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Abstract Unfolding operators have been introduced and used to study homogenization prob-
lems. Initially, they were introduced for problems with rapidly oscillating coefficients and
porous domains. Later, this has been developed for domains with oscillating boundaries,
typically with rectangular or pillar type boundaries which are classified as non-smooth. In
this article, we develop new unfolding operators, where the oscillations can be smooth and
hence they have wider applications. We have demonstrated by developing unfolding oper-
ators for circular domains with rapid oscillations with high amplitude of O(1) to study the
homogenization of an elliptic problem.

Mathematics Subject Classification 80M35 · 80M40 · 35B27

1 Introduction

The main purpose of this article is to introduce certain unfolding operators in domains with
highly oscillating boundaries which are smooth and periodic. Though our approach is quite
general, we consider two types of domains as in Figs. 1 and 4. More details of these figures
are available in later sections. The first domain consists of a fixed part with very general
oscillations on a flat part of the boundary, whereas with the second case, we consider a circular
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Fig. 1 Oscillating domain Ωε

domain with oscillating boundary. In both cases, we consider oscillations with amplitude of
O(1). We hope this work will also serve as a precursor to the study of arbitrary oscillating
domains, that is of non-periodic type. So far in the literature, the unfolding operators are
available only for non-smooth oscillatory boundaries. Presently, we give a novel approach
in defining unfolding operator for smooth but periodic oscillations with O(1) amplitude.
This immediately helps us to study homogenization problems in circular domains with rapid
oscillations at the boundary. So far, the study on circular domains is very limited. We hope,
the unfolding operators defined on circular domains with oscillating boundaries will set new
trend in carrying out limiting analysis in such complex domains.

Using the new unfolding operators, we give few examples from homogenization. We
consider, an example of non-linear problem in the first case and an example of a linear
homogenization problem in a circular domain. The optimal control problems in such domains
is the topic of discussion in another forthcoming manuscript.

The unfolding method for homogenization problems in domains with (non-smooth) oscil-
lating boundaries has been widely used by various authors in the last decade. Typically, the
domains are of fixed type with slab-type (pillar-type) oscillating boundaries. Recently, the
authors in [1] have also introduced unfolding operators in domains with multi-level oscil-
lations, known as branched structure and have studied homogenization of optimal control
problem. The authors, Blanchard et al. [9,10], have first introduced unfolding in oscillating
boundary domain to study homogenization of elastic rods with 3D space as well as thin plate.
The general unfolding operator was first introduced by D. Cioranescu, A. Damlamian, G.
Griso in 2002 (see [12]) and later it is used by various authors (see [13,14,19]). Though the
convergence using unfolding operators looks similar to the two scale convergence (see [2,38])
of homogenization theory, we have demonstrated the power of unfolding in the study of the
optimal control problems (see [1,34,36]). In these papers, we have characterized the optimal
controls using unfolding operators.

Thus, developing unfolding operators in smooth oscillating boundaries has paramount
importance for our future study as well. In fact, the study of homogenization in domains with
oscillating smooth boundaries is very limited. Homogenization of an elastic thin film problem
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using Γ -convergence has been studied in [4]. See [11], for boundary homogenization with
Neumann boundary condition and in [29], a Poisson problem with curved rough boundaries
in a circular domain has been investigated. Indeed, the amplitude of oscillations is of O(ε),
whereas we consider the oscillations with amplitude of O(1). In [5,6], Arrieta and Villanueva-
Pesqueira have also considered a thin domain with smooth oscillating boundary.

On the other hand, there is lot of activity on domain with non-smooth oscillating bound-
aries; more specifically, a domain with a fixed part and a lot of thin periodically distributed
parts (like pillars) attached along certain part of the flat boundary. For example, see [3] for
error estimates and in [7,8], the homogenization of PDEs has been investigated in oscillat-
ing domain using Tartar’s oscillating test functions. In [28], strongly contrasting diffusivity
problem in highly oscillating boundaries has been studied. The authors, Esposito et al. [23],
studied the asymptotic analysis of a p-Laplacian operator using Γ -convergence. Homoge-
nization of an elliptic problem with homogeneous Neumann data has been studied in [26].
Gaudiello [25], has investigated Laplace equation with inhomogeneous Neumann boundary
condition posed on oscillating boundary domain and in [27], using extension operators the
authors have studied the homogenization of Ginzburg–Landau equation. Exact controlla-
bility problems in oscillating domains have been investigated in [17,18]. For literature on
homogenization of optimal control problems on this type of domains one can refer to [16,20–
22,33,35,39,40].

The present domain can also be seen as a very good generalization of domains with thick
junctions. In addition to our recent work [1] in thick junctions, such a domain has been
considered by Mel’nyk [30], where asymptotic expansion method is used and asymptotic
study of Robin problem has been investigated in [15]. Also, see [32].

2 Oscillating boundary domain

For j = 1, 2, . . . n − 1, let L j > 0 and consider a small parameter ε = (ε1, ε2, . . . , εn−1),
with εi = Li

Ni
, Ni ∈ Z

+. Denote any element x ∈ R
n as x = (x ′, xn), where x ′ ∈ R

n−1 and

xn ∈ R. Let L = (L1, L2, . . . , Ln−1) and B = (0, L1) × (0, L2) × · · · (0, Ln−1) ⊂ R
n−1.

We, now describe the domain Ωε ⊂ R
n and its boundaries as follows.

Let g: Rn−1 → R be a smooth and periodic function with period L . That is, g(L je j+x ′) =
g(x ′) ∀x ′ ∈ R

n−1, j = 1, 2, . . . , n − 1, where {e1, e2, . . . , en−1} is the standard basis of
R
n−1. Let η be a smooth real valued function defined on B such that it takes the minimum at

the boundary, that is, η(x ′
b) = M0 =: minx ′∈B η(x ′), where x ′

b ∈ ∂B. Also, assume that the
function η − M0 is compactly supported in B. Now, extend η to the whole R

n−1 periodically
with period L .

Let M1 =: maxx ′∈B η(x ′) and m > maxx ′∈B g(x ′), with M1 > M0 > m. We define the
domain Ωε as

Ωε =
{
(x ′, xn) ∈ R

n : x ′ ∈ B, g(x ′) < xn < ηε(x
′) = η

(
x ′
ε

)}
.

Note that, x ′
ε

= ( x1
ε1

, x2
ε2

, . . . ,
xn−1
εn−1

). For x ′, y′ ∈ R
n−1, we formally define x ′y′ as x ′y′ =

(x1y1, . . . , xn−1yn−1). The top boundary of Ωε is denoted by γ +
ε and is defined by

γ +
ε = {

(x ′, xn): x ′ ∈ B, xn = ηε(x
′)
}
.

The bottom boundary Γb of Ωε is defined by

Γb =
{
(x ′, xn): xn = g(x ′), x ′ ∈ B

}
.
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Let Ω+
ε be the top part of the domain Ωε , which is defined by

Ω+
ε = {

(x ′, xn) ∈ R
n : x ′ ∈ B, M0 < xn < ηε(x

′)
}
.

The reference set Y (a), for a ∈ (M0, M1), is defined as Y (a) = {y ∈ B: η(y) > a}. Note
that Y (a) is Lebesgue measurable as η is assumed to be a smooth function.

Denote Ω−, the fixed part of the domain Ωε, which is described by

Ω− = {
(x ′, xn): x ′ ∈ B, g(x ′) < xn < M0

}
.

The lateral and top boundaries of Ω− denoted by Γs and Γ0 are defined as

Γs = {
(x ′, xn): g(x ′) ≤ xn ≤ M0, x

′ ∈ ∂B
}

and Γ0 =
{
(x ′, M0): x ′ ∈ B

}
,

respectively. The common boundary Γε is the lower boundary of Ω+
ε which is defined as

Γε = {
(x ′, xn) ∈ Ωε: xn = M0

}

We can also write Ωε as

Ωε = I nt
(
Ω+

ε ∪ Ω−
)

.

Our full domain or the limiting domain Ω (see Fig. 2) is described by

Ω = {
(x ′, xn): x ′ ∈ B, g(x ′) < xn < M1

}
.

The upper part of the limit domain Ω+ is defined by Ω+ = B × (M0, M1). The lower
boundary of Ω is same as that of Ωε , namely Γb. The upper boundary Γu and the lateral
boundaries Γs′ are defined as follows.

Γu =
{
(x ′, M1): x ′ ∈ B

}
and Γs′ =

{
(x ′, xn): g(x ′) ≤ xn ≤ M1, x

′ ∈ ∂B

}

Define a set Eε = {k ∈ Z
n−1: εkL + εB ⊆ B} and the reference cell Λ+ is defined as, (see

Fig. 3)

Λ+ =: {(y′, yn): y′ ∈ B, M0 < yn < η(y′)
}
.

Let H1
# (Ωε) = { f ∈ H1

loc(R
n): f (x ′ + kL , xn) = f (x ′, xn) ∀ k ∈ Z

n−1}. Note that, by kL ,
we mean kL = (k1L1, . . . , kn−1Ln−1). We call a function as Γs-periodic if it takes the same
value on the opposite lateral sides of the domain Ωε .

3 Unfolding operator and its properties

In this section, we define the periodic unfolding operator (T ε) and the boundary unfolding
operator (T ε

M0
) to study the asymptotic behaviour of the solution of PDEs posed on a domain

with highly oscillating smooth boundary which we have described in Sect. 2. This is one of
the most important sections of the article. Also, we look into some of its important properties
which are required for our analysis in the later sections. Let us define the unfolded (fixed)
domain ΩU , where the unfolded functions are defined on, as below.

Let G = {(xn, y): xn ∈ (M0, M1), y ∈ Y (xn)}, then ΩU is defined as ΩU = B × G,
which can be written as

ΩU =: {(x ′, xn, y)| x ′ ∈ B, M0 < xn < M1, y ∈ Y (xn)
}
.
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Fig. 2 Limiting domain

Fig. 3 Reference domain

We, now present an unfolding operator which is completely new and novel. For x ′ ∈ R
n−1,

we write [x ′]L as the integer part of x ′ with respect to L , that is, [x ′]L = kL , where k =
(k1, k2, . . . , kn−1) is the “largest” integer tuple such that kL ≤ x ′, that is, k j L j ≤ x j for
j = 1, 2, . . . , n − 1 and {x ′}L = x ′ − [x ′]L .

Definition 3.1 (The unfolding operator) Let φε:ΩU → Ω+
ε be defined by (x ′, xn, y) →(

ε
[
x ′
ε

]
L

+ εy, xn
)

, that is, φε(x ′, xn, y) =
(
ε
[
x ′
ε

]
L

+ εy, xn
)

. The ε-unfolding of a func-

tion u:Ω+
ε → R is the function u ◦ φε: ΩU → R. The operator which maps every function

u:Ω+
ε → R to its ε-unfolding is called the unfolding operator. Let the unfolding operator is

denoted by T ε, that is,

T ε: {u:Ω+
ε → R

} → {v:ΩU → R}
defined by

T εu(x ′, xn, y) = u ◦ φε(x ′, xn, y) = u
(
ε
[
x ′
ε

]
L

+ εy, xn
)

.
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If U is an open subset of R
n containing Ω+

ε and u is real valued function on U , T εu will
mean T ε acting on the restriction of u to Ω+

ε . Some of the properties that T ε enjoys are given
below.

Proposition 3.2 For each fixed ε > 0, T ε is linear. Further, if u, v:Ω+
ε → R, then,

T ε(uv) = T ε(u)T ε(v).

The proof follows directly from the definition.

Proposition 3.3 Let u ∈ L1(Ω+
ε ). Then,
∫

ΩU

T εu dxdy = |B|
∫

Ω+
ε

u dx .

Proof

∫

ΩU

T εu dxdy =
M1∫

xn=M0

∫

y∈Y (xn)

∫

B

u
(
ε
[
x ′
ε

]
L

+ εy, xn
)
dx ′dydxn

=
M1∫

M0

∫

y∈Y (xn)

∑
k∈Eε

∫

x ′∈εkL+εB

u(kεL + εy, xn) dx
′dydxn

=
∑
k∈Eε

∫

x ′∈εkL+εB

dx ′
M1∫

M0

∫

y∈Y (xn)

u(kεL + εy, xn) dydxn

= εn−1|B|
∑
k∈Eε

M1∫

M0

∫

y∈Y (xn)

u(kεL + εy, xn) dydxn

= |B|
∑
k∈Eε

M1∫

M0

∫

z∈kεL+εY (xn)

u(z, xn) dzdxn

= |B|
∫

Ω+
ε

u(x) dx .

��
Proposition 3.4 Let u ∈ L2(Ω+

ε ). Then, T εu ∈ L2(ΩU ) and ‖T εu‖L2(ΩU ) =√|B|‖u‖L2(Ω+
ε ).

Proof Given that u ∈ L2(Ω+
ε ) implies |u|2 ∈ L1(Ω+

ε ). From, the above proposition, we get
∫

ΩU

|T εu|2dxdy =
∫

ΩU

T ε|u|2 dxdy = |B|
∫

Ω+
ε

|u|2 dx .

This implies

‖T εu‖L2(ΩU ) = √|B|‖u‖L2(Ω+
ε ).

��
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Proposition 3.5 Let u ∈ H1(Ω+
ε ). Then, T εu ∈ L2(B; H1(G). Moreover,

∂

∂xn
T εu =

T ε ∂u

∂xn
and

∂

∂y j
T εu = ε j T

ε ∂u

∂x j
, for j = 1, 2, . . . , n − 1.

Proof Since there is no oscillation in xn direction (and hence no unfolding), we obtain that
∂

∂xn
T εu = T ε ∂u

∂xn
. Now, we have

‖T εu‖2
L2(B;H1(G))

=
∫

B

‖T εu‖2
H1(G)

dx ′

=
∫

ΩU

⎛
⎝

n−1∑
j=1

ε2
j T

ε

∣∣∣∣
∂u

∂x j

∣∣∣∣
2

+ T ε

∣∣∣∣
∂u

∂xn

∣∣∣∣
2

+ T ε|u|2
⎞
⎠ dxdy

=
∫

ΩU

T ε

⎛
⎝

n−1∑
j=1

ε2
j

∣∣∣∣
∂u

∂xi

∣∣∣∣
2

+
∣∣∣∣
∂u

∂xn

∣∣∣∣
2

+ |u|2
⎞
⎠ dxdy

= |B|
∫

Ω+
ε

⎛
⎝

n−1∑
j=1

ε2
j

∣∣∣∣
∂u

∂x j

∣∣∣∣
2

+
∣∣∣∣
∂u

∂xn

∣∣∣∣
2

+ |u|2
⎞
⎠ dx

≤ |B|‖u‖2
H1(Ω+

ε )
< ∞.

��

Proposition 3.6 Let u ∈ L2(Ω+). Then, T εu → u in L2(ΩU ). More generally, let uε → u
in L2(Ω+). Then, T εuε → u in L2(ΩU ).

Proof To see the first part of the theorem, consider φ ∈ D(Ω+).

sup
(x,y)∈ΩU

|(T εφ)(x ′, xn, y) − φ(x ′, xn)| = sup
(x,y)∈ΩU

|φ
(
ε
[
x ′
ε

]
L

+ εy, xn
)

− φ(x ′, xn)|
≤ mφ(|εL|),

where mφ is the modulus of continuity of the function φ which is defined as

mφ(δ) = sup
z1,z2∈Ω+

{|φ(z1) − φ(z2)|: |z1 − z2| < δ} .

Since φ is uniformly continuous in Ω+, mφ(|εL|) → 0 as ε → 0. Hence,

sup
ΩU

|T εφ − φ| → 0 as ε → 0

and thus,

T εφ → φ in L2(ΩU ) ∀ φ ∈ D(Ω+).
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The density of D(Ω+) in L2(Ω+) completes the proof of the first part. Now, suppose that
uε → u in L2(Ω+). Then,

‖T εuε − u‖L2(ΩU ) = ‖T εuε − T εu + T εu − u‖L2(ΩU )

≤ ‖T εuε − T εu‖L2(ΩU ) + ‖T εu − u‖L2(ΩU )

= ‖T ε(uε − u)‖L2(ΩU ) + ‖T εu − u‖L2(ΩU )

= √|B|‖uε − u‖L2(Ω+
ε ) + ‖T εu − u‖L2(ΩU ), by Proposition 3.4

≤ √|B|‖uε − u‖L2(Ω+) + ‖T εu − u‖L2(ΩU )

→ 0 as ε → 0.

��

Under weak convergence, we have the following result.

Proposition 3.7 Let, for every ε, uε ∈ L2(Ω+
ε ) be such that T εuε ⇀ u weakly in L2(ΩU ).

Then,

ũε ⇀
1

|B|
∫

y∈Y (xn)

u(x ′, xn, y) dy

weakly in L2(Ω+). Here, ũε is the zero extension of uε to Ω+.

Proof Let ψ ∈ D(Ω+), then,
∫

Ω+
ũεψ = 1

|B|
∫

ΩU

T εuεT
εψ

→ 1

|B|
∫

ΩU

uψ as ε → 0, by Proposition 3.6

=
∫

B

M1∫

M0

⎛
⎜⎝ 1

|B|
∫

y∈Y (xn)

u dy

⎞
⎟⎠ψ dxndx

′

=
∫

Ω+

⎛
⎜⎝ 1

|B|
∫

y∈Y (xn)

u dy

⎞
⎟⎠ψ dxndx

′ ∀ψ ∈ D(Ω+)

This completes the proof as D(Ω+) is dense in L2(Ω+). ��

Proposition 3.8 Let uε ∈ H1(Ω+
ε ) for every ε > 0 be such that T εuε ⇀ u weakly in

L2(B; H1(G)). Then, ũε ⇀
1

|B|
∫

Y (xn)
u dy and

∂̃uε

∂xn
⇀

1

|B|
∫

Y (xn)

∂u

∂xn
dy weakly in

L2(Ω+).

Proof Given that T εuε ⇀ u weakly in L2(B; H1(G)), which implies

T εuε ⇀ u and
∂

∂xn
T εuε ⇀

∂u

∂xn
weakly in L2(ΩU ).

123



Generalization of unfolding operator for highly oscillating… Page 9 of 30  86 

That is,

T εuε ⇀ u and T ε ∂uε

∂xn
⇀

∂u

∂xn
weakly in L2(ΩU ).

Using Proposition 3.7, we get ũε ⇀
1

|B|
∫

Y (xn)
u dy in L2(Ω+) and

∂̃uε

∂xn
⇀

1

|B|
∫

Y (xn)

∂u

∂xn
dy in L2(Ω+). ��

3.1 Unfolding on the boundary

We, now define the boundary unfolding operator on Γε, that is, on the common boundary of
Ω+

ε and Ω−.

Definition 3.9 Let φε
M0

: B × Y (M0) → Γε be defined by (x ′, y) → ε
[
x ′
ε

]
L

+ εy. The

ε-unfolding of a function u:Γε → R is the function u ◦ φε
M0

: B × Y (M0) → R denoted by
T ε
M0

is defined as

T ε
M0

: {u:Γε → R} → {v: B × Y (M0) → R}

by

T ε
M0

u = u ◦ φε
M0

= u
(
ε
[
x ′
ε

]
L

+ εy
)

.

IfU is an open subset of R
n−1 such that Γε ⊂ U and u:U → R then T ε

M0
u = T ε

xn=M0

(
u|Γε

)
.

The properties of boundary unfolding are given below. We omit the proofs here, as they are
similar to that of unfolding operators.

Proposition 3.10 1. T ε
M0

is linear.
2. Let u,v be functions from Γε → R. Then, T ε

M0
(uv) = T ε

M0
(u)T ε

M0
(v).

3. Let u ∈ L2(Γ ε). Then, T ε
M0

u ∈ L2(B × Y (M0)). Moreover ‖T ε
M0

u‖L2(B×Y (M0)) =√|B|‖u‖L2(Γ ε).

4. Let u ∈ H1(Γε). Then, T ε
M0

u ∈ L2(B; H1(Y (M0))) and
∂

∂y j
T ε
M0

u = ε j T
ε
M0

∂u

∂x j
, for

j = 1, 2, . . . , n − 1.
5. Let u ∈ L2(B). Then, T ε

M0
u → u in L2(B × Y (M0)).

6. Suppose that uε → u in L2(B). Then, T ε
M0

uε → u in L2(B × Y (M0)).

7. Suppose that uε is a sequence in L2(Γε) such that T ε
M0

uε ⇀ u weakly in L2(B×Y (M0)).

Then, ũε ⇀
1

|B|
∫

Y (M0)

u dy weakly in L2(B).

In the next two sections, we study two homogenization problems, where one is a non-linear
problem posed in the domain Ωε as in Fig. 1 and other is a linear problem described in a
circular domain (see Fig. 4).
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4 Homogenization

We consider a semi linear elliptic equation in the domain Ωε:
{

− Δuε + k(uε) = fε in Ωε

∂νuε = 0 on γ +
ε ∪ Γb; uε is Γs-periodic.

(4.1)

Here, fε is a given function in L2(Ωε); k: R → R is a smooth function such that 0 < C1 <

k′(t) < C2 ∀t ∈ R; ∂ν is the outward normal derivative. By monotone operator theory (see
[41,42]), it is known that if fε ∈ L2(Ωε), then Eq. (4.1) admits a unique weak solution uε

in H1
# (Ωε). Moreover, the solution satisfies the a priori estimate, that is,

‖uε‖H1(Ωε)
≤ C‖ fε‖L2(Ω), (4.2)

where C > 0 is independent of ε. The non-linear problem is not new and it has been studied
in [30], where the author considers the branched structure domain (rectangular type). Of
course, they also do not use unfolding operators. We consider this non-linear problem in the
general domain, we have discussed in the previous section and we use unfolding operators.
From our earlier research, we have realized that unfolding operators are more suitable to such
problems.
Limit problem Let h(xn) = |Y (xn)|, where |Y (xn)| is the Lebesgue measure of the set
Y (xn) at xn ∈ (M0, M1). Here, we have chosen η such that h is a strictly positive function
in [M0, M1]. Now, Consider the space

Ŵ (Ω) =
{
ψ ∈ C∞(Ω): ψ ∈ L2(Ω),

∂ψ

∂xn
∈ L2(Ω), ψ− ∈ H1(Ω−)

}

with the inner product

〈u, v〉W = 〈hu, v〉L2(Ω+) + 〈h∂xn u, ∂xnv〉L2(Ω+)

+〈u, v〉H1(Ω−). (4.3)

Now, define W (Ω) to be the completion of Ŵ (Ω) with respect to the norm defined by the
above inner product. We can characterize the space W (Ω) as

W (Ω) =
{
ψ ∈ L2(Ω): ψ ∈ L2(Ω),

∂ψ

∂xn
∈ L2(Ω), ψ− ∈ H1(Ω−)

}
.

Note that W (Ω) is a Hilbert space with the inner product defined as in (4.3).
We, now state the limit problem. Given f0 ∈ L2(Ω), consider the partial differential

equation ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− ∂

∂xn

(
h(xn)

∂u+

∂xn

)
+ h(xn)k(u

+) = f +
0 in Ω+,

− Δu− + k(u−) = f −
0 in Ω−,

∂u+

∂ν
= 0 on Γb ∪ Γu,

u+ = u−,
h(M0)

|B|
∂u+

∂xn
= ∂u−

∂xn
on Γ0,

u is Γs′ -periodic,

(4.4)

where

u = u+χΩ+ + u−χΩ− and f0 = f +
0 χΩ+ + f −

0 χΩ− . (4.5)
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The weak formulation of the above equation is: find u ∈ W (Ω) such that
∫

Ω+

h(xn)

|B|
(

∂u+

∂xn

∂ψ

∂xn
+ k(u+)ψ

)
+
∫

Ω−
∇u− · ∇ψ + k(u−)ψ

= 1

|B|
∫

Ω+
f +
0 ψ +

∫

Ω−
f −
0 ψ (4.6)

for all ψ ∈ W (Ω). The existence of the weak solution is guaranteed again by the monotonicity
of k, similar to the case of (4.1). We have the following homogenization theorem.

Theorem 4.1 Assume fε ⇀ f −
0 weakly in L2(Ω−) and fε ≡ 0 in Ω+

ε and let uε be the
solution of the semi-linear elliptic equation (4.1). Then,

ũ+
ε ⇀

h(xn)

|B| u+
0 weakly in L2(Ω+),

˜∂u+
ε

∂xn
⇀

h(xn)

|B|
∂u+

0

∂xn
weakly in L2(Ω+),

u−
ε ⇀ u−

0 weakly in H1(Ω−),

where u0 is the unique solution of the homogenized problem (4.4), with f +
0 ≡ 0. Here, u+

ε

and u−
ε are the restrictions of uε to Ω+

ε and Ω−, respectively.

Remark 4.2 We can also consider non vanishing fε on Ω+
ε , but in this case, we need to take

fε ∈ L2(Ω) and fε → f0 strongly in L2(Ω).

Proof Recall the a priori estimate (4.2):

‖uε‖H1(Ωε)
≤ C‖ fε‖L2(Ω) (4.7)

Since fε is given to be weakly convergent, there exists a constant C > 0 independent of ε

such that ‖ fε‖L2(Ω) ≤ C . Hence, we have

‖uε‖H1(Ωε)
≤ C. (4.8)

Let us estimate T εu+
ε in the space L2(B; H1(G)) using the properties of the unfolding

operator, which we have discussed in Sect. 3. By using Proposition 3.5, we get
∥∥T εu+

ε

∥∥2
L2(B;H1(G)

≤ |B| ‖uε‖2
H1(Ωε)

. (4.9)

The boundedness of the sequence T εu+
ε in L2(B; H1(G)) follows from estimate (4.8). By

weak compactness, there exists a subsequence (still denoted by ε) such that

T εu+
ε ⇀ u+

0 weakly in L2(B; H1(G)), (4.10)

which implies

T εu+
ε ⇀ u+

0 weakly in L2(ΩU ), (4.11)

∂

∂xn
T εu+

ε ⇀
∂u+

0

∂xn
weakly in L2(ΩU ), that is,

T ε ∂u+
ε

∂xn
⇀

∂u+
0

∂xn
weakly in L2(ΩU ) (4.12)
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and for j = 1, 2, . . . , n − 1

∂

∂y j
T εu+

ε ⇀
∂u+

0

∂y j
weakly in L2(ΩU ), that is, ε j T

ε ∂u+
ε

∂x j
⇀

∂u+
0

∂y j
weakly in L2(ΩU ).

(4.13)

From the Proposition 3.5, we have
∥∥∥∥T ε ∂u+

ε

∂x j

∥∥∥∥
L2(ΩU )

= √|B|
∥∥∥∥
∂u+

ε

∂x j

∥∥∥∥
L2(Ω+

ε )

≤ √|B|‖uε‖H1(Ωε)
.

Again estimate (4.8) implies the boundedness of the sequence T ε ∂u+
ε

∂x j
in the space L2(ΩU )

for 1 ≤ j ≤ n − 1. Hence, from (4.13), we conclude that
∂u+

0

∂y j
= 0, for 1 ≤ j ≤ n − 1.

Thus, we have

ũ+
ε ⇀

1

|B|
∫

Y (xn)

u+
0 dy and

∂̃u+
ε

∂xn
⇀

1

|B|
∫

Y (xn)

∂u+
0

∂xn
dy weakly in L2(Ω+) (4.14)

with the help of Proposition 3.8. Since u+
0 is independent of y variable, we get

∫

Y (xn)

u+
0 dy = h(xn)u

+
0 and

∫

Y (xn)

∂u+
0

∂xn
dy = h(xn)

∂u+
0

∂xn
. (4.15)

Thus, (4.14) becomes

ũ+
ε ⇀

h(xn)

|B| u+
0 and

∂̃u+
ε

∂xn
⇀

h(xn)

|B|
∂u+

0

∂xn
weakly in L2(Ω+). (4.16)

We know that T ε ∂u+
ε

∂x j
is bounded in L2(ΩU ) for 1 ≤ j ≤ n−1. Hence, by weak compactness,

there is an element Pj ∈ L2(ΩU ) such that up to subsequence (still denoted by ε),

T ε ∂u+
ε

∂x j
⇀ Pj weakly in L2(ΩU ) for 1 ≤ j ≤ n − 1. (4.17)

Since k satisfies |k(t)| ≤ C(1 + |t |) ∀ t ∈ R, we have T εk(u+
ε ) = k(T εu+

ε ) is uniformly
bounded in L2(ΩU ) as T εu+

ε is bounded in L2(ΩU ). Hence, there exists a ζ in L2(ΩU ) such
that

T εk(u+
ε ) ⇀ ζ in L2(ΩU ) (4.18)

Using the estimate of ‖uε‖H1(Ωε)
, we have the boundedness of u−

ε in the space H1(Ω−).
Thus, up to a subsequence (still denoted by ε)

u−
ε ⇀ u−

0 weakly in H1(Ω−). (4.19)

Define u0 as

u0(x) = u+
0 χΩ+ + u−

0 χΩ− (4.20)

Claim 1 u0 ∈ W (Ω) and satisfies the limit problem (4.4).
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We know that u0 ∈ L2(Ω) and
∂u−

0

∂x j
∈ L2(Ω−) for 1 ≤ j ≤ n. To prove u0 ∈ W (Ω),

we need to show
∂u0

∂xn
∈ L2(Ω). Note that u+

0 is independent of y variable and so is
∂u+

0

∂xn
.

Hence, we have
∂u+

0

∂xn
∈ L2(Ω+) and also

∂u−
0

∂xn
∈ L2(Ω−). Thus, to show

∂u0

∂xn
∈ L2(Ω), it is

enough to prove that the trace of u+
0 and u−

0 are equal on Γ0. Since u+
ε |Γε = u−

ε |Γε implies the
equality of trace for the boundary unfolding operator, we have T ε

M0

(
u+

ε |Γε

) = T ε
M0

(
u−

ε |Γε

)
.

That is,

(
T ε(u+

ε )
) |xn=M0 = T ε

M0

(
u−

ε |Γε

)
. (4.21)

From the weak continuity of trace operator, we can write

(
T ε(u+

ε )
) |xn=M0 ⇀ u+

0 |xn=M0 weakly in L2(B × Y (M0))

and from (4.19), we get

uε
−|xn=M0 → u−|xn=M0 strongly in L2(B).

This implies

T ε
M0

(
uε

−|xn=M0

) → u−
0 |xn=M0 in L2 (B × Y (M0)) .

Passing to the limit in (4.21) as ε → 0, we get

u+
0 |xn=M0 = u−

0 |xn=M0 in L2(B),

since u+
0 and u−

0 are independent of y variable. This shows that
∂u0

∂xn
∈ L2(Ω). Thus, we

proved the claim.
Identification of the limit Pj in (4.17).
For φ ∈ D(Ω+), choose a test function φε

j (x) = ε jφ(x){ x j
ε j

}, for 1 ≤ j ≤ n − 1, in such a

way that φε
j is continuous on Ω+

ε . By applying unfolding operator on φε
j and by Proposition

3.5, we get

T εφε
j = ε j y j T

εφ,

T ε
∂φε

j

∂x j
= 1

ε j

∂

∂y j
T εφε

j = ε j y j T
ε ∂φ

∂x j
+ T εφ,

T ε
∂φε

j

∂xi
= 1

εi

∂

∂yi
T εφε

j = ε j y j T
ε ∂φ

∂xi
, i �= j, 1 ≤ i ≤ n − 1

T ε
∂φε

j

∂xn
= ε j y j T

ε ∂φ

∂xn
.

Let us recall the variational formulation of (4.1) with the test function φ̃ε
j .

∫

Ω+
ε

∇uε · ∇φε
j +

∫

Ω+
ε

k(uε)φ
ε
j = 0, as φε

j = 0 in Ω− (4.22)
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Now notice,
∫

Ω+
ε

∇u+
ε · ∇φε

j = 1

|B|
∫

ΩU

n−1∑
i=0,i �= j

(
T ε ∂u+

ε

∂xi
T ε

∂φε
j

∂xi

)
+ T ε ∂u+

ε

∂x j
T ε

∂φε
j

∂x j
+ T ε ∂u+

ε

∂xn
T ε

∂φε
j

∂xn

= 1

|B|
∫

ΩU

n−1∑
i=0,i �= j

T ε ∂u+
ε

∂xi
ε j y j T

ε ∂φ

∂xi
+ T ε ∂u+

ε

∂x j

(
ε j y j T

ε ∂φ

∂x j
+ T εφ

)

+ T ε ∂u+
ε

∂xn
ε j y j T

ε ∂φ

∂xn
,

∫

Ω+
ε

k(uε)φ
ε
j = 1

|B|
∫

ΩU

T εk(u+
ε ) T εφε

j

= 1

|B|
∫

ΩU

ε j y j T
εk(u+

ε ) T εφ.

Equation (4.22) gives,

∫

ΩU

T ε ∂u+
ε

∂x j
T εφ = −

∫

ΩU

n−1∑
i=0,i �= j

ε j y j T
ε ∂u+

ε

∂xi
T ε ∂φ

∂xi
+ ε j y j T

ε ∂u+
ε

∂x j
T ε ∂φ

∂x j

+ ε j y j T
ε ∂u+

ε

∂xn
T ε ∂φ

∂xn
−
∫

ΩU

ε j y j T
εk(u+

ε ) T εφ.

This implies,
∣∣∣∣∣∣∣

∫

ΩU

T ε ∂u+
ε

∂x j
T εφ

∣∣∣∣∣∣∣
≤ ε jC‖T εφ‖L2(B;H1(G)).

Hence,

lim
ε→0

∫

ΩU

T ε ∂u+
ε

∂x j
T εφ =

∫

ΩU

Pjφ = 0 ∀φ ∈ D(Ω+).

Thus, we conclude that
∫

Y (xn)
Pjdy ≡ 0 on Ω+ for j = 1, 2, . . . , n − 1.

Next, we derive the limit of the non-linear term.

Claim 2
∫

Y (xn)
ζ dy = hk(u+

0 ) in L2(ΩU ): let φ ∈ C1(Ω). Here, we use Browder–Minty

method using the monotonicity of k (see [24,31]). We have
∫

Ω−
|∇u−

ε − ∇φ|2 +
∫

Ω+
ε

|∂xn u+
ε − ∂xnφ|2 +

∫

Ω+
ε

|∇x ′u+
ε |2

+
∫

Ω−
(k(uε) − k(φ))(uε − φ) +

∫

Ω+
ε

(k(uε) − k(φ))(uε − φ) ≥ 0.

By applying unfolding, we get
∫

Ω−
|∇u−

ε − ∇φ|2 + 1

|B|
∫

ΩU

|T ε∂xn uε − T ε∂xnφ|2 + |T ε∇x ′uε|2

+
∫

Ω−
(k(uε) − k(φ))(uε − φ) + 1

|B|
∫

ΩU

(T εk(uε) − T εk(φ))(T εu+
ε − T εφ) ≥ 0.
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Upon expanding the above inequality, we obtain
∫

Ω−

(|∇uε|2 + k(uε)uε

)+ 1

|B|
∫

ΩU

(|T ε∇u+
ε |2 + T εk(u+

ε )T εu+
ε

)

+
∫

Ω−

(|∇φ|2 − 2∇uε∇φ + k(φ)φ − k(uε)φ − k(φ)uε

)

+ 1

|B|
∫

ΩU

(|T ε∂xnφ|2 − 2T ε∂xn u
+
ε T

ε∂xnφ + T εk(φ)T εφ

− T εk(u+
ε )T εφ − T εk(φ)T εu+

ε ) ≥ 0. (4.23)

Now, let us recall the variational formulation:
∫

Ω−
∇uε∇φ + k(uε)φ +

∫

Ω+
ε

∇uε∇φ + k(uε)φ =
∫

Ω−
fεφ.

On applying unfolding,
∫

Ω−
∇u−

ε ∇φ + k(u−
ε )φ + 1

|B|
∫

ΩU

(
T ε∇u+

ε T
ε∇φ + T εk(u+

ε )T εφ
) =

∫

Ω−
fεφ.

Using the convergence of T εuε and u−
ε , we can pass to the limit in the above equation and

obtain
∫

Ω−
∇u−

0 ∇φ + k(u−
0 )φ + 1

|B|
∫

ΩU

(∂xn u
+
0 ∂xnφ + ζφ) =

∫

Ω−
f0φ ∀φ ∈ C1(Ω).

As C1(Ω) is dense in W (Ω), we have (choosing φ = u0)
∫

Ω−
|∇u−

0 |2 + k(u−
0 )u−

0 + 1

|B|
∫

ΩU

(|∂xn u+
0 |2 + ζu+

0

) =
∫

Ω−
f0u

−
0 . (4.24)

Note that

lim
ε→0

[∫

Ω−
|∇uε|2 + k(uε)uε + 1

|B|
∫

ΩU

(|T ε∇u+
ε |2 + T εk(u+

ε )T εu+
ε

)]

= lim
ε→0

∫

Ω−
fεuε

=
∫

Ω−
f0u

−
0

=
∫

Ω−
|∇u−

0 |2 + k(u−
0 )u−

0 + 1

|B|
∫

ΩU

(|∂xn u+
0 |2 + ζu+

0

)
(4.25)

Now, we utilize (4.25) in passing to the limit in the first line of the equality (4.23). In the
other components, we just apply weak convergence of T εu−

ε and u−
ε , in respective spaces.

Thus,
∫

Ω−
|∇u−

0 − ∇φ|2 + 1

|B|
∫

ΩU

|∂xn u+
0 − ∂xnφ|2 +

∫

Ω−
(k(u−

0 ) − k(φ))(u−
0 − φ)

+ 1

|B|
∫

ΩU

(ζ − k(φ))(u+
0 − φ) ≥ 0.
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The above inequality is true for all φ ∈ W (Ω), as C1(Ω) is dense in W (Ω). Now, for a fixed
ψ ∈ C1(Ω), choose φ = u0 − λψ , λ > 0, to get

λ

∫

Ω−
|∇ψ |2 + λ

|B|
∫

ΩU

|∂xnψ |2 +
∫

Ω−

(
k(u−

0 ) − k(u−
0 − λψ)

)
ψ

+ 1

|B|
∫

ΩU

(
ζ − k(u+

0 − λψ)
)
ψ ≥ 0 ∀ ψ ∈ C1(Ω).

As λ → 0,

1

|B|
∫

ΩU

(ζ − k(u+
0 ))ψ ≥ 0 ∀ ψ ∈ C1(Ω).

Hence,
∫

Y (xn)
ζ dy = h(xn)k(u

+
0 ).

Claim 3 u0 satisfies the limit equation: Choose a test function ψ ∈ C∞(Ω) in the variational
formulation of (4.1). Now, using the above limit analysis, we get
∫

Ωε

∇uε · ∇ψ +
∫

Ωε

k(uε)ψ =
∫

Ω+
ε

∇u+
ε · ∇ψ +

∫

Ω+
ε

k(u+
ε )ψ +

∫

Ω−
∇u−

ε · ∇ψ + k(u−
ε )ψ

= 1

|B|
∫

ΩU

⎛
⎝

n−1∑
j=1

T ε ∂u+
ε

∂x j
T ε ∂ψ

∂x j
+ T ε ∂u+

ε

∂xn
T ε ∂ψ

∂xn

⎞
⎠

+ 1

|B|
∫

ΩU

T εk(u+
ε )T εψ +

∫

Ω−
(∇u−

ε · ∇ψ + k(u−
ε )ψ)

→ 1

|B|
∫

ΩU

∂u+
0

∂xn

∂ψ

∂xn
+ 1

|B|
∫

ΩU

k(u+
0 )ψ

+
∫

Ω−

(∇u0
− · ∇ψ + k(u−

0 )ψ
)

(4.26)

and ∫

Ωε

fεψ →
∫

Ω−
f −
0 ψ. (4.27)

Hence,

1

|B|
∫

ΩU

∂u+
0

∂xn

∂ψ

∂xn
+
∫

Ω+
h(xn)

|B| k(u+
0 )ψ +

∫

Ω−
∇u−

0 · ∇ψ + k(u−
0 )ψ =

∫

Ω−
f −
0 ψ,

which implies

∫

Ω+

h(xn)

|B|

(
∂u+

0

∂xn

∂ψ

∂xn
+ k(u+

0 )ψ

)
+
∫

Ω−
∇u−

0 · ∇ψ + k(u−
0 )ψ =

∫

Ω−
f −
0 ψ

∀ ψ ∈ C∞(Ω). Since C∞(Ω) is dense in W (Ω), the above equality is true for all ψ in
W (Ω). Therefore, u0 satisfies the differential equation (4.4) with f +

0 ≡ 0. ��
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Fig. 4 Circular oscillating
domain Oε

5 Oscillating circular boundary domain and problem description

In this section, we consider a circular domain whose boundary is highly oscillating. As
discussed in the introduction, the literature in the circular domain is limited (see [29,37,
43]). In [29], the amplitude of the oscillations is of order ε and in [37,43], the authors
have studied homogenization problem on a domain with highly oscillating interfaces. But,
we consider, oscillations of O(1). Our novelty in the study is the development of suitable
unfolding operator. Using the unfolding operator, thus developed, we study the corresponding
homogenization. The ideas of the unfolding operator comes from the previous section, but,
we need to develop it in the set up of polar co-ordinates to apply it in circular domains. In
fact, this is one of the major advantages of our approach of defining unfolding operators in
smooth oscillating boundaries.

For a small parameter ε = 2π
N , N ∈ Z

+, we consider an oscillating boundary domain
Oε as given in the Fig. 4. We now describe the domain Oε and its boundaries as follows.
Let g: R → R be a smooth and periodic function with period 2π and η be a smooth real
valued function defined on [0, 2π ] such that it takes the maximum at the end points, that is,
η(0) = η(2π) = r1 =: maxθ∈[0,2π ] η(θ). Also assume that the function r1 − η is compactly
supported in (0, 2π). Now extend η to the whole real line periodically with period 2π .

Let r0 =: minθ∈[0,2π ] η(θ) and m < minθ∈[0,2π ] g(θ), with 0 < r0 < r1 < m. Now,
define the domain Oε as

Oε = {
(r, θ) ∈ R

2: 0 < θ ≤ 2π, ηε(θ) = η
(

θ
ε

)
< r < g(θ)

}
.

Typically, Oε consists of an annulus type region bounded by the inner circle of radius r1 and
outer boundary given by g; and an oscillating region bounded by the outer circle of radius
r1 and the oscillating inner boundary defined by ηε. The oscillating inner boundary of Oε

denoted by γε is given by

γε = {(r, θ): θ ∈ [0, 2π ], r = ηε(θ)} .

The fixed outer boundary Γu of Oε is defined by

Γu = {(r, θ): r = g(θ), θ ∈ [0, 2π]} .

123



 86 Page 18 of 30 S. Aiyappan et al.

Let O+
ε be the oscillating part of the domain Oε , which is

O+
ε = {

(r, θ) ∈ R
2: 0 < θ ≤ 2π, ηε(θ) < r < r1

}
.

The reference set Y (a), for a ∈ (r0, r1), is defined as Y (a) = {τ ∈ [0, 2π]: η(τ) < a}. Note
that Y (a) is Lebesgue measurable as η is assumed to be a smooth function. Denote O−, the
fixed part of the domain Oε , which is described by

O− = {(r, θ): 0 < θ ≤ 2π, r1 < r < g(θ)} .

The inner boundary of O− denoted by Γ0 is defined as

Γ0 = {(r1, θ): 0 ≤ θ ≤ 2π} .

The common boundary Γε is defined as

Γε = {(r, θ) ∈ Oε: r = r1}
We can also write Oε as

Oε = I nt
(
O+

ε ∪ O−
)

.

The full domain or the limiting domain O is described by

O = {(r, θ): 0 < θ ≤ 2π, r0 < r < g(θ)} .

The inner part of the limit domain O+ is defined by

O+ = {(r, θ): 0 < θ ≤ 2π, r0 < r < r1} .

The boundaries of O are Γu and Γb, where

Γb = {(r0, θ): 0 ≤ θ ≤ 2π}
and Γu is same as defined earlier. The reference cell D is defined as, D =: {(r, θ): η(θ) <

r < r1, 0 < θ ≤ 2π} (Fig. 5).

Fig. 5 Reference domain D
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6 Unfolding operator and its properties

We, now define the relevant periodic unfolding operator (T ε) and the boundary unfolding
operator (T ε

r1
) in the circular domain with highly oscillating smooth boundary which we have

described in Sect. 5, to study the asymptotic behaviour of the solution of PDEs. We, also look
into some of its important properties which are required for our analysis in Sect. 7. Let us
define the unfolded (fixed) domain Ou , where the unfolded functions are defined, as below.
Let G = {(r, τ ): r ∈ (r0, r1), τ ∈ Y (r)}, then, Ou is defined as Ou = (0, 2π) × G, which
can be written as

Ou =: {(r, θ, τ )| 0 < θ < 2π, r0 < r < r1, τ ∈ Y (r)} .

For x ∈ R, we write [x]2π as the integer part of x with respect to 2π , that is, [x]2π = 2kπ ,
where k is the largest integer such that 2kπ ≤ x and {x}2π = x − [x]2π .

Definition 6.1 (The unfolding operator) Let φε:Ou → O+
ε be defined by (r, θ, τ ) →(

r, ε
[

θ
ε

]
2π

+ ετ
)
. The ε-unfolding of a function u:O+

ε → R is the function u◦φε:Ou → R.
The operator which maps every function u:O+

ε → R to its ε-unfolding is called the unfolding
operator. Let the unfolding operator be denoted by T ε , that is,

T ε: {u:O+
ε → R} → {v:Ou → R

}

defined by

(T εu)(r, θ, τ ) = (u ◦ φε)(r, θ, τ ) = u
(
r, ε

[
θ
ε

]
2π

+ ετ
)
.

If U is an open subset of R
2 containing O+

ε and u is a real valued function on U , T εu will
mean T ε acting on the restriction of u to O+

ε . Some of the properties of T ε are given below.

Proposition 6.2 For each fixed ε > 0, T ε is linear and T ε(uv) = T ε(u)T ε(v), where
u, v:O+

ε → R.

The proof follows directly from the Definition 6.1.

Proposition 6.3 Let u ∈ L1(O+
ε ). Then,

∫

Ou

T εu rdrdθdτ = 2π

∫

O+
ε

u rdrdθ.
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Proof

∫

Ou

T εu rdrdθdτ =
r1∫

r0

∫

τ∈Y (r)

2π∫

0

u
(
r, ε

[
θ
ε

]
2π

+ ετ
)
rdθdτdr

=
r1∫

r0

∫

τ∈Y (r)

N−1∑
k=0

2(k+1)επ∫

θ=2kεπ

u(r, 2kεπ + ετ) rdθdτdr

=
N−1∑
k=0

2(k+1)επ∫

θ=2kεπ

dθ

r1∫

r0

∫

τ∈Y (r)

u(r, 2kεπ + ετ) dτrdr

= 2πε

N−1∑
k=0

r1∫

r0

∫

τ∈Y (r)

u(r, 2kεπ + ετ) dτrdr

= 2π

N−1∑
k=0

r1∫

r0

∫

z∈2kεπ+εY (r)

u(r, z) rdrdθ

= 2π

∫

O+
ε

u(r, θ) rdrdθ.

��
Now, for any u ∈ L2(O+

ε ) implies |u|2 ∈ L1(O+
ε ). Hence, from the above proposition, we

get
∫

Ou

|T εu|2 rdrdθ =
∫

Ou

T ε|u|2 rdrdθ = 2π

∫

O+
ε

|u|2 rdrdθ.

This implies that ‖T εu‖L2(Ou)
= √

2π‖u‖L2(O+
ε ) and thus we have the following proposi-

tion.

Proposition 6.4 Let u ∈ L2(O+
ε ). Then T εu ∈ L2(Ou)and‖T εu‖L2(Ou )

=√
2π‖u‖L2(O+

ε ).

Proposition 6.5 Let u,
∂u

∂r
,
∂u

∂θ
∈ L2(O+

ε ). Then, T εu,
∂

∂r
T εu,

∂

∂τ
T εu ∈ L2(Ou). More-

over,
∂

∂r
T εu = T ε ∂u

∂r
and

∂

∂τ
T εu = εT ε ∂u

∂θ
.

Proof By using the Definition 6.1, we can easily check that
∂

∂r
T εu = T ε ∂u

∂r
and

∂

∂τ
T εu =

εT ε ∂u

∂θ
. By the Proposition 6.4, we have ‖T εu‖L2(Ou)

= √
2π‖u‖L2(O+

ε ),

∥∥∥∥T ε ∂u

∂r

∥∥∥∥
L2(Ou)

=
√

2π

∥∥∥∥
∂u

∂r

∥∥∥∥
L2(O+

ε )

and

∥∥∥∥T ε ∂u

∂τ

∥∥∥∥
L2(Ou)

= ε
√

2π

∥∥∥∥
∂u

∂θ

∥∥∥∥
L2(O+

ε )

. Hence, the result follows from

the hypothesis. ��
Proposition 6.6 Let u ∈ L2(O+). Then, T εu → u in L2(Ou). More generally, if yε → y
in L2(O+), then T ε yε → y in L2(Ou).
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Proof Consider φ ∈ D(O+).

sup
(r,θ,τ )∈Ou

|(T εφ)(r, θ, τ ) − φ(r, θ)| = sup
(r,θ,τ )∈Ou

∣∣φ(r, ε[ θ
ε
]2π + ετ) − φ(r, θ)

∣∣

≤ mφ(2πε),

where mφ is the modulus of continuity of the function φ which is defined as

mφ(δ) = sup
z1,z2∈O+

{|φ(z1) − φ(z2)| : |z1 − z2| < δ} .

Since, φ is uniformly continuous in O+, mφ(2πε) → 0 as ε → 0. Hence,

sup
Ou

|T εφ − φ| → 0 as ε → 0.

Thus, T εφ → φ in L2(Ou) ∀ φ ∈ D(O+). The density of D(O+) in L2(O+) completes the
first part of the proposition. To see the second part, suppose that yε → y in L2(O+). Then,

‖T ε yε − y‖L2(Ou )
= ‖T ε yε − T ε y + T ε y − y‖L2(Ou)

≤ ‖T ε yε − T ε y‖L2(Ou )
+ ‖T ε y − y‖L2(Ou)

= ‖T ε(yε − y)‖L2(Ou )
+ ‖T ε y − y‖L2(Ou )

= √
2π‖yε − y‖L2(O+

ε ) + ‖T ε y − y‖L2(Ou)
(by Proposition 6.4)

≤ √
2π‖yε − y‖L2(O+) + ‖T ε y − y‖L2(Ou)

→ 0 as ε → 0.

��
Proposition 6.7 Let, for every ε, yε ∈ L2(O+

ε ) be such that T ε yε ⇀ y weakly in L2(Ou).
Then,

ỹε ⇀
1

2π

∫

τ∈Y (r)

y(r, θ, τ ) dτ

weakly in L2(O+). Here, ỹε is the zero extension of yε to O+.

Proof Let ψ ∈ D(O+). Then,
∫

O+
ỹεψ rdrdθ = 1

2π

∫

Ou

T ε yεT
εψ rdrdθ

→ 1

2π

∫

Ou

yψ rdrdθ as ε → 0, (by Propositions 6.2, 6.3 and 6.6)

=
2π∫

0

r1∫

r0

⎛
⎜⎝ 1

2π

∫

τ∈Y (r)

y dτ

⎞
⎟⎠ψ rdrdθ

=
∫

O+

⎛
⎜⎝ 1

2π

∫

τ∈Y (r)

y dτ

⎞
⎟⎠ψ rdrdθ ∀ψ ∈ D(O+)

This completes the proof as D(O+) is dense in L2(O+). ��
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We, now derive the convergence of unfolding for H1 functions.

Proposition 6.8 Let yε ∈ H1(O+
ε ) for every ε > 0 be such that T ε yε ⇀ y and

∂

∂r
T ε yε ⇀

∂y

∂r
weakly in L2(Ou). Then, ỹε ⇀

1

2π

∫

Y (r)
y dτ and

∂̃yε
∂r

⇀
1

2π

∫

Y (r)

∂y

∂r
dτ weakly in

L2(O+).

Proof Given that

T ε yε ⇀ y and
∂

∂r
T ε yε ⇀

∂y

∂r
weakly in L2(Ou).

That is,

T ε yε ⇀ y and T ε ∂yε
∂r

⇀
∂y

∂r
weakly in L2(Ou).

Using Proposition 6.7, we get ỹε ⇀
1

2π

∫

Y (r)
y dτ in L2(O+) and

∂̃yε
∂r

⇀
1

2π

∫

Y (r)

∂y

∂r
dτ

in L2(O+). ��
6.1 Unfolding on the boundary

We, now define the boundary unfolding operator on Γε, that is, on the common boundary of
O+

ε and O−.

Definition 6.9 Let φε
r1

: (0, 2π) × Y (r1) → Γε be defined by (θ, τ ) → ε
[

θ
ε

]
2π

+ ετ . The
ε-unfolding of a function u:Γε → R is the function u ◦ φε

r1
: (0, 2π) × Y (r1) → R denoted

by T ε
r1

.

T ε
r1

: {u:Γε → R} → {v: (0, 2π) × Y (r1)} → R

by

T ε
r1
u = u ◦ φε

r1
= u

(
ε
[

θ
ε

]
2π

+ ετ
)
.

If U is an open subset of R
2 such that Γε ⊂ U and u:U → R then T ε

r1
u = T ε

r1

(
u|Γε

)
.

The properties of boundary unfolding are given below without proof. In fact, all of them
can be proved analogously as above.

Proposition 6.10 1. T ε
r1
is linear.

2. Let u, v be functions from Γε → R. Then, T ε
r1

(uv) = T ε
r1

(u)T ε
r1

(v).
3. Let u ∈ L2(Γ ε). Then, T ε

r1
u ∈ L2((0, 2π)×Y (r0)). Moreover, ‖T ε

r1
u‖L2((0,2π)×Y (r0))

=√
2π‖u‖L2(Γ ε).

4. Let u ∈ H1(Γε). Then, T ε
r1
u ∈ L2(0, L; H1(Y (r0))) and

∂

∂τ
T ε
r1
u = εT ε

r1

∂u

∂θ
.

5. Let u ∈ L2(0, 2π). Then, T ε
r1
u → u in L2((0, 2π) × Y (r1)).

6. Suppose that uε → u in L2(0, 2π). Then, T ε
r1
uε → u in L2((0, 2π) × Y (r1)).

7. Suppose that uε is a sequence in L2(Γε) such that T ε
r1
uε ⇀ u weakly in L2((0, 2π) ×

Y (r1)). Then, ũε ⇀
1

2π

∫

Y (r1)

u dτ weakly in L2(0, 2π).
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7 Homogenization

The homogenization of the following Laplace equation in the domain Oε is the topic of
discussion in this section. We use unfolding operator developed in the last section to carry
out the analysis. Thus, consider

{
− Δyε + yε = fε in Oε

∂ν yε = 0 on ∂Oε.
(7.1)

Here, fε is a given function in L2(Oε); ∂ν is the outward normal derivative. It is known that,
if fε ∈ L2(Oε), then the Eq. (7.1) admits a unique weak solution yε in H1(Oε). The solution
operator is linear and continuous from L2(Oε) into H1(Oε), that is,

‖yε‖H1(Oε)
≤ C‖ fε‖L2(Oε)

, (7.2)

where C > 0 is a constant independent of ε.
The Eq. (7.1) can be written in Polar Coordinates as follows:

⎧
⎨
⎩

− ∂2yε
∂r2 − 1

r

∂yε
∂r

− 1

r2

∂2yε
∂θ2 + yε = fε in Oε

∂ν yε = 0 on ∂Oε.

(7.3)

The variational formulation of the above equation is

∫

Oε

∂yε
∂r

∂ϕ

∂r
rdrdθ +

∫

Oε

1

r2

∂yε
∂θ

∂ϕ

∂θ
rdrdθ +

∫

Oε

yεϕ rdrdθ

=
∫

Oε

fεϕ rdrdθ ∀ ϕ ∈ H1(Oε). (7.4)

Note that, ∇ f (x0) = ∂r f (x0)êr + 1

r
∂θ f (x0)êθ where êr and êθ are the unit normal vectors

in radial and angular directions, respectively.
Limit problem Let h(r) = |Y (r)|, where |Y (r)| is the Lebesgue measure of the set Y (r)
at r ∈ (r0, r1). Here, we have chosen η such that h is a strictly positive function in [r0, r1].
Now, Consider the space

Ŵ (O) =
{
ψ ∈ C∞(O) : ψ ∈ L2(O),

∂ψ+

∂r
∈ L2(O), ψ− ∈ H1(O−)

}

with the inner product

〈u, v〉W = 〈hu, v〉L2(O+) + 〈h∂r u, ∂rv〉L2(O+) + 〈∂r u, ∂rv〉L2(O−)

+
〈

1
r2 ∂θu, ∂θ v

〉
L2(O−)

+ 〈u, v〉L2(O−). (7.5)

where, 〈u, v〉L2(O+) =: ∫O+ uv rdrdθ . Now, define W (O) to be the completion of Ŵ (O)

with respect to the norm defined by the above inner product. Hence, W (O) is a Hilbert space
with the inner product defined as in (7.5).
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Given f0 ∈ L2(O), consider the partial differential equation
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− ∂

∂r

(
h(r)

∂y+

∂r

)
− h(r)

r

∂y+

∂r
+ h(r)y+ = f +

0 in O+,

− Δy− + y− = f −
0 in O−,

∂y+

∂ν
= 0 on Γ ∪ Γb,

y+ = y−,
h(r1)

2π

∂y+

∂r
= ∂y−

∂r
on Γ0.

(7.6)

where,

y = y+χO+ + y−χO− and f0 = f +
0 χO+ + f −

0 χO− . (7.7)

The weak formulation of the above equation is: Find u ∈ W (O) such that
∫

O+

h(r)

2π

(
∂y+

∂r

∂ψ

∂r
+ y+ψ

)
rdrdθ +

∫

O−

(
∂y−

∂r

∂ψ

∂r
+ 1

r2

∂y−

∂θ

∂ψ

∂θ
+ y−ψ

)
rdrdθ

= 1

2π

∫

O+
f +
0 ψ rdrdθ +

∫

O−
f −
0 ψ rdrdθ (7.8)

∀ ψ ∈ W (O). As f0 ∈ L2(O), it defines a continuous linear functional on W (O). Then, the
Lax–Milgram lemma assists us in obtaining a unique weak solution of (7.6).

Theorem 7.1 Assume that f̃ε is uniformly bounded in L2(O) and let yε be the solution of
the Laplace equation (7.1). Then,

ỹ+
ε ⇀

h(r)

2π
y+

0 ,
˜∂y+

ε

∂r
⇀

h(r)

2π

∂y+
0

∂r
weakly in L2(O+), and

y−
ε ⇀ y−

0 weakly in H1(O−),

where y0 is the unique weak solution of the homogenized problem (7.6), f +
0 (r, θ) =∫

Y (r) f1(θ, r, τ ) dτ with f1(θ, r, τ ) is the weak limit of T ε fε in L2(Ou) and f −
0 is the

L2 weak limit of f −
ε in O−. Here, y+

ε and y−
ε are the restrictions of yε to O+

ε and O−,
respectively and f̃ε is the zero extension of fε to O.

Proof The continuity of the solution operator gives the following estimate.

‖yε‖H1(Oε)
≤ C‖ f̃ε‖L2(O). (7.9)

Since, fε is uniformly bounded, there exists a constant C > 0 independent of ε, such that
‖ fε‖L2(O) ≤ C . Hence, we have

‖yε‖H1(Oε)
≤ C. (7.10)

Let us, estimate T ε y+
ε and its derivatives in the space L2(Ou) using the properties of the

unfolding operator, which we have discussed in Sect. 6. By using Proposition 6.5, we get

‖T ε yε‖L2(Ou )
= √

2π‖yε‖L2(O+
ε ),

∥∥∥∥T ε ∂yε
∂r

∥∥∥∥
L2(Ou)

= √
2π

∥∥∥∥
∂yε
∂r

∥∥∥∥
L2(O+

ε )

and

∥∥∥∥T ε ∂yε
∂τ

∥∥∥∥
L2(Ou)

= ε
√

2π

∥∥∥∥
∂yε
∂θ

∥∥∥∥
L2(O+

ε )

. (7.11)
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By weak compactness, there exists a subsequence (still denoted by ε) such that

T ε y+
ε ⇀ y+

0 weakly in L2(Ou), (7.12)

∂

∂r
T ε y+

ε ⇀
∂y+

0

∂r
, that is, T ε ∂y+

ε

∂r
⇀

∂y+
0

∂r
weakly in L2(Ou) (7.13)

and

∂

∂τ
T ε y+

ε ⇀
∂y+

0

∂τ
, that is, εT ε ∂y+

ε

∂θ
⇀

∂y+
0

∂τ
weakly in L2(Ou). (7.14)

From the Proposition 6.5, we have
∥∥∥∥T ε ∂y+

ε

∂θ

∥∥∥∥
L2(Ou )

= √
2π

∥∥∥∥
∂y+

ε

∂θ

∥∥∥∥
L2(O+

ε )

≤ √
2π‖yε‖H1(Oε)

.

The estimate (7.10) implies the boundedness of the sequence T ε ∂y+
ε

∂θ
in the space L2(Ou).

From the convergence (7.14), it follows that
∂y+

0

∂τ
= 0. Hence, we conclude that

ỹ+
ε ⇀

1

2π

∫

Y (r)

y+
0 dτ and

∂̃y+
ε

∂r
⇀

1

2π

∫

Y (r)

∂y+
0

∂r
dτ weakly in L2(O+) (7.15)

with the help of Proposition 6.8. Since y+
0 is independent of τ variable, we write

∫

Y (r)

y+
0 dτ = h(r)y+

0 and
∫

Y (r)

∂y+
0

∂r
dτ = h(r)

∂y+
0

∂r
. (7.16)

Thus, (7.15) becomes

ỹ+
ε ⇀

h(r)

2π
y+

0 and
∂̃y+

ε

∂r
⇀

h(r)

2π

∂y+
0

∂r
weakly in L2(O+). (7.17)

We know that T ε ∂y+
ε

∂θ
is bounded in L2(Ou). Hence, by weak compactness, there is an

element P ∈ L2(Ou) such that up to subsequence (still denoted by ε),

T ε ∂y+
ε

∂θ
⇀ P weakly in L2(Ou). (7.18)

Using the estimate of ‖yε‖H1(Oε)
, we have the boundedness of y−

ε in the space H1(O−).
Thus, up to a subsequence (still denoted by ε)

y−
ε ⇀ y−

0 weakly in H1(O−). (7.19)

Define, u0 as

y0(x) =
{
y+

0 i f x ∈ O+,

y−
0 i f x ∈ O−.

(7.20)

Claim y0 ∈ W (O) and satisfies the limit problem (7.6).

We know that y0 ∈ L2(O) and
∂y0

∂r
∈ L2(O−). To prove y0 ∈ W (O), we need to show

∂y0

∂r
∈ L2(O). Note that y+

0 is independent of τ variable and so is
∂y+

0

∂r
. Hence, we have
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∂y+
0

∂r
∈ L2(O+) and also

∂y0

∂r
∈ L2(O−). Thus, to show

∂y0

∂r
∈ L2(O), it is enough to prove

the trace of y+
0 and y−

0 are equal on Γ0. Since y+
ε |Γε = y−

ε |Γε implies the equality of trace
for the boundary unfolding operator, we have T ε

r1

(
y+
ε |Γε

) = T ε
r1

(
y−
ε |Γε

)
i.e.

(
T ε(y+

ε )
) |r=r1 = T ε

r1

(
y−
ε |Γε

)
. (7.21)

From the weak continuity of trace operator, we can write
(
T ε(y+

ε )
) |r=r1 ⇀ y+

0 |r=r1 weakly in L2((0, 2π) × Y (r0))

and from (7.19), we get

yε
−|r=r1 → y−

0 |r=r1 strongly in L2(0, 2π).

This implies

T ε
r1

(
yε

−|r=r1

) → y−
0 |r=r1 in L2((0, 2π) × Y (r1)).

Passing to the limit in (7.21) as ε → 0 we get

y+
0 |r=r1 = y−

0 |r=r1 in L2(0, 2π),

since y+
0 and y−

0 are independent of τ variable.
Identification of the limit P in (7.18): finally, we identify P which is identically 0.
For φ ∈ D(O+) and ζ(z) ∈ D(0, 2π), choose ψ ∈ D(0, 2π) such that ψ ′(z) = ζ(z). Now
choose a test function

φε(r, θ) = εφ(r, θ)ψ
({

θ
ε

})
,

in such a way that φε is continuous on O+
ε . From the definition of ε-unfolding of φε and by

Proposition 6.5, we get

T εφε = εφ
(
r, ε

[
θ
ε

]+ ετ
)
ψ(τ),

T ε ∂φε

∂θ
= 1

ε

∂

∂τ
T εφε = ε

∂φ

∂θ

(
r, ε

[
θ

ε

]
+ ετ

)
ψ(τ) + φ

(
r, ε

[
θ

ε

]
+ ετ

)
ψ ′(τ ),

T ε ∂φε

∂r
= ε

∂φ

∂r

(
r, ε

[
θ

ε

]
+ ετ

)
ψ(τ).

From the above equations, we derive the following convergences, as ε → 0

T εφε → 0 in L2(Ou) (7.22)

T ε ∂φε

∂θ
→ φ(r, θ)ψ ′(τ ) in L2(Ou) (7.23)

T ε ∂φε

∂r
→ 0 in L2(Ou) (7.24)

Let us recall the variational formulation of (7.1) with the test function φε.
∫

Oε

(
∂yε
∂r

∂φε

∂r
+ 1

r2

∂yε
∂θ

∂φε

∂θ
+ yεφ

ε

)
rdrdθ =

∫

Oε

fεφ
ε rdrdθ ∀ ϕ ∈ H1(Oε)

(7.25)
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Now notice,

∫

Oε

(
∂yε
∂r

∂φε

∂r
+ 1

r2

∂yε
∂θ

∂φε

∂θ

)
rdrdθ =

∫

O+
ε

(
∂yε
∂r

∂φε

∂r
+ 1

r2

∂yε
∂θ

∂φε

∂θ

)
rdrdθ

= 1

2π

∫

Ou

(
T ε ∂y+

ε

∂r
T ε ∂φε

∂r
+ 1

r2 T
ε ∂y+

ε

∂θ
T ε ∂φε

∂θ

)
rdrdθdτ

→ 1

2π

∫

Ou

P φ(r, θ)ψ ′(τ ) rdrdθdτ as ε → 0; (7.26)

∫

Oε

yεφ
ε rdrdθ =

∫

O+
ε

y+
ε φε rdrdθ = 1

2π

∫

Ou

T ε y+
ε T εφε rdrdθdτ → 0 as ε → 0

(7.27)

and
∫

Oε

fεφ
ε rdrdθ =

∫

O+
ε

fεφ
ε rdrdθ = 1

2π

∫

Ou

T ε fε T
εφε rdrdθdτ → 0 as ε → 0.

(7.28)

Combining (7.26), (7.27) and (7.28), we get,
∫
Ou

P φ(r, θ)ψ ′(τ ) = 0, which implies

∫

O+

⎛
⎜⎝
∫

Y (r)

Pψ ′(τ ) dτ

⎞
⎟⎠φ(θ, r) rdrdθ = 0 ∀ φ ∈ D(O+).

That is,
∫

Y (r)

P(r, θ, τ )ψ ′(τ ) = 0.

Hence,
∫

Y (r)

P(r, θ, τ )ζ(τ ) dτ = 0 a.e. (r, θ) ∈ O+, ζ ∈ D(0, 2π).

Thus, P ≡ 0 a.e. on O+
Claim y0 satisfies the limit equation: Choose a test function ψ ∈ C∞(O) in the variational
formulation of the Polar form of (7.3), which is given by

∫

Oε

(
∂yε
∂r

∂ψ

∂r
+ 1

r2

∂yε
∂θ

∂ψ

∂θ
+ yεψ

)
rdrdθ

:=
∫

O+
ε

(
∂yε
∂r

∂ψ

∂r
+ 1

r2

∂yε
∂θ

∂ψ

∂θ
+ yεψ

)
rdrdθ

+
∫

O−

(
∂yε
∂r

∂ψ

∂r
+ 1

r2

∂yε
∂θ

∂ψ

∂θ
+ yεψ

)
rdrdθ =

∫

Oε

fεψ rdrdθ
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Consider the first 3 terms, to get
∫

O+
ε

(
∂yε
∂r

∂ψ

∂r
+ 1

r2

∂yε
∂θ

∂ψ

∂θ
+ yεψ

)
rdrdθ

= 1

2π

∫

Ou

(
T ε ∂y+

ε

∂r
T ε ∂ψ

∂r
+ 1

r2 T
ε ∂y+

ε

∂θ
T ε ∂ψ

∂θ
+ T ε y+

ε T εψ

)
rdrdθdτ

→ 1

2π

∫

Ou

(
∂y+

0

∂r

∂ψ

∂r
+ y+

0 ψ

)
rdrdθdτ.

The next 3 terms satisfies
∫

O−

(
∂yε
∂r

∂ψ

∂r
+ 1

r2

∂yε
∂θ

∂ψ

∂θ
+ yεψ

)
rdrdθ

→
∫

O−

(
∂y−

0

∂r

∂ψ

∂r
+ 1

r2

∂y−
0

∂θ

∂ψ

∂θ
+ y−

0 ψ

)
rdrdθ (7.29)

and finally,
∫

Oε

fεψ rdrdθ =
∫

O+
ε

fεψ rdrdθ +
∫

O−
fεψ rdrdθ

= 1

2π

∫

Ou

T ε fε T
εψ rdrdθdτ +

∫

O−
fεψ rdrdθ

→ 1

2π

∫

Ou

f1ψ rdrdθdτ +
∫

O−
f −
0 ψ rdrdθ. (7.30)

Hence, as ε → 0, the limit variational formulation becomes

1

2π

∫

Ou

(
∂y+

0

∂r

∂ψ

∂r
+ y+

0 ψ

)
rdrdθdτ

+
∫

O−

(
∂y−

0

∂r

∂ψ

∂r
+ 1

r2

∂y−
0

∂θ

∂ψ

∂θ
+ y−

0 ψ

)
rdrdθ

= 1

2π

∫

Ou

f1ψ rdrdθdτ +
∫

O−
f −
0 ψ rdrdθ. (7.31)

That is, y0 satisfies the equation

∫

O+

h(r)

2π

(
∂y+

0

∂r

∂ψ

∂r
+ y+

0 ψ

)
rdrdθ

+
∫

O−

(
∂y−

0

∂r

∂ψ

∂r
+ 1

r2

∂y−
0

∂θ

∂ψ

∂θ
+ y−

0 ψ

)
rdrdθ

= 1

2π

∫

O+
f +
0 ψ rdrdθ +

∫

O−
f −
0 rdrdθψ (7.32)
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∀ ψ ∈ C∞(O), where f +
0 (r, θ) = ∫

Y (r) f1(r, θ, τ ) dτ . As we know that C∞(O) is dense in
W (O), the above equation is true for all ψ in W (O). Therefore, y0 satisfies (7.6). ��

8 Conclusions

In this article, the major contribution is the development of unfolding operators in domains
with smooth and highly oscillating boundaries. Then, the unfolding operators, thus developed
have used to study the homogenization problems in such domains. Such unfolding operators
with smooth oscillating boundaries is completely new to our knowledge. This novel approach
is very handy to the study of homogenization problems. In the first part of this article, we
have considered oscillations on a flat part of the boundary. In the second, we have modified
our ideas to develop unfolding operators in curved domains and as a sample, we have studied
it in a circular domain. We have used the corresponding Polar form of the Laplace equation.
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