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Abstract While considering boundary value problems with oscillating coefficients
or in oscillating domains, it is important to associate an asymptotic model which
accounts for the average behaviour. Thismodel permits to obtain the average behaviour
without costly numerical computations implied by the fine scale of oscillations in the
original model. The asymptotic analysis of boundary value problems in oscillating
domains has been extensively studied and involves some key issues such as: finding
uniformly bounded extension operators for function spaces on oscillating domains, the
choice of suitable sequences of test functions for passing to the limit in the variational
formulation of the model equations etc. In this article, we study a boundary value
problem for the Laplacian in a domain, a part of whose boundary is highly oscillating
(periodically), involving non-homogeneous non-linear Neumann or Robin boundary
condition on the periodically oscillating boundary. The non-homogeneous Neumann
condition or the Robin boundary condition on the oscillating boundary adds a further
difficulty to the limit analysis since it involves taking the limits of surface integrals
where the surface changes with respect to the parameter. Previously, some model
problems have been studied successfully in Gaudiello (Ricerche Mat 43(2):239–292,
1994) and inMel’nyk (MathMethods Appl Sci 31(9):1005–1027, 2008) by converting
the surface term into a volume term using auxiliary boundary value problems. Some
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problems of this nature have also been studied using an extension of the notion of
two-scale convergence (Allaire et al. in Proceedings of the international conference
on mathematical modelling of flow through porous media, Singapore, 15–25, 1996,
Neuss-Radu in C R Acad Sci Paris Sr I Math 322:899–904, 1996). In this article, we
use a different approach to handle of such terms based on the unfolding operator.

Keywords Homogenization · Oscillating boundary · Unfolding operator

Mathematics Subject Classification 35J20 · 35J25 · 35B40 · 76M50 · 78M40 ·
80M40

1 Introduction

In this article, we study the asymptotic behavior of a boundary value problem for the
Laplacian in a domain, a part of whose boundary is highly oscillating in a periodic
manner. The asymptotic analysis of boundary value problems involving oscillating
coefficients or in oscillating domains, often called homogenization, has been the sub-
ject of extensive study. We refer to the following texts for an overview of several
such problems [10,20,26]. In particular, homogenization problems involving oscil-
lating boundaries also has been subject to a lot of study ever since the works of
[14,15,27,38]. The principal motivations for studying boundary value problems in
domains with oscillating boundaries come from modelisation issues involving heat
radiators, flows over highly oscillating channels, absorption-diffusion in biological
structures, acoustic vibrations in a mediumwith narrow channels etc. Other suchmod-
els frequently arise in the context of thick junctions [34]. For a sampling of research
on the asymptotic analysis of boundary value problems in domains with oscillating
boundaries, we refer to [1,5,6,8,11–13,16,17,22,24,30,32].

The asymptotic analysis of boundary value problems in oscillating domains has
been extensively studied and this involves some key issues such as: finding uniformly
bounded extension operators for function spaces on oscillating domains, the choice
of suitable sequences of test functions for passing to the limit in the variational for-
mulation of the model equations etc. A simple choice of extension operators is the
extension by zero to the limit domain but these extension operators are not uniformly
bounded between the function spaces except for homogeneous Dirichlet boundary
conditions on the oscillating boundary. Even for homogeneous Neumann boundary
conditions on the oscillating boundary, normally, one needs to find other classes of
extension operators which are uniformly bounded before one can pass to the limit in
the equations. This, of course, will depend on the geometry of the oscillating domains
and a discussion of the existence of such operators for Neumann problems in per-
forated or oscillating domains may be found, for instance, in [21,23,31]. In certain
classes of problems, involving Neumann or Robin boundary conditions on the oscil-
lating boundary, one can also handle this issue differently by extending separately the
functions and their derivatives by zero to the limit domain. The passage to the limit
is usually straightforward but the delicate part consists in correctly identifying the
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constitutive relations among the various limit terms. Such an approach has been used,
for example, in [25,29] for obtaining the homogenized models.

In this article, we study a boundary value problem for the Laplacian in a domain
involving non-homogeneous non-linear Neumann or Robin boundary condition on the
periodically oscillating boundary. The non-homogeneous Neumann condition or the
Robin boundary condition on the oscillating boundary are motivated by applications
to control problems. This adds a further difficulty to the limit analysis since it involves
taking the limits of surface integrals where the surface (oscillating boundary) changes
with respect to the parameter. This issue has been handled successfully in Gaudiello
[25] where a model problem involving non-homogeneous Neumann condition on the
oscillating boundary has beed studied. Similar model problem involving non-linear
Robin boundary condition on the oscillating boundary is studied in Mel’nyk [29].
They achieve it by converting the surface term into a volume term using auxiliary
boundary value problems on suitable sections of the oscillating domain. This idea can
be traced back to the works of Vanninathan [39,40] but the introduction of the auxil-
iary boundary value problems, is in some sense artificial, and has no final effect on the
limit problem. Surface terms in periodic homogenization can also be handled using
the extension of the two-scale convergence method proposed in [35] (see also [4]).
The two-scale convergence method was originally introduced by Nguetseng [36] and
subsequently, developed by Allaire [3]. Instead, in this article, we use a more natural
and straightforward approach to handle such terms based on the unfolding operator.
Previously, this method has been applied in the homogenization of a boundary value
problem in an oscillating domain for handling homogeneous Neumann condition in
Damlamian and Pettersson [22]. In this article, we show how it can be successfully
applied in the asymptotic analysis of boundary value problems involving more com-
plicated boundary terms as is the case in the case of non-homogeneous Neumann
boundary condition or Robin boundary condition on the oscillating boundary. The
basic idea of the unfolding operator is to effect a separation of scales by blowing up
the function around any point with respect to the period. This means instead of the
value at the point we keep complete information of the function around the point at
the level of each cell.

The organization of the article is as follows. In Sect. 2, we present the setting of
the problem and state the main results. In Sect. 3, we give a brief overview of the
unfolding operator and some of its main properties. In Sect. 4, we prove some a priori
estimates required for the asymptotic analysis. In Sect. 5, we provide the asymptotic
analysis for the model problem with non-homogeneous Neumann condition on the
oscillating boundary. This can be seen as a special case of the model involving the
non-homogeneous non-linear Robin boundary condition considered in Sect. 6. But we
prefer to present, separately, the simpler case involving non-homogeneous boundary
condition first to fix the basic ideas.
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Fig. 1 �ε

2 Problem Settings

2.1 Configuration of the Domain

For the simplicity of presentation, we consider a planar domain with regular edges
on the sides and the bottom but whose upper boundary is highly oscillating with a
periodic structure and is rectilinear like thatwhichwas considered in [5]. The amplitude
of oscillations is of order 1 whereas the period of the oscillation is of order ε with
ε > 0, a small parameter. This model corresponds to a 2:1:1 thick junction in the sense
consideredbyMel’nyk andNazarov [31]whichmeans that the body is twodimensional
while the junction (interface with the body) is one dimensional with several periodic
one dimensional protrusions. For the sake of convenience of the readers, we give a
full description of it again.

Let ε = 1
N , N ∈ Z

+ where we let, eventually, N → +∞. We consider the two
dimensional ε-dependent domain�ε which consists of two parts, namely,�+

ε and�−.
As it is clear from notations, �− is independent of ε but �+

ε has a highly oscillating
ε-dependent boundary which we denote by γε (see Fig. 1).

Let L , M, M ′ > 0 be positive constants and g : R → R be a smooth L-periodic
function such that M ′ > M > m where m is the maximum value of the smooth
function g in [0, L]. We denote the fixed portion �− of �ε as

�− := {(x1, x2) : 0 < x1 < L , g(x1) < x2 < M}

and the ε-dependent portion �+
ε of �ε as

�+
ε =

N−1⋃

k=0

(kεL + εa, kεL + εb) × (M, M ′)
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Fig. 2 �

where a, b are positive constants such that 0 < a < b < L . We can represent �ε

formally as

�ε = Interior{�− ∪ �+
ε }.

Here, Interior{S} and S̄, respectively, denotes the interior and closure of the set S in
R
2 with respect to the standard topology.
The vertical, bottom and top boundaries of �− are to be denoted by �s , �b and �,

respectively. More precisely,

�s = {(0, x2) : g(0) ≤ x2 ≤ M} ∪ {(L , x2) : g(L) ≤ x2 ≤ M},
�b = {(x1, x2) : 0 ≤ x1 ≤ L , x2 = g(x1)}

and

� = {(x1, M) : 0 ≤ x1 ≤ L}.

The highly oscillating boundary γε of �ε can be written as

γε = ∂�ε \ {�s ∪ �b}

where ∂�ε denotes the boundary of �ε.
In the later part of Sect. 2.3, we shall see that our limit problem is posed in a fixed

domain � which consists of two parts (see Fig. 2).
One part is �− which we described earlier and another part can be denoted as �+.

We can write �+ mathematically as

�+ = {(x1, x2) : 0 < x1 < L , M < x2 < M ′}
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Fig. 3 Reference boundary

and � as

� = {(x1, x2) : 0 < x1 < L , g(x1) < x2 < M ′}.

Notice that the interface of �+ and �− is, once again, �. It can also be pointed out
that the bottom boundary of � already has a notation as �b. The vertical and top
boundaries of � can be denoted by �s′ and �u respectively. More precisely,

�s′ = {(0, x2) : g(0) ≤ x2 ≤ M ′} ∪ {(L , x2) : g(L) ≤ x2 ≤ M ′},

and

�u = {(x1, M ′) : 0 ≤ x1 ≤ L}.

The problem under consideration has Neumann data on the oscillating boundary γε

of �ε. This data arises from a L2 function defined on the reference boundary γ (see
Fig. 3) of the cell domain which is defined as

γ := γbl ∪ γsl ∪ γu ∪ γsr ∪ γbr

where

γbl = {(z1, M) : 0 ≤ z1 ≤ a} ,

γsl = {(a, y2) : M ≤ y2 ≤ M ′} ,

γu = {(z1, M ′) : a ≤ z1 ≤ b} ,

γsr = {(b, y2) : M ≤ y2 ≤ M ′} and

γbr = {(z1, M) : b ≤ z1 ≤ L} .
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2.2 Notations and the Function Space Setting

For y ∈ L2(�) (or y ∈ L2(�ε)) we shall denote by y+ the restriction of y to �+
(or �+

ε respectively) and by y− the restriction of y to �−. Let H1
per (�ε) represents

the H1 (�ε) functions which are periodic in the x1-direction with period L . Similarly,
C∞

per

(
�̄
)
and L2

per (�), respectively, represents the C∞ (�̄
)
and L2(�) functions

which are periodic in the x1-direction with period L . In a similar way, we denote
L2
per (γ ) and H1/2

per (γ ), respectively, the space of L2 (γ ) and H1/2 (γ ) functionswhich
are periodic on γ in the x1-direction with period L .

2.3 Statement of the Problem

Let u ∈ L2
per (γ ). For scaling parameters α ≥ 0, β ≥ 0, define uε ∈ L2

per (γ ) as
follows

uε := (εβχγbl + εαχγsl + εβχγu + εαχγsr + εβχγbr )u (2.1)

where χA denotes the characteristic function of any set A. Using (2.1), we define
uε

ε ∈ L2 (γε) such that

uε
ε(x1, x2) = uε

( x1
ε

, x2
)

(2.2)

where we abuse notation to denote the fractional part of x1
ε
with respect to L by x1

ε
itself. Observe that uε

ε defined here is εL periodic.
Consider a function μ(x2, s) with x2 ∈ [M, M ′] and s ∈ R which is smooth in its

arguments. μ|s=0 = 0 and there exists constants C0, 0 ≤ C1, C2 such that for all its
arguments

| ∂x2μ(x2, s) |≤ C0, C1 ≤ ∂sμ(x2, s) ≤ C2. (2.3)

The second assumption in the above implies the strong monotonicity

(μ(x2, s) − μ(x2, s
′))(s − s′) ≥ C1(s − s′)2 for all x2 and for all s , s′ . (2.4)

For f ∈ L2
per (�), a given data function μ with the above mentioned properties

and a positive constant η, our aim is to study the asymptotic behavior of the following
boundary value problemwith a non-linear Robin boundary condition on the oscillating
boundary
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−�yε + yε = f in �ε,

∂yε
∂ν

+ εημ(x2, yε) = uε
ε on γε,

yε = 0 on �b,

yε is �s − periodic ,

(2.5)

Note that, if μ ≡ 0 we have a non-homogeneous Neumann boundary condition

∂yε
∂ν

= uε
ε on γε (2.6)

instead of the non-linear Robin boundary condition on the oscillating boundary.
A solution to (2.5) is intended in the weak sense for which we consider the Hilbert

space

Vε : = {y ∈ H1
per (�ε) : y|�b = 0}

which is a closed subspace of H1
per (�ε). The weak formulation of (2.5) consists in

finding a yε in the Hilbert space Vε such that

∫

�ε

∇ yε · ∇φ +
∫

�ε

yεφ + εη

∫

γε

μ(x2, yε)φ

=
∫

�ε

f φ +
∫

γε

uε
εφ, ∀φ ∈ Vε (2.7)

where we have taken �s-periodic to mean, periodic on �ε in the x1 direction with
period L . The existence and uniqueness of the weak solution of (2.7) can be proved
by standard methods of the theory of monotone operators (for e.g. using Corollary 2.2
and Proposition 2.3, Chapter 2 [37]).

Our main result is the following.

Theorem 2.1 (Main Theorem) Consider α ≥ 1, β ≥ 0 and η ≥ 1, let yε ∈ Vε be the
unique weak solution of (2.7). Then

ỹ+
ε ⇀

(
b − a

L

)
y+ weakly in L2((0, L); H1((M, M ′)))

and

y−
ε ⇀ y− weakly in H1 (�−)

where ỹε is the extension of yε on�+
ε by 0 to the whole of�+. Moreover y = (y+, y−)

belongs to V0 where
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V0 : =
{
y = (y+, y−) : y ∈ L2

per (�),
∂y+

∂x2
∈ L2(�+), y−

∈ H1(�−), y+ = y− on �, y−|�b = 0

}

and satisfies the coupled system of partial differential equations in a weak sense

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−∂2y+

∂x22
+ y+ +

(
2

b − a

)
δη1 μ(x2, y

+(x1, x2)) = f + δα1θ in �+,

∂y+

∂x2
= δβ0

b − a

∫ b

a
u(z1, M

′) dz1 on �u,

y+ = y− on �,

∂y−

∂x2
−
(
b − a

L

)
∂y+

∂x2
= δβ0

L

∫

(0,a)∪(b,L)

u(z1, M) dz1 on �,

−�y− + y− = f in �−,

y− = 0 on �b,

y is �s′ − periodic .

(2.8)

In the above, �s′ -periodic means periodic on � in the x1 direction with period L and
δγ κ is the Kronecker delta function. Here θ which appears in the first equation is given
by

θ(x1, x2) =
(
u(a, x2) + u(b, x2)

b − a

)
a.e. (x1, x2) ∈ �+ . (2.9)

Remark 2.2 The space V0 with the inner product

〈u , v〉 =
∫

�+
∂u+

∂x2

∂v+

∂x2
+
∫

�+
u+v+ +

∫

�−
∇u− · ∇v− +

∫

�−
u−v−

can be seen to be a Hilbert space and the canonical weak formulation of (2.8) can be
shown to have existence and uniqueness in V0 in the setting of monotone operators by
arguing similarly as in Theorem 5.1 [30].

3 Unfolding Operator and Its Properties

In this section, we recall the definition of the periodic unfolding operator and present
some fundamental properties.

The idea of using an unfolding operator method to handle periodic oscillations in
the coefficients or of the domains can be seen in the works by Arbogast et al. [7]. and
Cioranescu et al. in [18]. It’s usefulness in deciphering weak convergence and simpli-
fying the asymptotic analysis of boundary value problemswith periodically oscillating
coefficients or in periodically oscillating domains has been shown in [19]. Recently
this method has been extended to cover the case of locally periodic oscillations [9].
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We refer to [19] for an overview of the unfolding operator and to [22] and [33] for the
proofs of several properties outlined below.

Let [0, L] be a reference cell. For x ∈ R, we write [x]L as the integer part of x with
respect to L , that is [x]L = kL , where k is the largest integer such that kL ≤ x .We also
denote the fractional part of x with respect to L by {x}L . So, we have x = [x]L +{x}L .
Definition 3.1 (The unfolding operator) The operator which maps any function y :
�+

ε → R to its ε-unfolding T ε y : �+ × [0, L] → R defined through

T ε y(x1, x2, z1) = ỹ

(
ε
[ x1

ε

]

L
+ εz1, x2

)
(3.1)

is called the unfolding operator. Here ỹ is the extension of y on �+
ε by 0 to the whole

of �+.

Note that, for M < x2 < M ′, T ε y(x1, x2, z1) is piecewise constant with respect to
x1 and has it’s support in [a, b] with respect to the local variable z1 since ỹ is zero

outside �+
ε in �+. Given U ⊂ R

2 open containing �+
ε and a function y on U , T ε y

will mean T ε acting on the restriction of y to �+
ε .

Proposition 3.1 (a) The unfolding operator T ε is linear. If y1, y2 ∈ L1(�+
ε ) are

such that y1 y2 ∈ L1(�+
ε ), then T ε(y1y2) = T ε(y1)T ε(y2).

(b) If y ∈ L1(�+
ε ) then we have

∫

�+×(0,L)

T ε y dx1dx2dz1 =
∫

�+×(a,b)

T ε y dx1dx2dz1 = L
∫

�+
ε

y dx1dx2 .

(c) If w ∈ L1(γε) then we have

L
∫

γε∩�

w =
∫ L

0

∫

(0,a)∪(b,L)

T εw(x1, M, z1) dx1dz1 (3.2)

L
∫

γε∩�u

w =
∫ L

0

∫

(a,b)
T εw(x1, M

′, z1) dx1dz1 (3.3)

L
∫

γε\{�∪�u}
w

= 1

ε

(∫ L

0

∫ M ′

M
T εw(x1, x2, a) dx1dx2 +

∫ L

0

∫ M ′

M
T εw(x1, x2, b) dx1dx2

)

(3.4)

Proposition 3.2 (a) If y ∈ L2(�+
ε ), then T ε y ∈ L2(�+ × (0, L)) and

‖T ε y‖L2(�+×(0,L)) = √
L‖y‖L2(�+

ε ) .
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(b) For every y ∈ L2(�+), we have T ε
(
y|�+

ε

)
ε→0−→ y strongly in L2(�+ × (0, L)).

(c) If yε ∈ L2(�+
ε ) be such that T ε yε ⇀ y weakly in L2(�+ × (0, L)) as ε → 0,

then

ỹε ⇀
1

L

b∫

a

y dz1 weakly in L2(�+) .

(d) If y ∈ H1(�+
ε ), then T ε y ∈ L2((0, L); H1((M, M ′) × (a, b))). Moreover

∂

∂x2
T ε y = T ε ∂y

∂x2
,

∂

∂z1
T ε y = εT ε ∂y

∂x1
and

‖T ε y‖L2((0,L);H1((M,M ′)×(a,b))) ≤ C‖y‖H1(�+
ε ) (3.5)

where C > 0 is a positive constant independent of ε.

(e) If T ε yε
ε→0
⇀ y weakly in L2((0, L); H1((M, M ′) × (a, b))) for a sequence yε ∈

H1(�+
ε ), then

ỹε ⇀
1

L

b∫

a

y dz1 weakly in L2((0, L); H1((M, M ′))) .

Remark 3.3 The property (d) of Proposition 3.2 shows that a Sobolev function loses
regularity in the direction of unfolding with respect to the macroscopic variable (x1
in this discussion) but this regularity is recovered in the local variable (z1 in this
discussion).

4 A Priori Norm-Estimates

In the first two lemmas, we show how to obtain some boundary estimates.

Lemma 4.1 There exists a positive constant C independent of ε such that

‖y‖L2(γε∩�) ≤ C‖y‖H1(�ε)
∀y ∈ Vε and, (4.1)

‖y‖L2(γε∩�u)
≤ C‖y‖H1(�ε)

∀y ∈ Vε. (4.2)

Proof By classical trace theorem, applied to the restriction of H1(�ε) functions to
H1(�−), there exists a positive constant C > 0 independent of ε such that

∫

γε∩�

y2 ≤
∫

�

y2 ≤ C‖y‖2H1(�−)
≤ C‖y‖2H1(�ε)

∀y ∈ Vε.

For the second estimate, first we consider smooth y inVε.We decompose the boundary
integral and apply the fundamental theorem of calculus on each vertical section, to
get
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∫

γε∩�u

y2 =
N−1∑

k=0

∫ kεL+εb

kεL+εa
(y(x1, M

′))2 dx1

=
N−1∑

k=0

∫ kεL+εb

kεL+εa

(∫ M ′

g(x1)

∂y

∂x2
(x1, x2) dx2

)2

dx1

≤ C

(
N−1∑

k=0

∫ kεL+εb

kεL+εa

∫ M ′

g(x1)

∣∣∣∣
∂y

∂x2

∣∣∣∣
2
)

= C

(∥∥∥∥
∂y

∂x2

∥∥∥∥
2

L2(�ε)

)

byapplyingCauchy–Schwarz inequality on thevertical sectionswithC > 0depending
only on the vertical diameter. This gives (4.2) for smooth y, and by density, we obtain
the desired inequality for all y in Vε. ��
Lemma 4.2 Let uε

ε be the boundary data. Then

‖uε
ε‖2L2(γε∩�)

= ε2β
∫

(0,a)∪(b,L)

|u(z1, M)|2dz1 (4.3)

‖uε
ε‖2L2(γε∩�u)

= ε2β
∫

(a,b)
|u(z1, M

′)|2dz1 . (4.4)

Proof This readily follows from the properties (3.2) and (3.3) of Proposition 3.1 and
using the fact that T εuε

ε(x1, x2, z1) = εβu(z1, x2). ��
Now, let yε ∈ Vε be the unique weak solution of (2.5) so that (2.7) holds.

Proposition 4.3 For α, η ≥ 1 and β ≥ 0, there exist a positive constant C > 0,
independent of ε, such that

‖yε‖H1(�ε)
≤ C for all ε .

Proof Let yε ∈ Vε be a solution of (2.7). Choosing φ = yε in (2.7), we have

‖yε‖2H1(�ε)
+ εη

∫

γε

μ(x2, yε)yε =
∫

�ε

f yε +
∫

γε

uε
ε yε.

Then, by the monotonicity (2.4) and the fact that μ(x2, 0) = 0 for all x2, we obtain

‖yε‖2H1(�ε)
≤
∫

�ε

f yε +
∫

γε

uε
ε yε. (4.5)

By Cauchy–Schwarz inequality, we get

∫

�ε

f yε ≤ ‖ f ‖L2(�ε)
‖yε‖L2(�ε)

≤ ‖ f ‖L2(�)‖yε‖H1(�ε)
. (4.6)
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We have, using (4.1) and (4.3) and the fact that u ∈ L2
per (γ ),

∫

γε∩�

uε
ε yε ≤ ‖uε

ε‖L2(γε∩�)‖yε‖L2(γε∩�) ≤ Cεβ‖yε‖H1(�ε)
. (4.7)

Similarly, using (4.2) and (4.4) and the fact that u ∈ L2
per (γ ), we have

∫

γε∩�u

uε
ε yε ≤ ‖uε

ε‖L2(γε∩�u)
‖yε‖L2(γε∩�u)

≤ Cεβ‖yε‖H1(�ε)
. (4.8)

Lastly, splitting the boundary integral on γε \ {� ∪ �u} into it’s different periodic
components, using the definition of uε

ε and the fact that T ε yε is piecewise constant
with respect to x1, we get

∫

γε\{�∪�u }
uε

ε yε

= εα
N−1∑

k=0

(∫ M ′

M
u(a, x2) yε(kεL + εa, x2)dx2 +

∫ M ′

M
u(b, x2) yε(kεL + εb, x2)dx2

)

= εα

εL

(∫ L

0

∫ M ′

M
u(a, x2)T

ε yε(x1, x2, a) dx1dx2 +
∫ L

0

∫ M ′

M
u(b, x2)T

ε yε(x1, x2, b) dx1dx2

)

This, using the fact that u ∈ L2
per (γ ), implies that

∫

γε\{�∪�u}
uε

ε yε ≤ C εα−1

L

(‖T ε yε|z1=a‖L2(�+) + ‖T ε yε|z1=b‖L2(�+)

)

≤ C εα−1

L
‖T ε yε‖L2(0,L;H1((M,M ′)×(0,L)))

≤ C εα−1

L2 ‖yε‖H1(�+
ε ) (4.9)

where at the end we have used trace estimate with respect to the z1 variable following
the fact that T ε yε is in L2(0, L; H1((M, M ′) × (0, L))) and the property (3.5). Then
by (4.7), (4.8) and (4.9). we have

∫

γε

uε
ε yε ≤ C(εβ + εα−1)‖yε‖H1(�ε)

. (4.10)

The required uniform bound of yε in H1 (�ε) can be obtained by combining (4.5),
(4.6) and (4.10). ��

We now give the proof of the main theorem.
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5 Proof of Theorem 2.1: Case µ ≡ 0

We shall prove the Theorem 2.1 in the case of non-homogeneous Neumann condition
on the oscillating boundary. This case is easier to handle but shows the essential diffi-
culties of the more general Robin boundary condition. Before we prove Theorem 2.1,
we make some observations and prove some preliminary results in the form of some
lemmas.

We consider yε ∈ Vε solution of (2.7) with μ ≡ 0, that is, with Neumann condi-
tion (2.6). The bound for yε in Proposition 4.3 together with the inequality (3.5) of
Proposition 3.2(d) allows us to conclude that

‖y−
ε ‖H1(�−) ≤ C (5.1)

and

‖T ε(y+
ε )‖L2(0,L;H1((M,M ′)×(0,L))) ≤ C (5.2)

where C > 0 is a positive constant independent of ε. This implies the existence of
y− ∈ H1

(
�−) and y+ ∈ L2((0, L); H1((M, M ′) × (0, L))) such that

y−
ε ⇀ y− weakly in H1 (�−) (5.3)

and

T ε(y+
ε ) ⇀ y+ weakly in L2((0, L); H1((M, M ′) × (0, L))) (5.4)

up to a subsequence still denoted by ε. Inwhat follows, for simplicity,we shall suppress
the super-indices + and − wherever it is clear that we are looking at the restriction of
yε to �+

ε or �− respectively.

Lemma 5.1 y+ is independent of the z1 variable.

Proof From Proposition 3.2(d), we know

∂(T ε yε)

∂z1
= εT ε

(
∂yε
∂x1

)
. (5.5)

Now, by Proposition 3.2(a) and Proposition 4.3, we observe that

∥∥∥∥T
ε

(
∂yε
∂x1

)∥∥∥∥
L2(�+×(0,L))

= √
L

∥∥∥∥
∂yε
∂x1

∥∥∥∥
L2(�+

ε )

≤ C‖yε‖H1(�ε)
≤ C (5.6)

showing that the sequence T ε

(
∂yε
∂x1

)
is bounded in L2(�+ × (0, L)).
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So, the convergence (5.4) together with relation (5.5) and the bound (5.6) imply
that

∂y+

∂z1
= 0

in the distributional sense on �+ × (0, L). Since, �+ × (0, L) is a connected set we
obtain that y+ is independent of the z1 variable on this region. ��

As a corollary, using Proposition 3.2(e), we obtain the following convergence

ỹ+
ε ⇀

(
b − a

L

)
y+ weakly in L2((0, L); H1((M, M ′))). (5.7)

Going back to the bound (5.6), we conclude that there exists a subsequence of

T ε

(
∂yε
∂x1

)
, still indexed by ε, and P ∈ L2(�+ × (0, L)) such that

T ε

(
∂yε
∂x1

)
⇀ P weakly in L2(�+ × (0, L)). (5.8)

Lemma 5.2 We claim that

T ε

(
∂yε
∂x1

)
⇀ 0 weakly in L2(�+ × (0, L)).

Proof We take φ ∈ D(�+) and ψ ∈ C∞
c [0, L], and consider the following test

functions on �+
ε which belong to Vε

φε(x) = εφ(x1, x2)ψ

({ x1
ε

}

L

)
. (5.9)

From the definition of ε-unfolding of φε and by Proposition 3.2(d), we get

T εφε(x1, x2, z1) = εφ
(
ε
[ x1

ε

]
+ εz1, x2

)
ψ(z1),

T ε ∂φε

∂x1
(x1, x2, z1) = 1

ε

∂

∂z1
T εφε(x1, x2, z1)

= ε
∂φ

∂x1

(
ε
[ x1

ε

]
+ εz1, x2

)
ψ(z1)

+φ
(
ε
[ x1

ε

]
+ εz1, x2

) dψ

dz1
(z1),

T ε ∂φε

∂x2
(x1, x2, z1) = ε

∂φ

∂x2

(
ε
[ x1

ε

]
+ εz1, x2

)
ψ(z1). (5.10)
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These equations give us the following convergences

T εφε ε→0−→ 0 strongly in L2(�+ × (0, L)), (5.11)

T ε ∂φε

∂x1

ε→0−→ φ(x1, x2)
dψ

dz1
(z1) strongly in L2(�+ × (0, L)), (5.12)

T ε ∂φε

∂x2

ε→0−→ 0 strongly in L2(�+ × (0, L)) . (5.13)

Using φε as a test function in the variational formulation (2.7), we get

∫

�+
ε

∇ yε · ∇φε +
∫

�+
ε

yεφ
ε =

∫

�+
ε

f φε

+
∫

γε\{�∪�u}
uε

εφ
ε (5.14)

since φε vanishes on � and �u due to the fact that φ is compactly supported in �+.
By the Proposition 3.1(b), we get

∫

�+
ε

∇ yε · ∇φε +
∫

�+
ε

yεφ
ε

= 1

L

(∫

�+×(0,L)

(
T ε ∂yε

∂x1
T ε ∂φε

∂x1
+ T ε ∂yε

∂x2
T ε ∂φε

∂x2

)
+
∫

�+×(0,L)

T ε yε T
εφε

)

from which it follows, using the convergences (5.11)–(5.13), that

∫

�+
ε

∇ yε · ∇φε +
∫

�+
ε

yεφ
ε → 1

L

∫

�+×(0,L)

P φ(x1, x2)
dψ

dz1
(z1) as ε → 0 .

(5.15)

Similarly,after writing the boundary term using (3.4) taking into account (2.1) and
(5.10) and then, using (5.11), we get,

∫

�+
ε

f φε +
∫

γε\{�∪�u}
uε

εφ
ε

= 1

L

∫

�+×(0,L)

T ε f T εφε + εα

L

∫

�+
u(a, x2)φ(ε

[ x1
ε

]
+ εa, x2)ψ(a)

+εα

L

∫

�+
u(b, x2)φ(ε

[ x1
ε

]
+ εb, x2)ψ(b) dx1 dx2

ε→0−→ 0 . (5.16)

Combining (5.14)–(5.16), we get

∫

�+×(0,L)

P(x1, x2, z1) φ(x1, x2)
dψ

dz1
(z1) dx1dx2dz1 = 0
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∀φ ∈ D(�+), ∀ψ ∈ C∞
c [0, L] .

But given any f ∈ C∞
c [a, b] one can find ψ ∈ C∞

c [0, L] such that
dψ

dz1
= f (z1) on

[a, b] (for example,we can takeψ = Fηwhere F is a primitive of f andη ∈ C∞
c [0, L]

is a cut-off function which is identically equal to 1 on [a, b]). From this, it follows
that

∫ b

a
P(x1, x2, z1) φ(x1, x2) f (z1) dx1dx2dz1 = 0

∀φ ∈ D(�+), ∀ f ∈ C∞
c [a, b].

Hence, we get P = 0 a.e. in �+ × (0, L), that is, T ε ∂yε
∂x1

⇀ 0 weakly in L2(�+ ×
(0, L)). ��
Proof of Theorem 2.1 We consider φ ∈ C∞

c (�) and take its restriction to �ε which
is a test function belonging to Vε in (2.7), and get

∫

�ε

∇ yε · ∇φ +
∫

�ε

yεφ =
∫

�ε

f φ +
∫

γε

uε
εφ

which we write as
∫

�+
ε

∂yε
∂x1

∂φ

∂x1
+
∫

�+
ε

∂yε
∂x2

∂φ

∂x2
+
∫

�+
ε

yεφ +
∫

�−
∇ yε · ∇φ +

∫

�−
yεφ

=
∫

�+
ε

f φ +
∫

�−
f φ +

∫

γε

uε
εφ. (5.17)

By the convergence (5.3), we have

lim
ε→0

∫

�−
∇ yε · ∇φ =

∫

�−
∇ y− · ∇φ, (5.18)

lim
ε→0

∫

�−
yεφ =

∫

�−
y−φ. (5.19)

In particular, since this holds for all φ ∈ D(�−), we obtain the equation satisfied by
y− in �−.

We continue to pass to the limit in the other terms. Using the property in Proposi-
tion 3.2(b), convergence (5.8) and the fact P = 0 proved in Lemma 5.2, we have

lim
ε→0

∫

�+
ε

∂yε
∂x1

∂φ

∂x1
= lim

ε→0

1

L

∫

�+×(0,L)

T ε

(
∂yε
∂x1

)
T ε

(
∂φ

∂x1

)
= 0 . (5.20)

Now, using the properties of the unfolding operator in Propositions 3.1 and 3.2 and
the convergence (5.4), and the fact y+ is independent of the z1 observed in Lemma 5.1,
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we conclude that

lim
ε→0

∫

�+
ε

∂yε
∂x2

∂φ

∂x2
= lim

ε→0

1

L

∫

�+×(0,L)

∂(T ε yε)

∂x2
T ε

(
∂φ

∂x2

)

=
(
b − a

L

)∫

�+
∂y+

∂x2

∂φ

∂x2
, (5.21)

lim
ε→0

∫

�+
ε

yεφ = lim
ε→0

1

L

∫

�+×(0,L)

T ε yε T εφ =
(
b − a

L

)∫

�+
y+φ (5.22)

lim
ε→0

∫

�+
ε

f φ = lim
ε→0

1

L

∫

�+×(0,L)

T ε f T εφ =
(
b − a

L

)∫

�+
f φ (5.23)

where we have used the fact that f , φ are also independent of the z1 variable.
Now we handle the boundary term. For this we apply (3.2), use the definition of

the unfolding operator and uε to rewrite the integral and then pass to the limit to get

∫

γε∩�

uε
εφ = 1

L

∫

(0,L)×((0,a)∪(b,L))

T εuε
εT

εφ

= εβ

L

∫ L

0

∫

(0,a)∪(b,L)

u(z1, M)T εφ(x1, M, z1) dx1 dz1,

ε→0−→ δβ0

L

∫ L

0

(∫

(0,a)∪(b,L)

u(z1, M) dz1

)
φ(x1, M) dx1

Similarly,

lim
ε→0

∫

γε∩�u

uε
εφ = δβ0

L

∫ L

0

(∫

(a,b)
u(z1, M

′) dz1
)

φ(x1, M
′) dx1.

Using (3.4) together with the definition of the boundary unfolding operator T ε and
that of uε

ε, we get

∫

γε\{�∪�u}
uε

εφ

= εα−1

L

(∫

�+
u(a, x2)φ(ε

[ x1
ε

]
+ εa, x2) dx1 dx2

+
∫

�+
u(b, x2)φ(ε

[ x1
ε

]
+ εb, x2) dx1 dx2

)

ε→0−→ δα1

L

(∫

�+
u(a, x2)φ(x1, x2) dx1 dx2 +

∫

�+
u(b, x2)φ(x1, x2) dx1 dx2

)

= δα1
b − a

L

(∫

�+
θ(x1, x2)φ(x1, x2) dx1 dx2

)
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where θ has been defined in (2.9). So, we have

∫

γε

uε
εφ =

∫

γε∩�

uε
εφ +

∫

γε\{�∪�u}
uε

εφ +
∫

γε∩�u

uε
εφ

ε→0−→ δβ0

L

∫ L

0

(∫

(0,a)∪(b,L)

u(z1, M) dz1

)
φ(x1, M) dx1

+ δα1
b − a

L

(∫

�+
θ(x1, x2)φ(x1, x2) dx1 dx2

)

+ δα1
b − a

L

(∫

�+
θ(x1, x2)φ(x1, x2) dx

)
(5.24)

Combining (5.17)–(5.24), we get the following limit equation for

(
b − a

L

)∫

�+
∂y+

∂x2

∂φ

∂x2
+
(
b − a

L

)∫

�+
y+φ +

∫

�−
∇ y− · ∇φ +

∫

�−
y−φ

=
(
b − a

L

)∫

�+
f φ +

∫

�−
f φ +

∫ L

0

(
δβ0

L

∫

(0,a)∪(b,L)

u(z1, M) dz1

)
φ(x1, M) dx1

+
(
b − a

L

)∫ L

0

(
δβ0

b − a

∫ b

a
u(z1, M

′) dz1
)

φ(x1, M
′) dx1

+ δα1

(
b − a

L

)∫

�+
θ(x1, x2)φ(x1, x2) dx ∀ φ ∈ V0 (5.25)

using the density of C∞
c in V0.

Now, in the case μ ≡ 0, it follows that the equation (5.25) is precisely the weak
formulation of (2.8) by showing that y = (y+, y−) belongs to V0. For this, we observe
that (5.3) implies that y− belongs to H1(�−) and from (5.21) and the bound (4.3)

we have that
∂y+

∂x2
∈ L2(�+). The equality of the traces of y+ and y− on � can be

shown following [33, Theorem 5.3, Step 3]. For this it is enough to calculate the limit
of
∫
�
yεφ in two ways where φ is an arbitrary smooth test function supported on �.

On the one hand the weak convergence (5.3) and the continuity of the trace operator
implies that

lim
ε→0

∫

�

yεφ = lim
ε→0

∫

�

y−
ε φ =

∫

�

y−φ .

Similar to (3.2) and (3.3) we can see that, for any w ∈ L1(�), we have

L
∫

�

w =
∫ L

0

∫ L

0
T εw(x1, M, z1) dx1 dz1 .

So, applying this to
∫
�
yεφ and using (5.4) along with the continuity of the trace oper-

ator (the trace with respect to the x2 variable) in L2((0, L); H1((M, M ′) × (0, L))),
we get
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lim
ε→0

∫

�

yεφ = lim
ε→0

∫

�

y+
ε φ = lim

ε→0

1

L

∫ L

0

∫ L

0
T ε(y+

ε )T εφ(x1, M, z1) dx1 dz1

=
∫

�

y+φ

since y+ is independent of z1 and T εφ(x1, M, z1) → φ(x1, M) uniformly. The equal-
ity of the two limits for all test functionsφ supported on� allows us to reach the desired
conclusion.
Uniqueness of the solution of (5.25) implies that the entire sequence yε converges, not
only the different subsequences. ��
Remark 5.3 We would like to comment that in Gaudiello [25] the boundary data is
very particular, namely, constant of the form εα . This happens when α = β in our
case and uε is constant. In our case we have, like in their work, a distributed term θ in
�+ which arises from the non-homogeneous data on the vertical part of the oscillating
boundary. But we also get some new non-trivial contributions in the limit problem on
the upper boundary and on the interface.

6 Proof of Theorem 2.1: The General Case

Proof Wenow turn our attention to the proof of the general case involving a non-linear
non-homogeneous boundary condition on the oscillating boundary.
Step I As shown in Proposition 4.3, there is a positive constant C independent of ε

such that

‖yε‖H1(�ε)
≤ C (6.1)

Using (2.3) and (6.1), we can prove that there exists a positive constant C independent
of ε such that

‖μ(·, T ε(y+
ε ))‖L2(0,L;H1((M,M ′)×(0,L))) ≤ C. (6.2)

We have, as in the case μ = 0, the convergences like in (5.3), (5.4) and (5.7) the
following convergences

y−
ε ⇀ y− weakly in H1 (�−) (6.3)

T ε(y+
ε ) ⇀ y+ weakly in L2(0, L; H1((M, M ′) × (0, L))) (6.4)

ỹ+
ε ⇀

(
b − a

L

)
y+ weakly in L2((0, L); H1((M, M ′))). (6.5)

The bound (6.2) implies that, up to a subsequence still denoted by ε, there exist a
function ζ in L2(0, L; H1((M, M ′) × (0, L))) such that

μ(·, T ε(y+
ε )) ⇀ ζ weakly in L2(0, L; H1((M, M ′) × (0, L))). (6.6)
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Step II Arguing similarly as Lemma 5.2, we can prove that

T ε

(
∂y+

ε

∂x1

)
⇀ 0 weakly in L2(�+ × (0, L)). (6.7)

In fact,we choose the sequence of test functionsφε givenby (5.9) used inLemma5.2
in the variational formulation (2.7) and pass to the limit. We need to handle the addi-
tional term εη

∫
γε

μ(x2, yε)φε but this can be handled in a similarway using (3.2)–(3.4)
and like in the calculations leading to (5.24) we get

∣∣∣∣ε
η

∫

γε

μ(x2, yε)φ
ε

∣∣∣∣

≤ Cεη−1‖μ(·, T ε(y+
ε ))‖L2(0,L;H1((M,M ′)×(0,L)))‖T εφε‖L2(0,L;H1((M,M ′)×(0,L))).

(6.8)

The bound (6.2) leads to the conclusion

εη

∫

γε

μ(x2, yε)φ
ε → 0 .

The rest is as in Lemma 5.2. Then, like in Lemma 5.1, we can prove that ζ is inde-
pendent of the z1 variable.

Step IIIWe consider φ ∈ C∞
c (�) and take its restriction to �ε which can be taken as

a test function belonging to Vε in (2.7), and get

∫

�+
ε

∂yε
∂x1

∂φ

∂x1
+
∫

�+
ε

∂yε
∂x2

∂φ

∂x2
+
∫

�+
ε

yεφ +
∫

�−
∇ yε · ∇φ +

∫

�−
yεφ

+εη

∫

γε

μ(x2, yε)φ =
∫

�+
ε

f φ +
∫

�−
f φ +

∫

γε

uε
εφ. (6.9)

We have the convergences of the terms (5.18)–(5.24) as in Section 5. It remains to
identify the limit of εη

∫
γε

μ(x2, yε)φ for passing to the limit in the above equation.
Let us introduce the notation

�ε(x1, x2) = μ(x2, yε(x1, x2)) a.e. (x1, x2) ∈ �+
ε

by which

T ε�ε(x1, x2, z1) = μ(x2, T
ε y+

ε (x1, x2, z1)).

From (6.2), we can write

‖T ε�ε‖L2(0,L;H1((M,M ′)×(0,L))) ≤ C.
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Continuity of the trace operator and the convergence (6.6) and the independence of ζ

of the z1 variable provide

T ε�ε(·, a) ⇀ ζ weakly in L2(�+)

and

T ε�ε(·, b) ⇀ ζ weakly in L2(�+) .

This implies

lim
ε→0

ε

∫

γε\{�∪�u}
μ(x2, yε)φ

= lim
ε→0

1

L

(∫

�+
T ε�ε(x1, x2, a)T εφ(x1, x2, a)dx1dx2

+
∫

�+
T ε�ε(x1, x2, b)T

εφ(x1, x2, b)dx1dx2

)

= 2

L

∫

�+
ζφ. (6.10)

First note that, by (2.3) and μ(x2, 0) = 0, we have |μ(x2, s)t | ≤ C2 s t . So, by the
trace theorem and (6.1), we have

∣∣∣∣ε
∫

γε∩{�∪�u}
μ(x2, yε)φ

∣∣∣∣ ≤ Cε

∫

γε∩{�∪�u}
|yεφ| ≤ Cε‖yε‖H1(�ε)

‖φ‖H1(�ε)

≤ Cε. (6.11)

Convergences (6.10) to (6.11), together, imply

lim
ε→0

εη

∫

γε

μ(x2, yε)φ = δη1
2

L

∫

�+
ζφ. (6.12)

Combining the convergences (5.18)–(5.24) and (6.12) we get the following limit prob-
lem

(
b − a

L

)∫

�+
∂y+

∂x2

∂φ

∂x2
+
(
b − a

L

)∫

�+
y+φ

+ δη1
2

L

∫

�+
ζφ +

∫

�−
∇ y− · ∇φ +

∫

�−
y−φ

=
(
b − a

L

)∫

�+
f φ

+
∫

�−
f φ +

∫ L

0

(
δβ0

L

∫

(0,a)∪(b,L)

u(z1, M) dz1

)
φ(x1, M) dx1
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+
(
b − a

L

)∫ L

0

(
δβ0

b − a

∫ b

a
u(z1, M

′) dz1
)

φ(x1, M
′) dx1

+ δα1

(
b − a

L

)∫

�+
θ(x1, x2)φ(x1, x2) dx ∀ φ ∈ V0 . (6.13)

This is precisely theweak formulation of (2.8) oncewe see that (y+, y−) belongs toV0
(which is like in the previous section) and identify ζ (for η > 1 this is not necessary)
which is the final step.

Step IV We are left to deal with the case η = 1. We claim that ζ(x1, x2) =
μ(x2, y+(x1, x2)) for almost every (x1, x2) ∈ �+. Let us considerφ = y−λψ belong-
ing to V0 where y = y+ in �+ and y = y− in �− and for any given ψ ∈ C1

c (�).
Observe that, by the monotonicity of μ implied by the first of the assumptions on μ

in (2.3), we have

∫

�−
|∇ yε − ∇φ|2 +

∫

�−
|yε − φ|2 +

∫

�+
ε

∣∣∂x2 yε − ∂x2φ
∣∣2

+
∫

�+
ε

∣∣∂x1 yε
∣∣2 +

∫

�+
ε

|yε − φ|2

+ ε

∫

γε

(μ(x2, yε) − μ(x2, φ))(yε − φ) ≥ 0

which we rewrite as
∫

�+
ε

∣∣∂x2 yε
∣∣2 +

∫

�+
ε

∣∣∂x1 yε
∣∣2 +

∫

�+
ε

|yε|2 +
∫

�−
|∇ yε|2

+
∫

�−
|yε|2 + ε

∫

γε

μ(x2, yε)yε

− 2
∫

�+
ε

∂x2 yε∂x2φ +
∫

�+
ε

∣∣∂x2φ
∣∣2 − 2

∫

�+
ε

yεφ +
∫

�+
ε

|φ|2

− 2
∫

�−
∇ yε · ∇φ +

∫

�−
|∇φ|2 +

∫

�−
|φ|2 − 2

∫

�−
yεφ

− ε

∫

γε

μ(x2, yε)φ − ε

∫

γε

μ(x2, φ)yε + ε

∫

γε

μ(x2, φ)φ ≥ 0. (6.14)

To obtain the limit expression of the terms in the first line of (6.14) we proceed by
using yε as a test function in (2.7) and get

∫

�+
ε

∣∣∂x2 yε
∣∣2 +

∫

�+
ε

∣∣∂x1 yε
∣∣2 +

∫

�+
ε

|yε|2 +
∫

�−
|∇ yε|2

+
∫

�−
|yε|2 + ε

∫

γε

μ(x2, yε)yε =
∫

�ε

f yε +
∫

γε

uε
ε yε

ε→0−→
(
b − a

L

)∫

�+
f y+ +

∫

�−
f y−
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+
∫ L

0

(
δβ0

L

∫

(0,a)∪(b,L)

u(z1, M) dz1

)
y+(x1, M) dx1

+
(
b − a

L

)∫ L

0

(
δβ0

b − a

∫ b

a
u(z1, M

′) dz1
)
y+(x1, M

′) dx1

+ δα1

(
b − a

L

)∫

�+
θ(x1, x2)y

+(x1, x2) dx .

Then, we use the variational Eq. (6.13) with y = (y+, y−) replacing φ to obtain

∫

�+
ε

∣∣∂x2 yε
∣∣2 +

∫

�+
ε

∣∣∂x1 yε
∣∣2 +

∫

�+
ε

|yε|2

+
∫

�−
|∇ yε|2 +

∫

�−
|yε|2 + ε

∫

γε

μ(x2, yε)yε

ε→0−→
(
b − a

L

)∫

�+

∣∣∣∣
∂y+

∂x2

∣∣∣∣
2

+
(
b − a

L

)∫

�+

∣∣y+∣∣2 + 2

L

∫

�+
ζ y+

+
∫

�−

∣∣∇ y−∣∣2 +
∫

�−

∣∣y−∣∣2 . (6.15)

Passing to the limit in the terms of the third line of (6.14) is straightforward using
(6.3), whereas the limit of the main terms in the second line of (6.14) has already been
obtained in (5.21)–(5.22). We get the following expression as the limit of these terms:

(
b − a

L

)(
−2
∫

�+
∂x2 y

+ ∂x2φ +
∫

�+

∣∣∂x2φ
∣∣2 − 2

∫

�+
y+φ +

∫

�+
|φ|2

)

−2
∫

�−
∇ y− · ∇φ +

∫

�−
|∇φ|2 +

∫

�−
|φ|2 − 2

∫

�−
y−φ . (6.16)

Similar to (6.12), one can prove

lim
ε→0

ε

∫

γε

μ(x2, yε)φ = 2

L

∫

�+
ζφ, (6.17)

lim
ε→0

ε

∫

γε

μ(x2, φ)yε = 2

L

∫

�+
μ(x2, φ)y+, (6.18)

lim
ε→0

ε

∫

γε

μ(x2, φ)φ = 2

L

∫

�+
μ(x2, φ)φ. (6.19)

From (6.17)–(6.19), we will get the following limit for the terms in the last line of
(6.14):

− 2

L

(∫

�+
ζφ +

∫

�+
μ(x2, φ)y+ −

∫

�+
μ(x2, φ)φ

)
(6.20)
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Combining (6.15), (6.16) and (6.20), we get

∫

�−

∣∣∇ y− − ∇φ
∣∣2 +

∫

�−

∣∣y− − φ
∣∣2 +

(
b − a

L

)∫

�+

∣∣∂x2 y+ − ∂x2φ
∣∣2

+
(
b − a

L

)∫

�+

∣∣y+ − φ
∣∣2 + 2

L

∫

�+
(ζ − μ(x2, φ))(y+ − φ) ≥ 0 .

Since, φ = y − λψ , we get

λ

(∫

�−
|∇ψ |2 +

∫

�−
|ψ |2

+
(
b − a

L

)(∫

�+

∣∣∂x2ψ
∣∣2 +

∫

�+
|ψ |2

))

+ 2

L

∫

�+
(ζ − μ(x2, y

+ − λψ))ψ ≥ 0 .

By letting λ to go to 0, using the Dominated Convergence Theorem, we obtain

∫

�+
(ζ − μ(x2, y

+))ψ ≥ 0.

Since ψ is an arbitrary element of C1
c (�), we can conclude that

ζ(x1, x2) = μ(x2, y
+(x1, x2)) a.e. (x1, x2) ∈ �+ .

��

7 A Three Dimensional Example

To show the efficacy of the method of unfolding operator in handling homogenization
problems in domains with oscillating boundaries in any dimension, we consider a
three dimension model from Mel’nyk [29] involving a 3 : 2 : 1 thick junction but
we consider non-homogeneous Robin boundary condition. We take �− = (0, 1) ×
(0, 1) × [0, M] and �ε of the form

�+
ε =

{
(x1, x2, x3) : M ≤ x3 < g

( x1
ε

,
x2
ε

)

for all (x1, x2) ∈ (0, 1) × (0, 1)} (7.1)

where g : R
2 → R is a smooth piecewise smooth periodic function with period

[0, 1]2. Let M ′ be the maximum of g in [0, 1]2. For any t ∈ (M, M ′), we denote by
ω(t) the open set

ω(t) = {(z1, z2) : g(z1, z2) > t}
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and introduce

G = {(x3, z1, z2) : M < x3 < M ′, (z1, z2) ∈ ω(x3)} .

For simplicity,we assume that g has noflat portions and, for example,we can guarantee
this by assuming that gz2 �= 0. The unfolding operator T ε for the geometry of �ε has
the definition

T ε y(x1, x2, x3, z1, z2) = ỹ
(
ε
[ x1

ε

]
+ εz1, ε

[ x2
ε

]
+ εz2, x3

)
(7.2)

for any given y ∈ H1(�ε). At fixed x3 ∈ (M, M ′), the support of T ε y with respect
to the (z1, z2) variable is in ω(x3).

We have the following properties of the unfolding operator, similar to those stated
in Propositions 3.1 and 3.2, and are standard to establish (see for example [2]).

Proposition 7.1 (a) The unfolding operator T ε is linear. Also, if y1, y2 ∈ L1(�+
ε )

are such that y1 y2 ∈ L1(�+
ε ), then T ε(y1y2) = T ε(y1)T ε(y2).

(b) If y ∈ L1(�+
ε ), then we have

∫

�+×(0,1)2

T ε y dx1dx2dx3dz1dz2 =
∫

(0,1)2×G
T ε y dx1dx2dx3dz1dz2

=
∫

�+
ε

y dx1dx2dx3

and this gives, for every y ∈ L2(�+
ε ), we have T ε y ∈ L2(�+ × (0, 1)2) and

‖T ε y‖L2((0,1)2×G) = ‖y‖L2(�+
ε ).

(c) For every y ∈ L2(�+), we have T ε
(
y|�+

ε

)
ε→0−→ y strongly in L2(�+ × (0, 1)2).

(d) If yε ∈ L2(�+
ε ) be such that T ε yε ⇀ y weakly in L2(�+ × (0, 1)2) as ε → 0,

then

ỹε ⇀

∫

ω(x3)
y dz1dz2 weakly in L2(�+) .

(e) If y ∈ H1(�+
ε ), then T ε y ∈ L2((0, 1)2; H1(G)). Moreover

∂

∂x3
T ε y = T ε ∂y

∂x3
,

∂

∂z1
T ε y = εT ε ∂y

∂x1
,

∂

∂z2
T ε y = εT ε ∂y

∂x2

and

‖T ε y‖L2((0,1)2;H1(G)) ≤ C‖y‖H1(�+
ε )

where C > 0 is a positive constant independent of ε.
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(f) If T ε yε
ε→0
⇀ y weakly in L2((0, 1)2; H1(G)) for a sequence yε ∈ H1(�+

ε ), then

ỹε ⇀

∫

ω(x3)
y dz1dz2 weakly in L2((0, 1)2; H1((M, M ′))) .

��
For boundary data of the form

uε
ε(x1, x2, x3) = εαu

( x1
ε

,
x2
ε

, g
( x1

ε
,
x2
ε

))
(7.3)

where u is such that

u ∈ L2(graph g; dσ) that is∫

(0,1)×(0,1)
u2(z1, z2, g(z1, z2))

√
1 + (∂z1g(z1))

2 + (∂z1g(z2))
2 dz1dz2 < ∞

and for f ∈ L2
per (�), our aim is to study the asymptotic behavior of the following

boundary value problemwith a non-linear Robin boundary condition on the oscillating
boundary Sε

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−�yε + yε = f in �ε,

∂yε
∂ν

+ εημ(yε) = uε
ε on Sε,

yε = 0 on �b,

yε is �s − periodic ,

(7.4)

where we have taken �s-periodic to mean, periodic on�ε in the x1, x2 directions with
period 1. The weak formulation of (2.5) is to find yε ∈ Vε such that

∫

�ε

∇ yε · ∇φ+
∫

�ε

yεφ+εη

∫

Sε

μ(yε)φ =
∫

�ε

f φ+
∫

Sε

uε
εφ, ∀φ ∈ Vε. (7.5)

We can obtain the following result.

Theorem 7.2 We have

y−
ε ⇀ y− weakly in H1 (�−) (7.6)

ỹ+
ε ⇀ |ω(x3)| y+ weakly in L2((0, 1)2; H1((M, M ′))) (7.7)
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Moreover y = (y+, y−) satisfies the coupled system of partial differential equations

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− ∂

∂x3

(
|ω(x3)|∂y

+

∂x3

)
+ |ω(x3)|y+ + δη1� = |ω(x3)| f + δα1θ in �+,

∂y+

∂x2
= 0 on �u,

y+ = y− on �,

∂y−

∂x2
− (|ω(M)|) ∂y+

∂x2
= 0 on �,

−�y− + y− = f in �−,

y− = 0 on �b,

y is �s′ − periodic.

(7.8)

Here θ and � which appear in the first equation is given by

θ(x1, x2, x3) =
(∫

∂ω(x3)
u(z1, z2, x3)dγ

)
a.e. (x1, x2, x3) ∈ �+ (7.9)

and

�(x1, x2, x3)=per(∂ω(x3)) μ(y+(x1, x2, x3)) a.e. (x1, x2, x3)∈�+. (7.10)

where per(∂ω(x3)) denotes the perimeter of (∂ω(x3)). ��

7.1 Sketch of Proof

For proving this result, we once again use the unfolding technique. Once again, for
simplicity, we shall suppress the super-indices + and − wherever it is clear that we are
looking at the restriction of yε to �+

ε or �− respectively.

7.1.1 A Priori Estimates

The a priori bounds for yε follow similarly as in Proposition 4.3 as soon aswe establish
the following estimate on the oscillating surface Sε:

∫

Sε

uε
ε yε ≤ Cεα−1‖T ε yε‖L2((0,1)2;H1((M,M ′)×(0,1)2)) (7.11)

To obtain thiswe first rewrite the surface integral using the slicing lemma forHausdorff
measures, Lemma 7.6.1 in [28],

∫

Sε

uε
ε yε =

∫ M ′

M

∫

Sε∩π−1(t)

uε
ε yε

|∇Sεπ | dγ dt
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where π is the projection on the last coordinate, ∇Sεπ is the tangential gradient of π

and dγ is the line element of the section of Sε at the height t . Using the parametrization
of the surface Sε, we have explicitly

|∇Sεπ | =

√
1

ε2
g2z1

( x1
ε

,
x2
ε

)
+ 1

ε2
g2z2

( x1
ε

,
x2
ε

)

√
1 + 1

ε2
g2z1

( x1
ε

,
x2
ε

)
+ 1

ε2
g2z2

( x1
ε

,
x2
ε

) . (7.12)

This can be obtained by projecting ∇π = (0, 0, 1) into the tangent space on Sε

equipped with the orthonormal basis

u1 = 1
√
1 + 1

ε2
g2z1

( x1
ε

,
x2
ε

)

(
1, 0,

1

ε
gz1
( x1

ε
,
x2
ε

))
,

u2 =

(
− 1

ε2
gz1
( x1

ε
,
x2
ε

)
gz2
( x1

ε
,
x2
ε

)
, 1 + 1

ε2
g2z1

( x1
ε

,
x2
ε

)
,
1

ε
gz2
( x1

ε
,
x2
ε

))

√
1 + 1

ε2
g2z1

( x1
ε

,
x2
ε

)
+ 1

ε2
g2z2

( x1
ε

,
x2
ε

)√
1 + 1

ε2
g2z1

( x1
ε

,
x2
ε

) .

Partitioning (0, 1)2 into cells of size ε, Y ε
i j = {(x1, x2) : εi ≤ x1 ≤ ε(i + 1), ε j ≤

x1 ≤ ε( j + 1)} for i, j = 0, 1, . . . , N − 1, and using (7.12), we obtain

∫

Sε

uε
ε yε =

∫ M ′

M

∫

Sε∩π−1(t)

uε
ε yε

|∇Sεπ | dγε dt

=
N−1∑

i, j=0

∫ M ′

M

∫

Sε∩π−1(t)∩Y ε
i j

uε
ε yε

|∇Sεπ | dγ dt

=
N−1∑

i, j=0

∫ M ′

M

∫

Sε∩π−1(t)∩Y ε
i j

uε
ε yε

√
1 + 1

ε2
g2z1

( x1
ε

,
x2
ε

)
+ 1

ε2
g2z2

( x1
ε

,
x2
ε

)

√
1

ε2
g2z1

( x1
ε

,
x2
ε

)
+ 1

ε2
g2z2

( x1
ε

,
x2
ε

) dγε dt

=
N−1∑

i, j=0

∫ M ′

M

∫ ε(i+1)

εi

uε
ε yε

√
1 + 1

ε2
g2z1

( x1
ε

,
x2
ε

)
+ 1

ε2
g2z2

( x1
ε

,
x2
ε

)

1

ε
gz2
( x1

ε
,
x2
ε

) dx1 dt

where we have used the fact that the line element dγε of the curve {(x1, x2) :
g
( x1

ε
,
x2
ε

)
= t
}

∩ Y ε
i, j with respect to the x1 variable takes the form
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dγε =

√
1

ε2
g2z1

( x1
ε

,
x2
ε

)
+ 1

ε2
g2z2

( x1
ε

,
x2
ε

)

1

ε
gz2
( x1

ε
,
x2
ε

) dx1 .

Then we change variables x1 = εi+εz1 in the interval (εi, ε(i+1)), use the definition
(in particular, the periodicity of uε) and the definition of the unfolding operator to
obtain

∫

Sε

uε
ε yε

= εα+1
N−1∑

i, j=0

∫ M ′

M

∫ 1

0

u(z1, z2, g(z1, z2))T ε y(εi + εz1, ε j + εz2, g(z1, z2), z1, z2)
√

ε2 + g2z1 (z1, z2) + g2z2 (z1, z2)

gz2 (z1, z2)
dz1dt

= εα−1
∫

(0,1)2

∫ M ′

M

∫ 1

0

u(z1, z2, g(z1, z2))T ε y(x1, x2, g(z1, z2), z1, z2)
√

ε2 + g2z1 (z1, z2) + g2z2 (z1, z2)

gz2 (z1, z2)
dz1dtdx

(7.13)

where z2 depends on z1 and t and is determined by the curve {(z1, z2) : g(z1, z2) = t}
and dx stands for integration with respect to (x1, x2).

From this and the assumption on u, we obtain the estimate

∫

Sε

uε
ε yε

≤ C εα−1

⎛

⎝
∫

(0,1)2

∫ M ′

M

∫ 1

0

(
T ε y(x1, x2, t, z1, z2)

)2
√
1 + g2z1 (z1, z2) + g2z2 (z1, z2)

gz2 (z1, z2)
dz1dtdx

⎞

⎠
1/2

= C εα−1

⎛

⎝
∫

(0,1)2

∫

S

(
T ε y(x1, x2, z

′, z1, z2)
)2
√
1 + g2z1 (z1, z2) + g2z2 (z1, z2)

gz2 (z1, z2)
dS(z′, z1, z2)dx

⎞

⎠
1/2

≤ C εα−1‖T ε yε‖L2((0,1)2;H1(G)) ≤ C εα−1‖yε‖H1(�ε)

where S = {(z′, z1, z2) : z′ = g(z1, z2), (z1, z2) ∈ (0, 1)2} and in the penultimate
inequality, we have used trace estimate in H1(G).

7.1.2 Convergence Arguments

As a consequence of the a priori estimates, we shall have convergences similar to those
in (6.3)–(6.7), upto a subsequence. To be precise, this time we shall have

y−
ε ⇀ y− weakly in H1 (�−) (7.14)

T ε y+
ε ⇀ y+ weakly in L2((0, 1)2; H1(G)) (7.15)

ỹ+
ε ⇀ |ω(x3)| y+ weakly in L2((0, 1)2; H1((M, M ′))) (7.16)

where |ω(x3)| is the Lebesgue measure of the section ω(x3). The convergence (7.16)
follows from the convergence (7.15) by observing, similarly as in Lemma 5.1, that y+
is independent of z1, z2. Arguing similarly as Lemma 5.2, we can prove that
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T ε

(
∂y+

ε

∂xi

)
⇀ 0 weakly in L2(�+ × (0, 1)2) i = 1, 2 . (7.17)

Using these we can obtain once again the convergences of the following integral terms

lim
ε→0

∫

�−
∇ y−

ε · ∇φ =
∫

�−
∇ y− · ∇φ, (7.18)

lim
ε→0

∫

�−
y−
ε φ =

∫

�−
y−φ (7.19)

lim
ε→0

∫

�+
ε

∂yε
∂x1

∂φ

∂x1
= lim

ε→0

1

L

∫

�+×(0,1)2
T ε

(
∂y+

ε

∂x1

)
T ε

(
∂φ

∂x1

)
= 0 (7.20)

lim
ε→0

∫

�+
ε

∂yε
∂x2

∂φ

∂x1
= lim

ε→0

1

L

∫

�+×(0,1)2
T ε

(
∂y+

ε

∂x2

)
T ε

(
∂φ

∂x2

)
= 0 (7.21)

lim
ε→0

∫

�+
ε

∂yε
∂x3

∂φ

∂x3
= lim

ε→0

∫

�+×(0,1)2

∂(T ε y+
ε )

∂x3
T ε

(
∂φ

∂x3

)
=
∫

�+
|ω(x3)| ∂y+

∂x3

∂φ

∂x3
(7.22)

lim
ε→0

∫

�+
ε

yεφ = lim
ε→0

∫

�+×(0,1)2
T ε y+

ε T εφ =
∫

�+
|ω(x3)| y+φ (7.23)

lim
ε→0

∫

�+
ε

f φ = lim
ε→0

∫

�+×(0,1)2
T ε f T εφ =

∫

�+
|ω(x3)| f φ (7.24)

where we have used the fact that f , φ are also independent of the (z1, z2) variables.
For details of these arguments, we refer to the preprint [2].

The bound (6.2) implies that, up to a subsequence still denoted by ε, there exist a
function ζ in L2((0, 1)2; H1(G)) such that

μ(·, T ε(y+
ε )) ⇀ ζ weakly in L2((0, 1)2; H1(G)) (7.25)

and ζ can be shown to be independent of the local variables (z1, z2). Like in the
previous section, it can be shown that

ζ(x1, x2, x3) = μ(y+(x1, x2, x3)) a.e. (x1, x2, x3) ∈ �+. (7.26)

Similarly as in (7.13), we obtain

∫

Sε

uε
εφ = εα−1

∫

(0,1)2

∫ M ′

M

∫ 1

0

u(z1, z2, t)T εφ(x1, x2, t, z1, z2)
√

ε2 + g2z1 (z1, z2) + g2z2 (z1, z2)

gz2 (z1, z2)
dz1dtdx

where z2 depends on z1 and t and is determined by the curve {(z1, z2) : g(z1, z2) = t}
and dx stands for integration with respect to (x1, x2). Now we can pass to the limit in
the above and we have
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lim
ε→0

∫

Sε

uε
εφ = δα1

∫

(0,1)2

∫ M ′

M

∫ 1

0
u(z1, z2, t) φ(x1, x2, t)

√

1 +
(
gz1 (z1, z2)

gz2 (z1, z2)

)2

dz1dt dx1dx2

= δα1

∫

�+

(∫

∂ω(x3)
u(z1, z2, x3)dγx3 (z1, z2)

)
φ(x1, x2, x3)dx1dx2dx3 (7.27)

Finally

lim
ε→0

εη

∫

Sε

μ(yε)φ

= lim
ε→0

εη−1
∫

(0,1)2

∫ M ′

M

∫ 1

0

μ(T ε y+
ε (x1, x2, t, z1, z2))

√
ε2 + g2z1 (z1, z2) + g2z2 (z1, z2)

gz2 (z1, z2)
dz1dtdx

= δη1

∫

�+

(∫

∂ω(x3)
μ(y+(x1, x2, x3))dγx3 (z1, z2)

)
φ(x1, x2, x3)dx1dx2dx3

= δη1

∫

�+
per(∂ω(x3))μ(y+(x1, x2, x3)) φ(x1, x2, x3)dx1dx2dx3 (7.28)

By the convergences (7.18)–(7.28), we conclude, by passing to the limit in (7.5), that

∫

�−
∇ y− · ∇φ +

∫

�+
|ω(x3)| ∂y+

∂x3

∂φ

∂x3
+ δη1

∫

�+
per(∂ω(x3))μ(y+(x1, x2, x3)) φ(x1, x2, x3)dx1dx2dx3

+
∫

�+
|ω(x3)| y+φ =

∫

�+
|ω(x3)| f φ + δα1

∫

�+

(∫

∂ω(x3)
u(z1, z2, x3)dγx3 (z1, z2)

)
φ(x1, x2, x3)dx1dx2dx3

which is the weak formulation of (7.8). ��
Remark 7.3 By taking uε

ε = 0 we recover the result proved in Mel’nyk [29] in the
presence of homogeneous Robin boundary condition. The non-homogeneous Robin
condition will permit us in the future to treat the problem of homogenization of control
problems involving controls terms in the Robin boundary conditions. If the oscillating
boundary has flat tops then one can expect a non-homogeneous non-linear Neumann
or Robin condition on the upper boundary of �+. To obtain this term it is enough to
split the oscillating boundary into the flat portions and the oblique portions and handle
the convergence of the flat portions similarly as in Sects. 5 and 6.
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