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ERROR BOUNDS FOR A DIRICHLET BOUNDARY CONTROL

PROBLEM BASED ON ENERGY SPACES

SUDIPTO CHOWDHURY, THIRUPATHI GUDI, AND A. K. NANDAKUMARAN

Abstract. In this article, an alternative energy-space based approach is pro-
posed for the Dirichlet boundary control problem and then a finite-element
based numerical method is designed and analyzed for its numerical approx-

imation. A priori error estimates of optimal order in the energy norm and
the L2-norm are derived. Moreover, a reliable and efficient a posteriori error
estimator is derived with the help of an auxiliary problem. The theoretical
results are illustrated by the numerical experiments.

1. Introduction

The study of PDE constrained optimal control problems is one of the important
research areas in the past few decades. The numerical analysis for this class of
problems began in the 1970s [16, 22]. Subsequently, there are many important
contributions to this field. It is difficult to list all the results in this introduction; we
refer to some of the articles and references therein for the development of numerical
methods and their error analysis. Refer to the monograph [33] for the theory of
optimal control problems and for the development of numerical methods. There
are mainly two types of controls proposed in the literature: one, which is said to be
distributed control, is proposed through interior force, and the other is the boundary
control applied through either Neumann or Robin or Dirichlet boundary conditions.
For work related to the distributed control problems, see for example [13, 19, 32]
and references therein. Regarding super-convergence results for distributed control
problems, refer to [30] for discretized control and to [23] for undiscretized control.
The Neumann boundary control problem with graded mesh refinement is analyzed
in [1] and a super-convergence result is derived in [10]. For the a posteriori error
analysis of conforming finite element methods for distributed control problems see
[24, 25, 27] and for the a posteriori error analysis of the Neumann control problem
refer to [28]. A framework for a priori and a posteriori energy norm error analysis for
Neumann and distributed control problems by discontinuous Galerkin discretization
can be found in [11]. Local error analysis of discontinuous Galerkin methods for the
distributed control problem for the advection-diffusion equation is studied in [26].
Unlike the Neumann or distributed control problems, the Dirichlet control problem
stimulates additional difficulties in formulating the problem when the control is
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sought from the space L2(Γ), where Γ is the boundary of the domain Ω. This is
due to the fact that the trace of any H1(Ω) function belongs to H1/2(Γ). The
difficulty is resolved by reformulating the model problem into a very (ultra) weak
formulation and when the domain Ω is a smooth or convex polygonal domain,
the control is shown to have additional regularity and thereby the standard weak
formulation is recovered; see [9, 14, 29]. When the domain Ω is not smooth (or
polygonal), the state and the control have restricted regularity. The error analysis of
finite element methods for the Dirichlet control problem uses the elliptic regularity
results on convex domains; see for example [9, 29]. Alternatively the Dirichlet
control problem is handled by perturbing the Dirichlet boundary condition into a
Robin type boundary condition with singular perturbation by penalty; see [2, 8].
Another alternative is to seek the control from an H1/2(Γ) space [21, 31] or H1(Γ)
space [20].

The finite element analysis of an H1/2(Γ)-space based Dirichlet control problem
was discussed recently in [31]. Therein the continuous and the discrete problems are
defined by using the Steklov-Poincaré operator arising from the harmonic extension
and then the optimality system is written as an H1/2-space variational inequality
on the boundary. Subsequently the numerical method and its analysis is discussed
by using the same setting. The numerical method in [31] is converted into a system
of equations defined in the interior of the domain using harmonic and continuous
extension operators. The harmonic extension is used (as a consequence of the
Steklov-Poincaré operator) for the trial functions and a continuous extension is used
for the test functions of the control variable. This subsequently implies that one has
to solve a Dirichlet problem for each trial function from the control space. In this
article, we revisit the study of the Dirichlet boundary control problem and propose
an alternative numerical algorithm with the aim of obtaining optimal order error
estimates. For this, we propose a different approach from [31] for defining a Dirichlet
boundary control problem which also produces a sufficiently regular control. In [31],
the Steklov-Poincaré operator was used to define the cost functional with the help of
a harmonic extension of the given boundary data. In our approach the control has
been sought in the H1(Ω) space and the resulting control is a harmonic function
without this being explicitly imposed. This leads to the optimality conditions
in a system of PDEs posed over the domain Ω. Based on this formulation, we
propose a finite element numerical method and derive its corresponding optimal
order error estimates in the energy norm and in the L2-norm. The arguments in our
analysis of this article are new and different from [31]. Further, using an auxiliary
system of PDEs, we derive a reliable and efficient a posteriori error estimator for
the development of an efficient adaptive algorithm. Numerical experiments are
performed to illustrate the theoretical results on a priori as well as a posteriori
error estimates.

The rest of the article is organized as follows. In section 2, we formulate the
Dirichlet control problem, prove its well-posedness, derive corresponding optimality
conditions and deduce the elliptic regularity. In section 3, we define the discrete
control problem, derive discrete optimality conditions and prove the existence and
uniqueness of the discrete solution. In section 4 and section 5, we derive a priori
and a posteriori error estimates respectively. In section 6, we present numerical
experiments to illustrate the theoretical results. Finally, we conclude the article in
section 7.
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2. Dirichlet control problem

Let Ω ⊂ R
2 be a bounded domain with polygonal boundary Γ. Assume there is

some m ≥ 1 such that the boundary Γ is the union of line segments Γi (1 ≤ i ≤ m)
whose interior in the induced topology are pair-wise disjoint. Define the norm on
the Sobolov space Hs(Ω) by ‖ · ‖s for s ≥ 0. Let (·, ·) (resp. ‖ · ‖) denote the
L2(Ω)-inner product (resp. norm). Let V := H1

0 (Ω) and Q := H1(Ω). Define

a(w, v) = (∇w,∇v), w, v ∈ Q,

where ∇ is the standard gradient operator. For given g ∈ L2(Ω) and p ∈ Q, the
Lax-Milgram lemma [7] implies that there exists a unique solution w(g, p) ∈ V such
that

a(w(g, p), v) = (g, v)− a(p, v) ∀v ∈ V.(2.1)

Then note that w = w(g, p) + p is the weak solution of the Dirichlet problem:

−Δw = g in Ω,

w = p on Γ.

Definition 2.1. Define the solution operator S : L2(Ω)×Q → Q by S(g, p) := w,
where w = w(g, p) + p and w(g, p) is the solution of (2.1).

The quadratic cost functional J : Q×Q → R is defined by

J(w, p) =
1

2
‖w − ud‖2 +

α

2
‖∇p‖2, w ∈ Q, p ∈ Q,(2.2)

where α is a given positive real number and ud ∈ L2(Ω) is a given desired function.

Model problem. The Dirichlet boundary control problem consists of finding
(u, q) ∈ Q×Q such that

J(u, q) = min
(w,p)∈Q×Q

J(w, p),(2.3)

subject to the condition that (w, p) ∈ Q×Q satisfies w = S(f, p), where f ∈ L2(Ω)
is a given function.

Remark 2.2. We may also view the minimization problem (2.3) as follows: find
(uq, q) ∈ Q×Q such that

J0(uq, q) = min
(wp,p)∈Q×Q

J0(wp, p),

where

J0(wp, p) =
1

2
‖wp + uf − ud‖2 +

α

2
‖∇p‖2,

subject to the condition that wp ∈ Q satisfies a(wp, v) = 0 for all v ∈ V with
wp|Γ = p|Γ, and uf ∈ V satisfies a(uf , v) = (f, v) for all v ∈ V . Also we note that

the minimum energy in (2.3) will be realized with an equivalent H1/2(Γ)-norm of
the control q; see Remark 2.4.
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Proposition 2.3. There exists a unique solution (u, q) ∈ Q × Q for the optimal
control problem (2.3). Furthermore, there exists an adjoint state φ ∈ V satisfying
the following:

u = uf + q, uf ∈ V,

a(uf , v) = (f, v)− a(q, v) ∀v ∈ V,(2.4)

a(v, φ) = (u− ud, v) ∀v ∈ V,(2.5)

αa(q, p) = a(p, φ) + (ud − u, p) ∀p ∈ Q.(2.6)

Proof. Using the solution operator S defined in Definition 2.1, we introduce the
reduced functional j : Q → R by

j(p) = J(S(f, p), p).

Then by the theory of elliptic optimal control problems [33, Theorem 2.14], there
exists a unique q ∈ Q such that

j(q) = min
p∈Q

j(p).

Denoting the corresponding state by u = S(f, q) ∈ Q, we find that u = uf + q and
uf ∈ V satisfies (2.4). From the first order optimality condition that j ′(q)(p) = 0
for all p ∈ Q, we find that

0 = j ′(q)(p) = αa(q, p) + (u− ud, S(0, p)) ∀p ∈ Q.(2.7)

Introduce the adjoint problem of finding φ ∈ V such that

a(v, φ) = (u− ud, v) ∀v ∈ V.

Then, we find

(u− ud, S(0, p)) = (u− ud, S(0, p)− p) + (u− ud, p)

= a(S(0, p)− p, φ) + (u− ud, p)(2.8)

= (u− ud, p)− a(p, φ),

since S(0, p) − p ∈ V for any p ∈ Q and a(S(0, p), v) = 0 for any v ∈ V . This
completes the proof. �

For the rest of the article (u, q, φ) ∈ Q×Q×V denote the optimal state, optimal
control and optimal costate. By taking p = v ∈ V in (2.6) and using (2.5), we find
that

a(q, v) = 0 for all v ∈ V.(2.9)

Therefore the optimality system (2.4)–(2.6) can be written in the reduced form as
follows:

u = uf + q, uf ∈ V,

a(uf , v) = (f, v) ∀v ∈ V,(2.10)

a(v, φ)− (q, v) = (uf − ud, v) ∀v ∈ V,(2.11)

αa(q, p) + (q, p)− a(p, φ) = (ud − uf , p) ∀p ∈ Q.(2.12)
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Remark 2.4. For any p ∈ H1/2(Γ), its H1/2(Γ) semi-norm can be equivalently
defined by the Dirichlet norm:

|p|H1/2(Γ) := ‖∇up‖ = min
w∈Q,w=p on Γ

‖∇w‖,

where the minimizer up ∈ Q satisfies

−Δup = 0 in Ω,

up = p on Γ.

For the optimal control q, we have q = uq by uniqueness and hence

|q|H1/2(Γ) := ‖∇q‖.
Therefore the minimum energy in the minimization problem (2.3) is realized with
an equivalent H1/2(Γ)-norm of the control q.

For the subsequent discussions, we use the following notation. For f ∈ L2(Ω),
q, p ∈ Q, let

uf = S(f, 0) ∈ V,

uq = S(0, q) ∈ Q,

φf = S(uf − ud, 0) ∈ V,

φq = S(uq, 0) ∈ V,

up = S(0, p) ∈ Q.

Throughout the article, the letters p, r and q are used to denote the test and
trial functions for the control. The state variable u with suffixes p, r and q de-
note harmonic extensions with Dirichlet data p, r and q, respectively. The adjoint
variable φ with any suffix always solves a homogeneous Dirichlet boundary value
problem. The suffixes f and q of φ indicate the forces corresponding to uf and uq,
respectively, in the equation. Later on similar notation will be used for discrete
functions.

Note from (2.9) that uq = q. We write the state u and the adjoint state φ as
u = uf +uq and φ = φf +φq, respectively. Using the notation and (2.7), we rewrite
(2.6) as follows:

αa(q, p) + (uq, up) = (ud − uf , up) ∀p ∈ Q.(2.13)

Throughout the article, C denotes a generic positive constant that is independent
of the solutions and subsequently independent of the mesh-size.

Lemma 2.5. If the domain Ω is convex, then u, φ, q ∈ H2(Ω) and

‖u‖2 + ‖φ‖2 + ‖q‖2 ≤ C(‖f‖+ ‖ud‖).

Proof. Since f ∈ L2(Ω), we find from the elliptic regularity on convex polygonal
domains [18, Theorem 3.1.2.1] that uf = S(f, 0) ∈ H2(Ω) and ‖uf‖2 ≤ C‖f‖. By
taking p = q in (2.13), we can easily derive the following stability estimate:

‖q‖1 = ‖uq‖1 ≤ C(‖ud‖+ ‖f‖).(2.14)

Since u− ud = uq + uf − ud ∈ L2(Ω), we find φ = S(u− ud, 0) ∈ H2(Ω) and using
(2.14) that

‖φ‖2 ≤ C‖u− ud‖ = C‖uq + uf − ud‖ ≤ C(‖ud‖+ ‖f‖).
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Using integration by parts in (2.6), we note that q solves

αa(q, p) =

∫
Γ

∂φ

∂n
p ds ∀p ∈ Q,

i.e., q solves the Neumann problem

−Δq = 0 in Ω,

α∂q/∂n = ∂φ/∂n on Γ.

Take p = 1 in (2.6) and find that (ud − u, 1) = 0. Using this in (2.5), we find that∫
Γ

∂φ

∂n
ds = 0,

which is the compatibility condition for the Neumann problem for q. Further from
(2.12), q satisfies (q, 1) = (ud − uf , 1). Since φ ∈ H2(Ω), by the trace theorem

[18, Theorem 1.5.2.1] its normal derivative ∂φ/∂n|Γi
∈ H1/2(Γi) for 1 ≤ i ≤ m.

Then the elliptic regularity theory for the Neumann problem implies that q ∈
H2(Ω) (see for example [17, Theorem 1.10], [18, Theorem 3.1.2.3]) and ‖q‖2 ≤
C (‖φ‖2 + ‖ud − uf‖). Finally, ‖u‖2 = ‖uq+uf‖2 = ‖q+uf‖2 ≤ C(‖ud‖+‖f‖). �

3. Discrete Dirichlet control problem

Let Th be a regular triangulation of Ω; see [7, p. 108], [12, p. 124]. Denote the
set of all interior edges of Th by E i

h, the set of boundary edges by Eb
h, and define

Eh = E i
h ∪ Eb

h. Let hT=diam(T ) and set h = max{hT : T ∈ Th}. The set of all
vertices of Th is denoted by Vh.

The finite element spaces are defined by

Vh = {v ∈ H1
0 (Ω) : v|T ∈ P1(T ) ∀ T ∈ Th}(3.1)

and

Qh = {q ∈ H1(Ω) : q|T ∈ P1(T ) ∀ T ∈ Th},(3.2)

where P1(D) is the space of polynomials of degree less than or equal to one restricted
to the set D.

In the error analysis, we need the jump of the normal derivative of discrete func-
tions across the inter-element boundaries. For any e ∈ E i

h, there are two elements
T+ and T− such that e = ∂T+∩∂T−. Let n+ be the unit normal of e pointing from
T+ to T− and let n− = −n+. Then for any vh ∈ Qh, define the jump of the normal
derivative of vh on e by

[[∇v]] = ∇v+|e · n+ + ∇v−|e · n−,

where v± = v
∣∣
T±

, the restriction of the function v to T±.

As in the continuous case, we define the discrete solution operator Sh. To this
end, for g ∈ L2(Ω) and p ∈ Q, let wh(g, p) ∈ Vh be the unique solution of

a(wh(g, p), v) = (g, v)− a(p, v) ∀v ∈ Vh.(3.3)

Definition 3.1. Denote the solution operator Sh : L2(Ω)×Q → Q by Sh(g, p) :=
wh, where wh = wh(g, p) and wh(g, p) solves (3.3) with data p and g. Note that
wh = Sh(g, p) ∈ Qh whenever p ∈ Qh.
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The discrete problem will be defined in the following.

Discrete problem. The discrete Dirichlet boundary control problem consists of
finding (uh, qh) ∈ Qh ×Qh such that

J(uh, qh) = min
(wh,ph)∈Qh×Qh

J(wh, ph),(3.4)

subject to the condition that (wh, ph) ∈ Qh ×Qh satisfies wh = Sh(f, ph).

As in the continuous case, the first order optimality conditions lead to the fol-
lowing system of discrete problems: Find (uh, qh, φh) ∈ Qh ×Qh × Vh such that

uh = uh
f + qh, uh

f ∈ Vh,

a(uh
f , v) = (f, v)− a(qh, v) ∀v ∈ Vh,(3.5)

a(v, φh) = (uh − ud, v) ∀v ∈ Vh,(3.6)

αa(qh, p) = a(p, φh) + (ud − uh, p) ∀p ∈ Qh.(3.7)

By taking p = vh ∈ Vh in (3.7) and using (3.6), note that the discrete control qh
satisfies

a(qh, vh) = 0 ∀vh ∈ Vh.(3.8)

Therefore the discrete problem reduces to

uh = uh
f + qh, uh

f ∈ Vh,

a(uh
f , v) = (f, v) ∀v ∈ Vh,(3.9)

a(v, φh)− (qh, v) = (uh
f − ud, v) ∀v ∈ Vh,(3.10)

αa(qh, p) + (qh, p)− a(p, φh) = (ud − uh
f , p) ∀p ∈ Qh.(3.11)

It is useful to note that (3.9) can be solved independently of the system and then
the coupled system (3.6)–(3.7) can be solved successively.

The following stability result is useful in establishing the existence and unique-
ness of the discrete problem.

Lemma 3.2. Let (uh, qh, φh) ∈ Qh ×Qh × Vh solve (3.5)–(3.7). Then

‖φh‖1 + ‖qh‖1 + ‖uh‖1 ≤ C (‖f‖+ ‖ud‖) .

Consequently the discrete problem (3.5)–(3.7) has a unique solution.

Proof. From (3.9) and the Poincaré inequality, note that

‖uh
f‖1 ≤ C‖f‖.(3.12)

Take p = qh in (3.11) and use (3.8) to arrive at

αa(qh, qh) + (qh, qh) = (ud − uh
f , qh).

The Cauchy-Schwarz inequality and (3.12) imply

‖qh‖1 ≤ C (‖f‖+ ‖ud‖) .

Since uh = uf
h + qh, we also get ‖uh‖1 ≤ C (‖f‖+ ‖ud‖). From (3.10) and the

Poincaré inequality, it is now easy to deduce that

‖φh‖1 ≤ C (‖f‖+ ‖ud‖) .
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This completes the proof of the stability estimates. Existence and uniqueness of
the solution to the discrete problem is then a consequence of these estimates and
finite dimensionality. �

Throughout the article uh, qh and φh denote the discrete optimal state, discrete
optimal control and discrete optimal costate, respectively.

4. A priori error analysis

In this section, we derive a priori error estimates in the energy and the L2-norms.
In the analysis, we introduce an enriched discrete control in order to derive optimal
order L2-norm error estimates. Further, we derive a consistency equation which
will be the key to obtaining the error estimates, particularly helping to design the
dual problem for the Aubin-Nitsche duality argument.

To present the arguments systematically, we introduce the following notation:
For f ∈ L2(Ω) and qh, ph ∈ Qh, let

uh
f = Sh(f, 0) ∈ Vh,

uh
qh

= Sh(0, qh) ∈ Qh,

φh
f = Sh(u

h
f − ud, 0) ∈ Vh,

φh
qh

= Sh(u
h
qh
, 0) ∈ Vh,

uh
ph

= Sh(0, ph) ∈ Qh.

Note that (3.8) implies that uh
qh

= qh.
The following lemma establishes some auxiliary estimates which are useful in the

subsequent a priori error analysis.

Lemma 4.1. Let uh
q = Sh(0, q) and uh

p = Sh(0, p) for q, p ∈ Q. Then

‖up − uh
p‖1 ≤ C inf

vh∈Vh

‖(up − p)− vh‖1,(4.1)

‖uq − up‖1 ≤ C‖q − p‖1,(4.2)

‖uh
q − uh

p‖1 ≤ C‖q − p‖1.(4.3)

Proof. Note that up = S(0, p) = w0 + p with w0 ∈ V satisfying

a(w0, v) = −a(p, v) ∀v ∈ V.

Similarly we can write uh
p = Sh(0, p) = wh

0 + p, where wh
0 ∈ Vh satisfies

a(wh
0 , vh) = −a(p, vh) ∀vh ∈ Vh.

Then

‖up − uh
p‖1 = ‖w0 − wh

0‖1 ≤ C inf
vh∈Vh

‖w0 − vh‖1 = inf
vh∈Vh

‖(up − p)− vh‖1.

This proves (4.1). Writing uq = S(0, q) = v0 + q with v0 satisfying

a(v0, v) = −a(q, v) ∀v ∈ V,

we find

‖uq − up‖1 ≤ ‖w0 − v0‖1 + ‖q − p‖1 ≤ C‖q − p‖1,
since a(w0 − v0, v) = −a(q − p, v) for all v ∈ V . This proves (4.2). Similarly, we
can prove the estimate in (4.3). �
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We prove some more auxiliary results which are very useful for the L2-norm error
estimates. For this, we construct an enriched discrete optimal control qh which is
denoted by q̃h. Let H(T ) be the cubic Hermite finite element space defined on T
with degrees of freedom defined as shown in Figure 4.1; see [7, p. 75], [12, p. 66].
Further, whenever T shares an edge e with the boundary Γ, we define the enriched
Hermite element H̃(T ) on T by

H̃(T ) := H(T )⊕ span{be},

where be = λ2
iλ

2
j (3λi − 1)(3λj − 1) and λi, λj are the barycentric coordinates

associated to the endpoints of the boundary edge e = ∂T ∩ Γ.

�

�

�
�

�

�

�
�

Figure 4.1. Degrees of freedom for the P3-Hermite element H(T )

(left) and the enriched P3-Hermite element H̃(T ) (right). Thick
dots denote the values of the function, circles denote the values
of its first order derivatives and the horizontal line parallel to the
edge denotes the integral mean of the function over the edge.

The set of degrees of freedom defined for H(T ) in Figure 4.1 is uni-solvent [7,
p. 75], [12, p. 66] and then subsequently the choice of be implies that the set of

degrees of freedom for H̃(T ) defined in Figure 4.1 is also uni-solvent.
Define the enriched cubic Hermite finite element space by

Q̃h := {v ∈ C0(Ω̄) : v|T ∈ Q(T ) ∀T ∈ Th},

where Q(T ) = H(T ) if T does not share an edge with Γ and Q(T ) = H̃(T ) if T
shares an edge e with Γ. In the latter case, the shape function be is associated
to the boundary edge e. If a triangle has two boundary edges, then two such be

functions can be added to the space H(T ). Usually the triangles in triangulations
in practice share at most one edge with boundary Γ.

We construct the enriched optimal control q̃h ∈ Q̃h by averaging: Denote any
vertex of the triangulation Th by ν and let Tν denote the set of all triangles sharing
the vertex ν with cardinality denoted by |Tν |. Denote the barycenter of any T by
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10 S. CHOWDHURY, T. GUDI, AND A. K. NANDAKUMARAN

cT . Then define

q̃h(ν) = qh(ν) ∀ν ∈ Vh,

q̃h(cT ) = qh(cT ) ∀T ∈ Th,

∇q̃h(ν) =
1

|Tν |
∑
T∈Tν

∇(qh|T )(ν) ∀ν ∈ Vh,

∫
e

q̃h ds =

∫
e

qh ds ∀e ∈ Eb
h,(4.4)

where qh|T is the restriction of qh to T . Note that the enriched control q̃h ∈ C0(Ω̄)
and q̃h|Γi

∈ C1(Γ̄i) for all 1 ≤ i ≤ m.
We now prove an approximation property of the enriched function q̃h in the

following lemma.

Lemma 4.2. Let Ω be convex, let Th be a quasi-uniform triangulation and let q̃h
be the enriched qh. Then

‖qh − q̃h‖+ h‖qh − q̃h‖1 ≤ Ch (‖q − qh‖1 + h‖q‖2) .

Proof. The definition of q̃h and the arguments in [5, 6] imply that

h−2‖qh − q̃h‖+ h−1‖qh − q̃h‖1 ≤ C
( ∑

e∈Ei
h

1

h
‖[[∇qh]]‖2L2(e)

)1/2

.

Since Ω is assumed to be convex, the optimal control q ∈ H2(Ω) and hence [[∇q]] = 0
on all the interior edges. Therefore by using the trace inequality [12, p. 146], we
obtain

‖[[∇qh]]‖2L2(e)
= ‖[[∇(qh − q)]]‖2L2(e)

≤ Ch−1
∑
T∈Te

(
‖q − qh‖2H1(T ) + h2‖q‖2H2(T )

)
.

We sum over all the interior edges and rearrange the terms to find( ∑
e∈Ei

h

1

h
‖[[∇qh]]‖2L2(e)

)
≤ Ch−2

(
‖q − qh‖21 + h2‖q‖22

)
.

The rest of the proof now follows by taking the square root on both sides. �

Lemma 4.3. Let Ω be convex, let Th be a quasi-uniform triangulation and let
q̃h be the enriched qh. Let uqh = S(0, qh), uq̃h = S(0, q̃h), uh

qh
= Sh(0, qh) and

uh
q̃h

= Sh(0, q̃h). Then

‖uqh − uq̃h‖+ h‖uqh − uq̃h‖1 ≤ Ch (‖q − qh‖1 + h‖q‖2) ,(4.5)

‖uq̃h − uh
q̃h
‖+ h‖uq̃h − uh

q̃h
‖1 ≤ Ch (‖q − qh‖1 + h‖q‖2) ,(4.6)

‖uh
qh

− uh
q̃h
‖+ h‖uh

qh
− uh

q̃h
‖1 ≤ Ch (‖q − qh‖1 + h‖q‖2) .(4.7)

Proof. We can write uqh = S(0, qh) = w0 + qh and uq̃h = S(0, q̃h) = w̃0 + q̃h with
w0, w̃0 ∈ V satisfying

a(w0, v) = −a(qh, v) ∀v ∈ V,

a(w̃0, v) = −a(q̃h, v) ∀v ∈ V,
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respectively. Now it is immediate that ‖w0 − w̃0‖1 ≤ ‖qh − q̃h‖1. This together
with the result in Lemma 4.2 proves the estimate of ‖uqh − uq̃h‖1. In order to
derive the L2-norm estimate, we apply the Aubin-Nitsche duality argument. Let
ψ ∈ V ∩H2(Ω) be the solution of

−Δψ = w0 − w̃0 in Ω,

ψ = 0 on Γ.

Then since w0 − w̃0 ∈ V , we find

‖w0 − w̃0‖2 = a(w0 − w̃0, ψ)

= a(w0 − w̃0, ψ − ψh)− a(qh − q̃h, ψh − ψ)− a(qh − q̃h, ψ),

where ψh ∈ Vh is the Lagrange interpolation of ψ. Now integration by parts implies

a(qh − q̃h, ψ) = −
∫
Ω

(qh − q̃h)Δψ dx+

∫
Γ

∂ψ

∂n
(qh − q̃h) ds.

By the construction of q̃h, we have from (4.4) that
∫
e
(qh− q̃h) ds = 0 for all e ∈ Eb

h.
Hence,

a(qh − q̃h, ψ) = −
∫
Ω

(qh − q̃h)Δψ dx+

∫
Γ

∂(ψ − ψh)

∂n
(qh − q̃h) ds

and

|a(qh − q̃h, ψ)| ≤ ‖qh − q̃h‖‖ψ‖2 + Ch1/2‖qh − q̃h‖L2(Γ)‖ψ‖2 ≤ C‖qh − q̃h‖‖ψ‖2,

where we have used the approximation property of ψh and a trace inequality on
Qh. Further using the approximation property of ψh, we find that

|a(w0 − w̃0, ψ − ψh)− a(qh − q̃h, ψh − ψ)| ≤ Ch (‖w0 − w̃0‖1 + ‖qh − q̃h‖1) ‖ψ‖2.

Using the elliptic regularity of ψ, we arrive at

‖w0 − w̃0‖ ≤ C (h‖qh − q̃h‖1 + ‖qh − q̃h‖) .

Now an appeal to Lemma 4.2 completes the estimate for ‖uqh − uq̃h‖. This proves
the estimates in (4.5). The estimate in (4.7) follows by the same arguments. It
remains to derive the estimate in (4.6). Since q̃h is Γi-wise C1 and it is continuous
on Ω̄, we note that uq̃h ∈ H2(Ω) as Ω is assumed to be convex [17, Theorem 1.8]
and

‖uq̃h‖2 ≤ C
m∑
i=1

‖q̃h‖H3/2(Γi).

The standard arguments using Cea’s lemma and the Aubin-Nitsche duality tech-
nique imply that

‖uq̃h − uh
q̃h
‖+ h‖uq̃h − uh

q̃h
‖1 ≤ Ch2‖uq̃h‖2 ≤ Ch2

m∑
i=1

‖q̃h‖H3/2(Γi).
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12 S. CHOWDHURY, T. GUDI, AND A. K. NANDAKUMARAN

Using an inverse estimate [3, Proposition 3.2] and a suitable approximation Ihq (a
C1 interpolation of Clément type) of q, we find that

h2
m∑
i=1

‖q̃h‖H3/2(Γi) ≤ Ch2
m∑
i=1

(
‖q̃h − Ihq‖H3/2(Γi) + ‖Ihq‖H3/2(Γi)

)

≤ Ch3/2
m∑
i=1

‖q̃h − Ihq‖H1(Γi) + Ch2‖q‖2

≤ Ch (‖q̃h − Ihq‖1 + h‖q‖2)
≤ Ch (‖q̃h − q‖1 + h‖q‖2) .

Now using the triangle inequality and Lemma 4.2, we complete the proof. �

In the following, we rewrite the discrete problem to derive a consistency equation
for the error analysis. For any ph ∈ Qh, we note from (3.7) that

a(ph, φh)− (uh − ud, ph) = a(ph − Sh(0, ph), φh)− (uh − ud, ph)

= −(uh − ud, Sh(0, ph)) = −(uh
qh

+ uh
f − ud, u

h
ph
).

Therefore (3.7) can be written as

αa(qh, ph) + (uh
qh
, uh

ph
) = (ud − uh

f , u
h
ph
) ∀ph ∈ Qh.(4.8)

The following result on the consistency is a key result in obtaining error estimates
in the energy and the L2-norms.

Lemma 4.4. The equality

αa(q, ph) + (uq, u
h
ph
) = (uf − ud, u

h
ph
) + a(ph, φ− Phφ) ∀ph ∈ Qh

holds, where Ph : V → Vh is the elliptic projection, i.e., a(wh, v − Phv) = 0 for all
wh ∈ Vh and v ∈ V .

Proof. For any ph ∈ Qh, we find

(uq, u
h
ph
) = (uq, u

h
ph

− ph) + (uq, ph) = a(uh
ph

− ph, φq) + (uq, ph)

= a(uh
ph

− ph, Phφq) + (uq, ph)(4.9)

and

(uf − ud, u
h
ph
) = (uf − ud, u

h
ph

− ph) + (uf − ud, ph)

= a(uh
ph

− ph, φf ) + (uf − ud, ph)(4.10)

= a(uh
ph

− ph, Phφf ) + (uf − ud, ph).

Therefore adding (4.9) and (4.10) and using the fact that u = uq +uf , φ = φq +φf

and Phφ = Phφq + Phφf , we find

(u− ud, u
h
ph
) = a(uh

ph
− ph, Phφ) + (u− ud, ph)

= (u− ud, ph)− a(ph, Phφ),

where it has been used that a(Phφ, u
h
ph
) = 0. Then

(u− ud, u
h
ph
) = (u− ud, ph)− a(ph, φ) + a(ph, φ− Phφ).

Using (2.6), we find (u − ud, ph) − a(ph, φ) = −αa(q, ph). This completes the
proof. �
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Using Lemma 4.4 and (2.13), we note that the following Galerkin orthogonality
(perturbed) holds:

(uq − uh
qh
, uh

ph
) + αa(q − qh, ph) = (uh

f − uf , u
h
ph
)− a(ph, φ− Phφ) ∀ph ∈ Qh.

(4.11)

We now turn to derive a priori error estimates. Firstly, we derive the energy norm
error estimates in the following lemma which indeed proves the best approximation
result.

Theorem 4.5. The following holds:

‖q − qh‖1 + ‖u− uh‖1 + ‖φ− φh‖1 ≤ C

(
inf

ph∈Qh

‖q − ph‖1 + inf
vh∈Vh

‖φ− vh‖1
)

+ C

(
inf

vh∈Vh

‖uf − vh‖1
)
.

If the domain Ω is convex, then we have

‖q − qh‖1 + ‖u− uh‖1 + ‖φ− φh‖1 ≤ Ch (‖f‖+ ‖ud‖) .

Proof. Let rh ∈ Qh, ph = rh − qh and uh
rh

= Sh(0, rh). By the linearity, we note

that uh
ph

= uh
rh

− uh
qh
. From (4.11), we find

‖uh
ph
‖2 + α‖∇ph‖2 = (uh

q − uq, u
h
ph
)− (uh

q − uh
θh
, uh

ph
) + (uh

f − uf , u
h
ph
)

+ αa(rh − q, ph)− a(ph, φ− Phφ),

where uh
q = Sh(0, q) and uh

f = Sh(f, 0). Then using (4.1) and (4.3), we find

|(uh
q − uq, u

h
ph
)| ≤ C inf

vh∈Vh

‖(uq − q)− vh‖1 ‖uh
ph
‖ = 0,

|(uh
q − uh

rh
, uh

ph
)| ≤ ‖q − rh‖1 ‖uh

ph
‖,

respectively, where we have used that uq = q. By Cea’s lemma [7],

|(uh
f − uf , u

h
ph
)| ≤ C inf

vh∈Vh

‖uf − vh‖1 ‖uh
ph
‖.

By the Cauchy-Schwarz inequality

|a(q − rh, ph)| ≤ ‖q − rh‖1 ‖∇ph‖,
|a(ph, φ− Phφ)| ≤ C inf

vh∈Vh

‖φ− vh‖1 ‖∇ph‖.

Since

q − qh = uq − uh
qh

= (uq − uh
q ) + (uh

q − uh
rh
) + uh

ph

and rh ∈ Qh is arbitrary, the proof of the best approximation result follows from
Lemma 4.1. If the domain Ω is convex, then the error estimate follows from the
finite element interpolation theory ([7, Theorem 4.4.20], [12, Theorem 3.1.6]) and
the elliptic regularity in Lemma 2.5. �

In the next theorem, we derive L2-norm error estimates by employing the Aubin-
Nitsche duality argument using an auxiliary optimal control problem.

Theorem 4.6. Let Ω be a convex polygonal domain and assume that the mesh Th
is quasi-uniform. Then

‖q − qh‖ ≤ Ch2 (‖f‖+ ‖ud‖) .
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14 S. CHOWDHURY, T. GUDI, AND A. K. NANDAKUMARAN

Proof. Consider the following auxiliary problem of finding r ∈ Q such that

ja(r) = min
p∈Q

ja(p),

where

ja(p) =
1

2
‖S(0, p)− (q − qh)‖2 +

α

2
‖∇p‖2.

By the theory of optimal control problems [33, Theorem 2.14], the minimization
problem (4.12) admits a unique solution r ∈ Q and the solution satisfies the opti-
mality condition

αa(p, r) + (ur, up) = (q − qh, up) ∀p ∈ Q,(4.12)

where ur = S(0, r) and up = S(0, p). Note that (4.12) can also be written as

αa(p, r) + (ur, p)− a(ζ, p) = (q − qh, p) ∀p ∈ Q,(4.13)

where ζ = S(ur − (q − qh), 0). Further note by taking p = 1 in (4.13) that

(ur − (q − qh), 1) = 0.(4.14)

Since ζ = S(ur − (q − qh), 0), find using (4.14) that

∫
Γ

∂ζ

∂n
ds = 0,

which is the compatibility condition for the following Neumann problem solved
by ψ:

−Δr = 0 in Ω,(4.15)

α
∂r

∂n
=

∂ζ

∂n
on Γ.

By taking p = v ∈ V in (4.13) and using (4.15), we note that ur = S(0, r) = r. The
following stability estimate is now immediate by taking p = r in (4.12):

‖ur‖1 = ‖r‖1 ≤ C‖q − qh‖.(4.16)

Since the domain Ω is assumed to be convex, ζ = S(ur − (q − qh), 0) ∈ H2(Ω)
and by (4.16), it follows that ‖ζ‖2 ≤ C‖ur − (q − qh)‖ ≤ C‖q − qh‖. Moreover
by the trace theorem [18], we have ∂ζ/∂n|Γi

∈ H1/2(Γi) for 1 ≤ i ≤ m. This
implies r ∈ H2(Ω) (see [17, Theorem 1.10], [18]) and ‖r‖2 ≤ C‖q − qh‖. Let
rh ∈ Qh be some approximation of r such that ‖rh‖1 ≤ C‖r‖2, for example rh can
be the Lagrange interpolation of r; see [7, Lemma 4.4.1]. Denote uh

r = Sh(0, r),
uh
rh

= Sh(0, rh) and uqh = S(0, qh). Then by taking p = q − qh in (4.12), using
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q = uq, qh = uh
qh

and Lemma 4.4, we find

‖q − qh‖2 = (q − qh, uq − uh
qh
) = (q − qh, uq − uqh + uqh − uh

qh
)

= (q − qh, uq−qh) + (q − qh, uqh − uh
qh
)

= (uq − uqh , ur) + αa(q − qh, r) + (q − qh, uqh − uh
qh
)

= (uq − uqh , u
h
rh
) + αa(q − qh, rh) + (uq − uqh , ur − uh

rh
)

+ αa(q − qh, r − rh) + (q − qh, uqh − uh
qh
)

= (uq − uh
qh
, uh

rh
) + αa(q − qh, rh) + (uq − uqh , ur − uh

rh
)

+ αa(q − qh, r − rh) + (uh
qh

− uqh , u
h
rh

+ qh − q)

= (uf − uh
f , u

h
rh
)− a(rh, φ− Phφ) + (uq − uqh , ur − uh

r )

+ (uq − uqh , u
h
r − uh

rh
)+(uh

qh
− uqh , u

h
rh

+ qh − q)+αa(q − qh, r − rh).(4.17)

The arguments in Lemma 4.1 imply that

‖uh
rh
‖1 ≤ C‖r‖1 ≤ C‖q − qh‖.

In the following, we estimate each term on the right-hand side of (4.17): The
Aubin-Nitsche duality argument implies that

|(uf − uh
f , u

h
rh
)| ≤ Ch2‖uf‖2 ‖r‖1.

Since φ− Phφ ∈ V , we find by integration by parts that

a(rh, φ− Phφ) = a(r, φ− Phφ) + a(rh − r, φ− Phφ)

= −(φ− Phφ,Δr) + a(rh − r, φ− Phφ) = a(rh − r, φ− Phφ),

and hence by the Cauchy-Schwarz inequality

|a(rh, φ− Phφ)| ≤ Ch2‖φ‖2 ‖r‖2.

Using (4.1)–(4.3), we find

|(uq − uqh , ur − uh
r )| ≤ Ch2 (‖f‖+ ‖ud‖) ‖r‖2,

|(uq − uqh , u
h
r − uh

rh
)| ≤ Ch2 (‖f‖+ ‖ud‖) ‖r‖2.

It is obvious that

|a(q − qh, r − rh)| ≤ Ch2 (‖f‖+ ‖ud‖) ‖r‖2.

Using (4.5)–(4.7) and the energy norm error estimate in Theorem 4.5, we find that

|(uh
qh

− uqh , u
h
rh

+ qh − q)| = |(uh
qh

− uh
q̃h

+ uh
q̃h

− uq̃h + uq̃h − uqh , u
h
rh

+ qh − q)|
≤ Ch (‖q − qh‖1 + h‖q‖2) (‖r‖1 + ‖q − qh‖)
≤ Ch2 (‖f‖+ ‖ud‖) (‖r‖1 + ‖q − qh‖) .

Finally, the elliptic regularity of r completes the proof. �

Remark 4.7. Since qh|Γi
∈C0(Γi) and it is piece-wise linear, we have qh∈H3/2−ε(Γi)

for any ε > 0; see [4]. Therefore uqh cannot be an H2(Ω) function in general. This
is the reason to introduce the enriched q̃h of qh.

Next, we derive optimal order L2-norm error estimates for the state and adjoint
state in the following corollary.
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Corollary 4.8. Let Ω be a convex polygon and assume that the mesh Th is quasi-
uniform. Then

‖u− uh‖ ≤ Ch2(‖f‖+ ‖ud‖),
‖φ− φh‖ ≤ Ch2(‖f‖+ ‖ud‖).

Proof. Since u−uh = q− qh+uf −uh
f , we have from Theorem 4.6 and the triangle

inequality that

‖u− uh‖ ≤ C‖q − qh‖+ ‖uf − uh
f‖ ≤ Ch2 (‖f‖+ ‖ud‖) .

The estimate for φ− φh follows by the Aubin-Nitsche duality and the estimate for
u− uh. �

5. A posteriori error analysis

In this section, we derive a reliable and efficient residual based a posteriori error
estimator for the development of an adaptive algorithm. The a posteriori error
analysis of optimal control problems can be effectively derived by using some aux-
iliary problems; see [11,25]. For this purpose, we introduce the following system of

auxiliary problems: Find (ũ, φ̃, q̃) ∈ Q× V ×Q such that

ũ = ũf + qh,

a(ũf , v) = (f, v)− a(qh, v) ∀v ∈ V,(5.1)

a(v, φ̃) = (uh − ud, v) ∀v ∈ V,(5.2)

αa(q̃, p) = a(p, φh)− (uh − ud, p) ∀p ∈ Q.(5.3)

The following lemma is the key result in establishing a posteriori error estimates.

Lemma 5.1. The following holds:

‖∇(q − q̃)‖+ ‖u− uh‖1 + ‖φ− φh‖1

≤ C
(
‖∇(qh − q̃)‖+ ‖uh − ũ‖1 + ‖φh − φ̃‖1

)
.

Proof. From (2.4)–(2.6) and (5.1)–(5.3), we find the following error equations:

u− ũ = uf − ũf + q − qh,

a(uf − ũf , v) = −a(q − qh, v) ∀v ∈ V,(5.4)

a(v, φ− φ̃) = (u− uh, v) ∀v ∈ V,(5.5)

αa(q − q̃, p) = a(p, φ− φh)− (u− uh, p) ∀p ∈ Q.(5.6)

Take v = uf − ũf in (5.5), v = φ − φ̃ in (5.4) and then subtract the resulting
equations to obtain

−a(q − qh, φ− φ̃)− (u− uh, uf − ũf ) = 0.(5.7)

Take p = q − q̃ in (5.6) and find

αa(q − q̃, q − q̃) = a(q − q̃, φ− φh)− (u− uh, q − q̃)

= a(q − qh, φ− φ̃) + a(qh − q̃, φ− φ̃)(5.8)

+ a(q − q̃, φ̃− φh)− (u− uh, q − q̃).
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Using (5.7) in (5.8), we arrive at

αa(q − q̃, q − q̃) = a(qh − q̃, φ− φ̃) + a(q − q̃, φ̃− φh)− (u− uh, q − q̃ + uf − ũf )

= a(qh − q̃, φ− φ̃) + a(q − q̃, φ̃− φh)− (u− uh, u− ũ− (q̃ − qh)).

Therefore

α‖∇(q − q̃)‖2 + ‖u− ũ‖2 = a(qh − q̃, φ− φ̃) + a(q − q̃, φ̃− φh)

− (ũ− uh, u− ũ)− (u− uh, q̃ − qh).

From (5.5), we note that ‖φ − φ̃‖1 ≤ C‖u − uh‖ ≤ C (‖u− ũ‖+ ‖ũ− uh‖). Now
the Cauchy-Schwarz inequality and Young’s inequality imply

‖∇(q − q̃)‖+ ‖u− ũ‖1 + ‖φ− φ̃‖1 ≤ C
(
‖∇(qh − q̃)‖+ ‖uh − ũ‖1 + ‖φh − φ̃‖1

)
.

The rest of the proof is completed by the triangle inequality. �

Define the volume residuals by

ηf,T = hT ‖f‖L2(T ), ηf =

( ∑
T∈Th

η2f,T

)1/2

,

ηu,T = hT ‖uh − ud‖L2(T ), ηu,1 =

( ∑
T∈Th

η2u,T

)1/2

,

the jump residuals by

ηφ,e = h1/2
e ‖[[∇φh]]‖L2(e), ηφ =

⎛
⎝∑

e∈Ei
h

η2φ,e

⎞
⎠

1/2

,

ηu,e = h1/2
e ‖[[∇uh]]‖L2(e), ηu,2 =

⎛
⎝∑

e∈Ei
h

η2u,e

⎞
⎠

1/2

,

ηq,e = h1/2
e ‖[[∇qh]]‖L2(e), ηq,1 =

⎛
⎝∑

e∈Ei
h

η2q,e

⎞
⎠

1/2

,

and the boundary residual by

ηq,e,b = h1/2
e ‖α∂qh/∂n− ∂φh/∂n‖L2(e), ηq,2 =

⎛
⎝∑

e∈Eb
h

η2q,e,b

⎞
⎠

1/2

.

Define the total estimator by

ηh =
(
η2f + η2u,1 + η2u,2 + η2φ + η2q,1 + η2q,2

)1/2
.

The result on the residual based error estimator is proved in the following theo-
rem.

Theorem 5.2. The following holds:

‖∇(q − qh)‖+ ‖u− uh‖1 + ‖φ− φh‖1 ≤ Cηh.
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Proof. Note from Lemma 5.1 that it is enough to estimate ‖∇(q̃−qh)‖+‖ũ−uh‖1+
‖φ̃− φh‖1. To this end, we find using (5.1)–(5.3) and (3.5)–(3.7) that

ũ− uh = ũf − uh
f ,

a(ũ− uh, vh) = a(ũf − uh
f , vh) = 0 ∀vh ∈ Vh,(5.9)

a(vh, φ̃− φh) = 0 ∀vh ∈ Vh,(5.10)

αa(q̃ − qh, ph) = 0 ∀ph ∈ Qh,(5.11)

and further find that

a(ũ− uh, v) = (f, v)− a(uh, v) ∀v ∈ V,

a(v, φ̃− φh) = (uh − ud, v)− a(v, φh) ∀v ∈ V,

αa(q̃ − qh, p) = a(p, φh)− (uh − ud, p)− αa(qh, p) ∀p ∈ Q.

Using the orthogonality (5.9)–(5.11), standard arguments with quasi-interpolation
and integration by parts, we complete the proof. �

Finally, we sketch the proof of the local efficiency estimates in the next theorem.
For this, define the data oscillations of any g ∈ L2(D), where D ⊂ Ω is a sub-
domain, by

Osc(g,D) =

⎛
⎝∑

T⊂D̄

h2
T inf

gh∈P0(T )
‖g − gh‖2L2(T )

⎞
⎠

1/2

.

The proof of local efficiency estimates is sketched in the following theorem.

Theorem 5.3. The following hold:

ηf,T ≤ C
(
‖∇(u− uh)‖L2(T ) +Osc(f, T )

)
,

ηu,e ≤ C
(
‖∇(u− uh)‖L2(Te) +Osc(f, Te)

)
,

ηu,T ≤ C
(
‖∇(φ− φh)‖L2(T ) + ‖u− uh‖L2(T ) +Osc(ud, T )

)
,

ηφ,e ≤ C
(
‖∇(φ− φh)‖L2(Te) + ‖u− uh‖L2(Te) +Osc(ud, Te)

)
,

ηq,e ≤ C
(
‖u− uh‖L2(T ) + ‖∇(φ− φh)‖L2(Te) + ‖∇(q − qh)‖L2(Te) +Osc(ud, Te)

)
,

ηq,e,b ≤ C
(
‖u− uh‖L2(T ) + ‖∇(φ− φh)‖L2(Tb) + ‖∇(q − qh)‖L2(Tb) +Osc(ud, Tb)

)
,

where Te is the union of triangles sharing the edge e and Tb is the triangle having
the edge e ⊂ ∂Tb ∩ Γ, ∂Tb is the boundary of Tb.

Proof. Let (·, ·)T denote the L2(T ) inner-product. Let bT ∈ P3(T ) ∩H1
0 (T ) be the

bubble function with ‖bT ‖L∞(T ) = 1 and let θ = bT fh for fh ∈ P0(T ). Then using
norm equivalence on finite dimensional space and using the fact that (∇uh,∇θ)T =
0, we find

C‖fh‖2L2(T ) ≤ (f, θ)T + (fh − f, θ)T = (∇(u− uh),∇θ)T + (fh − f, θ)T

≤ ‖∇(u− uh)‖L2(T )‖∇θ‖L2(T ) + ‖f − fh‖L2(T )‖θ‖L2(T ).

Note we have used from (2.4) that (∇u,∇θ)T = a(u, θ̃) = (f, θ̃) = (f, θ)T , where

θ̃ ∈ H1
0 (Ω) is the extension of θ by zero outside of T . Now using an inverse inequality

[7, Lemma 4.5.3], we find

hT ‖fh‖L2(T ) ≤ C‖∇(u− uh)‖L2(T ) + ChT‖f − fh‖L2(T ).
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This estimate and the triangle inequality complete the proof of the first inequality.
Similarly using the edge bubble function techniques [34], we can prove the second
inequality of the theorem. We will sketch the proof of the third inequality. Let
fh = (uh − gh) and θ = bT fh for gh ∈ P0(T ). Then since (∇φh,∇θ)T = 0 and

(∇φ̃,∇θ)T = (uh − ud, θ)T from (5.2),

C‖fh‖2L2(T ) ≤ (uh − gh, θ)T = (uh − ud, θ)T + (ud − gh, θ)T

= (∇(φ̃− φh),∇θ)T + (ud − gh, θ)T

= (∇(φ̃− φ),∇θ)T + (∇(φ− φh),∇θ)T + (ud − gh, θ)T

= (u− uh, θ)T + (∇(φ− φh),∇θ)T + (ud − gh, θ)T ,

where we have used for θ ∈ H1
0 (T ) that

(∇(φ̃− φ),∇θ)T = a(θ̃, φ̃− φ) = (uh − u, θ̃) = (uh − u, θ)T ,

where θ̃ ∈ H1
0 (Ω) is the extension of θ by zero outside of T . The rest of the proof

follows by the standard arguments. The proofs of the remaining inequalities follow
by similar bubble function techniques. �

6. Numerical experiments

In this section, we illustrate the theoretical results by performing some numerical
experiments. We conduct two experiments with two model problems. In the first
experiment, we test the validity of the a priori error estimates derived in Theorem
4.5, Theorem 4.6 and Corollary 4.8. In the second experiment, we test the perfor-
mance of the a posteriori error estimator derived in Theorem 5.2 and its efficiency
in Theorem 5.3. To this end, we construct the model problems with known solu-
tions. For this we modify the model problem as follows: Modify the cost functional
J , denoted by J̃ , by

J̃(w, p) =
1

2
‖w − ud‖2 +

α

2
‖p− qd‖21, w ∈ Q, p ∈ Q,

where qd is a given function. Then the minimization problem reads: Find (u, q) ∈
Q×Q such that

J̃(u, q) = min
(w,p)∈Q×Q

J̃(w, p),

subject to the condition that (w, p) ∈ Q ×Q satisfies w = S(f, p). Then it is easy
to check that the optimality conditions take the form

u = u0 + q,

a(u0, v) = (f, v)− a(q, v) ∀v ∈ V,

a(v, φ) = (u− ud, v) ∀v ∈ V,

αa(q, p) = a(p, φ)− (u− ud, p) + αa(qd, p) ∀p ∈ Q.

Accordingly, we modify the discrete problem. A posteriori error estimators ηq,T
and ηq,e,b have to be modified as follows:

ηq,T = hT ‖uh − ud + αΔqd‖L2(T ),

ηq,e,b = h1/2
e ‖α∂(qh − qd)/∂n− ∂φh/∂n‖L2(e).
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Example 1. For this example, the domain Ω is taken to be the unit square (0, 1)×
(0, 1) and set α = 1. We choose the data of the problem as follows. Choose the state
to be u(x, y) = e(x+y), the adjoint state to be φ(x, y) = x2(1− x2)2y2(1− y2)2 and
the control to be q(x, y) = e(x+y). Then compute f = −Δu and ud = u+Δφ. The
choice of φ leads to qd = q. We generate a sequence of meshes with mesh size h as
shown in Table 6.1 by uniformly refining successively each triangulation. We have
used our in-house MATLAB code for the computations. The computed errors and
orders of convergence in H1- and L2-norms are shown in Table 6.1 and Table 6.2,
respectively. The experiment clearly illustrates the expected rates of convergence.

Table 6.1. H1-norm errors and orders of convergence for Exam-
ple 1

h ‖u− uh‖1 order ‖q − qh‖1 order ‖φ− φh‖1 order

1/4 6.2317e-001 – 6.3984e-001 — 2.8268e-002 –
1/8 3.2177e-001 0.9536 3.2435e-001 0.9802 1.5167e-002 0.8982
1/16 1.6242e-001 0.9863 1.6280e-001 0.9944 7.7765e-003 0.9637
1/32 8.1426e-002 0.9961 8.1483e-002 0.9986 3.9214e-003 0.9877
1/64 4.0743e-002 0.9989 4.0752e-002 0.9996 1.9659e-003 0.9962
1/128 2.0376e-002 0.9997 2.0377e-002 0.9999 9.8368e-004 0.9989
1/256 1.0189e-002 0.9999 1.0189e-002 1.0000 4.9195e-004 0.9997

Table 6.2. L2-norm errors and orders of convergence for Example 1

h ‖u− uh‖ order ‖q − qh‖ order ‖φ− φh‖ order

1/4 5.4578e-002 – 4.9697e-002 – 2.3716e-003 –

1/8 1.3749e-002 1.9890 1.2240e-002 2.0215 7.8326e-004 1.5983
1/16 3.4659e-003 1.9880 3.0522e-003 2.0037 2.1374e-004 1.8736
1/32 8.6984e-004 1.9944 7.6263e-004 2.0008 5.5087e-005 1.9561
1/64 2.1779e-004 1.9978 1.9063e-004 2.0002 1.3903e-005 1.9863
1/128 5.4477e-005 1.9992 4.7657e-005 2.0000 3.4858e-006 1.9959
1/256 1.3622e-005 1.9997 1.1914e-005 2.0000 8.7218e-007 1.9988

Experiment 2. In this experiment, we consider the domain Ω to be L-shaped
as shown in Figure 6.3 and we let α = 1. We take the state variable to be u =
r2/3sin(2θ/3), the adjoint state to be φ(x, y) = x2(1 − x2)2y2(1 − y2)2 and the
control to be q = r2/3sin(2θ/3). As in Example 1, we have computed f = −Δu,
ud = u+Δφ and qd = q. The following successive iteration of the mesh refinement
algorithm has been used in the experiment:

SOLVE → ESTIMATE → MARK → REFINE.

In the step MARK, we have used the Dörfler bulk marking [15] with parameter
0.4. The marked elements are refined by using the newest vertex bisection algo-
rithm. Figure 6.1 shows the behavior of the error estimator and the total error
‖u− uh‖1+‖φ−φh‖1+‖q−qh‖1 with the increasing number of degrees of freedom
N (the total number of unknowns for state, adjoint state and control variable).
The figure shows that the estimator is reliable and the total error converges at the
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optimal rate of N−1/2. The efficiency of the error estimator is depicted through the
efficiency indices (estimator/(‖u− uh‖1 + ‖φ− φh‖1 + ‖q − qh‖1)) in Figure 6.2.
Finally, Figure 6.3 shows the adaptive mesh refinement near the reentrant corner
as expected.
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Figure 6.2. Efficiency index for Example 2
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Figure 6.3. Adaptive mesh refinement for Example 2

7. Conclusions

In this article, we have proposed an energy-space based approach for defining
the Dirichlet control problem. The model problem is shown to be well-posed and
the regularity of the solution is deduced on convex polygonal domains. A finite-
element based numerical method is proposed and its corresponding error estimates
are derived. A priori error estimates are optimal in the H1- and the L2-norms.
An efficient and reliable a posteriori error estimator is derived for the development
of the adaptive mesh refinement algorithm. Numerical experiments have been per-
formed to illustrate the theoretical results. The results in this article are derived
for a two-dimensional domain. This assumption is made to make use of the el-
liptic regularity results for Dirichlet and Neumann problems. The results can be
extended to three-dimensional domains with the help of elliptic regularity theory.
However the best approximation result in the energy norm holds on any polygonal
(or polyhedral) domain without being convex. The convexity of the domain is as-
sumed in the L2-norm error estimates for the sake of simplicity. Suboptimal rates
of convergence may be worked out without assuming that the domain is convex.
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