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Optimal control problem in a domain with
branched structure and homogenization

S. Aiyappan and A. K. Nandakumaran*!
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We consider a linear parabolic problem in a thick junction domain which is the union of a fixed domain and a collection of
periodic branched trees of height of order 1 and small width connected on a part of the boundary. We consider a three-
branched structure, but the analysis can be extended to n-branched structures. We use unfolding operator to study the
asymptotic behavior of the solution of the problem. In the limit problem, we get a multi-sheeted function in which each
sheet is the limit of restriction of the solution to various branches of the domain. Homogenization of an optimal control
problem posed on the above setting is also investigated. One of the novelty of the paper is the characterization of the opti-
mal control via the appropriately defined unfolding operators. Finally, we obtain the limit of the optimal control problem.
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1. Introduction

In this article, we consider a parabolic problem in a thick junction domain Q., ¢ > 0, a small parameter, and also the correspond-
ing optimal control problem. Various materials with complex structures including multi-layer thick junctions are widely used in many
fields of science. Such structures are usually known as complex structures because of its complexity both in construction and anal-
ysis. Other complex structures are perforated domains, composite materials, grid domains, and domains with oscillating boundaries
to name a few.

As mentioned earlier, constructions with thick junction (also multi-level) are used in many technologies, like microstrip radiator,
nano technologies ([1, 2]), biological systems, fractal-type constructions, etc. Studying PDE problems in such complex structures has
paramount importance. We refer to the work in [3-6] and the references therein for the study in multi-branched structures. Although
the importance of optimal control may be at the junctions, we consider the controls on the entire oscillating part from which we can
also understand the contribution from each branch at each level. One can apply need based controls at the appropriate junctions.

The domain Q¢ under consideration consists of multiple layer thick junctions known as branched structure (Figure 1). Such a domain
has a fixed part and lot of thin periodically distributed parts (or handle trees) attached along certain part of the boundary of the
domain at different levels. The trees have finite number of branching levels and in this paper, we take three branching levels, but one
can consider any finite number of branches. The height of each branch is of O(1), whereas the thickness is of O(¢). We consider the
domain in two-dimensional space. Such a domain has already been considered by Mel'nyk ([6]). Indeed the results can be extended
to three dimensional problem and higher dimensions as well. Asymptotic analysis for a Robin problem in a thick junction has been
investigated in [5]. In fact, our work is motivated from the work of Mel'nyk, where he considers a semi-linear parabolic problem with
the source term vanishes on the oscillating interior part. He has studied the problem using the method of asymptotic expansion and
derived appropriate error estimates. From the recent work on problems on oscillating boundary domains ([7-9]), in which we have
studied optimal control problems with Elliptic PDE using periodic unfolding operators, we learned that the method of unfolding is well
suited to study problems on branched structures. In addition to the study of the PDE and its homogenization using unfolding method,
our major interest is to study the control problem with controls applied to the oscillating part. Thus, we also need to consider the
PDE problem with non-vanishing source on the oscillating part. The approach using unfolding method is very useful to study control
problems when the controls are applied in the oscillating interior part.
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Figure 1. Domain Q.

Homogenization of a Laplace equation in a highly oscillating boundary domain is studied in [10]. Using boundary layer corrector,
the authors obtain the approximation of the homogenized solution of order €3/2 in H' norm in a subset of the oscillating domain. In
[11,12], the authors have studied homogenization of PDEs posed on the oscillating boundary domains using Tartar’s Oscillating test
functions method. In [13], Mel'nyk and Vashchuk have studied the homogenization of Poisson equation on a thick two level junction
with varying boundary conditions. In [14, 15], he has derived H' norm estimates for the homogenized solutions of elliptic and parabolic
type PDEs. In [16-19], asymptotic analysis of optimal control problems posed on various PDEs were investigated using oscillating test
functions method. In [3, 4], the authors have used the Buttazzo-Dal Maso abstract scheme for variational convergence of constrained
minimization problems to study the asymptotic analysis of optimal control problem in thick multi-level junctions. There are more
articles which deals with the homogenization of PDEs posed on an oscillating boundary domain. For example, homogenization of a
p-Laplacian operator is discussed in [20] using I"-convergence; Laplace equation with inhomogeneous Neumann boundary condition
is studied in [21] and in [22]; the authors have used extension operators for the homogenization of Ginzburg-Landau equation.

In the first part of this paper, we consider a linear parabolic problem and study the limiting analysis (homogenization) using the
method of unfolding. We introduce appropriate unfolding operators for each periodic tree at all levels and also suitable boundary
unfolding operators. The unfolding operator was first introduced by D. Cioranescu, A. Damlamian, and G. Griso in 2002 ([23]). The
method of unfolding is a well-developed method in homogenization, and it is widely used by various authors ([24-26]) in the study
of homogenization problems. The authors D. Blanchard, A. Gaudiello, and G. Griso have first used the unfolding method for homoge-
nization of oscillating boundaries in [27, 28] for elastic rods with a 3D plane as well as thin plate. In [29], strongly contrasting diffusivity
problem in highly oscillating boundaries has been studied. For general homogenization, see the books [30-32] and control, we refer
to [33-371. In the second part of this article, we consider an associated optimal control problem with quadratic cost functional in the
multi-level thick junction domain. One of our main aim is to characterize the optimal control via the unfolding operator. In fact, we
can characterize the optimal control in each branch separately by introducing corresponding unfolding operators. This, we consider
as a novel approach. Then, we study the homogenization and obtain the limit (homogenized) equation. It is to be noted that we con-
sider the controls on the oscillating branched part of the domain which are periodically distributed. Interestingly, the limit is given by
a multi-sheeted function through which we can see the contribution of different branches at different levels. The asymptotic expan-
sion method may be perhaps too tedious to study such problems, at least we do not see how to characterize the controls and hence a
homogenization.

A brief layout of the article as follows. In Section 2, we describe the domain Q, the problem description in Section 3, and the
unfolding operators with properties in Section 4. The convergence analysis of the uncontrolled problem is studied in Section 5. The
solution belongs to a multi-sheeted function space introduced by Mel'nyk in [6]. We use the same function space. In Section 6, we
study the corresponding optimal control problem. The characterization of the optimal control, optimality system, limit analysis, etc.,
are carried out through various subsections.

2. Multi-branched oscillating domain

LetL > 0and for a small parametere = h N € Z7F, we consider an oscillating domain Q. as given in the Figure 1. We now describe the
domain Q¢ and its boundaries. Let g : R — R be a smooth and periodic function with period L. Again, let0 < by < b; <--- <bg <L
|
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and 7 be a function defined on [0, L] as

MO if X1 E]O,L[ \ ]b1,b8[,
My if Xy € [bg, bs],
n(x1) = 4 My if x; € [by, b3] U [bg, b7],

4
Ms if x; € J]bai—1, bail.
i=1

with M3 > M, > My > My > m, where m > maxye[o,] |g(x)|. Extend 7 to the whole real line periodically with period L.

Now, define 7¢ on the cell [0, L] by 5 (x1) = (%), which is an eL-periodic function. We define the domain Q. as, Qc = {(x1,X;) €
R2: 0 <x; <L, g0) < xa < ne(x7)}. Note that 5. describes the periodic and oscillatory part of the domain with multiple sheets.

Let the top part Qé’ and the bottom (fixed) part 2~ of the domain Q¢ are, respectively defined as Q;" ={(x,x) €R? :0<x <
L My <x3<ne(x)}and Q7 = {(x1,x2) : 0 <x1 <L, g(x1) <x2 < Mp}.

Let us define the reference intervals Y, fori = 0,1,2and m = 1,---,2 as follows: Yo; =]by,bg[, Y11 =]b1,bs], Y12 =
1bs, bg[ and Yz, =]bam—1, bam|[ form = 1,2,3,4 and h;,, = |Y;m| is the Lebesgue measure of Y;,.

Now, we define Q¢ fori =0, 1,2 as,

Qi,e = {(X1,X2) (S Qj ZM,' <Xy < M,’+1}.

In other words, ;¢ can be considered as the union of thin sticks at level i, namely

2 N—1
Qie = U Qf,, where QF = U D7, where Dl = (jeL + €Yim)xIM;, Miq1].
=1 j=0

We can also write Q¢ as Q¢ = Int (2~ U Qo U Qe UQse).

Our full domain denoted by Q2 (Figure 2) is given by Q@ = {(x1,x2) : 0 < x; < L, g(x1) < X < M3}. The domain Q consists of four
parts 7, Q0, 21, 22, where Q; = {(x1,X2) : 0 <x; <L, Mj <X <My} fori=0,1,2InfactQ =Int (2= U Qo UQ; UQ,).

The bottom boundary T, of Q¢ is defined as Ty, = {(x1,x2) : x2 = g(x1), x; € [0,L]}. The vertical boundary of Q—
denoted by T is given by I's = {(0,x2) : g(0) < x2 < Mo} U {(Lxa) : g(l) < x < Mp)} and define the boundary T'c
as dQ¢ \ T, which the oscillating boundary. The common boundaries T are the lower boundaries of ©2; which are defined
asTje = {(x1,%2) € Qe :x0 = M;} for i=0,1,2.

The bottom part of the boundary of Q2 is same as 2 which is T's. The top boundary of Q is denoted by I'y = {(x;,M3) : 0 < x; < L}.
The boundaries I'; are defined as I'; = {(x;,M;) : 0 < x; <L} fori = 0,1,2.The vertical boundary of Q is denoted by I'y and can be
writtenas 'y = {(0,x2) : g(0) < x; < M3} U{(L,x2) : g(L) < x, < M3} and define the boundary I" as Q2 \ T'y'.

The reference domain AT (see second figure in Figure 2) is defined as AT = {(x;,x2) € R?: 0 < x; < L, My < x5 < 1(x;)}, and we
denote AT =]0, T[xAT, A; =]0, L[x]M;, Mit1[and Ajm = YimXIMj, Mi].

Let H}(Qe) = {u € H}(Qe) : u(x1 + kL, x3) = u(x1,xz) Yk € Z}. We call a function Ts-periodic if it takes the same value on both
sides of ;. We denote
Qe =10, T[xQe, QF =10, T[xQF, QF,, =10, T[xQ,, Qe =10, T[xQe, Qi =]0, T[x2; and Q =0, T[x2.
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Figure2. Qand AT.
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3. Problem description

3.1. Linear parabolic problem

First, we consider the following linear parabolic problem with given f. € L2(Q¢);

Ote — Aue + ue =fe  in]0, T[X2,

dpue =0 on]0,T[xTe¢, ue(0,x) =0inQ¢, ucis T's — periodic. 3D

Remark 3.1
Here after, whenever we use the subscripts i and m, it will always mean that the corresponding statement will hold fori = 0, 1,2 and
m =1,.--,2" unless otherwise specified.

Recall that a function ue € W(0, T; Hi(R2¢), Hy(R2¢)™) =: {p € L*(0,T; H}(RQe))| ¢’ € L2(0,T; (Hy(2¢))™)}, is a weak solution to the
problem (3.1) if

/ u’ex/f+[o vxué-vxw+/ uer =/ for, Y e l2(0,T;Hy(Qe)). 3.2)

Equivalently (ref [381), — [, eV’ + fo, Vxle - V¥ + [o_uc¥ = [o_fey, forally € C' ([0, T]; Hy(Qe)) with y(T) = 0. For fixed € > 0,
there exists a unique solution ue, and it is known that uc € C([0, T]; L2(¢)) and thus the equality u¢|(=o = 0 makes sense. A priori
estimate of the linear parabolic problem gives

luel2orm @y + Iellizrmien = Clifellizaorixao- (33)

In fact, it is not difficult to see that the constant C is independent of ¢.

3.2.  Anoptimal control problem

In Section 6, we consider a corresponding optimal control problem which is described in the succeeding text. We consider the controls
coming from the fixed reference cell A}" and periodically distributed. This may be useful in applications. Let us consider the control
problem:

(Pe) inf{Je(Ue, 0)|(ue, 8) € WO, T; H'(Re), H' (26)*) x L2(AT), (ue, ) satisfies (3.5)}
where, W(0, T; H} (), H}(Qe)*) =: {p € L2(0, T; H}(Rc))| ¢’ € L2(0, T; (H}(Re))*)}. The cost functional Je (ue, 8) is defined as

1 1
tetwe 0 =5 [ e 3 [ e - 5 [ g o G4
x) and the desired state ug € L2(Q). Given 6 € L2(A+) and fy € [2(Qc) with fy = 0in QZ, the function ue

with 0€(t, x1,x2) = 0(t, %,
satisfies the state equation:

{ Otle — AUe + Ue = foy + Yot f€ in]0, T[xR, (3.5)

dyue =0 on]0,T[xI¢, uec(0,x) =0 inQ¢, ue isTs— periodic.
4, Unfolding operators and its properties

In this section, we define the periodic unfolding operators and the boundary unfolding operators and study some of their properties.
Unfolding operator is the main tool which we use to study the asymptotic behavior of the solution. The idea of introducing unfolding
operator in 2/ periodic components separately for the i" branch is to derive the limiting contribution separately from each component.
It is, however, possible to introduce a single unfolding operator for each branch. For x € R, we write [x]; as the integer part of x with
respect to L, that is, [x], = kL, where k is the largest integer such that kL < x and {x}; = x — [x];.

Definition 4.1

Define ¢¢, : Q; X Yim — Qie by ¢(t,x1,%2,y) = (t,€[%2], + €y,x;), wherei = 0,1,2and m = 1,---,2'. The e-unfolding of a function
u: Qje — Risthe functionu o d),m Qi x Y;m — R.The operator which maps every function u : Q;c — R to its e-unfolding is called
the unfolding operator. Let the unfolding operator be denoted by T, , that is,

Timi{u: Qe = Ry = {v:Q; x Y, » R} defined by T u(t, x1,x2,y)—u<te[x ] +ey,x2).

Here T, is an unfolding operator corresponding to the m™ component of the i branch (or i level). If U is an open subset of R3
contalnlng Q;, and u is real valued function on U, T u will mean T, acting on the restriction of u to Qf . We derive the following

rim

properties ofthe unfolding operator Tf,,. We only sketch the proofs as it is similar to the one in [27,28].

Proposition 4.1
Let T, be the unfolding operators given as in the Definition 4.1. Then

o islinearand T (uv) = Tf (W)TF, (v), where uv: Qe — R.

. ______________________________________________________________________________________________________|
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2. [ THudxdydt =1L [ udxdt,whereu e L'(Qf,).

QiXYim Qfm
Proposition 4.2
Let u € [2(Q;¢). Then Tiau € L2(Q; x Y;m) and IT5mull2@xvim = \/Z||u||Lz(Qi§m)
Proof

Given that u € L?(Q;¢) implies |u]? € L'(Q;¢). From the Proposition 4.1, we obtain

/ ITE ul? = [ TE P =L /|u|2.

QiXYim QiXYim Qi
O
Notation: Define the spaces X, X, Zim as X; = L2(0,L; L2(0, T; Hy(M;, Mi11))),
X = 12(0,L;L2(0, T; HL(27))) and Zim = L2(0, L; L2(0, T; H' (M, Mi1) X Yim))) fori = 0,1,2andm = 1,---, 2.
Proposition 4.3
Letu € L2(0, T; H'(Q2F,)). Then TE u € Zim. Moreover d,, (T, u) = Tf, (9x,u) and 3y (T, u) = €Tf, (dx, u).
Proof
LT
”Ti,emu”zz,’,-m = // ”Ti,ému”fz-ﬂ((M,',M,-+1)><Y(,m dX]dt
0 0
— [ (Tl + T l0sul? + Tiylul) dicyet
QixYim
= L/ (€?19x ul* + |9,ul* + |ul*) dxdt < L”u”fl(o,r;/-/wgfm)) < o0.
Qm
O

The following propositions are trivial or easy to prove.

Proposition 4.4
Letu € L2(Q). Then Tf u — uin L%(Q; X Y;m). More generally, if uc — uin L?(Q;), then Tf, ue — uin L2(Q; X Yjm).

Proposition 4.5
Let, for every € > 0, ue € L?(Qf,,) be such that T¢ ue — uweakly in L2(Q; X Y;m). ThenTe — ; [ udy weaklyin L?(Q)). Here Ty is the

Yi,m
zero extension of uc to Q;.
Proposition 4.6
Letue € L?(0,T;H'(QF,,)) for every e > 0 be such that Tf, ue — uweakly in Z;,. ThenTe — { [ u dy weakly in X;.
Yi,m
Proof
Given that Tfmu6 — u weakly in Zj, implies Tfmu6 — u and 0,,(Tfue) — dnu  weaklyin L2(Q; X Yim). That is,

TE, (9x,Ue) — Ox,u weakly in L2(Q; x Yjm). Using Proposition 4.5 we obtainUe — 1 [ u dyinL?(Q;) and Z)F,Q\u6 = 1 [ dudyinl?(Q).

Yim Yim

But notice that dy,Uc = 8)(2\u€, because the extension by 0 does not affect the derivative along the x,-direction. Hence, i — % f u dy

Yi,m
weakly in X;.

4.1.  Unfolding on the boundary

In this section, we define the boundary unfolding operators Ty, . on functions defined on the boundary T} . We now state the
properties of the boundary unfolding operators and proofs are given.

Definition 4.2
The e-unfolding of a function u 3]0, T[xT5, — R denoted by T, : {u :]0, T[xI'f,, — R} — {v 0, T[x]0,L[xY;m — R} is defined as
Tomu(tx,y) =u(te[2], +ey).

If Uis an open subset of R? such that I'f;, € Uand u:]0, T[xU — Rthen 7§, u=Tg (U|I‘fm)'

Proposition 4.7

Let Ty, ., be the boundary unfolding operator defined as in Definition 4.2. Then, we have Ty, . is linear and for u,v :]0, T[xI'f, — R, we
have Ty . (uv) = Ty (WTy (V).

L
Copyright © 2016 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2016
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The proof follows directly from the definition.

Proposition 4.8
Letu € L>(]0, T[xT,). Then T, u € L2(10, T[X]O, L[xYim). Moreover [|T5. ulli2qo,rxToLlxVim) = f||u||Lz(]0T[Xpe
Proof
2 1 2
/ / / [T, mul” dxy dt dy = / / / te +ey)‘ dx. dtdy
Yim Yim
N1 kFDeL
_ / > / \u(t, kel + ey)|? dx, dtdy
t=0yeYim K=0x,=keL
N—1 (k+1)eL T
= Z / dx; / / lu(t, kel + ey)|? dtdy
=0y, =keL t=0y€EYim
=el ) / / lu(t, kel + ey)|? dx, dtdy
k=0t_0y€Yr'm
= LZ/ / lu(t,x1)[? dx1dt_L/ / lu(t,x;)|? dx;dt.
k=0r=0 x, ckeL+€Yim
O
Proposition 4.9
Letu € L2(0, T; H'(TS,))- Then Tg, u € L2(10, T[]0, L[ H' (Yim))and 8y, (T5, ,u) = €Tg. 1 (3x,u)
Proof
It follows from the Definition that d,(Ty, ,,u) = €Ty (35 ).
LT
1Tt 22 qoutxt0tn (i) = //”Té, ullis v, dadt
00
LT
= /[ / EThmlul® + T o ul?) dxidydt
00 Yim
T
= L/O / (52|8X1u|2 + |05, u)? + |u|2) dx dt < L”u”fz(]o,r[;H‘(Ffm)) < 00.
Tim
O
Proposition 4.10
Letu € L>(]0, T[x]O,L]). Then T§, u — uin L>(]0, T[]0, L[XYim).
Proof
Consider ¢ € D(]0, T[x]0, L]).
sup |(T€¢')(t,X1,y)—¢(t,X1)| = sup |¢(tre[%]L +ey) — ¢(t,x1)|
(tx1) €10,T[X]OL[XYim (tx1,y) €10 T[X]IOLIXYjm
< mg(el)
where mg, is the modulus of continuity of the function ¢ which is defined as
mg() = sup  {lgp(z1) —P(22)|: |21 — 22| < 8}
21,22€10,T[x]0,L[
Because ¢ is uniformly continuous in ]0, T[x]0, L[, m (eL) — 0 as L — 0. Hence,
sup |T€¢ —¢p| — 0ase — 0
10,T[X10.L[XYim
And so,
Tom® — & in 210, T[]0, L[xY;m) ¥ ¢ € D(0, T[]0, L]).
The density of D(]0, T[x]0, L) in L2(]0, T[x]0, L[) completes the proof. O

. ______________________________________________________________________________________________________|
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Proposition 4.11
Suppose that ue — uin L>(0, T[x]0, L[). Then T§, ue — uin L2(]0, T[x]0, L[xYm).

Proof
Suppose that u¢ — uin L2(]0, T[x]0, L[). Then
T3 mue — ullizqorixtotixvim = ITimbe = Timt + Thgmt — Ullizqo 100V m)
< WTinbe = Timull2gotxdonixvm + I Timt — Ulli2qo,rIx10,L[xVim)
= Vlllue — ullizqorixrs,) + 1Twmt — Ulli2qo,rix10,0xY,m)

< VLue — ull2qorixgorny + ITimu — ull2qorixlotrxy,,) — 0 as € — 0.

Proposition 4.12
Suppose that ue is a sequence in L2(]0, T[xTf;,) such that Tf, ue — uweakly in L2(]0, T[x]0, L[xY;p).

Then Gz — 1 | u dyweakly in L2(]0, T[]0, L|).
Yi,m

Proof
Note that, for v € L2(]0, T[x]0, L[), we have

T L T
/ / / Tyt mUe Tip,m¥ dxidydt = L/ / Ueyrdx dt
0 0 im 0 rfm
T L T
/ [ Ueyrdxqdt = / / UeYrdxdt
o Jo o JTE,

1 T pL
= 7/ / / Tt mUe Ty ¥ dxqdydt
L 0 0 Y,',m i i
1 T pL
— f/ / / uy dx,dydt
LJo Jo Jvim
T pL 1
:/ / (7/ ley)l/f dxdt.
o Jo \LJy,

Now,

5. Convergence analysis

5.1.  Function spaces

To give an appropriate meaning to the weak solution of homogenized problem, let us introduce the function space #. We use the ideas
introduced in [6]. We say, a multi-sheeted function of the form

0= 102,10 022,023, 02,4} if X € Q3,

) {or, 012} if x € Q15 @o1if Xx€Qo, @ if xeQ™ (5.1)

belongs to H, if g~ € H'(Q7), foreachi = 0, 1,2, the functions g;,, € L?(0,L; H' (M;, Mi41) form = 1,---,2" and on the boundaries (in
the sense of trace), they satisfy

¢ Iro = @o1lry,  @oilry = @11lm, = @120y, (5.2)

0111, = @21lr, = @221 @12l0 = @231, = @241,

Note that the space H is continuously and densely embedded in the Hilbert space V of functions whose components belongs to the
corresponding L%-spaces with the inner products, respectively, given by

2 2
@)= (@ Vv D@ + ) Y Gim Vimiz)
i=0 m=1
2 2
@)= @+ (Vo VY @y + D Y Oo@im doVimi):
i=0 m=1

Now, introduce an operator A : L2(0, T; H) — L2(0,T; H*) by the formula

2 2 him
(A, y) == / (Vo Vi +oy)dxdt + Y > ; / (Do @im Do Wi + Qi Wim) dxdt (5.3)
Q= Qi

i=0 m=1

Copyright © 2016 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2016
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forall ¢, ¥ € L?(0, T; H). Define a linear functional F € L%(0, T; H*) as

2 2
_ hi,m .
(F,y) = /Q_ foy ™ dxdt + > . /fo Vim dxdt.
Qi

i=0 m=1

Definition 5.1
A multi-sheeted function u € L2(0, T; ) with v’ € L%(0, T; H*) is said to be a solution to the homogenized problem if it satisfies

(W, ¥ + (Au,v) = (F,¥), Yy € %0, T;H) and uli=o = 0. (5.4)
The multi-sheeted function u can be represented as

Uim if (tx) €Q;, fori=0,1,2, m=1,---,2

Ut =\ 4= i (tx) € Q-

(5.5)

Such problems are considered in Mel'nyk [6] in the context of problems in branched structures. The author has studied homogeniza-
tion problems, based on asymptotic expansion. Regarding the existence of (5.4), we refer to [6]. The strong form of the above weak
formulation is given by (5.16).

5.2.  Homogenization

The main result of this section is stated in the following theorem. The final result is similar to the one in [6], where the author studied
a semi-linear problem, but we give a proof using unfolding operators. This also will allow us to study other problems in branched
structures. In fact, in the next section, we study an optimal control problem. This may not be able to study easily using asymptotic
expansion. Further, one of our main contribution is that the characterization of the control via unfolding operators.

Theorem 5.1
Let ue and u be the solution of (3.1) and of (5.4), respectively, and f¢ is uniformly bounded in L2(Q¢) such that f, log, — "’Tmfo in12(Q),
for some f € L?(Q). Then

— ho, . — him .
Uejgs, — e ug1 weakly in Ap, Uelgs, — - uym weakly in Xy, form=1,2,

. h . .
Ue e, — % uym weaklyin X;, form =1,2,3,4, uclg- — ulg- weaklyin X.

Here u;Em is the zero extension of u, I, to Q.

Proof
The proof follows in several steps.

Step 1 (A priori Estimate): Using a priori estimate (3.3), we have
luelzoran oy + I llzom o < Clfellizo
where Cis independent of €. Because f. is bounded, we derive
luellizorm (@) < C (5.6)

where Cis a constant independent of e. Let us denote u;¢ is the restriction of u in Q;c and u_ is the restriction of uc in Q. To find
the bound of the sequence T u;¢ in the space Z;,, we proceed as

“ Tfmu’?f

|2
Zim

LT
// ”Ti,em”i,e(tlxﬂ|’Z1((M,-,M,-+1)><Y,~,m) dxpdt
00

[ (€T 18 Uie |* + Ty 10, Uie|* + T luie]®) dxdtdy
QixYim
= L/ (52 0, Ui,e|2 + |3qu,-,€|2 + |Ui,e|2) dxdt < L |ue “fZ(O,T;f-ﬂ(Qe)) .
Qie
The boundedness of the sequence Tfmu,-,6 in Z;, follows from (5.6). By weak compactness, there exists a subsequence (still denoted
by €) and uj, € Zin such that
TinUie = Uim weakly in Z;,, which implies T, uje — ujm weakly in L2(Qi x Yim) (5.7)

. ______________________________________________________________________________________________________|
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and T, (0xUie) = Oy, (THpUie) — Ox,Uim Weakly in L2(Q; X Yjm). (5.8)
Further,
€T (O Uie) = 3y (T ie) = ByUim weakly in L2(Q; X Yim). (5.9)

From the Proposition 4.2, we have || T, (3x Uie) | 2 gy, ) = VL[0xUielloge ) = VElUellizrai (o). Thus, from (5.6), we obtain
the boundedness of the sequence T}, (dx, i) in the sbace L*(Q; x Yim). Hence, from (5.9), it follows that d,ujm = 0. Thus, Ujm is
independent of y, and we conclude that

— h .
e — T'mu,-,m weakly in X; (5.10)

with the help of Proposition 4.6 and convergence (5.7). Moreover f Ox,Uimdy = hjm0x,U;m. We know that T (3, uje) is bounded in
Yi,m
L2(Q; x Y;m). Hence by weak compactness, there is an element P;,, € L2(Q; X Y; ) such that up to a subsequence (still denoted by ¢),

T 0 Uie = Pim weakly in L2(Q; X Vim). (5.11)

Using the estimate of ||uell;2or#1(2.)), We have the boundedness of uZ in the space L2(0,T;H'(R7)). Thus, there exists
u~ € 12(0,T;H'(27) and a subsequence (still denoted by ¢) such that

uZ — u~ weakly in L2(0, T; H'(Q7)). (5.12)

Define the multi-sheeted function u using u™ and u;, as in (5.1).
Step 2 (Claim): The multi-sheeted function u € [2(0, T; H). We have u~ € L2(Q7), Uim € L2(Q) and d,,u™, dx,u~ € L2(Q7). To
prove u € L2(0,T;H), we need to show that dy,u;m € L2(Q;) and also u;, match on their corresponding common boundaries as in
(5.2). Note that, uis independent of y variable and so is dy, u. Therefore, from the earlier discussion dy, ujm € L2(Q;) and dy,u™ € L2(Q7).
Now, to prove u € L%(0, T;H), it is enough to show that the trace of u™ and uo,; are equal on Iy, trace of ug, u; and u , are equal
on Ty, trace of uy,1, U1, and uy are equal on T'; and trace of uy 5, U, 3, and uy4 are equal on T'. Let us define an another unfolding
operator T€ as follows:

Let ¢ be a function defined on Q;  =]0,T[x]0,L[x(m,Mo) define (TE)(t,x1,x2,y) = ¢ (t,e[2], + ey, x2) for
(t,x1,X2,Y) €]0,T[x]0,L[x(m, Mo) x Yo,1. Note that uge|r,. = Ue™ |T,.. Now, apply the boundary unfolding operator on both sides,
thatis, T | (Uoelry.) = Tiy,1 (Ue ™|, )- Using the definition of unfolding operators, we can easily see that

Tl\sng (UO,6|Fo,e) = 5,1 (Uo,e)lx;=m, and TAE/IOJ (ue_|r0,e) = TE(U) [ =mo- (5.13)

Because Tg, (uo,) is differentiable in the x,-direction, we can define the trace on T'y. From the weak continuity of the trace operator,
we obtain the following convergence as e — 0.

(T5’1 (one)) |xz=M0 — Uo, |X2=M0 Weakly in LZ(]O, T[X]O,L[XY()J)

Note that, T€ (u_) converges weakly to u™ in L2(Q,, x Yq1). Here, we used the fact that u_ is bounded in L2(0, T; H' (0, L[x (m, Mo)))
and hence converges to u™ weakly in L2(0, T; H' (]0, L[x(m, Mo))) and strongly in L?(Q},) by Lions—Aubin’s Theorem ([38]). The weak
continuity of trace operator gives us the following convergence.

(TEWD)) ho=mo = U™ lxy=m, weakly in L?(10, T[]0, L[xY,1)
From the aforementioned convergences, we derive that ug1|r, = u~|r, in L2(]0, T[x]0,L[), because up; and u~ are indepen-
dent of the y variable. Similarly, we can show that u11|x,=m, = U12l=m = Uo1lxo=mrs U21lx,=M, = U22|xo=m, = U1,1|x,—=m, and
U23 )=ty = Uzalxy=m, = U12]x,=m,in L2(]0, T[x]O,L[). Hence, we have shown that u € L2(0, T; ).

Step 3: We claim that P; ,, = 0.To identify the limit P; ,, in (5.11), we choose test functions as follows: For ¢; € D(Q;) and ¥im € D(Yim)
(extend it to whole R periodically with period L), choosing a test function

€ () = cdb (1
Gim ) = €¢i(t, X)Yim ({ . }) '
in such a way that ¢/, is continuous on Qf .. From the definition of e-unfolding of ¢, and by Proposition 4.3, we obtain
1m¢1m _€¢l (té[ ] +€y,X2) W:m(J/)

Ton 0 95m) = 20, (T5n05) = ety (e [ ]+ eve) vim) + 1 (1€ [ 2] + ev2) W
(3X2¢,m) = fa)qd’l (t € [ ] + 6erZ) Yim(y).

The aforementioned equations gives us
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Ti,€m¢ifm — 0in Lz(oi X Yi,m)' Tl,em (8X1 ¢fm) - ¢i(t, X)l/f,{m(}’) in LZ(QI X Yi,m)
Ti,em(axz‘pi,ém) —0in Lz(oi X Yi,m)

as € — 0. From the variational formulation of (3.1) with the test function ¢ = ¢/, we obtain
— / Ui, dxdt + / Vyle - Vi, dxdt + / Ue i, dxdt = / fepiy dxdt. (5.14)
€ € € QE
Now notice —fQ€ Uedidf, = _T1 [ Taaue To0i¢f5, — 0 as € — 0 because 3, = (dipim)® and

QixYim
Ot = €01 (t, €[] + €y, X2)Yim(y) — 0Oin L2(Q; x Y;m). Using the properties of unfolding operators and convergence described
earlier, it is easy to see that

1
/ Ve - Vi, dxdt — i / Pim $i(x1,X2) ¥, (y) as € — 0.

Qe QixXYim
This is more or less similar to the elliptic problems as in [7-9].
Further [y Uedf, dxdt = [ uedf, dxdt = | [ Tf, ue TS, bf, dxdydt — Oase — 0.Hence, the equation (5.14), as € — 0
Q5 QixYim
becomes,

[ Pin (6, 00,) =0 ¥ . D), Yim € DYy
QixYim
which implies P;,, = 0.
Step 4: We, now establish that u satisfies the homogenized problem (5.4). Let B be the set of all multi-sheeted functions
of the form:

(pZ,m(XhXZ) if x € Qz, for m = 1,2,3,4,
(p1’m(X1,X2) if x € Q], for m = 1,2,
@o(x1,x2) if x € Qq,

0 (x1,x) ifxe Q™.

o(x1,%2) ==

where ¢, € C%°(R2;) and ¢~ € C°°(Q7) with ¢;m and ¢;11 4 are equal on the interface as in (5.2) and also ¢ ™ (x1, Mo) = @o (X1, Mo).
Let ¥;m € D]O, L[ such that it equals one if x; € Y;, and zero outside a neighborhood of Y; ,,. Extend v; , L-periodically to whole R.
Now, consider the test functions ¢¢ € C([0, T]; H'(R2€)) with ¢€(T) = 0 and ¢€ of the form

Pam(t.X1, ) V2m ({2}) if x € QS for m=1,2,3,4,
orm(tx1, x2) V1 m ({2})) if x € QF,, for m=1,2,
©o(t, X1,X2)¥o ({XE1 }) if x € QF,

@~ (t,x1,%2) ifxeQ .

O (t,x1,%2) :=

where ¢ € C(0, T; B). On applying unfolding operators, we obtain

fmd’fm = @im ( [ﬂ] + 6leZ) Wim(y)
(8X1¢1m) =1 20y ( :m¢:m) = 0%, Yim (t 6[ ] + 6erZ) Yim(y) + ‘/’lm (t € [XZ] + 6erZ) w:m(y)
i,m(axz¢i,m) - aXz(toi,m (t' € [X?Z] + €Y, X2) Ipl,lﬂ(y)-

Because ¥;m(y) = 1and ¥/, .(y) = Ofory € Y, we infer that

Thn®im — Gim(6,X) in L2(Qi X Yim),  Tin e $fm) = 0, @i (t,X) in L2(Qi X Yim)
Tilem (3X2¢fm) - aXz Pim (t, X) in L2 (OI X Yi,m)'

Consider the left hand side of the variational formulation with the test function ¢ = ¢€(t, x1, x2), namely

—/ Ue 0 p€ dxdt+/ Vyle - Vi€ dxdt+/ Uep€ dxdt (5.15)

- /Q | Ucded© dudt = Z Z / Ue € dxdt = —72 Z / " Ue TS (9:9,) dxdtdy

i= Om—1 i= 0m_10;><Y:m
13 2"
. / lm . / .
i X [ iy dedy = 3 Z / Ui @] it as € — O;
I_0m=1Q:><Yi,m i=0 m=1
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Similarly as earlier, we obtain the following convergences as ¢ — 0.

/Vue Ved© dxdtezz i [axZU,m Oy, @i dxdt

i=0 m=1
Qe

/ Ue @€ dxdt — Z Z Pim /u,,m @im dxdt.

i=0 m=1
On the fixed domain Q—, we have no issue in passing to the limit. Right hand side of the weak formulation, namely er fe@® dxdt =
[ felor. $n dxdt = [ felge @i dxdt — i ffo @im dxdt convergesto [, fop™ dxdt + Y2 Y2, B ffo Qi dxdt.

Qi

QI
Finally, we obtain

2 2i

h;, ,
[ (O™ + Vi Vo~ +ug )+ZZ [ i i+ ) i)

i=0 m=1 Q

+ZZ ’m/u,mgo,m_/o f0§0 +ZZ Im/fo(ﬂ/m

i=0 m=1 i=0 m=1

V ¢ € C([0,T]; B). Because C([0, T]; B) with ¥(T) = 0 is dense in L2(0,T; ), we have showed that u satisfies the homogenized
problem (5.4). This completes the proof of Theorem 5.1.
O

Remark 5.1 i i
If we consider u; = an=1 himUim and f; = an=1 himfo, then U defined by

— ui if x,t)eQ;fori=0,1,2,
T luif (x,t) e Q™

<

satisfies the strong form

O¢lim — aa—éui,m +Uim = foin 0, T[xQ; for i =0,1,2, andm = 1,---,2'

U~ —Au™ +u” =1£in]0,T[xQ™,

U~ =ugy0onTy Uy = Uiy =Up0nTq, Uy = Uy = U Ujp = Uyz = UpaonTy (5.16)
2,277:1 h1,m8xzu1,m = an=1 h2,maxzu2,m on ]Or T[XF2 h0,1axz Up = Zrzn=1 h1,maxzu1,m on ]Or T[XF1

O, U~ = h"T"B,Quo on 10, T[xTy, dyu; =0, d,u— =00n 0, T[xT,

ui(0,x) =0, u—(0,x) =0in Q, u;, u— are I'y — periodic.

From analysis using unfolding operators, we have obtained the limiting contribution from each branch at each stage. For example, at
stage 1, namely from M, to My, there is only one branch which is periodically distributed (limiting contribution is ug,1) whereas at stage
2, (M4 to M) there are two branches which are periodically distributed (corresponding limiting contributions are u;; and u; ). The last
stage (M, to Ms) has four branches for which the limits are u,,1, Uz, Ua3 and uyy .

6. Optimal control

This section is devoted to the study of the homogenization of an optimal control problem posed on a branched structure as in the
previous section.

6.1. Nonhomogenized problem

We, again recall the problem described in Section 3.2. We consider the controls coming from the fixed reference cell A}" and
periodically distributed. We have the following existence result for each fixed € > 0 (See Raymond [37]).

Theorem 6.1
For each € > 0, the minimization problem (P.) admits a unique solution.

One of our main result is the derivation of the following optimality system and characterization of optimal control via the
unfolding operator.
|
Copyright © 2016 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2016




S. AIYAPPAN AND A. K. NANDAKUMARAN
I ——

Theorem 6.2
Let (Ue, Bc) € W(O, T;H'(Qe), H' (R2)*) x L2(A]") be the optimal solution to (P.), then the optimal control is characterized by

Oct,y1,y2) 1071 Am = ﬁL/( in Pt X1, y2,y1) dxq (6.1)

Vi=0,1,2andm = 1,---,2/, where U satisfies (3.5) with 0¢ = 9 thatis 6€(t, x;,x2) = [ (txi,x) = 0c(t, X
state p, satisfies the problem

x3) and the adjoint

e

—0tPe — AD¢ + Pe = Ue —Ug in]0, T[XQ2e,
9ypc =0 0on]0,T[xTe, Pe(T,x) =Uc(T)—ug(T) inQ¢, pe is s — periodic.

Conversely, if a pair (Ue, pe) satisfies the following system

Oelle — Alle + Ue = fo + XoF éﬁ, — 0¢Pe — APe + Pe = Ue —ug in]0, T[xRe,
8,)06 =0; dype =0 0on]0,T[xTe, Uc(0,x) =0; pe(T,x) = Ge(T) — ud(T) in Qc,
b (t,y1,y2) = ﬁLfO = Pedxy on 10, T[xAjm Yi=0,1,2and m=1,---,2,

Ue and pe are T's — per/odlc,

then the pair (e, 95) is the optimal solution to (P¢). Here Gé(t X1,X2) = 05 (t, %, x2).

Proof
Given 0 € Lﬁ(A}"), set Fe(0) = Je(ue(0),0), where uc () is the solution to the Eq. (3.5) with right hand side f + XoF 0€. Using

appropriate computation on % (Fé (Be + A0) — Fe (56)) and taking limitas A — 0, we obtain (we skip the computations involved)

000 = [ @e—vome + [ @en) - uamwem + [ gp 706,

where we is the solution of the following equation

0eWe — AWe + We = )+ 0 in]0, T[x 2,
dywe =0 on]0, T[xT, we(0,x) =0 inQ¢, we isTs— periodic.

Because (te, 0¢) is an optimal solution to (P.), we have F. (6¢)0 = 0forall 6 e LZ(A}"), it follows that
—B —e .
(Ue —ugWe + | (WUe(T) —uag(Mwe(T) = —— 0.0
Qe Qe L JoF

Using integration by parts in the Egs (6.2) and (6.3) with test functions w, and p,, respectively,
we obtain [, (Ue — ug)We + [ (U(T) — ug(T))we(T) = foﬁ p.O¢
Hence, we obtain ﬂfo* 00 = = Jqr P, V6 € 2(A)
Now, note that T - (00)(t,x,y) = Be(t,y,x,) and Oclorixam — Boliorixa,, in L2(0, T[xA;m). Applying the unfolding operator,
we obtain,
5

: _
.906— Z / TinOe Tin0© didydt = - Z / Oe O dxdydt = 3~ / Oe 0

=10 Vi M=10% Vi M=o TIX Ajm

Similarly,
2i

2f
1
/ p.oc = E / TimPe Tim0€ dxdydt = I E / TimPe 0 dxdydt
af m=1

QiXYim m=1Qr‘XYr',m
i L
2 1 [ o
=2 7| TimPe dxi | 0
M=o T[xAjm \ 0

By choosing 6 € LZ(A}") such that & = 0 on the complement of |0, T[xA;m (zero in ]0, T[xAjx for j # i, k # m), we can show that

_ L
O = —ﬁ |:0[ T,.fmpedx1i| a.e.in0, T[xAjm. O
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Remark 6.1
Because we have introduced unfolding operators T, for each stage i and each branch m, we could obtain the characterization of the
optimal control separately in Aj,, i =0,1,2, m = 1 -, 20

6.2. Homogenized problem

The limit problem is: find (4, 8) € L2(0, T; 1) x L2(]0, T[x (Mo, M3)), such that
(P) J(@ 6) =inf{J(u,0)|(u,0) € L2(0, T; H) x L2(]0, T[x (Mo, M3)), (u, 6) satisfies (6.4)}.
The cost functional is defined as
1 1
sy =3 [ lo—u+ Z/ ( L ud|2) 45 [ -

2i

him B [T M
Z/( (D) ud<r>|2)+2;/0 [, X mie

Here 0; = 0|10, r[xIm.M4,[- The state equation is defined by

(' (0),¥) + (Au, ) = (F(0),¥),u(0) =0, (6.4)

Vi € W(O,T;H, H*), where A and F(0) are defined as follows:

(Au, ¥) : /(Vu VYT Uy )dxdt+ZZ 'm/(8X2u,m8X21/f,m+u,mw,m)dxdt (6.5)

i=0 m=1

forallu, v € L?(0,T; 1) and (F(6), V) := [, foyy™ dxdt + > OZm 1 h”” f9 VYim dxdt,

W' (t),y) = —/Q uT dxdr—z Z Aim /u,-,m A m dxdt

i=0 m=1

[ wmue (T)dx+22 20 [ () Y1) o

i=0 m=1 Qi

The analogous strong form (Euler equation) can also be defined like in (5.16). The adjoint state p € W(0, T; H, H*) solves,

% —(P' (), ¥) + (Ap, ¥ fQ— U —u)y™ + Z, =0 Zm 1 fo ( (Uim — Ud)lﬁi,m), 6.6)
p (M=u (T)— ud(T) inQ7; pim(T) = Uim(T) — uag(T) in Q;,

vV € W(O,T;H,H*). The following result can be easily verified as in the previous section.

Theorem 6.3
The optimal control problem (P) has a unique solution.

Theorem 6.4
If (U, 8) is an optimal solution to (P), then

0; =2 00,1 IM Mg T = ,BrL/ Z himpimdxy for i =0,1,2
=1

where p € W(O,T;H,H*) is the solution to the adjoint Eq. (6.6). Conversely, assume that the pair (0,p) € W(O,T;H, H*) x
W(0, T; H, H™*) solves the optimality system
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(@ (0, 9) + (A, y) = (FO),¥); 0(0) =0,

—<[3/(t), 1/’) .AP, fQ (U - Ud)w + ZO Z fQ, (h%(ai,m - Ud)lpi,m) rV 1// € W(Or T; H,H*), (6.7)
fz M =w(T- ud(T)) in Q75 pim(T) = Uym(T) — ud(T) in Q;,

0 = 0|]0,T[><]M,-,M,-+1[ = B;,lfoL ,2n=1 himPimdx, fori =0,1,2.

Then, the pair (4, é) is the optimal solution to (P). Here r; = Zf,:=1 him

Proof
Assume (u, 6) is an optimal solution to (P) and u() is a solution of (6.4) for a fixed arbitrary 6. Now, set F(6) = J(u(6), ), then

F/(G)Q—/ @ - ugw? +ZZ/ 'm(u,m—ud)w,m

i=0 m=1

[ @O -wmw M+ 3 Z / DA G () = (T WO (T
i=0 m=1
Mita 2 —
+ B Z/ [ Z him 66;,
m=1
where 6; = 0|107x1m;,m:,[ @and the multi-sheeted function w? is the solution of the Eq. (6.8) given in the succeeding text.

(@ (), ) + (AW?, ) = ZZ f " i 68

i=0 m=1

with w?(0) =0, V¥ € W(0, T;H, H*). Because (4, ) is a solution to (P), we have F/()6 = 0forall 8 € L2(0, T;L2(Mo, M3)). That i,

[ @ —uow +ZZ / 2 @ =g+ [ @D =MD

i=0 m=1 S (6.9)
Mr —+1
iy Z / D G (T) — (T W (T) = —B Z[ / Z him 5161
i=0 m=1
Choosing w? and p as the test functions in the weak formulation of the Eqs (6.6) and (6.8) respectively, we obtain
(9w? (0),B) + (ABWY) =+ [o B (NMW? ™ (1) + Y7o Yoy fao, “2Bim(MWin(T)
+ fQ— (U_‘ - ud)we + Zizzo Zrzn=1 .[Q,- T(I,m ud)Wlm' (6.10)
(atwe (t)rr)) + (-AEI = Z( =0 Zm 1JQ; ’L efpl,m’
with p(T) = u(T) — uy(T). Now, we compare the Egs (6.9) and (6.10) to obtain
Im Mits 2
zz/ b ,m=—ﬂz/ [, X nmoe.
i=0 m=1
Mr+1 L 2 him _ Ml+1 2 n
Thati IS, Z/ OfO I:fo Z =1 1L plm] - l Ofo [ :3 Zm=1 hir’” 9’] 9,'.
Hence we obtaln, 0; = ﬁ;r/1L OL [ ,2,',:1 h,-,mp,,m], Where r = Zi;:1 him. O

6.3. Convergence analysis

Assume that (Ue, 6¢) is the optimal solution to the problem (P¢). Let uc(0) be the solution to the problem (3.5) corresponding to
B = 0, then from (3.4), we obtain||uc (0)[|,2¢0711 (22.)) < C, where C > 0is independent of €. Using optimality of the solution (Ue, 6¢),
we obtain

2 2, B €12 <
[ @emwor e+ [ @ -wm [ e sc

. ______________________________________________________________________________________________________|
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Thus, we have
—€ —_ —
||<9€||Lz(oé+) = [0cllizqorixa+) < C and |luellzoreay) < C (6.11)

Further, p satisfies [P, [l:2(q.) < C.

Theorem 6.5 B
Let (ue, B¢) and (4, 6) be the solutions of (P¢) and of (P), respectively. Then

Ocliorixa; — 0i weakly in L*(A;x]0, T[),fori = 0,1,2,

= ho, . — .
Ueigg, — T Uy weakly in Xo, Uejqs — Tm Um Wweakly in Xy, form =1,2,

h _
qu‘z;m — % Uym weakly in X5, form =1,2,3,4, uc|le- —U  weakly in X.

where 6; = B_T1Lf0L [ ,2,;:1 h,-,mﬁ,-,m]. Here represents the zero extension and r; = Z,Z,;:1 him fori=0,1,2.
Proof
Using the weak formulation of the state equation (3.5), we have

1T, 20740 (20)%) + NUellizoran ey < Cllfolliza-y + 10elli2qorixa)):

where C is independent of €. Using (6.11), we derive ||U/€||L2(0'T;H1(Qé)*) < G |Uelli2co,rm (20)) < C.Because ||9€||L2( A is bounded,
T
there exists a subsequence (still denoted by €) and a 6 € L?(A7") such that

fc — 6 weaklyin [2(A}). (6.12)

By using the similar analysis discussed in Section 4, we can easily derive the following convergences.

—_

— - h01 . — h] m .
Uejqg, — - Ug,1 weakly in Xp, Uegs,, — wE ur,m weakly in Xy, form=1,2,

—

= h . _ .
Uelqs, — % Uym weakly in X5, form =1,2,3,4, Uc|g- — u|g— weakly in X,

where u satisfies the limit Eq (6.4) with § = 6,. Also we have the following convergence for p,

— ho . — hs, .
Peias, — T’]pm weakly in Xp, Peias,, — %pm weakly in &}, form =1,2,

—

- h
Eelo;m - %pzym weakly in &>, form =1,2,3,4, p.lo- — plo— weakly in X.

where pg satisfies the limit Eq (6.6) with u = u. B
To prove the convergence of the optimality system, now it is enough to prove 8 = 6. Recall the optimality condition (6.1):

— -1t _
Oc(t,y1,¥2) oTIxAm = ﬁ/ Tim Pe(ti X1, Y2, y1)dxq (6.13)
0

Vi=0,1,2andm = 1,---, 2. By the convergence (6.12), we obtain
Ocljorix Ay = Oim in L2(0, T[X Ajm). (6.14)
Now, we apply the homogenization results of Section 5 on the adjoint state to obtain the convergence

€
Tim

Pe — pim weakly in L?(Q; x V;m) ase — O. (6.15)

Now, as € — 0, the Eq. (6.13) becomes

1 rt .
ﬁ/ Pim(t, X1,¥2,y1)dx, fori=0,1,2andm =1,---,2".

0
By noting the fact that p;, is independent of y;, we conclude that 6;,, also independent of the variable y;.
Consider O¢|jorxA; = E—’L 2 fOLTfm pedx; foralli = 0,1,2. Choose a test function ¥ € L2(]0, T[xA) such that  is independent
of y;, then
|
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Oim(t,y1,y2) =
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bl

> [ Toper.
=1 im

—1 T rLt Mg
=51l ], |
/]‘O,T[XA, Z/OT[XA,,,,/ wm e BLJo Jo Ju,

/\/‘, 2 M, 2 . . . .
Ase — 0, we obtain fo R P fth Oy = ﬁL b fo oy fo,m pimV¥ which in turn implies

2i

T Mg T My [ 1 pL 2
/ / Z hi,mei w = / / T/ Z hi,mpi,m
0 i m=1 0 i ﬂ 0 m=1

Because 6; is independent of y. Hence, 6; ﬁrLfO _1 himpim fori =0,1,2and r; = Z,Z,;=1 him. Therefore, we obtain the optimality
system corresponding to the minimization problem (P). The Theorem 6.4 says that, the optimal solution is (uo, 6p). Hence, by the
uniqueness, we have, U = u, p = pg and 6 = 6, which completes the proof. O

7. Conclusions

We have considered an optimal control problem in a domain with branched structure, depending on a small parameter € > 0. We have
applied control in the oscillating interior part of the domain. Here, we have made a special consideration, namely, we took the control
in a fixed reference domain A}", and we scaled and distributed it periodically to the oscillating part of the domain under consideration.
We have derived the optimality condition for this special kind of control problem for which we have introduced and utilized the periodic
unfolding operators. Finally, we have found the homogenization of the optimal control problem as the parameter € goes to zero. In the
limit problem, we obtain a multi-sheeted function which characterize the contribution of the restriction of the state solution u, at each
branch of each level. This was achieved by introducing unfolding operators on the different branches at different levels.
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