ D �T�



@u

@x1

�
. Further, kT�ukL2.0,1;H1..h1,h2/�.p,q/// � Ckuk

H1.�
C
� /

.

(vi) Let u 2 L2.�C/. Then T�u! u strongly in L2.�C � .p, q//.
(vii) Let u� ! u strongly in L2.�C/. Then T�u� ! u strongly in L2.�C � .p, q//.

(viii) Let for every �, u� 2 L2.�C� / be such that T�u� * u weakly in L2.�C � .p, q//. Then

eu�* qZ
p

u.x1, x2, x3/ dx3 weakly in L2.�C/.

(ix) Let u� 2 H1.�C� / for every � > 0 be such that T�u� * u weakly in L2..0, 1/ � .p, q/; H1..h1, h2///. Theneu� * qR
p

u.x1, x2, x3/ dx3 weakly in L2..0, 1/; H1..h1, h2///.

4.1. Unfolding on the boundary

For our analysis, we define boundary unfolding on ��1 , ��2 , and ��3 .

Definition 4.3
For i D 1, 2, 3, the �-unfolding of a function u : ��i ! R is the function T�i u : .0, 1/ � Ai ! R defined by T�i u.x1, x2, x3/ D

u
�
�
h x1

�

i
C �x3, x2

�
.

If U is an open subset of R2 such that ��i � U and u : U! R, then T�i u D T�i

�
uj��i

�
, for functions u with a well-defined trace on ��i .

Some of the essential properties of boundary unfolding operators are stated in the succeeding texts ([17], [8]).

Proposition 4.4
For i=1, 2, 3,

(i) T�i is linear, and for functions u1, u2 from ��i ! R, we have T�i .u1u2/ D T�i .u1/T�i .u2/.
(ii) If u 2 L2.��i /, then T�i u 2 L2..0, 1/ � Ai/ and kT�i ukL2..0,1/�Ai/ D kukL2.��i /

.
(iii) If u� �! u strongly in H1..0, 1/ � .h1, h2/, then T�i u� �! u strongly in L2..0, 1/ � Ai/.

(iv) If u� be a sequence in L2.��i / such that T�i u� * u weakly in L2..0, 1/ � Ai/, then eu� * Z
Ai

u dx3 weakly in L2.0, 1/.

5. Main results

In this section, we present our results, namely, the optimality system and the characterization of the optimal control, the limit system,
and the main convergence theorems.

5.1. Optimality system

Let .u� , ��/ be the optimal solution to the problem .P�/. Our aim is to derive a characterization of �� with the help of unfolding
operators and adjoint state v� 2 H1

� . The adjoint state v� solves

8̂̂̂<̂
ˆ̂:
��v� C v� D u� � ud in �� ,
@v�
@	
D 0 on �� ,

v� D 0 on �b,
v� is �s-periodic.

(5.1)

We now present one of our major contribution, namely, the characterization of the optimal control via the unfolding operators.

Theorem 5.1
Let f 2 L2.�/ and .u� , ��/ be the optimal solution of .P�/. Let v� 2 H1

� solves ( 5.1 ), then the optimal control is given by

��.y1, y2/ D�
1

ˇ

�
��1

Z 1

0
T�1 .v�/.x1, h1, y1/ dx1 C ��3�

˛�1

Z 1

0
T�v�.x1, y2, p/dx1

C ��2

Z 1

0
T�2 v�.x1, h2, y1/dx1 C ��4�

˛�1

Z 1

0
T�.v�/.x1, y2, q/ dx1


,
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where T� , T�1 , T�2 be the unfolding operators as in Definition 4.1 and Definition 4.3, respectively. Conversely, assume that a pair .Ou� , Ov�/ 2
H1
� � H1

� solves the optimality system 8̂̂̂̂
ˆ̂̂̂̂<̂
ˆ̂̂̂̂̂̂
:̂

��Ou� C Ou� D f in �� ,

��Ov� C Ov� D Ou� � ud in �� ,

@Ou�
@	
D
bO��
�

,
@Ov�
@	
D 0 on �� ,

Ou� D 0, Ov� D 0 on �b,

Ou� , Ov� are �s-periodic.

(5.2)

Define O�� as

O��.y1, y2/ D�
1

ˇ

�
��1

Z 1

0
T�1 .Ov�/.x1, h1, y1/ dx1 C ��3�

˛�1

Z 1

0
T� Ov�.x1, y2, p/dx1

C ��2

Z 1

0
T�2 Ov�.x1, h2, y1/dx1 C ��4�

˛�1

Z 1

0
T�.Ov�/.x1, y2, q/ dx1


.

Then, the pair .Ou� , O��/ is the optimal solution to .P�/.

5.2. Homogenized systems

We now consider the limit optimality systems corresponding to scaling parameters ˛ > 1 and ˛ D 1. Consider the following
Banach space:

V0.�/ D

�
 2 L2.�/ :

@ j��

@x1
2 L2.��/,

@ 

@x2
2 L2.�/ and  j�b D 0

�
,

with respect to the norm defined by

k k2
V0.�/

D k k2
L2.�/

C

���� @ @x2

����2

L2.�/

C

����@ j��@x1

����2

L2.��/

.

For a given f 2 L2.�/, � 2 L2.h1, h2/, C1 and C2 in R, consider two systems for j D 0, 1:

8̂̂̂̂
ˆ̂̂̂̂̂<̂
ˆ̂̂̂̂̂̂
ˆ̂:

�
@2uC

@x2
2

C uC D f � j���C in �C,

��u� C u� D f in ��,
@uC

@	
D C2 on �u,

uC D u�,
@u�

@x2
� .q � p/

@uC

@x2
D C1 on �c,

u� D 0 on �b, u is �s0 -periodic.

(5.3)

Write u D uC��C C u���� . The linearity of the solution operator of ( 5.3 ) is obvious, and we have the continuity of the solution
operator. More precisely

kukV0.�/ � C
�
kfkL2.�/ C jk�kL2.h1,h2/

	
. (5.4)

Existence and uniqueness of u 2 V0.�/ follow in a standard way. Now, consider the L2-cost functionals J1 and J2 defined by

J1.u, � , C1, C2/ D
1

2

Z
�

..q � p/��C C ���/ ju � udj
2 C

.q � p/2

4

Z h2

h1

j� j2

C
ˇ

2.1 � .q � p//
jC1j

2 C
ˇ

2
jC2j

2.

and

J2.u, C1, C2/ D
1

2

Z
�

..q � p/��C C ���/ ju � udj
2 C

ˇ

2.1 � .q � p//
jC1j

2 C
ˇ

2
jC2j

2.
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Associated with these cost functionals, we introduce the following optimal control problems:

inf
˚

J1.u, � , C1, C2/ : � 2 L2.h1, h2/, C1, C2 2 R and .u, � , C1, C2/ obeys .5.3/ for j D 1
�

.P1/

and

inf fJ2.u, C1, C2/ : C1, C2 2 R and .u, C1, C2/ obeys .5.3/ for j D 0g . .P2/

We will see later that .P1/ corresponds to the case ˛ D 1 and .P2/ corresponds to ˛ > 1. Further, the problems .P1/ and .P2/

admit unique solutions. First, we characterize optimal controls � , C1, C2 of the problem .P1/ using adjoint state v, which are given in
Theorems 5.2 and 5.3. We omit the proof of these theorems. Let v 2 V0.�/ solves the adjoint problem8̂̂̂̂

ˆ̂̂̂̂̂̂
ˆ̂<̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂:

�
@2vC

@x2
2

C vC D .uC � ud/ in �C,

��v� C v� D .u� � ud/ in ��,

@vC

@x2
D 0 on �u,

vC D v�,
@v�

@x2
� .q � p/

@vC

@x2
D 0 on �c,

v� D 0 on �b, v is �s0 -periodic.

(5.5)

Here, we denote v D vC��C C v���� .

Theorem 5.2
Let f 2 L2.�/ and .u, � , C1, C2/ be the optimal solution of .P1/. Let v 2 V0.�/ solves ( 5.5 ), then the optimal control is given by

� D �.x2/ D
2

.q � p/

Z 1

0
v.x1, x2/dx1,

C1 D �
1 � .q � p/

ˇ

Z 1

0
v.y, h1/dy, C2 D �

.q � p/

ˇ

Z 1

0
v.y, h2/dy

(5.6)

Conversely, assume that a pair .Ou, Ov/ 2 V0.�/ � V0.�/ solves the optimality system8̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂<̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂:

�
@2 OuC

@x2
2

C OuC D f � O� , �
@2 OvC

@x2
2

C OvC D .OuC � ud/ in �C,

��Ou� C Ou� D f , ��Ov� C Ov� D .Ou� � ud/ in ��,

@OuC

@x2
D OC2,

@OvC

@x2
D 0 on �u,

OuC D Ou�,
@Ou�

@x2
� .q � p/

@OuC

@x2
D OC1 on �c,

OvC D Ov�, .q � p/
@OvC

@x2
D
@Ov�

@x2
on �c,

Ou� D 0, Ov� D 0 on �b, Ou, Ov are �s0 � periodic,

O� D
2

.q � p/

Z 1

0
Ov.x1, x2/dx1,

OC1 D �
1 � .q � p/

ˇ

Z 1

0
Ov.y, h1/dy, OC2 D �

.q � p/

ˇ

Z 1

0
Ov.y, h2/dy.

(5.7)

Then, the pair .Ou, O� , OC1, OC2/ is the optimal solution to .P1/.

Similarly, we have the following theorem corresponding to .P2/.

Theorem 5.3
Let f 2 L2.�/ and .u, C1, C2/ be the optimal solution of .P2/. Let v 2 V0.�/ solves ( 5.5 ), then the optimal control is given by

C1 D �
1 � .q � p/

ˇ

Z 1

0
v.y, h1/dy, C2 D �

.q � p/

ˇ

Z 1

0
v.y, h2/dy
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Conversely, assume that a pair .Ou, Ov/ 2 V0.�/ � V0.�/ solves the optimality system8̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂<̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂:

�
@2 OuC

@x2
2

C OuC D f , �
@2 OvC

@x2
2

C OvC D .OuC � ud/ in �C,

��Ou� C Ou� D f , ��Ov� C Ov� D .Ou� � ud/ in ��,

@OuC

@x2
D OC2,

@OvC

@x2
D 0 on �u,

OuC D Ou�,
@Ou�

@x2
� .q � p/

@OuC

@x2
D OC1 on �c,

OvC D Ov�, .q � p/
@OvC

@x2
D
@Ov�

@x2
on �c,

Ou� D 0, Ov� D 0 on �b, Ou, Ov are �s0 � periodic,

OC1 D �
1 � .q � p/

ˇ

Z 1

0
Ov.y, h1/dy, OC2 D �

.q � p/

ˇ

Z 1

0
Ov.y, h2/dy.

(5.8)

Then, the pair .Ou, OC1, OC2/ is the optimal solution to .P2/.

5.3. Convergence theorems

We now state the main homogenization theorems. We have the following theorem for ˛ D 1.

Theorem 5.4
(Critical case ˛ D 1) Let .u� , ��/ and .u, � , C1, C2/ be the optimal solution of .P�/ with ˛ D 1 and of .P1/, respectively, and v� , v be the
corresponding adjoint systems given, respectively, by ( 5.1 ) and ( 5.5 ). Then

Bu�j�C� * .q � p/uj�C weakly in L2.0, 1; H1.h1, h2//,

Av�j�C� * .q � p/vj�C weakly in L2.0, 1; H1.h1, h2//,

u�j�� * uj�� weakly in H1.��/,

v�j�� * vj�� weakly in H1.��/,�c
�
�

� ,


�
! hˆ,
i

for all 
 2 H1.�C/,ˆ D ˆ.� , C1, C2/ and

hˆ,
i D

Z 1

0
C1
.x1, h1/dx1 C

Z 1

0
C2
.x1, h2/dx1 C

Z
�C

�
.x1, x2/dx1dx2

and

� D
2

.q � p/

Z 1

0
v.x1, x2/dx1, C1 D �

1 � .q � p/

ˇ

Z 1

0
v.y, h1/dy, C2 D �

.q � p/

ˇ

Z 1

0
v.y, h2/dy.

Similarly, we have the following theorem for ˛ > 1.

Theorem 5.5
(Case ˛ > 1) Let .u� , ��/ and .u, C1, C2/ be the optimal solution of .P�/with ˛ > 1 and .P2/, respectively, and v� , v be the corresponding
adjoint systems given, respectively, by ( 5.1 ) and ( 5.5 ). Then

Bu�j�C� * .q � p/uj�C weakly in L2.0, 1; H1.h1, h2//,

Av�j�C� * .q � p/vj�C weakly in L2.0, 1; H1.h1, h2//,

u�j�� * uj�� weakly in H1.��/,

v�j�� * vj�� weakly in H1.��/,c
�
�

� * ˆ D ˆ.C1, C2/ weakly in
�

H1.�C/
��

,

where

hˆ,
i D

Z 1

0
C1
.x1, h1/dx1 C

Z 1

0
C2
.x1, h2/dx1dx2
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and

C1 D �
1 � .q � p/

ˇ

Z 1

0
v.y, h1/dy, C2 D �

.q � p/

ˇ

Z 1

0
v.y, h2/dy.

5.4. A priori estimates

Assume that .u� , ��/ is the optimal solution of .P�/. Let u�.0/ be the solution of the problem ( 3.2 ) corresponding to � D 0, then
we obtain

ku�.0/kH1.��/ � C, (5.9)

where C > 0 is independent of �. Using optimality of the solution .u� , �
�

�/, we obtain

Z
��

ju� � udj
2 C

ˇ

2

Z
�

j��j
2 �

Z
��

ju�.0/ � udj
2 � C. (5.10)

Thus, we have

k��kL2.�/ � C and ku�kL2.��/ � C. (5.11)

From the weak formulation of the adjoint problem ( 5.1 ), we have

kv�kH1.��/ � C (5.12)

where C is independent of �.

Lemma 5.6
For any u� in H1.��/, there exists constant C > 0 independent of � such that

ku�kL2.��\�c/ � Cku�kH1.��/,

ku�kL2.��\�u/ � Cku�kH1.��/.

Proof
By Trace theorem, there exists a positive constant C > 0 independent of � such that

ku�k
2
L2.��\�c/

D

Z
��\�c

ju�j
2 �

Z
�c

ju�j
2 � Cku�k

2
H1.��/

� Cku�k
2
H1.��/

.

Again, by Trace theorem and Hölders inequality, we obtain

ku�k
2
L2.��\�u/

D

Z
��\�u

u2
� D

m�1X
kD0

Z k�C�q

k�C�p
.u�.x1, h2//

2dx1

D

m�1X
kD0

Z k�C�q

k�C�p

 Z h2

g.x1/

@u�
@x2

.x1, x2/dx2 C u�.x1, g.x1//

!2

dx1

� C
m�1X
kD0

Z k�C�q

k�C�p

0@ Z h2

g.x1/

@u�
@x2

.x1, x2/dx2

!2

C u2
�.x1, g.x1//

1A dx1

� C

 
m�1X
kD0

Z k�C�q

k�C�p

Z h2

g.x1/

ˇ̌̌̌
@u�
@x2

ˇ̌̌̌2
C ku�k

2
L2.�b/

!

� C

 ����@u�
@x2

����2

L2.��/

C ku�k
2
H1.��/

!
.

Thus, we have

ku�kL2.��\�u/ � Cku�kH1.��/.

Proposition 5.7
Let .u� , ��/ be the optimal solution of .P�/. For ˛ � 1, there exist a positive constant C > 0 independent of � such that ku�kH1.��/ � C.

Proof
Taking 
 D u� in the variational formulation ( 3.3 ), we obtain
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ku�k
2
H1.��/

D

Z
��

f u� C

Z
��

c
�
�

� u� . (5.13)

Using Cauchy–Schwarz inequality, we obtainZ
��

f u� � kfkL2.��/ku�kL2.��/ � kfkL2.�/ku�kH1.��/. (5.14)

We now estimate the second term of the right-hand side of ( 5.13 ):Z
��

c
�
�

� u� �

Z
��

j
c
�
�

�j ju�j

D

m�1X
kD0

(Z k�C�p

k�
j
c
�
�

�.x1, h1/jju�.x1, h1/jdx1

C

Z h2

h1

j
c
�
�

�.k� C �p, x2/jju�.k� C �p, x2/jdx2

C

Z k�C�q

k�C�p
j
c
�
�

�.x1, h1/jju�.x1, h1/jdx1

C

Z h2

h1

j
c
�
�

�.k� C �q, x2/jju�.k� C �q, x2/jdx2

C

Z k�C�

k�C�q
j
c
�
�

�.x1, h2/jju�.x1, h2/jdx1

)

Therefore, by Cauchy–Schwarz inequality, we obtain

Z
��

c
�
�

� u� �
m�1X
kD0

8<:�1=2


Z p

0
j�� .y1, h1/ j

2dy1

�1=2
 Z k�C�p

k�
ju�.x1, h1/j

2dx1

!1=2

C �˛

 Z h2

h1

j��.p, y2/j
2dy2

!1=2  Z h2

h1

ju�.k� C �p, x2/j
2dx2

!1=2

C �1=2


Z q

p
j��.y1, h2/j

2dy1

�1=2
 Z k�C�q

k�C�p
ju�.x1, h2/j

2dx1

!1=2

C �˛

 Z h2

h1

j��.q, y2/j
2dy2

!1=2  Z h2

h1

ju�.k� C �q, x2/j
2dx2

!1=2

C �1=2


Z 1

q
j�� .y1, h1/ j

2dy1

�1=2
 Z k�C�

k�C�q
ju�.x1, h1/jdx1

!1=2
9=;

� �1=2k��kL2.�/

m�1X
kD0

8<:
 Z k�C�p

k�
ju�.x1, h1/j

2dx1

!1=2

C �˛�1=2

 Z h2

h1

ju�.k� C �p, x2/j
2dx2

!1=2

C

 Z k�C�q

k�C�p
ju�.x1, h2/j

2dx1

!1=2

C �˛�1=2

 Z h2

h1

ju�.k� C �q, x2/j
2dx2

!1=2

C

 Z k�C�

k�C�q
ju�.x1, h1/jdx1

!1=2
9=;

� �1=2k��kL2.�/

�
��1=2ku�kL2.��\�u/ C �

�1=2ku�kL2.��\�c/

�
C �˛�1=2k��kL2.�/

m�1X
kD0

8<:
 Z k�C�

k�

Z h2

h1

jT�u�.x1, x2, p/j2dx1dx2

!1=2

C

 Z k�C�

k�

Z h2

h1

jT�u�.x1, x2, q/j2dx1dx2

!1=2
9=;

�k��kL2.�/

�
ku�kL2.��\�u/ C ku�kL2.��\�c/

	
C �˛�1k��kL2.�/

�
kT�u�jx3DpkL2.�C/ C kT�u�jx3DqkL2.�C/

	
.
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By Trace theorem and Proposition 4.2.v/Z
��

c
�
�

� u� � k��kL2.�/

�
ku�kL2.��\�u/ C ku�kL2.��\�c/ C �

˛�1ku�kH1.�
C
� /

�
. (5.15)

Therefore, combining ( 5.11 ), ( 5.13 ), ( 5.14 ), ( 5.15 ), Lemma 5.6 and because ˛ � 1, we obtain

ku�kH1.��/ � C.

6. Proof of theorems

In this section, we give the proof of all the theorem presented in Section 5.

Proof of Theorem 5.1:
We know that .P�/ admits a unique solution by Theorem 3.2 , say .u� , ��/, where �� is the optimal control and u� is the optimal state.
For � 2 L2.�/, let F.�/ D J�.u�.f ,c��/, �/.
Because �� is optimal, for any � > 0, we have

1

�

�
F.�� C ��/ � F.��/

�
� 0.

Now calculate

F.�� C ��/ � F.��/ D
1

2

Z
��

ju�,� � udj
2 C

ˇ

2

Z
�

ˇ̌̌
�� C ��

ˇ̌̌2
�

1

2

Z
��

ju� � udj
2 �

ˇ

2

Z
�

ˇ̌̌
��

ˇ̌̌2
D

1

2

Z
��

.u�,� � u�/.u�,� C u� � 2ud/C
ˇ

2

Z
�

.2���� C �
2�2/

where u�,� D u�



f ,
b

��
�
C �c��� is the solution of ( 3.2 ) with non-homogeneous boundary term

b

��
�
C�c�� . Note that w�,� D u�,��u�

is the solution to the equation 8̂̂̂<̂
ˆ̂:
��wC w D 0 in �� ,
@w

@	
D �c�� on �� ,

w D 0 on �b,
w is �s-periodic.

Using the continuity of solution operator, we obtain

kw�,�kH1.��/ � C�j�jkc��kL2.��/.

Thus, w�,� ! 0 strongly in H1.��/ as � ! 0, and hence the sequence .u�,�/�>0 converges to u� strongly in H1.��/. Set wb�� ,�
D

1
�

w�,�. Notice wb�� ,�
2 H1.��/ satisfies equation 8̂̂̂<̂

ˆ̂:
��wC w D 0 in �� ,
@w

@	
Dc�� on �� ,

w D 0 on �b,
w is �s-periodic.

(6.16)

Thus, wb�� ,�
is independent of �, and hence

0 � lim
�!0

1

�

�
F.�� C ��/ � F.��/

�
D

Z
��

.u� � ud/wb�� ,�
C ˇ

Z
�

��� .

Hence, F0.��/� � 0, 8 � 2 L2.�/, which in turn implies that F0.��/� D 0, 8 � 2 L2.�/. Thus for the optimal solution, we obtainZ
�
C
�

.u� � ud/wb�� ,�
D �ˇ

Z
�

��� . (6.17)
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We now derive the characterization of �� . Because v� satisfies the system ( 5.1 ) and wb�� ,�
satisfies ( 6.16 ), we have

Z
��

v�c�� D Z
��

.u� � ud/wb�� ,�
D �ˇ

Z
�

��� . (6.18)

We know Z
��

v�c�� D Z
��1

v�c�� C Z
��2

v�c�� C Z
��n.��1[�

�
2 /

v�c�� . (6.19)

Using the unfolding operator Z
��1

v�c�� D Z
.0,1/�A1

T�1 .v�/.x1, h1, x3/T
�
1 .
c��/.x1, h1, x3/ dx1dx3

D

Z
.0,1/�A1

T�1 .v�/.x1, h1, x3/
c�� �� h x1

�

i
C �x3, h1

�
dx1dx3

D

Z
.0,1/�A1

T�1 .v�/.x1, h1, x3/�.x3, h1/ dx1dx3

D

Z
A1

�Z 1

0
T�1 .v�/.x1, h1, x3/ dx1

�
�.x3, h1/dx3.

Similarly Z
��2

v�c�� D Z
A2

�Z 1

0
T�2 .v�/.x1, h2, x3/ dx1

�
�.x3, h2/dx3,

and Z
��n.��1[�

�
2 /

v�c�� D m�1X
kD0

(Z h2

h1

v�.k� C �p, x2/
c��.k� C �p, x2/dx2

C

Z h2

h1

v�.k� C �q, x2/
c��.k� C �q, x2/dx2

)

D
�˛

�

m�1X
kD0

(Z h2

h1

 Z .kC1/�

k�
v�
�
�
h x1

�

i
C �p, x2

�
dx1

!
�.p, x2/dx2

C

Z h2

h1

 Z .kC1/�

k�
v�
�
�
h x1

�

i
C �q, x2

�
dx1

!
�.q, x2/dx2

)

D �˛�1

(Z h2

h1


Z 1

0
T�v�.x1, x2, p/dx1

�
�.p, x2/dx2

C

Z h2

h1


Z 1

0
T�v�.x1, x2, q/dx1

�
�.q, x2/dx2

)
.

Now using ( 6.18 ) and ( 6.19 ), because � is arbitrary, we arrive at the characterization of the optimal control �� as in the theorem.
To prove the converse, suppose that .Ou� , Ov�/ 2 H1

� � H1
� and O�� obeys the optimality system ( 5.2 ). For � 2 L2.�/, we have

F. O�� C �/ � F. O��/ D
1

2

Z
��

ˇ̌
u�,1 � Ou�

ˇ̌2
C
ˇ

2

Z
�

j��j
2 C

Z
��

.u�,1 � Ou�/.Ou� � ud/C ˇ

Z
�

O��� .

where u�,1 D u�



f ,
bO��
�
Cc���. Observe that

Z
��

.u�,1 � Ou�/.Ou� � ud/ D

Z
��

r.u�,1 � Ou�/ � r Ov� C

Z
��

.u�,1 � Ou�/Ov� C

Z
@��

@Ov�
@	
.u�,1 � Ou�/

D

Z
��

Ov�c�� D �ˇ Z
�

O��� .

Hence, F. O�� C �/ � F. O��/ � 0. Thus .Ou� , O��/ is the optimal solution to .P�/.
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4
3

6
7



A. K. NANDAKUMARAN, R. PRAKASH AND B. C. SARDAR

Proof of Theorem 5.4:
We know from Proposition 5.7 that we have

ku�kH1.��/ � C (6.20)

where C is constant independent of �. Let us denote u�
C as the restriction to u� in�C� and u�

� the restriction of u� to��.
The sequence T�u�

C is bounded in the space L2.0, 1; H1..h1, h2/ � .p, q///. It follows from Proposition 4.2.v/ and ( 6.20 ) that there
exists uC0 in L2.0, 1; H1..h1, h2/ � .p, q/// such that up to a subsequence

T�u�
C * uC0 weakly in L2.0, 1; H1..h1, h2/ � .p, q///. (6.21)

From Proposition 4.2.v/ and ( 6.21 ), it follows that

T�u�
C * uC0 weakly in L2.�C � .p, q//, (6.22)

T�
 
@u�
C

@x2

!
*

@uC0
@x2

weakly in L2.�C � .p, q//, (6.23)

�T�
 
@u�
C

@x1

!
*

@uC0
@x3

weakly in L2.�C � .p, q//. (6.24)

Again from Proposition 4.2.iv/, we have

�����T�
@u�
C

@x1

�����
L2.�C�.p,q//

D

�����@u�
C

@x1

�����
L2.�

C
� /

� ku�kH1.��/

which implies the boundedness of the sequence T�
 
@u�
C

@x1

!
in the space L2.�C � .p, q// from ( 6.20 ). Hence, there exist an element

P 2 L2.�C � .p, q// such that

T�
@u�
C

@x1
* P weakly in L2.�C � .p, q//. (6.25)

Thus, from ( 6.24 ), it follows that
@uC0
@x3
D 0, and hence uC0 is independent of x3. Further, using Proposition 4.2.ix/

eu�
C*

Z q

p
uC0 dx3 D .q � p/uC0 weakly in L2.0, 1; H1.h1, h2//. (6.26)

Because u�
� is bounded in H1.��/ by ( 6.20 ), up to a subsequence (still denoted by �), we obtain

u�
� * u�0 weakly in H1.��/. (6.27)

Define u0 as

u0.x/ D

�
uC0 if x 2 �C,
u�0 if x 2 ��.

(6.28)

It can be proved that u0 2 V0.�/; see the proof of Theorem 5.3 in [8].

Claim: The limit P D 0. Let 
 2 D.�C/ and � 2 C1Œ0, 1/ be arbitrary and let  D �0. Now choose the test function


�.x/ D �
.x/ 
�n x1

�

o�
.

Note that 
� is continuous in each strip of �C� , which are disjoint and hence continuous on �C� . From definition of �-unfolding of 
�

and by Proposition 4.2, we obtain

Copyright © 2016 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2016, 39 4354–4374
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T�
� D �

�
�
h x1

�

i
C �x3, x2

�
 .x3/,

T�


@
�

@x1

�
D

1

�

@

@x3
.T�
�/,

D �
@


@x1

�
�
h x1

�

i
C �x3, x2

�
 .y1/C 


�
�
h x1

�

i
C �x3, x2

�
 0.x3/,

T�


@
�

@x2

�
D �

@


@x2

�
�
h x1

�

i
C �x3, x2

�
 .x3/.

On convergence, as � ! 0, we obtain

T�
� ! 0 in L2.�C � .p, q// (6.29)

T�
@
�

@x1
! 
.x1, x2/ 

0.x3/ in L2.�C � .p, q// (6.30)

T�
@
�

@x2
! 0 in L2.�C � .p, q//. (6.31)

From the variational formulation ( 3.3 ) forc�� Db��� , we obtain

lim
�!0


Z
��

ru� � rf
� C Z
��

u�f
�� D lim
�!0


Z
��

ff
� C Z
��

b

��
�f
�� . (6.32)

Here, f
� of 
� to�� by 0. Now notice

Z
��

ru� � rf
� C Z
��

u�f
� D Z
�
C
�

ru�
C � r
� C

Z
�
C
�

u�
C
�

D

Z
�C�.p,q/

T�
@u�
C

@x1
T�
@
�

@x1
C T�

@u�
C

@x2
T�
@
�

@x2

C

Z
�C�.p,q/

T�u�
CT�
�

!

Z
�C�.p,q/

P 
.x1, x2/ 
0.x3/

(6.33)

as � ! 0, and Z
��

ff
� C Z
��

b

��
�f
� D Z

�
C
�

f
� C

Z
��n.�c[�u/

��
�

�
Z
�C�.p,q/

T�f T�
�

C �˛C1
m�1X
kD0

(Z h2

h1

��.p, y2/
.k� C �p, y2/ .p/ C

Z h2

h1

��.q, y2/
.k� C �q, y2/ .q/

)
!0, as � ! 0.

(6.34)

Combing ( 6.33 )and ( 6.34 ), from ( 6.32 ) we obtain Z
�C�.p,q/

P 
.x1, x2/�.x3/ D 0

Because 
 and � are arbitrary, we obtain P D 0 a.e. .x1, x2/ 2 �
C, x3 2 .p, q/ and hence the claim.

Similarly, we find the following convergence for the adjoint state v� described in ( 5.1 ).

T�
�

v�j�C�

�
* v0j�C weakly in L2.0, 1; H1..h1, h2/ � .p, q///, (6.35)

Av�j�C� * .q � p/v0j�C weakly in L2.0, 1; H1.h1, h2//, (6.36)

v�j�� * v0j�� weakly in H1.��/, (6.37)

where v0 2 V0.�/ satisfies ( 5.5 ) for u D u0.

Copyright © 2016 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2016, 39 4354–4374
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Now choose a test function 
 2 C1.�/ such that 
j�b D 0 in the variational formulation ( 3.3 ) forc�� Db��� . As � ! 0, the left-hand
side of ( 3.3 ) becomes

Z
��

ru� � r
 C u�
 D

Z
�C�.p,q/

 
T�
 
@u�
C

@x1

!
T�


@


@x1

�
C T�

 
@u�
C

@x2

!
T�


@


@x2

�!

C

Z
�C�.p,q/

T�u�
CT�
 C

Z
��
ru�
� � r
 C

Z
��

u�
�


!

Z
�C�.p,q/

 
@uC0
@x2

@


@x2
C uC0 


!
C

Z
��
ru0
� � r
 C u�0 
.

(6.38)

The right-hand side of ( 3.3 ) becomes

Z
��

f
 C

Z
��

c
�
�

�
 D

Z
�
C
�

f
 C

Z
��

f
 C

Z
��

c
�
�

�
. (6.39)

Using Proposition 4.2.vi/, we obtain

lim
�!0

Z
�
C
�

f
 D

Z
�C�.p,q/

T�f T�
 D .q � p/

Z
�C

f
. (6.40)

Further Z
��

c
�
�

�
 D

Z
��1

c
�
�

�
 C

Z
��2

c
�
�

�
 C

Z
��n.��1[�

�
2 /

c
�
�

�
. (6.41)

Now using Proposition 4.4.iii/ and the characterization of the optimal control �� , we obtain

Z
��1

c
�
�

�
 D

Z
.0,1/�A1

T�1


c
�
�

�

�
.x1, h1, x3/ T�1 .
/.x1, h1, x3/ dx1dx3

D

Z
.0,1/�A1

c
�
�

�

�
�
h x1

�

i
C �x3, h1

�
T�1 .
/.x1, h1, x3/ dx1dx3

D

Z
.0,1/�A1

��.x3, h1/ T�1 .
/.x1, h1, x3/ dx1dx3

D �
1

ˇ

Z
.0,1/�A1


Z 1

0
T�1 .v�/.y, h1, x3/dy

�
T�1 .
/.x1, h1, x3/dx1dx3.

Also, we have the convergence v�� * v�0 in H1.��/, by Trace theorem v�� ! v�0 in L2.�c/, and by Proposition 4.4.iv/, .v/, we
conclude that

lim
�!0

Z
��1

c
�
�

�
 D �
1

ˇ

Z
.0,1/�A1


Z 1

0
v�0 .y, h1/dy

�

.x1, h1/dx1dx3

D �
1 � .q � p/

ˇ

Z 1

0


Z 1

0
v�0 .y, h1/dy

�

.x1, h1/dx1.

Similarly Z
��2

c
�
�

�
 D

Z
.0,1/�A2

T�2


c
�
�

�

�
.x1, h2, x3/ T�2 .
/.x1, h2, x3/ dx1dx3

D

Z
.0,1/�A2

c
�
�

�

�
�
h x1

�

i
C �x3, h2

�
T�2 .
/.x1, h2, x3/ dx1dx3

D

Z
.0,1/�A2

��.x3, h2/ T�2 .
/.x1, h2, x3/ dx1dx3

D �
1

ˇ

Z
.0,1/�A2


Z 1

0
T�2 .v�/.y, h2, x3/dy

�
T�2 .
/.x1, h2, x3/dx1dx3.

Copyright © 2016 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2016, 39 4354–4374
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Because T�.v�/ * vC0 in L2.0, 1; H1..h1, h2/ � .p, q/// and T�2 .v�/ D T�.v�/j�u , we obtain

lim
�!0

Z
��2

c
�
�

�
 D �
1

ˇ

Z
.0,1/�A2


Z 1

0
vC0 .y, h2/dy

�

.x1, h2/dx1dx3

D �
.q � p/

ˇ

Z 1

0


Z 1

0
vC0 .y, h2/dy

�

.x1, h2/dx1.

and Z
��n.��1[�

�
2 /

c
�
�

�
 D

m�1X
kD0

(Z h2

h1

c
�
�

�.k� C �p, x2/
.k� C �p, x2/dx2

C

Z h2

h1

c
�
�

�.k� C �q, x2/
.k� C �q, x2/dx2

)

D

m�1X
kD0

�˛

(Z h2

h1

��.p, x2/
.k� C �p, x2/dx2 C

Z h2

h1

��.q, x2/
.k� C �q, x2/dx2

)
.

Using the characterization of optimal control in terms of unfolding operator, we obtain

Z
��n.��1[�

�
2 /

c
�
�

�
 D

m�1X
kD0

�2˛�1

(Z h2

h1


Z 1

0
T�.v�/.x1, x2, p/dx1

�

.k�1C �p, x2/dx2

C

Z h2

h1


Z 1

0
T�.v�/.x1, x2, q/dx1

�

.k� C �q, x2/dx2

)

D
�2˛�1

�

m�1X
kD0

Z h2

h1


Z 1

0
T�.v�/.x1, x2, p/dx1

� Z .kC1/�

k�
T�.
/.x1, x2, p/dx1

!
dx2

C
�2˛�1

�

m�1X
kD0

Z h2

h1


Z 1

0
T�.v�/.x1, x2, q/dx1

� Z .kC1/�

k�
T�.
/.x1, x2, q/dx1

!
dx2

D �2˛�2
m�1X
kD0

Z h2

h1

 Z .kC1/�

k�


Z 1

0
T�.v�/.x1, x2, p/dx1

�
T�.
/.x1, x2, p/dx1

!
dx2

C �2˛�2
m�1X
kD0

Z h2

h1

 Z .kC1/�

k�


Z 1

0
T�.v�/.x1, x2, q/dx1

�
T�.
/.x1, x2, q/dx1

!
dx2

D �2˛�2

�Z
�C


Z 1

0
T�.v�/.x1, x2, p/dx1

�
T�.
/.x1, x2, p/dx1dx2

C

Z
�C


Z 1

0
T�.v�/.x1, x2, q/dx1

�
T�.
/.x1, x2, q/dx1dx2

�
.

(6.42)

Now, we consider the case ˛ D 1 in ( 6.42 ), and passing to the limit � ! 0, we obtain

Z
��n.��1[�

�
2 /

c��� 
 ! �Z
�C


Z 1

0
v0.x1, x2/dx1

�

.x1, x2/dx1dx2

C

Z
�C


Z 1

0
v0.x1, x2/dx1

�

.x1, x2/dx1dx2

�
.

(6.43)

Therefore, we obtain the following limit equation:

8̂̂̂̂
ˆ̂̂<̂
ˆ̂̂̂̂̂:

.q � p/

Z
�C

 
@uC0
@x2

@


@x2
C uC0 


!
C

Z
��

�
ru�0 � r
 C u�0 


	
D .q � p/

Z
�C

f
 C

Z
��

f


�

Z 1

0



1 � .q � p/

ˇ

Z 1

0
v�0 .y, h1/dy

�

.x1, h1/dx1 �

Z 1

0



.q � p/

ˇ

Z 1

0
vC0 .y, h2/dy

�

.x1, h2/dx1

C.q � p/

Z
�C



2

.q � p/

Z 1

0
v0.x1, x2/dx1

�

.x1, x2/dx1dx2
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for all 
 2 C1.�/with 
j�b D 0, and hence true for all  in V0.�/ by density. Therefore, u0 satisfies the differential equation ( 5.3 ) for
j D 1 with � D �0, C1 D C0

1 , C2 D C0
2 , where

�0 D
2

.q � p/

Z 1

0
v0.x1, x2/dx1,

C0
1 D �

1 � .q � p/

ˇ

Z 1

0
v�0 .y, h1/dy, C0

2 D �
.q � p/

ˇ

Z 1

0
vC0 .y, h2/dy.

Therefore, we obtain the optimality system corresponding to the minimization problem .P1/. According to Theorem 5.2, the optimal
solution is given by .u0, �0, C0

1 , C0
2/. Thus, by uniqueness, we have

u D u0, v D v0 and � D �0, C1 D C0
1 , C2 D C0

2 .

This completes the proof of Theorem 5.4.

Proof of the Theorem 5.5 :
The proof is similar till the equation ( 6.42 ). Now, take ˛ > 1 in ( 6.42 ) and pass to the limit � ! 0, to obtainZ

��n.��1[�
�
2 /

c
�
�

�
 ! 0. (6.44)

Thus, we have the following limit problem:8̂̂̂<̂
ˆ̂:

.q � p/

Z
�C

 
@uC0
@x2

@


@x2
C uC0 


!
C

Z
��

�
ru�0 � r
 C u�0 


	
D .q � p/

Z
�C

f
 C

Z
��

f


�

Z 1

0



1 � .q � p/

ˇ

Z 1

0
v�0 .y, h1/dy

�

.x1, h1/dx1 �

Z 1

0



.q � p/

ˇ

Z 1

0
vC0 .y, h2/dy

�

.x1, h2/dx1

which is true for all  in V0.�/. Hence u0 satisfies ( 5.3 ) for j D 0 with C1 D C0
1 , C2 D C0

2 , where

C0
1 D �

1 � .q � p/

ˇ

Z 1

0
v�0 .y, h1/dy, C0

2 D �
.q � p/

ˇ

Z 1

0
vC0 .y, h2/dy.

Using Theorem 5.3, the optimal solution is given by .u0, C0
1 , C0

2/. Thus, by uniqueness, we have

u D u0, v D v0, C1 D C0
1 , C2 D C0

2 .

Hence the proof.

7. Conclusion and remarks

In this article, we have characterized optimal control in terms of the unfolding operator. This characterization is then used to study the
limiting behavior of the optimality system and adjoint state. Finally, we have shown that the limit is indeed the optimal solution to the
appropriate limit problems. There are two types of limiting problems corresponding to the cases ˛ > 1 and ˛ D 1 (critical case). Here,
we would like to remark that there are three controls appearing in the limiting problem, namely, an interior control, boundary control
at the upper part of �, and interface control between �C and ��. In fact, one can see that these three controls are, respectively, the
contribution from three different parts of the controls on �� , namely, �� \�C, �� \ �u, and �� \ �c.
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