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Optimal control problem in a domain with
branched structure and homogenization

S. Aiyappan and A. K. Nandakumaran*†

Communicated by B. Harrach

We consider a linear parabolic problem in a thick junction domain which is the union of a fixed domain and a collection of
periodic branched trees of height of order 1 and small width connected on a part of the boundary. We consider a three-
branched structure, but the analysis can be extended to n-branched structures. We use unfolding operator to study the
asymptotic behavior of the solution of the problem. In the limit problem, we get a multi-sheeted function in which each
sheet is the limit of restriction of the solution to various branches of the domain. Homogenization of an optimal control
problem posed on the above setting is also investigated. One of the novelty of the paper is the characterization of the opti-
mal control via the appropriately defined unfolding operators. Finally, we obtain the limit of the optimal control problem.
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1. Introduction

In this article, we consider a parabolic problem in a thick junction domain �� , � > 0, a small parameter, and also the correspond-
ing optimal control problem. Various materials with complex structures including multi-layer thick junctions are widely used in many
fields of science. Such structures are usually known as complex structures because of its complexity both in construction and anal-
ysis. Other complex structures are perforated domains, composite materials, grid domains, and domains with oscillating boundaries
to name a few.

As mentioned earlier, constructions with thick junction (also multi-level) are used in many technologies, like microstrip radiator,
nano technologies ([1, 2]), biological systems, fractal-type constructions, etc. Studying PDE problems in such complex structures has
paramount importance. We refer to the work in [3–6] and the references therein for the study in multi-branched structures. Although
the importance of optimal control may be at the junctions, we consider the controls on the entire oscillating part from which we can
also understand the contribution from each branch at each level. One can apply need based controls at the appropriate junctions.

The domain�� under consideration consists of multiple layer thick junctions known as branched structure (Figure 1). Such a domain
has a fixed part and lot of thin periodically distributed parts (or handle trees) attached along certain part of the boundary of the
domain at different levels. The trees have finite number of branching levels and in this paper, we take three branching levels, but one
can consider any finite number of branches. The height of each branch is of O.1/, whereas the thickness is of O.�/. We consider the
domain in two-dimensional space. Such a domain has already been considered by Mel’nyk ([6]). Indeed the results can be extended
to three dimensional problem and higher dimensions as well. Asymptotic analysis for a Robin problem in a thick junction has been
investigated in [5]. In fact, our work is motivated from the work of Mel’nyk, where he considers a semi-linear parabolic problem with
the source term vanishes on the oscillating interior part. He has studied the problem using the method of asymptotic expansion and
derived appropriate error estimates. From the recent work on problems on oscillating boundary domains ([7–9]), in which we have
studied optimal control problems with Elliptic PDE using periodic unfolding operators, we learned that the method of unfolding is well
suited to study problems on branched structures. In addition to the study of the PDE and its homogenization using unfolding method,
our major interest is to study the control problem with controls applied to the oscillating part. Thus, we also need to consider the
PDE problem with non-vanishing source on the oscillating part. The approach using unfolding method is very useful to study control
problems when the controls are applied in the oscillating interior part.
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Figure 1. Domain�� .

Homogenization of a Laplace equation in a highly oscillating boundary domain is studied in [10]. Using boundary layer corrector,
the authors obtain the approximation of the homogenized solution of order �3=2 in H1 norm in a subset of the oscillating domain. In
[11, 12], the authors have studied homogenization of PDEs posed on the oscillating boundary domains using Tartar’s Oscillating test
functions method. In [13], Mel’nyk and Vashchuk have studied the homogenization of Poisson equation on a thick two level junction
with varying boundary conditions. In [14, 15], he has derived H1 norm estimates for the homogenized solutions of elliptic and parabolic
type PDEs. In [16–19], asymptotic analysis of optimal control problems posed on various PDEs were investigated using oscillating test
functions method. In [3, 4], the authors have used the Buttazzo–Dal Maso abstract scheme for variational convergence of constrained
minimization problems to study the asymptotic analysis of optimal control problem in thick multi-level junctions. There are more
articles which deals with the homogenization of PDEs posed on an oscillating boundary domain. For example, homogenization of a
p-Laplacian operator is discussed in [20] using �-convergence; Laplace equation with inhomogeneous Neumann boundary condition
is studied in [21] and in [22]; the authors have used extension operators for the homogenization of Ginzburg–Landau equation.

In the first part of this paper, we consider a linear parabolic problem and study the limiting analysis (homogenization) using the
method of unfolding. We introduce appropriate unfolding operators for each periodic tree at all levels and also suitable boundary
unfolding operators. The unfolding operator was first introduced by D. Cioranescu, A. Damlamian, and G. Griso in 2002 ([23]). The
method of unfolding is a well-developed method in homogenization, and it is widely used by various authors ([24–26]) in the study
of homogenization problems. The authors D. Blanchard, A. Gaudiello, and G. Griso have first used the unfolding method for homoge-
nization of oscillating boundaries in [27, 28] for elastic rods with a 3D plane as well as thin plate. In [29], strongly contrasting diffusivity
problem in highly oscillating boundaries has been studied. For general homogenization, see the books [30–32] and control, we refer
to [33–37]. In the second part of this article, we consider an associated optimal control problem with quadratic cost functional in the
multi-level thick junction domain. One of our main aim is to characterize the optimal control via the unfolding operator. In fact, we
can characterize the optimal control in each branch separately by introducing corresponding unfolding operators. This, we consider
as a novel approach. Then, we study the homogenization and obtain the limit (homogenized) equation. It is to be noted that we con-
sider the controls on the oscillating branched part of the domain which are periodically distributed. Interestingly, the limit is given by
a multi-sheeted function through which we can see the contribution of different branches at different levels. The asymptotic expan-
sion method may be perhaps too tedious to study such problems, at least we do not see how to characterize the controls and hence a
homogenization.

A brief layout of the article as follows. In Section 2, we describe the domain �� , the problem description in Section 3, and the
unfolding operators with properties in Section 4. The convergence analysis of the uncontrolled problem is studied in Section 5. The
solution belongs to a multi-sheeted function space introduced by Mel’nyk in [6]. We use the same function space. In Section 6, we
study the corresponding optimal control problem. The characterization of the optimal control, optimality system, limit analysis, etc.,
are carried out through various subsections.

2. Multi-branched oscillating domain

Let L > 0 and for a small parameter � D L
N , N 2 ZC, we consider an oscillating domain�� as given in the Figure 1. We now describe the

domain�� and its boundaries. Let g : R! R be a smooth and periodic function with period L. Again, let 0 < b1 < b2 < � � � < b8 < L

Copyright © 2016 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2016
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and � be a function defined on Œ0, L� as

�.x1/ D

8̂̂̂̂
<̂
ˆ̂̂:

M0 if x1 2�0, LŒ n �b1, b8Œ,
M1 if x1 2 Œb4, b5�,
M2 if x1 2 Œb2, b3� [ Œb6, b7�,

M3 if x1 2
4S

iD1
�b2i�1, b2iŒ.

with M3 > M2 > M1 > M0 > m, where m > maxx2Œ0,L� jg.x/j. Extend � to the whole real line periodically with period L.
Now, define �� on the cell Œ0, L� by ��.x1/ D �. x1

�
/, which is an �L-periodic function. We define the domain �� as, �� D f.x1, x2/ 2

R2 : 0 < x1 < L, g.x1/ < x2 < ��.x1/g. Note that �� describes the periodic and oscillatory part of the domain with multiple sheets.
Let the top part�C� and the bottom (fixed) part�� of the domain�� are, respectively defined as�C� D f.x1, x2/ 2 R2 : 0 < x1 <

L, M0 < x2 < ��.x1/g and�� D f.x1, x2/ : 0 < x1 < L, g.x1/ < x2 < M0g.
Let us define the reference intervals Yi,m for i D 0, 1, 2 and m D 1, � � � , 2i as follows: Y0,1 D�b1, b8Œ, Y1,1 D�b1, b4Œ, Y1,2 D

�b5, b8Œ and Y2,m D�b2m�1, b2mŒ for m D 1, 2, 3, 4 and hi,m D jYi,mj is the Lebesgue measure of Yi,m.
Now, we define�i,� for i D 0, 1, 2 as,

�i,� D f.x1, x2/ 2 �
C
� : Mi < x2 < MiC1g.

In other words,�i,� can be considered as the union of thin sticks at level i, namely

�i,� D

2i[
mD1

��i,m, where ��i,m D
N�1[
jD0

Dj,�
i,m where Dj,�

i,m D .j�LC �Yi,m/��Mi , MiC1Œ.

We can also write�� as�� D Int
�
�� [�0,� [�1,� [�2,�

�
.

Our full domain denoted by � (Figure 2) is given by � D f.x1, x2/ : 0 < x1 < L, g.x1/ < x2 < M3g. The domain � consists of four
parts��,�0,�1,�2, where�i D f.x1, x2/ : 0 < x1 < L, Mi < x2 < MiC1g for i D 0, 1, 2. In fact� D Int

�
�� [�0 [�1 [�2

�
.

The bottom boundary �b of �� is defined as �b D f.x1, x2/ : x2 D g.x1/, x1 2 Œ0, L�g. The vertical boundary of ��

denoted by �s is given by �s D f.0, x2/ : g.0/ � x2 � M0g [ f.L, x2/ : g.L/ � x2 � M0/g and define the boundary ��
as @�� n �s, which the oscillating boundary. The common boundaries �i,� are the lower boundaries of �i,� which are defined
as �i,� D f.x1, x2/ 2 �� : x2 D Mig for i D 0, 1, 2.

The bottom part of the boundary of� is same as�� which is �b. The top boundary of� is denoted by �u D f.x1, M3/ : 0 � x1 � Lg.
The boundaries �i are defined as �i D f.x1, Mi/ : 0 � x1 � Lg for i D 0, 1, 2. The vertical boundary of� is denoted by �s0 and can be
written as �s0 D f.0, x2/ : g.0/ � x2 � M3g [ f.L, x2/ : g.L/ � x2 � M3g and define the boundary � as @� n �s0 .

The reference domainƒC (see second figure in Figure 2) is defined asƒC D f.x1, x2/ 2 R2 : 0 < x1 < L, M0 < x2 < �.x1/g, and we
denoteƒCT D�0, TŒ�ƒC, ƒi D�0, LŒ��Mi , MiC1Œ andƒi,m D Yi,m��Mi , MiC1Œ.

Let H1
#.��/ D fu 2 H1

#.��/ : u.x1 C kL, x2/ D u.x1, x2/ 8 k 2 Zg. We call a function �s-periodic if it takes the same value on both
sides of �s. We denote
Q� D�0, TŒ��� , QC� D�0, TŒ��C� , Q�i,m D�0, TŒ���i,m, Qi,� D�0, TŒ��i,� , Qi D�0, TŒ��i and Q D�0, TŒ��.

Figure 2. � andƒC .
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3. Problem description

3.1. Linear parabolic problem

First, we consider the following linear parabolic problem with given f� 2 L2.Q�/;�
@tu� ��u� C u� D f� in �0, TŒ��� ,
@�u� D 0 on �0, TŒ��� , u�.0, x/ D 0 in �� , u� is �s � periodic.

(3.1)

Remark 3.1
Here after, whenever we use the subscripts i and m, it will always mean that the corresponding statement will hold for i D 0, 1, 2 and
m D 1, � � � , 2i unless otherwise specified.

Recall that a function u� 2 W.0, T ; H1
#.��/, H1

#.��/
�/ D: f' 2 L2.0, T ; H1

#.��//j '
0 2 L2.0, T ; .H1

#.��//
�/g, is a weak solution to the

problem (3.1) if Z
Q�

u0� C

Z
Q�

rx u� � rx C

Z
Q�

u� D

Z
Q�

f� , 8  2 L2.0, T ; H1
#.��//. (3.2)

Equivalently (ref [38]),�
R

Q�
u� 0 C

R
Q�
rx u� � rx C

R
Q�

u� D
R

Q�
f� , for all 2 C1.Œ0, T�; H1

#.��//with .T/ D 0. For fixed � > 0,
there exists a unique solution u� , and it is known that u� 2 C.Œ0, T�; L2.��// and thus the equality u�jtD0 D 0 makes sense. A priori
estimate of the linear parabolic problem gives

ku�
0kL2.0,T ;H1

#.��/
�/ C ku�kL2.0,T ;H1

#.��//
� Ckf�kL2.�0,TŒ���/. (3.3)

In fact, it is not difficult to see that the constant C is independent of �.

3.2. An optimal control problem

In Section 6, we consider a corresponding optimal control problem which is described in the succeeding text. We consider the controls
coming from the fixed reference cell ƒCT and periodically distributed. This may be useful in applications. Let us consider the control
problem:

.P�/ inf fJ�.u� , �/j.u� , �/ 2 W.0, T ; H1.��/, H1.��/
�/ � L2

#.ƒ
C
T /, .u� , ��/ satisfies .3.5/g

where, W.0, T ; H1
#.��/, H1

#.��/
�/ D: f' 2 L2.0, T ; H1

#.��//j '
0 2 L2.0, T ; .H1

#.��//
�/g. The cost functional J�.u� , �/ is defined as

J�.u� , �/ D
1

2

Z
Q�

ju� � udj
2 C

1

2

Z
��

ju�.T/ � ud.T/j
2 C

ˇ

2

Z
Q�

	
QC�

ˇ̌
��
ˇ̌2

(3.4)

with ��.t, x1, x2/ D �.t, x1
�

, x2/ and the desired state ud 2 L2.Q/. Given � 2 L2.ƒCT / and f0 2 L2.Q�/ with f0 D 0 in QC� , the function u�
satisfies the state equation: �

@tu� ��u� C u� D f0 C 	QC�
�� in �0, TŒ��� ,

@�u� D 0 on �0, TŒ��� , u�.0, x/ D 0 in �� , u� is �s � periodic.
(3.5)

4. Unfolding operators and its properties

In this section, we define the periodic unfolding operators and the boundary unfolding operators and study some of their properties.
Unfolding operator is the main tool which we use to study the asymptotic behavior of the solution. The idea of introducing unfolding
operator in 2i periodic components separately for the ith branch is to derive the limiting contribution separately from each component.
It is, however, possible to introduce a single unfolding operator for each branch. For x 2 R, we write Œx�L as the integer part of x with
respect to L, that is, Œx�L D kL, where k is the largest integer such that kL � x and fxgL D x � Œx�L.

Definition 4.1
Define 
�i,m : Qi � Yi,m ! Qi,� by 
.t, x1, x2, y/ D

�
t, �
�

x1
�

�
L
C �y, x2

�
, where i D 0, 1, 2 and m D 1, � � � , 2i . The �-unfolding of a function

u : Qi,� ! R is the function u ı 
�i,m : Qi � Yi,m ! R. The operator which maps every function u : Qi,� ! R to its �-unfolding is called
the unfolding operator. Let the unfolding operator be denoted by T�i,m, that is,

T�i,m : fu : Qi,� ! Rg ! fv : Qi � Yi,m ! Rg defined by T�i,mu.t, x1, x2, y/ D u
�

t, �
h x1

�

i
L
C �y, x2

�
.

Here T�i,m is an unfolding operator corresponding to the mth component of the ith branch (or ith level). If U is an open subset of R3

containing Q�i,m and u is real valued function on U, T�i,mu will mean T�i,m acting on the restriction of u to Q�i,m. We derive the following
properties of the unfolding operator T�i,m. We only sketch the proofs as it is similar to the one in [27, 28].

Proposition 4.1
Let T�i,m be the unfolding operators given as in the Definition 4.1. Then

1. T�i,m is linear and T�i,m.uv/ D T�i,m.u/T
�
i,m.v/, where u,v : Qi,� ! R.

Copyright © 2016 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2016
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2.
R

Qi�Yi,m

T�i,mu dxdydt D L
R

Q�i,m

u dxdt, where u 2 L1.Q�i,m/.

Proposition 4.2
Let u 2 L2.Qi,�/. Then T�i,mu 2 L2.Qi � Yi,m/ and kT�i,mukL2.Qi�Yi,m/ D

p
LkukL2.Q�i,m/

Proof
Given that u 2 L2.Qi,�/ implies juj2 2 L1.Qi,�/. From the Proposition 4.1, we obtainZ

Qi�Yi,m

jT�i,muj2 D

Z
Qi�Yi,m

T�i,mjuj
2 D L

Z
Q�i,m

juj2.

Notation: Define the spaces Xi ,X ,Zi,m as Xi D L2.0, L; L2.0, T ; H1
#.Mi , MiC1///,

X D L2.0, L; L2.0, T ; H1
#.�
�/// and Zi,m D L2.0, L; L2.0, T ; H1..Mi , MiC1/ � Yi,m/// for i D 0, 1, 2 and m D 1, � � � , 2i .

Proposition 4.3
Let u 2 L2.0, T ; H1.��i,m//. Then T�i,mu 2 Zi,m. Moreover @x2.T

�
i,mu/ D T�i,m.@x2 u/ and @y.T�i,mu/ D �T�i,m.@x1 u/.

Proof

kT�i,muk2
Zi,m
D

LZ
0

TZ
0

kT�i,muk2
H1..Mi ,MiC1/�Yi,m

dx1dt

D

Z
Qi�Yi,m

�
�2T�i,mj@x1 uj2 C T�i,mj@x2 uj2 C T�i,mjuj

2
�

dxdydt

D L

Z
Q�i,m

�
�2j@x1 uj2 C j@x2 uj2 C juj2

�
dxdt � Lkuk2

L2.0,T ;H1.��i,m//
<1.

The following propositions are trivial or easy to prove.

Proposition 4.4
Let u 2 L2.Qi/. Then T�i,mu! u in L2.Qi � Yi,m/. More generally, if u� ! u in L2.Qi/, then T�i,mu� ! u in L2.Qi � Yi,m/.

Proposition 4.5
Let, for every � > 0, u� 2 L2.Q�i,m/ be such that T�i,mu� * u weakly in L2.Qi � Yi,m/. Theneu� * 1

L

R
Yi,m

u dy weakly in L2.Qi/. Hereeu� is the

zero extension of u� to Qi .

Proposition 4.6
Let u� 2 L2.0, T ; H1.��i,m// for every � > 0 be such that T�i,mu� * u weakly in Zi,m. Theneu� * 1

L

R
Yi,m

u dy weakly in Xi .

Proof
Given that T�i,mu� * u weakly in Zi,m implies T�i,mu� * u and @x2.T

�
i u�/ * @x2 u weakly in L2.Qi � Yi,m/. That is,

T�i,m.@x2 u�/ * @x2 u weakly in L2.Qi�Yi,m/. Using Proposition 4.5 we obtaineu� * 1
L

R
Yi,m

u dy in L2.Qi/ andA@x2 u� *
1
L

R
Yi,m

@x2 u dy in L2.Qi/.

But notice that @x2
eu� DA@x2 u� , because the extension by 0 does not affect the derivative along the x2-direction. Hence, Qu� *

1
L

R
Yi,m

u dy

weakly in Xi .

4.1. Unfolding on the boundary

In this section, we define the boundary unfolding operators T�Mi ,m
on functions defined on the boundary ��i,m. We now state the

properties of the boundary unfolding operators and proofs are given.

Definition 4.2
The �-unfolding of a function u :�0, TŒ���i,m ! R denoted by T�Mi ,m

: fu :�0, TŒ���i,m ! Rg ! fv :�0, TŒ��0, LŒ�Yi,m ! Rg is defined as
T�Mi ,m

u.t, x1, y/ D u
�

t, �
�

x1
�

�
L
C �y

�
.

If U is an open subset of R2 such that ��i,m � U and u :�0, TŒ�U! R then T�Mi ,m
u D T�Mi ,m

�
uj��i,m

�
.

Proposition 4.7
Let T�Mi ,m

be the boundary unfolding operator defined as in Definition 4.2. Then, we have T�Mi ,m
is linear and for u,v :�0, TŒ���i,m ! R, we

have T�Mi ,m
.uv/ D T�Mi ,m

.u/T�Mi ,m
.v/.

Copyright © 2016 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2016
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The proof follows directly from the definition.

Proposition 4.8
Let u 2 L2.�0, TŒ���i,m/. Then T�Mi ,m

u 2 L2.�0, TŒ��0, LŒ�Yi,m/. Moreover kT�Mi ,m
ukL2.�0,TŒ��0,LŒ�Yi,m/ D

p
LkukL2.�0,TŒ���i,m/

Proof Z T

0

Z L

0

Z
Yi,m

jT�Mi ,muj2 dx1 dt dy D

Z T

0

Z L

0

Z
Yi,m

ˇ̌̌
u
�

t, �
h x1

�

i
L
C �y

�ˇ̌̌2
dx1dtdy

D

TZ
tD0

Z
y2Yi,m

N�1X
kD0

.kC1/�LZ
x1Dk�L

ju.t, k�LC �y/j2 dx1dtdy

D

N�1X
kD0

.kC1/�LZ
x1Dk�L

dx1

TZ
tD0

Z
y2Yi,m

ju.t, k�LC �y/j2 dtdy

D �L
N�1X
kD0

TZ
tD0

Z
y2Yi,m

ju.t, k�LC �y/j2 dx1dtdy

D L
N�1X
kD0

TZ
tD0

Z
x12k�LC�Yi,m

ju.t, x1/j
2 dx1dt D L

Z T

0

Z
��i,m

ju.t, x1/j
2 dx1dt.

Proposition 4.9
Let u 2 L2.0, T ; H1.��i,m//. Then T�Mi ,m

u 2 L2.�0, TŒ��0, LŒ; H1.Yi,m//and @y.T�Mi ,m
u/ D �T�Mi ,m

.@x1 u/

Proof
It follows from the Definition that @y.T�Mi ,m

u/ D �T�Mi ,m
.@x1 u/.

kT�i,muk2
L2.�0,LŒ��0,TŒ;H1.Yi,m//

D

LZ
0

TZ
0

kT�Mi ,muk2
H1.Yi,m

dx1dt

D

LZ
0

TZ
0

Z
Yi,m

�
�2T�Mi ,mj@x1 uj2 C T�Mi ,mjuj

2
�

dx1dydt

D L

Z T

0

Z
��i,m

�
�2j@x1 uj2 C j@x2 uj2 C juj2

�
dx1dt � Lkuk2

L2.�0,TŒ;H1.��i,m//
<1.

Proposition 4.10
Let u 2 L2.�0, TŒ��0, LŒ/. Then T�Mi ,m

u! u in L2.�0, TŒ��0, LŒ�Yi,m/.

Proof
Consider 
 2 D.�0, TŒ��0, LŒ/.

sup
.t,x1/2�0,TŒ��0,LŒ�Yi,m

j.T�
/.t, x1, y/ � 
.t, x1/j D sup
.t,x1,y/2�0,TŒ��0,LŒ�Yi,m

j
.t, �Œ x1
�
�L C �y/ � 
.t, x1/j

� m�.�L/

where m� is the modulus of continuity of the function 
 which is defined as

m�.ı/ D sup
z1,z22�0,TŒ��0,LŒ

fj
.z1/ � 
.z2/j : jz1 � z2j < ıg.

Because 
 is uniformly continuous in �0, TŒ��0, LŒ, m�.�L/! 0 as �L! 0. Hence,

sup
�0,TŒ��0,LŒ�Yi,m

jT�
 � 
j ! 0 as � ! 0

And so,

T�Mi ,m
 ! 
 in L2.�0, TŒ��0, LŒ�Yi,m/ 8 
 2 D.�0, TŒ��0, LŒ/.

The density of D.�0, TŒ��0, LŒ/ in L2.�0, TŒ��0, LŒ/ completes the proof.

Copyright © 2016 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2016
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Proposition 4.11
Suppose that u� ! u in L2.�0, TŒ��0, LŒ/. Then T�Mi ,m

u� ! u in L2.�0, TŒ��0, LŒ�Yi,m/.

Proof
Suppose that u� ! u in L2.�0, TŒ��0, LŒ/. Then

kT�Mi ,mu� � ukL2.�0,TŒ��0,LŒ�Yi,m/ D kT�Mi ,mu� � T�Mi ,muC T�Mi ,mu � ukL2.�0,TŒ��0,LŒ�Yi,m/

� kT�i,mu� � T�i,mukL2.�0,TŒ��0,LŒ�Yi,m/ C kT�i,mu � ukL2.�0,TŒ��0,LŒ�Yi,m/

D
p

Lku� � ukL2.�0,TŒ���i,m/
C kT�Mi ,mu � ukL2.�0,TŒ��0,LŒ�Yi,m/

�
p

Lku� � ukL2.�0,TŒ��0,LŒ/ C kT�i,mu � ukL2.�0,TŒ��0,LŒ�Yi,m/ ! 0 as � ! 0.

Proposition 4.12
Suppose that u� is a sequence in L2.�0, TŒ���i,m/ such that T�Mi ,m

u� * u weakly in L2.�0, TŒ��0, LŒ�Yi,m/.
Then eu� * 1

L

R
Yi,m

u dyweakly in L2.�0, TŒ��0, LŒ/.

Proof
Note that, for  2 L2.�0, TŒ��0, LŒ/, we haveZ T

0

Z L

0

Z
Yi,m

T�Mi ,mu�T�Mi ,m dx1dydt D L

Z T

0

Z
��i,m

u� dx1dt

Now, Z T

0

Z L

0
eu� dx1dt D

Z T

0

Z
��i,m

u� dx1dt

D
1

L

Z T

0

Z L

0

Z
Yi,m

T�Mi ,mu�T�Mi ,m dx1dydt

!
1

L

Z T

0

Z L

0

Z
Yi,m

u dx1dydt

D

Z T

0

Z L

0

	
1

L

Z
Yi,m

udy



 dx1dt.

5. Convergence analysis

5.1. Function spaces

To give an appropriate meaning to the weak solution of homogenized problem, let us introduce the function space H. We use the ideas
introduced in [6]. We say, a multi-sheeted function of the form

' :D

�
f'2,1,'2,2,'2,3,'2,4g if x 2 �2,
f'1,1,'1,2g if x 2 �1; '0,1 if x 2 �0, '� if x 2 ��

(5.1)

belongs to H, if '� 2 H1.��/, for each i D 0, 1, 2, the functions 'i,m 2 L2.0, L; H1.Mi , MiC1/ for m D 1, � � � , 2i and on the boundaries (in
the sense of trace), they satisfy

'�j�0 D '0,1j�0 , '0,1j�1 D '1,1j�1 D '1,2j�1 ,

'1,1j�2 D '2,1j�2 D '2,2j�2 , '1,2j�2 D '2,3j�2 D '2,4j�2 .
(5.2)

Note that the space H is continuously and densely embedded in the Hilbert space V of functions whose components belongs to the
corresponding L2-spaces with the inner products, respectively, given by

.', /V :D .'�, �/L2.��/ C

2X
iD0

2iX
mD1

.'i,m, i,m/L2.�i/

.', /H :D .', /V C .r'
�,r �/L2.��/ C

2X
iD0

2iX
mD1

.@x2'i,m, @x2 i,m/L2.�i/.

Now, introduce an operator A : L2.0, T ;H/! L2.0, T ;H�/ by the formula

hA', i :D

Z
Q�
.r' � r C ' /dxdtC

2X
iD0

2iX
mD1

hi,m

L

Z
Qi

.@x2'i,m @x2 i,m C 'i,m  i,m/ dxdt (5.3)
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for all ', 2 L2.0, T ;H/. Define a linear functional F 2 L2.0, T ;H�/ as

hF, i :D

Z
Q�

f0 
� dxdtC

2X
iD0

2iX
mD1

hi,m

L

Z
Qi

f0  i,m dxdt.

Definition 5.1
A multi-sheeted function u 2 L2.0, T ;H/with u0 2 L2.0, T ;H�/ is said to be a solution to the homogenized problem if it satisfies

hu0, i C hAu, i D hF, i, 8  2 L2.0, T ;H/ and ujtD0 D 0. (5.4)

The multi-sheeted function u can be represented as

u.t, x/ D

�
ui,m if .t, x/ 2 Qi , for i D 0, 1, 2; m D 1, � � � , 2i

u� if .t, x/ 2 Q�.
(5.5)

Such problems are considered in Mel’nyk [6] in the context of problems in branched structures. The author has studied homogeniza-
tion problems, based on asymptotic expansion. Regarding the existence of (5.4), we refer to [6]. The strong form of the above weak
formulation is given by (5.16).

5.2. Homogenization

The main result of this section is stated in the following theorem. The final result is similar to the one in [6], where the author studied
a semi-linear problem, but we give a proof using unfolding operators. This also will allow us to study other problems in branched
structures. In fact, in the next section, we study an optimal control problem. This may not be able to study easily using asymptotic
expansion. Further, one of our main contribution is that the characterization of the control via unfolding operators.

Theorem 5.1
Let u� and u be the solution of (3.1) and of (5.4), respectively, and f� is uniformly bounded in L2.Q�/ such that Af�jQ�i,m *

hi,m
L f0 in L2.Qi/,

for some f0 2 L2.Q/. Then

Au� jQ�0,1
*

h0,1

L
u0,1 weakly in X0, Au� jQ�1,m

*
h1,m

L
u1,m weakly in X1, for m D 1, 2,

Au� jQ�2,m
*

h2,m

L
u2,m weakly in X2, for m D 1, 2, 3, 4, u�jQ� * ujQ� weakly in X .

Here Au� jQ�i,m is the zero extension of u� jQ�i,m to Qi .

Proof
The proof follows in several steps.

Step 1 (A priori Estimate): Using a priori estimate (3.3), we have

ku�kL2.0,T ;H1.��// C ku0�kL2.0,T ;H1.��/�/ � CkQf�kL2.Q/

where C is independent of �. Because Qf� is bounded, we derive

ku�kL2.0,T ;H1.��// � C (5.6)

where C is a constant independent of �. Let us denote ui,� is the restriction of u� in Qi,� and u�� is the restriction of u� in Q�. To find
the bound of the sequence T�i,mui,� in the space Zi,m, we proceed as

��T�i,mui,�

��2

Zi,m
D

LZ
0

TZ
0

��T�i,mui,�.t, x1/
��2

H1..Mi ,MiC1/�Yi,m/
dx1dt

D

Z
Qi�Yi,m

�
�2T�i,m j@x1 ui,�j

2 C T�i,m j@x2 ui,�j
2 C T�i,m jui,�j

2� dxdtdy

D L

Z
Qi,�

�
�2 j@x1 ui,�j

2 C j@x2 ui,�j
2 C jui,�j

2� dxdt � L ku�k
2
L2.0,T ;H1.��//

.

The boundedness of the sequence T�i,mui,� in Zi,m follows from (5.6). By weak compactness, there exists a subsequence (still denoted
by �) and ui,m 2 Zi,m such that

T�i,mui,� * ui,m weakly in Zi,m, which implies T�i,mui,� * ui,m weakly in L2.Qi � Yi,m/ (5.7)
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and T�i,m.@x2 ui,�/ D @x2.T
�
i,mui,�/ * @x2 ui,m weakly in L2.Qi � Yi,m/. (5.8)

Further,

�T�i,m.@x1 ui,�/ D @y.T
�
i,mui,�/ * @yui,m weakly in L2.Qi � Yi,m/. (5.9)

From the Proposition 4.2, we have
��T�i,m.@x1 ui,�/

��
L2.Qi�Yi,m/

D
p

L k@x1 ui,�kL2.Q�i,m/
�
p

Lku�kL2.0,T ;H1.��/. Thus, from (5.6), we obtain

the boundedness of the sequence T�i,m.@x1 ui,�/ in the space L2.Qi � Yi,m/. Hence, from (5.9), it follows that @yui,m D 0. Thus, ui,m is
independent of y, and we conclude that

fui,� *
hi,m

L
ui,m weakly in Xi (5.10)

with the help of Proposition 4.6 and convergence (5.7). Moreover
R

Yi,m

@x2 ui,mdy D hi,m@x2 ui,m. We know that T�i,m.@x1 ui,�/ is bounded in

L2.Qi � Yi,m/. Hence by weak compactness, there is an element Pi,m 2 L2.Qi � Yi,m/ such that up to a subsequence (still denoted by �),

T�i,m@x1 ui,� * Pi,m weakly in L2.Qi � Yi,m/. (5.11)

Using the estimate of ku�kL2.0,T ;H1.��//, we have the boundedness of u�� in the space L2.0, T ; H1.��//. Thus, there exists
u� 2 L2.0, T ; H1.��/ and a subsequence (still denoted by �) such that

u�� * u� weakly in L2.0, T ; H1.��//. (5.12)

Define the multi-sheeted function u using u� and ui,m as in (5.1).
Step 2 (Claim): The multi-sheeted function u 2 L2.0, T ;H/. We have u� 2 L2.Q�/, ui,m 2 L2.Qi/ and @x1 u�, @x2 u� 2 L2.Q�/. To
prove u 2 L2.0, T ;H/, we need to show that @x2 ui,m 2 L2.Qi/ and also ui,m match on their corresponding common boundaries as in
(5.2). Note that, u is independent of y variable and so is @x2 u. Therefore, from the earlier discussion @x2 ui,m 2 L2.Qi/ and @x2 u� 2 L2.Q�/.
Now, to prove u 2 L2.0, T ;H/, it is enough to show that the trace of u� and u0,1 are equal on �0, trace of u0,1, u1,1 and u1,2 are equal
on �1, trace of u1,1, u2,1, and u2,2 are equal on �2 and trace of u1,2, u2,3, and u2,4 are equal on �2. Let us define an another unfolding
operator T�� as follows:

Let 
 be a function defined on Q�m D�0, TŒ��0, LŒ�.m, M0/, define .T��
/.t, x1, x2, y/ D 

�

t, �
�

x1
�

�
L
C �y, x2

�
for

.t, x1, x2, y/ 2�0, TŒ��0, LŒ�.m, M0/ � Y0,1. Note that u0,�j�0,� D u��j�0,� . Now, apply the boundary unfolding operator on both sides,
that is, T�M0,1

�
u0,�j�0,�

�
D T�M0,1

�
u��j�0,�

�
. Using the definition of unfolding operators, we can easily see that

T�M0,1

�
u0,�j�0,�

�
D T�0,1.u0,�/jx2DM0 and T�M0,1

�
u�� j�0,�

�
D T��.u

�
� /jx2DM0 . (5.13)

Because T�0,1.u0,�/ is differentiable in the x2-direction, we can define the trace on �0. From the weak continuity of the trace operator,
we obtain the following convergence as � ! 0.�

T�0,1.u0,�/
�
jx2DM0 * u0,1jx2DM0 weakly in L2.�0, TŒ��0, LŒ�Y0,1/

Note that, T��.u
�
� / converges weakly to u� in L2.Q�m � Y0,1/. Here, we used the fact that u�� is bounded in L2.0, T ; H1.�0, LŒ�.m, M0///

and hence converges to u� weakly in L2.0, T ; H1.�0, LŒ�.m, M0/// and strongly in L2.Q�m/ by Lions–Aubin’s Theorem ([38]). The weak
continuity of trace operator gives us the following convergence.�

T��.u
�
� /
�
jx2DM0 * u�jx2DM0 weakly in L2.�0, TŒ��0, LŒ�Y0,1/

From the aforementioned convergences, we derive that u0,1j�0 D u�j�0 in L2.�0, TŒ��0, LŒ/, because u0,1 and u� are indepen-
dent of the y variable. Similarly, we can show that u1,1jx2DM1 D u1,2jx2DM1 D u0,1jx2DM1 , u2,1jx2DM2 D u2,2jx2DM2 D u1,1jx2DM2 and
u2,3jx2DM2 D u2,4jx2DM2 D u1,2jx2DM2 in L2.�0, TŒ��0, LŒ/. Hence, we have shown that u 2 L2.0, T ;H/.
Step 3: We claim that Pi,m D 0. To identify the limit Pi,m in (5.11), we choose test functions as follows: For
i 2 D.Qi/ and i,m 2 D.Yi,m/

(extend it to whole R periodically with period L), choosing a test function


�i,m.x/ D �
i.t, x/ i,m

�n x1

�

o�
,

in such a way that 
�i,m is continuous on Q�i,m. From the definition of �-unfolding of 
�i,m and by Proposition 4.3, we obtain

T�i,m

�
i,m D �
i

�
t, �
h x1

�

i
C �y, x2

�
 i,m.y/,

T�i,m.@x1

�
i,m/ D

1

�
@y.T

�
i,m


�
i,m/ D �@x1
i

�
t, �
h x1

�

i
C �y, x2

�
 i,m.y/C 
i

�
t, �
h x1

�

i
C �y, x2

�
 0i,m.y/,

T�i,m.@x2

�
i,m/ D �@x2
i

�
t, �
h x2

�

i
C �y, x2

�
 i,m.y/.

The aforementioned equations gives us
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T�i,m

�
i,m ! 0 in L2.Qi � Yi,m/, T�i,m.@x1


�
i,m/! 
i.t, x/ 0i,m.y/ in L2.Qi � Yi,m/

T�i,m.@x2

�
i,m/! 0 in L2.Qi � Yi,m/

as � ! 0. From the variational formulation of (3.1) with the test function  D 
�i,m, we obtain

�

Z
Q�

u�@t

�
i,m dxdtC

Z
Q�

rx u� � rx

�
i,m dxdtC

Z
Q�

u�

�
i,m dxdt D

Z
Q�

f�

�
i,m dxdt. (5.14)

Now notice �
R

Q�
u�@t


�
i,m D �1

L

R
Qi�Yi,m

T�i,mu� T�i,m@t

�
i,m ! 0 as � ! 0 because @t


�
i,m D .@t
i,m/

� and

T�i,m@t

�
i,m D �@t
.t, �Œ x1

�
�C �y, x2/ i,m.y/! 0 in L2.Qi �Yi,m/. Using the properties of unfolding operators and convergence described

earlier, it is easy to see that Z
Q�

rx u� � rx

�
i,m dxdt!

1

L

Z
Qi�Yi,m

Pi,m 
i.x1, x2/ 
0
i,m.y/ as � ! 0.

This is more or less similar to the elliptic problems as in [7–9].
Further

R
Q�

u�
�i,m dxdt D
R

Q�i,m

u�
�i,m dxdt D 1
L

R
Qi�Yi,m

T�i,m u� T�i,m

�
i,m dxdydt ! 0 as � ! 0. Hence, the equation (5.14), as � ! 0

becomes, Z
Qi�Yi,m

Pi,m 
i.t, x1, x2/ 
0
i,m.y/ D 0 8 
i 2 D.Qi/,  i,m 2 D.Yi,m/

which implies Pi,m D 0.
Step 4: We, now establish that u satisfies the homogenized problem (5.4). Let B be the set of all multi-sheeted functions
of the form:

'.x1, x2/ :D

8̂̂<̂
:̂
'2,m.x1, x2/ if x 2 �2, for m D 1, 2, 3, 4,
'1,m.x1, x2/ if x 2 �1, for m D 1, 2,
'0.x1, x2/ if x 2 �0,
'�.x1, x2/ if x 2 ��.

where 'i,m 2 C1.�i/ and '� 2 C1.��/with 'i,m and 'iC1,k are equal on the interface as in (5.2) and also '�.x1, M0/ D '0.x1, M0/.
Let i,m 2 D�0, LŒ such that it equals one if x1 2 Yi,m and zero outside a neighborhood of Yi,m. Extend i,m L-periodically to whole R.

Now, consider the test functions 
� 2 C.Œ0, T�; H1.��//with 
�.T/ D 0 and 
� of the form


�.t, x1, x2/ :D

8̂̂<̂
:̂
'2,m.t, x1, x2/ 2,m

�˚
x1
�

��
if x 2 ��2,m, for m D 1, 2, 3, 4,

'1,m.t, x1, x2/ 1,m

�˚
x1
�

��
if x 2 ��1,m, for m D 1, 2,

'0.t, x1, x2/ 0

�˚
x1
�

��
if x 2 ��0 ,

'�.t, x1, x2/ if x 2 ��.

where ' 2 C.0, T ;B/. On applying unfolding operators, we obtain

T�i,m

�
i,m D 'i,m

�
t, �
�

x1
�

�
C �y, x2

�
 i,m.y/,

T�i,m.@x1

�
i,m/ D

1
�
@y.T

�
i,m


�
i,m/ D @x1'i,m

�
t, �
�

x1
�

�
C �y, x2

�
 i,m.y/C

1
�
'i,m

�
t, �
�

x1
�

�
C �y, x2

�
 0i,m.y/,

T�i,m.@x2

�
i,m/ D @x2'

�
i,m

�
t, �
�

x2
�

�
C �y, x2

�
 i,m.y/.

Because  i,m.y/ D 1 and  0i,m.y/ D 0 for y 2 Yi,m, we infer that

T�i,m

�
i,m ! 'i,m.t, x/ in L2.Qi � Yi,m/, T�i,m.@x1


�
i,m/! @x1'i,m.t, x/ in L2.Qi � Yi,m/

T�i,m.@x2

�
i,m/! @x2'i,m.t, x/ in L2.Qi � Yi,m/.

Consider the left hand side of the variational formulation with the test function  D 
�.t, x1, x2/, namely

�

Z
Q�

u�@t

� dxdtC

Z
Q�

rx u� � rx

� dxdtC

Z
Q�

u�

� dxdt (5.15)

�

Z
QC�

u�@t

� dxdt D �

2X
iD0

2iX
mD1

Z
Q�i,m

u�@t

� dxdt D �

1

L

2X
iD0

2iX
mD1

Z
Qi�Yi,m

T�i,mu� T�i,m.@t

�
i,m/ dxdtdy

! �
1

L

2X
iD0

2iX
mD1

Z
Qi�Yi,m

ui,m '
0
i,m dxdtdy D

2X
iD0

2iX
mD1

hi,m

L

Z
Qi

ui,m '
0
i,m dxdt as � ! 0;
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Similarly as earlier, we obtain the following convergences as � ! 0.

Z
QC�

rx u� � rx

� dxdt!

2X
iD0

2iX
mD1

hi,m

L

Z
Qi

@x2 ui,m @x2'i,m dxdt

Z
QC�

u�

� dxdt!

2X
iD0

2iX
mD1

hi,m

L

Z
Qi

ui,m 'i,m dxdt.

On the fixed domain Q�, we have no issue in passing to the limit. Right hand side of the weak formulation, namely
R

Q�i,m
f�
� dxdt DR

Qi

Af�jQ�i,m 

�
i,m dxdt D

R
Qi

Af�jQ�i,m 'i,m dxdt! hi,m
L

R
Qi

f0 'i,m dxdt converges to
R

Q� f0'
� dxdtC

P2
iD0

P2i

mD1
hi,m

L

R
Qi

f0 'i,m dxdt.

Finally, we obtain

Z
Q�
.@tu�'� Cru�r'� C u�'�/C

2X
iD0

2iX
mD1

hi,m

L

0@ Z
Qi

u0i,m 'i,m C @x2.ui,m/ @x2.'i,m/

1A
C

2X
iD0

2iX
mD1

hi,m

L

Z
Qi

ui,m 'i,m D

Z
Q�

f0'
� C

2X
iD0

2iX
mD1

hi,m

L

Z
Qi

f0 'i,m

8 ' 2 C.Œ0, T�;B/. Because C.Œ0, T�;B/ with  .T/ D 0 is dense in L2.0, T ;H/, we have showed that u satisfies the homogenized
problem (5.4). This completes the proof of Theorem 5.1.

Remark 5.1
If we consider ui D

P2i

mD1 hi,mui,m and fi D
P2i

mD1 hi,mf0, then u defined by

u D

�
ui if .x, t/ 2 Qi for i D 0, 1, 2,
u� if .x, t/ 2 Q�

satisfies the strong form8̂̂̂̂
ˆ̂̂<̂
ˆ̂̂̂̂̂:

@tui,m �
@2

@x2
2

ui,m C ui,m D f0 in �0, TŒ��i for i D 0, 1, 2, and m D 1, � � � , 2i

@tu� ��u� C u� D f0 in �0, TŒ���,
u� D u0,1 on �0, u0,1 D u1,1 D u1,2 on �1, u1,1 D u2,1 D u2,2; u1,2 D u2,3 D u2,4 on �2P2

mD1 h1,m@x2 u1,m D
P4

mD1 h2,m@x2 u2,m on �0, TŒ��2 h0,1@x2 u0 D
P2

mD1 h1,m@x2 u1,m on �0, TŒ��1

@x2 u� D h0,1
L @x2 u0 on �0, TŒ��0, @�ui D 0, @�u� D 0 on �0, TŒ�� ,

ui.0, x/ D 0, u�.0, x/ D 0 in �, ui , u� are �s0 � periodic.

(5.16)

From analysis using unfolding operators, we have obtained the limiting contribution from each branch at each stage. For example, at
stage 1, namely from M0 to M1, there is only one branch which is periodically distributed (limiting contribution is u0,1) whereas at stage
2, (M1 to M2) there are two branches which are periodically distributed (corresponding limiting contributions are u1,1 and u1,2). The last
stage (M2 to M3) has four branches for which the limits are u2,1, u2,2, u2,3 and u2,4 .

6. Optimal control

This section is devoted to the study of the homogenization of an optimal control problem posed on a branched structure as in the
previous section.

6.1. Nonhomogenized problem

We, again recall the problem described in Section 3.2. We consider the controls coming from the fixed reference cell ƒCT and
periodically distributed. We have the following existence result for each fixed � > 0 (See Raymond [37]).

Theorem 6.1
For each � > 0, the minimization problem (P�) admits a unique solution.

One of our main result is the derivation of the following optimality system and characterization of optimal control via the
unfolding operator.
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Theorem 6.2
Let .u� , ��/ 2 W.0, T ; H1.��/, H1.��/

�/ � L2
#.ƒ
C
T / be the optimal solution to .P�/, then the optimal control is characterized by

��.t, y1, y2/j�0,TŒ�ƒi,m D
�1

ˇL

Z L

0
.T�i,m p�/.t, x1, y2, y1/ dx1 (6.1)

8 i D 0, 1, 2 and m D 1, � � � , 2i , where u� satisfies (3.5) with �� D �
�

� , that is ��.t, x1, x2/ D �
�

�.t, x1, x2/ D ��.t, x1
�

, x2/ and the adjoint
state p� satisfies the problem�

�@tp� ��p� C p� D u� � ud in �0, TŒ��� ,
@�p� D 0 on �0, TŒ��� , p�.T , x/ D u�.T/ � ud.T/ in �� , p� is �s � periodic.

(6.2)

Conversely, if a pair .Ou� , Op�/ satisfies the following system8̂̂̂<̂
ˆ̂:
@t Ou� ��Ou� C Ou� D f0 C 	QC�

O��� ; � @t Op� ��Op� C Op� D Ou� � ud in �0, TŒ��� ,

@� Ou� D 0; @� Op� D 0 on �0, TŒ��� , Ou�.0, x/ D 0; Op�.T , x/ D Ou�.T/ � ud.T/ in �� ,
O��.t, y1, y2/ D

�1
ˇL

R L
0 T�i,m Op�dx1 on �0, TŒ�ƒi,m 8 i D 0, 1, 2 and m D 1, � � � , 2i ,

Ou� and Op� are �s � periodic,

then the pair .Ou� , O��/ is the optimal solution to .P�/. Here O��� .t, x1, x2/ D O��.t, x1
�

, x2/.

Proof
Given � 2 L2

#.ƒ
C
T /, set F�.�/ D J�.u�.�/, �/, where u�.�/ is the solution to the Eq. (3.5) with right hand side f0 C 	

QC�
�� . Using

appropriate computation on 1
�

�
F�.�� C ��/ � F�.��/

�
and taking limit as �! 0, we obtain (we skip the computations involved)

F0�.��/� D

Z
Q�

.u� � ud/w� C

Z
��

.u�.T/ � ud.T//w�.T/C
ˇ

L

Z
Q�

	
QC�
�
�

��
� ,

where w� is the solution of the following equation�
@tw� ��w� C w� D 	QC�

�� in �0, TŒ��� ,

@�w� D 0 on �0, TŒ��� , w�.0, x/ D 0 in �� , w� is �s � periodic.
(6.3)

Because .u� , ��/ is an optimal solution to .P�/, we have F0�.��/� D 0 for all � 2 L2.ƒCT /, it follows thatZ
Q�

.u� � ud/w� C

Z
��

.u�.T/ � ud.T//w�.T/ D
�ˇ

L

Z
QC�

�
�

� �
�

Using integration by parts in the Eqs (6.2) and (6.3) with test functions w� and p� , respectively,
we obtain

R
Q�
.u� � ud/w� C

R
��
.u.T/ � ud.T//w�.T/ D

R
QC�

p��
�

Hence, we obtain�ˇ
R

QC�
��� �

� D
R

QC�
p��� , 8 � 2 L2.ƒCT /

Now, note that T�i,m.�
�

�/.t, x, y/ D ��.t, y, x2/ and ��j�0,TŒ�ƒi,m * �0j�0,TŒ�ƒi,m in L2.�0, TŒ�ƒi,m/. Applying the unfolding operator,
we obtain, Z

Q�i

�
�

��
� D

1

L

2iX
mD1

Z
Qi�Yi,m

T�i,m�
�

� T�i,m�
� dxdydt D

1

L

2iX
mD1

Z
Qi�Yi,m

�� � dxdydt D
2iX

mD1

Z
�0,TŒ�ƒi,m

�� �

Similarly, Z
Q�i

p��
� D

1

L

2iX
mD1

Z
Qi�Yi,m

T�i,mp� T�i,m�
� dxdydt D

1

L

2iX
mD1

Z
Qi�Yi,m

T�i,mp� � dxdydt

D

2iX
mD1

Z
�0,TŒ�ƒi,m

0@1

L

LZ
0

T�i,mp� dx1

1A �
By choosing � 2 L2.ƒCT / such that � D 0 on the complement of �0, TŒ�ƒi,m (zero in �0, TŒ�ƒj,k for j ¤ i, k ¤ m), we can show that

�� D �
1
ˇL

"
LR

0
T�i,mp�dx1

#
a.e. in �0, TŒ�ƒi,m.
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Remark 6.1
Because we have introduced unfolding operators T�i,m for each stage i and each branch m, we could obtain the characterization of the
optimal control separately inƒi,m, i D 0, 1, 2, m D 1, � � � , 2i .

6.2. Homogenized problem

The limit problem is: find .u, �/ 2 L2.0, T ;H/ � L2.�0, TŒ�.M0, M3//, such that

.P/ J.u, �/ D inffJ.u, �/j.u, �/ 2 L2.0, T ;H/ � L2.�0, TŒ�.M0, M3//, .u, �/ satisfies .6.4/g.

The cost functional is defined as

J.u, �/ D
1

2

Z
Q�
ju � udj

2 C
1

2

2X
iD0

Z
Qi

0@ 2iX
mD1

him

L
jui,m � udj

2

1AC 1

2

Z
Q�
ju.T/ � ud.T/j

2

C
1

2

2X
iD0

Z
Qi

0@ 2iX
mD1

him

L
jui,m.T/ � ud.T/j

2

1AC ˇ

2

2X
iD0

Z T

0

Z MiC1

Mi

2iX
mD1

himj�ij
2.

Here �i D � j�0,TŒ��Mi ,MiC1Œ. The state equation is defined by

hu0.t/, i C hAu, i D hF.�/, i, u.0/ D 0, (6.4)

8  2 W.0, T ;H,H�/, where A and F.�/ are defined as follows:

hAu, i :D

Z
Q�
.ru�� r � C u� �/dxdtC

2X
iD0

2iX
mD1

hi,m

L

Z
Qi

.@x2 ui,m @x2 i,m C ui,m  i,m/ dxdt (6.5)

for all u, 2 L2.0, T ;H/ and hF.�/, i :D
R

Q� f0 
� dxdtC

P2
iD0

P2i

mD1
hi,m

L

R
Qi

�i  i,m dxdt,

hu0.t/, i D �

Z
Q�

u� @t 
�dxdt �

2X
iD0

2iX
mD1

hi,m

L

Z
Qi

ui,m @t i,m dxdt

C

Z
��

u�.T/ �.T/dx C
2X

iD0

2iX
mD1

hi,m

L

Z
�i

ui,m.T/  i,m.T/ dx

The analogous strong form (Euler equation) can also be defined like in (5.16). The adjoint state p 2 W.0, T ;H,H�/ solves,

(
�hp0.t/, i C hAp, i D

R
Q�.u

� � ud/ 
� C

P2
iD0

P2i

mD1

R
Qi

�
him

L .ui,m � ud/ i,m

�
,

p�.T/ D u�.T/ � ud.T/ in��; pi,m.T/ D ui,m.T/ � ud.T/ in�i ,
(6.6)

8  2 W.0, T ;H,H�/. The following result can be easily verified as in the previous section.

Theorem 6.3
The optimal control problem .P/ has a unique solution.

Theorem 6.4
If .u, �/ is an optimal solution to (P), then

� i D: � j�0,TŒ��Mi ,MiC1Œ D
�1

ˇriL

Z L

0

2iX
mD1

hi,mpi,mdx1 for i D 0, 1, 2

where p 2 W.0, T ;H,H�/ is the solution to the adjoint Eq. (6.6). Conversely, assume that the pair .Ou, Op/ 2 W.0, T ;H,H�/ �
W.0, T ;H,H�/ solves the optimality system
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8̂̂̂̂
<̂̂
ˆ̂̂̂:

hOu0.t/, i C hAOu, i D hF. O�/, i; Ou.0/ D 0,

�hOp0.t/, i C hAOp, i D
R

Q�.Ou
� � ud/ 

� C
2P

iD0

2iP
mD1

R
Qi

�
him

L .Oui,m � ud/ i,m

�
,8  2 W.0, T ;H,H�/,

Op�.T/ D .Ou�.T/ � ud.T// in��; Opi,m.T/ D Oui,m.T/ � ud.T/ in�i ,
O�i D: O� j�0,TŒ��Mi ,MiC1Œ D

�1
ˇri L

R L
0

P2i

mD1 hi,m Opi,mdx1 for i D 0, 1, 2.

(6.7)

Then, the pair .Ou, O�/ is the optimal solution to .P/. Here ri D
P2i

mD1 hi,m.

Proof
Assume .u, �/ is an optimal solution to .P/ and u.�/ is a solution of (6.4) for a fixed arbitrary � . Now, set F.�/ D J.u.�/, �/, then

F0.�/� D

Z
Q�
.u� � ud/w

	� C

2X
iD0

2iX
mD1

Z
Qi

hi,m

L
.ui,m � ud/w

	
i,m

C

Z
��
.u�.T/ � ud.T//w

	�.T/C
2X

iD0

2iX
mD1

Z
�i

hi,m

L
.ui,m.T/ � ud.T//w

	
i,m.T/

C ˇ

2X
iD0

Z T

0

Z MiC1

Mi

2iX
mD1

hi,m � i�i ,

where �i D � j�0,TŒ��Mi ,MiC1Œ and the multi-sheeted function w	 is the solution of the Eq. (6.8) given in the succeeding text.

h@tw	 .t/, i C hAw	 , i D
2X

iD0

2iX
mD1

Z
Qi

hi,m

L
�i i,m, (6.8)

with w	 .0/ D 0, 8  2 W.0, T ;H,H�/. Because .u, �/ is a solution to .P/, we have F0.�/� D 0 for all � 2 L2.0, T ; L2.M0, M3//. That is,

Z
Q�
.u� � ud/w

	� C

2X
iD0

2iX
mD1

Z
Qi

hi,m

L
.ui,m � ud/w

	
i,m C

Z
��
.u�.T/ � ud.T//w

	�.T/

C

2X
iD0

2iX
mD1

Z
�i

hi,m

L
.ui,m.T/ � ud.T//w

	
i,m.T/ D �ˇ

2X
iD0

Z T

0

Z MiC1

Mi

2iX
mD1

hi,m � i�i .

(6.9)

Choosing w	 and p as the test functions in the weak formulation of the Eqs (6.6) and (6.8) respectively, we obtain

8̂<̂
:
h@tw	 .t/, pi C hAp, w	 i D C

R
��

p�.T/w	
�
.T/C

P2
iD0

P2i

mD1

R
�i

hi,m
L pi,m.T/w

	
i,m.T/

C
R

Q�.u
� � ud/w	

�
C
P2

iD0

P2i

mD1

R
Qi

him
L .ui,m � ud/w	i,m,

h@tw	 .t/, pi C hAp, w	 i D
P2

iD0

P2i

mD1

R
Qi

hi,m
L �ipi,m,

(6.10)

with p.T/ D u.T/ � ud.T/. Now, we compare the Eqs (6.9) and (6.10) to obtain

2X
iD0

2iX
mD1

Z
Qi

hi,m

L
�ipi,m D �ˇ

2X
iD0

Z T

0

Z MiC1

Mi

2iX
mD1

hi,m � i�i .

That is,
P2

iD0

R T
0

R MiC1

Mi

hR L
0

P2i

mD1
hi,m

L pi,m

i
�i D

P2
iD0

R T
0

R MiC1

Mi

h
�ˇ

P2i

mD1 hi,m � i

i
�i .

Hence we obtain, � i D
�1
ˇri L

R L
0

hP2i

mD1 hi,mpi,m

i
, where ri D

P2i

mD1 hi,m.

6.3. Convergence analysis

Assume that .u� , ��/ is the optimal solution to the problem .P�/. Let u�.0/ be the solution to the problem (3.5) corresponding to
�� D 0, then from (3.4), we obtainku�.0/kL2.0,T ;H1.��// � C, where C > 0 is independent of �. Using optimality of the solution .u� , ��/,
we obtain Z

Q�

.u� � ud/
2 C

Z
��

.u�.T/ � ud.T//
2 C

ˇ

2

Z
QC�

j�
�

�j
2 � C.
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Thus, we have

k�
�

�kL2.QC� /
D k��kL2.�0,TŒ�ƒC/ � C and ku�kL2.0,T ;L2.��// � C. (6.11)

Further, p� satisfies kp�kL2.Q�/ � C.

Theorem 6.5
Let .u� , ��/ and .u, �/ be the solutions of .P�/ and of .P/, respectively. Then

��j�0,TŒ�ƒi * � i weakly in L2.ƒi��0, TŒ/, for i D 0, 1, 2,

Bu� j��0,1
*

h0,1

L
u0,1 weakly in X0, Bu� j��1,m

*
h1,m

L
u1,m weakly in X1, for m D 1, 2,

Bu� j��2,m
*

h2,m

L
u2,m weakly in X2, for m D 1, 2, 3, 4, u�j�� * u� weakly in X .

where � i D
�1
ˇri L

R L
0

hP2i

mD1 hi,mpi,m

i
. Hereerepresents the zero extension and ri D

P2i

mD1 hi,m for i D 0, 1, 2.

Proof
Using the weak formulation of the state equation (3.5), we have

ku0�kL2.0,T ;H1.��/�/ C ku�kL2.0,T ;H1.��// � C.kf0kL2.Q�/ C k��kL2.�0,TŒ�ƒ//,

where C is independent of �. Using (6.11), we derive ku0�kL2.0,T ;H1.��/�/ � C, ku�kL2.0,T ;H1.��// � C. Because k��kL2.ƒ
C
T /

is bounded,

there exists a subsequence (still denoted by �) and a �0 2 L2.ƒCT / such that

�� * �0 weakly in L2.ƒCT /. (6.12)

By using the similar analysis discussed in Section 4, we can easily derive the following convergences.

Au� jQ�0,1
*

h0,1

L
u0,1 weakly in X0, Au� jQ�1,m

*
h1,m

L
u1,m weakly in X1, for m D 1, 2,

Au� jQ�2,m
*

h2,m

L
u2,m weakly in X2, for m D 1, 2, 3, 4, u�jQ� * ujQ� weakly in X ,

where u satisfies the limit Eq (6.4) with � D �0. Also we have the following convergence for p�

Ap� jQ�0,1
*

h0,1

L
p0,1 weakly in X0, Ap� jQ�1,m

*
h1,m

L
p1,m weakly in X1, for m D 1, 2,

Ap� jQ�2,m
*

h2,m

L
p2,m weakly in X2, for m D 1, 2, 3, 4, p�jQ� * pjQ� weakly in X .

where p0 satisfies the limit Eq (6.6) with u D u.
To prove the convergence of the optimality system, now it is enough to prove � D �0. Recall the optimality condition (6.1):

��.t, y1, y2/j�0,TŒ�ƒi,m D
�1

ˇ L

Z L

0
T�i,m p�.t, x1, y2, y1/dx1 (6.13)

8 i D 0, 1, 2 and m D 1, � � � , 2i . By the convergence (6.12), we obtain

��j�0,TŒ�ƒi,m * �i,m in L2.�0, TŒ�ƒi,m/. (6.14)

Now, we apply the homogenization results of Section 5 on the adjoint state to obtain the convergence

T�i,m p� * pi,m weakly in L2.Qi � Yi,m/ as � ! 0. (6.15)

Now, as � ! 0, the Eq. (6.13) becomes

�i,m.t, y1, y2/ D
�1

ˇL

Z L

0
pi,m.t, x1, y2, y1/dx1 for i D 0, 1, 2 and m D 1, � � � , 2i .

By noting the fact that pi,m is independent of y1, we conclude that �i,m also independent of the variable y1.
Consider ��j�0,TŒ�ƒi D

�1
ˇ L

P2i

mD1

R L
0 T�i,m p�dx1 for all i D 0, 1, 2. Choose a test function  2 L2.�0, TŒ�ƒi/ such that  is independent

of y1, then
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Z
�0,TŒ�ƒi

�� D
�1

ˇ L

2iX
mD1

Z
�0,TŒ�ƒi,m

Z L

0
T�i,m p� D

�1

ˇ L

Z T

0

Z L

0

Z MiC1

Mi

2iX
mD1

Z
Yi,m

T�i,m p� .

As � ! 0, we obtain
R T

0

R MiC1

Mi

P2i

mD1

R
Yi,m
�i D

�1
ˇ L

R T
0

R L
0

R MiC1

Mi

P2i

mD1

R
Yi,m

pi,m which in turn implies

Z T

0

Z MiC1

Mi

0@ 2iX
mD1

hi,m�i

1A D Z T

0

Z MiC1

Mi

0@�1

ˇ L

Z L

0

2iX
mD1

hi,mpi,m

1A .

Because �i is independent of y. Hence, �i D
�1
ˇri L

R L
0

P2i

mD1 hi,mpi,m for i D 0, 1, 2 and ri D
P2i

mD1 hi,m. Therefore, we obtain the optimality
system corresponding to the minimization problem .P/. The Theorem 6.4 says that, the optimal solution is .u0, �0/. Hence, by the
uniqueness, we have, u D u, p D p0 and � D �0 which completes the proof.

7. Conclusions

We have considered an optimal control problem in a domain with branched structure, depending on a small parameter � > 0. We have
applied control in the oscillating interior part of the domain. Here, we have made a special consideration, namely, we took the control
in a fixed reference domainƒCT , and we scaled and distributed it periodically to the oscillating part of the domain under consideration.
We have derived the optimality condition for this special kind of control problem for which we have introduced and utilized the periodic
unfolding operators. Finally, we have found the homogenization of the optimal control problem as the parameter � goes to zero. In the
limit problem, we obtain a multi-sheeted function which characterize the contribution of the restriction of the state solution u� at each
branch of each level. This was achieved by introducing unfolding operators on the different branches at different levels.
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