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Abstract. This paper is concerned with the asymptotic analysis of optimal control problems posed on a rough circular domain.
The domain has two parts, namely a fixed outer part and an oscillating inner part. The period of the oscillation is of order
ε > 0, a small parameter which approaches zero and the amplitude of the oscillation is fixed. We pose a periodic control on the
oscillating part of the domain and study the homogenization of this problem using an unfolding operator suitably defined for
this domain. One of the novelties of this paper is that we use the unfolding operator to characterize the optimal control in the
non-homogenized level.
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1. Introduction

In this article, we consider a rapidly oscillating circular domain which models domains from appli-
cations. For example, in jet engines, the fan models such a circular domain where the blades of the fan
occupy the oscillatory part. Here, the base of each blade is small compared to the domain whereas the
height of the fan is of O(1) with respect to the domain. When the fan rotates at a high speed, turbulence
can occur. This is one of the importance of studying control problems associated to fluid flow in varying
oscillating domains. It leads to homogenization problems since the base of each blade is small, say of
order ε. Another interesting example is the heat radiator where there are creases or folds made of con-
ducting metal that heats up surrounding air. Attempting to do fluid flow problems is bit too ambitious
so we start with a simple problem, but in the complex circular domains. To our knowledge, the study
of homogenization problems in circular oscillating domains, in particular, those of order 1 amplitude, is
very limited. But, there is a large number of literature in rectangular domains. Such problems are cate-
gorized as rough (rugous/oscillating) boundary problems and this attracts many fields of research such
as aerodynamics, hemodynamics, and fluid dynamics, to name a few.

There is less research going on regarding the study of homogenization of problems in domains with
oscillating smooth boundaries. For instance, Brizzi and Chalot [9] considered boundary homogenization
with Neumann boundary condition. In [5, 6], Arrieta and Villanueva-Pesqueira posed a homogenization
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problem in a thin domain with smooth oscillating boundary. Recently, Aiyappan, Nandakumaran and
Prakash [2] published a paper on a generalized unfolding method for highly oscillating smooth bound-
ary domain and used it for homogenization.

On the other hand, there are lots of activities on domains with non-smooth oscillating boundaries,
more specifically, domains with a fixed part and a lot of thin periodically distributed parts (like pillars)
attached along certain part of the flat boundary. The study of the asymptotic analysis and error estimates
of an elliptic problem posed on a rectangular rough domain was studied by Amirat, Bodart, De Maio
and Gaudiello in [4] while the homogenization of PDEs in oscillating domain using Tartar’s oscillating
test functions has been investigated by Blanchard and Gaudiello in [7] and by Blanchard, Gaudiello and
Mel’nyk in [8]. In [21], Gaudiello and Sili considered strongly contrasting diffusivity problem in highly
oscillating boundaries. On the other hand, Corbo Esposito, Donato, Gaudiello and Picard have studied
the asymptotic analysis of a p-Laplacian operator using Γ-convergence in [17]. Homogenization of an
elliptic problem with homogeneous Neumann data has been studied by Gaudiello and Guibé in [19].
Gaudiello, in [18], investigated Laplace equation with inhomogeneous Neumann boundary condition
posed on oscillating boundary domain and in [20], using extension operators, Gaudiello, Hadiji and Pi-
card have studied the homogenization of Ginzburg-Landau equation. Exact controllability problems in
oscillating domains have been investigated by De Maio and Nandakumaran in [12] and by De Maio,
Nandakumaran and Perugia in [13]. For an introduction to homogenization, one can look into [10].
For literature on homogenization of optimal control problems on this type of domains one can refer to
[3, 11, 14–16, 23, 24, 27, 28].

In our present work, we analyze a control problem posed on a domain whose oscillating boundary is
given by arbitrary reference function η. By changing the reference function η we can get various rough
domains.

More precisely, we consider a standard optimal control problem with two types of cost functionals,
namely an L2 cost functional

Jε(yε, q) =
1

2

∫
Oε
|yε − yd|2rdrdθ +

β

2

∫
O+
ε

|qε|2rdrdθ

and a Dirichlet cost functional

Gε(yε, q) =
1

2

∫
Oε
|∇yε −∇yd|2rdrdθ +

β

2

∫
O+
ε

|qε|2rdrdθ

where qε(r, θ) = q(r, θ
ε
) and the state yε satisfies an elliptic problem posed on this oscillating domainOε

given by{
−∆yε + yε = f0 + χO+

ε
qε in Oε,

∂νyε = 0 on ∂Oε.

We apply a periodic control qε on the oscillating part of the domainO+
ε which comes from q and study

the homogenization of the optimal control problem by passing to the limit in the optimality system. For
the asymptotic analysis, we use the unfolding operator for polar coordinates developed by Aiyappan,
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Nandakumaran and Prakash in [2] for these types of domains. The unfolding operator has been used
cleverly to characterize the optimal control in non-homogenized level itself.

We now outline the contents of this paper. In section 2, we explain the oscillating domain Oε. In Sec-
tion 3, we recall the unfolding operator and its properties for circular oscillating domains. The optimal
control problem with the L2 cost functional has been described in Section 4. One of our main result,
namely the characterization of the optimal control via unfolding, has been derived in this section (see
Theorem 4.2). The main convergence results of the optimal control problem (see Theorem 5.4) and
discussion on the limit control problem are available in Section 5. Section 6 contains the convergence
results corresponding to the Dirichlet cost functional.

2. The Oscillating Circular Boundary Domain

In this section, we explain a circular domain whose boundary is highly oscillating. Literature regard-
ing homogenization problems on circular domains is limited (see [22, 26, 30]). In [22], Madureira and
Valentin considered a Poisson problem where the amplitude of the oscillations is of order ε while in
[26, 30], studied homogenization problems on a domain with highly oscillating interfaces. In our case,
we consider oscillations of O(1).

For a small parameter ε = 2π
N , N ∈ Z+, we consider an oscillating boundary domain Oε as given in

Figure 1.

Fig. 1. Circular Oscillating Domain Oε Fig. 2. Reference Domain D

We describe the domain Oε and its boundaries as follows. Let g : R → R be a smooth and periodic
function with period 2π and η be a smooth real valued function defined on [0, 2π] such that it takes the
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maximum at the end points, that is, η(0) = η(2π) = r1 =: max
θ∈[0,2π]

η(θ). Also assume that the function

r1 − η is compactly supported in (0, 2π). Now extend η to the whole real line periodically with period
2π.

Let r0 =: min
θ∈[0,2π]

η(θ) and m < min
θ∈[0,2π]

g(θ) with 0 < r0 < r1 < m. Now, define the domain Oε as

Oε = {(r, θ) ∈ R2 : 0 < θ 6 2π, ηε(θ) = η
(
θ
ε

)
< r < g(θ)}.

Typically, Oε consists of an annulus type region bounded by the inner circle of radius r1 and outer
boundary given by g and an oscillating region bounded by the outer circle of radius r1 and the oscillating
inner boundary defined by ηε. The oscillating inner boundary of Oε denoted by γε is given by γε =
{(r, θ) : θ ∈ [0, 2π], r = ηε(θ)}. The fixed outer boundary Γu of Oε is defined by Γu = {(r, θ) : r =
g(θ), θ ∈ [0, 2π]}. Let O+

ε be the oscillating part of the domain Oε, which is O+
ε = {(r, θ) ∈ R2 : 0 <

θ 6 2π, ηε(θ) < r < r1}. The reference cell D is defined as D =: {(r, θ) : η(θ) < r < r1, 0 < θ 6 2π}
and the reference set Y(a) for a ∈ [r0, r1], is defined as

Y(a) = {θ ∈ (0, 2π) : (a cos θ, a sin θ) ∈ D}.

In otherwords, for a ∈ (r0, r1], Y(a) = {θ ∈ (0, 2π) : η(θ) < a} and Y(r0) = {θ ∈ (0, 2π) : η(θ) = r0}.
Note that Y(a) is Lebesgue measurable as η is assumed to be a smooth function and h(a) = |Y(a)|,
where |Y(a)| is the Lebesgue measure of the set Y(a). Defining Y(a) in this novel way is crucial in
the definition of the unfolding operators in circular oscillating domains. We choose η in such a way
that h is strictly positive in [r0, r1]. Denote O−, the fixed part of the domain Oε, which is described by
O− = {(r, θ) : 0 < θ 6 2π, r1 < r < g(θ)}. The inner boundary of O− denoted by Γ0 is defined as
Γ0 = {(r1, θ) : 0 6 θ 6 2π}. The common boundary Γε is defined as Γε = {(r, θ) ∈ Oε : r = r1}. We
can also write Oε as Oε = Int

(
O+
ε ∪ O−

)
. The full domain or the limiting domain O is described by

O = {(r, θ) : 0 < θ 6 2π, r0 < r < g(θ)} and the inner limit domain O+ is given by O+ = {(r, θ) : 0 <
θ 6 2π, r0 < r < r1}. The boundaries of O are Γu and Γb, where Γb = {(r0, θ) : 0 6 θ 6 2π} and Γu is
the same as defined earlier.

3. Unfolding Operator and its Properties

We now recall the relevant periodic unfolding operator T ε and the boundary unfolding operator T ε
r1

which was developed by Aiyappan, Nandakumaran and Prakash in [2] for circular oscillating domain
to study homogenization problems posed on this type of domain. We also present some of its important
properties which are required for our analysis in Sections 5 and 6. Let us define the unfolded (fixed)
domain Ou, where the unfolded functions are defined, as below.
Let G = {(r, τ) : r ∈ (r0, r1), τ ∈ Y(r)}, thenOu is defined asOu = (0, 2π)×G and it can be written as

Ou =: {(r, θ, τ)| 0 < θ < 2π, r0 < r < r1, τ ∈ Y(r)}.

For x ∈ R, we write [x]2π as the integer part of x with respect to 2π, that is, [x]2π = 2kπ, where k is
the largest integer such that 2kπ 6 x and {x}2π = x − [x]2π. We now give the definition of unfolding
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operator for our domain. The unfolding operator has been used to understand the various scales present
in a function u. Thus the relevance of T ε comes into effect when T ε is applied on functions uε with
different scales x and x

ε
, like uε(x) = u(x, x

ε
). This is already available in the literature for rectangular

type domains. In our case, the domain is circular and hence we define the unfolding operator in polar
coordinates.

Definition 3.1. (The unfolding operator) For each fixed ε > 0, the unfolding operator T ε unfolds any
function u defined on the oscillating domainO+

ε into another function (T εu) defined on the fixed domain
Ou. More precisely, the unfolding operator

T ε : {u | u : O+
ε → R} → {v | v : Ou → R}

is defined by

(T εu)(r, θ, τ) = u
(
r, ε
[
θ
ε

]
2π

+ ετ
)
∀ u ∈ O+

ε .

If U is an open subset of R2 containing O+
ε and u is a real valued function on U, T εu will mean T ε

acting on the restriction of u to O+
ε . Some of the properties of T ε are given below. Though the proofs

can be found in [2], we recall them in the appendix for completeness.

Proposition 3.2. For each fixed ε > 0, T ε is linear and T ε(uv) = T ε(u)T ε(v), where u, v : O+
ε → R.

Proposition 3.3. Let u ∈ L1(O+
ε ). Then∫
Ou

T εu rdrdθdτ = 2π

∫
O+
ε

u rdrdθ.

Proposition 3.4. Let u ∈ L2(O+
ε ). Then T εu ∈ L2(Ou) and ‖T εu‖L2(Ou) =

√
2π‖u‖L2(O+

ε ).

Proposition 3.5. Let u,
∂u
∂r
,
∂u
∂θ
∈ L2(O+

ε ). Then T εu,
∂

∂r
T εu,

∂

∂τ
T εu ∈ L2(Ou). Moreover,

∂

∂r
T εu = T ε ∂u

∂r
and

∂

∂τ
T εu = εT ε ∂u

∂θ
.

Proposition 3.6. Let u ∈ L2(O+). Then T εu → u in L2(Ou). More generally, if yε → y in L2(O+),
then T εyε → y in L2(Ou).

Proposition 3.7. For every ε > 0, let yε ∈ L2(O+
ε ) such that T εyε ⇀ y weakly in L2(Ou). Then

ỹε ⇀
1

2π

∫
Y(r)

y(r, θ, τ) dτ

weakly in L2(O+). Here, ỹε is the zero extension of yε to O+.

We, now derive the convergence of unfolding for H1 functions.
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Proposition 3.8. Let yε ∈ H1(O+
ε ) for every ε > 0 such that T εyε ⇀ y and

∂

∂r
T εyε ⇀

∂y
∂r

weakly in L2(Ou). Then ỹε ⇀
1

2π

∫
Y(r)

y dτ and
∂̃yε
∂r

⇀
1

2π

∫
Y(r)

∂y
∂r

dτ weakly in L2(O+).

3.1. Unfolding on the Boundary

We, now define the boundary unfolding operator on Γε, that is, on the common boundary of O+
ε and

O−.

Definition 3.9. Let φεr1 : (0, 2π)× Y(r1)→ Γε be defined by (θ, τ)→ ε
[
θ
ε

]
2π

+ ετ. The ε-unfolding of
a function u : Γε → R is the function u ◦ φεr1 : (0, 2π)× Y(r1)→ R denoted by T ε

r1 . That is,

T ε
r1 : {u | u : Γε → R} → {v | v : (0, 2π)× Y(r1)→ R}

by

T ε
r1u = u ◦ φεr1 = u

(
ε
[
θ
ε

]
2π

+ ετ
)
.

If U is an open subset of R2 such that Γε ⊂ U and u : U → R then T ε
r1u = T ε

r1 (u|Γε).

The properties of the boundary unfolding operator are given below without proof. In fact, all of them
can be proved analogously as above.

Proposition 3.10. (1) T ε
r1 is linear.

(2) Let u,v be functions from Γε → R. Then T ε
r1(uv) = T ε

r1(u)T ε
r1(v).

(3) Let u ∈ L2(Γε). Then T ε
r1u ∈ L2((0, 2π) × Y(r0)). Moreover, ‖T ε

r1u‖L2((0,2π)×Y(r0)) =√
2π‖u‖L2(Γε).

(4) Let u ∈ H1(Γε). Then T ε
r1u ∈ L2(0, L; H1(Y(r0))) and

∂

∂τ
T ε

r1u = εT ε
r1
∂u
∂θ
.

(5) Let u ∈ L2(0, 2π). Then T ε
r1u→ u in L2((0, 2π)× Y(r1)).

(6) Suppose that uε → u in L2(0, 2π). Then T ε
r1uε → u in L2((0, 2π)× Y(r1)).

(7) Suppose that uε is a sequence in L2(Γε) such that T ε
r1uε ⇀ u weakly in L2((0, 2π)× Y(r1)). Then

ũε ⇀
1

2π

∫
Y(r1)

u dτ weakly in L2(0, 2π).

In the next section, we describe an optimal control problem posed on this oscillating domain and
study the existence and uniqueness of its solution. Also, we use the unfolding operator which we have
developed, to characterize the optimal control. This is one of the main contributions of this article.
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4. Optimal Control Problem

We consider an interior optimal control problem where the controls are coming from the fixed refer-
ence cell D and periodically distributed over O+

ε . Suppose we have the elliptic system:{
−∆yε + yε = f0 + χO+

ε
qε in Oε,

∂νyε = 0 on ∂Oε,
(4.1)

where q ∈ L2(D) with qε(r, θ) = q(r, θ
ε
) and the source term f0 ∈ L2(O). It is known that equation

(4.1) admits a unique weak solution yε in H1(Oε) by applying the Lax-Milgram theorem. The solution
operator is linear and continuous from L2(Oε)× L2(D) into H1(Oε), i.e.

‖yε‖H1(Oε) 6 C
(
‖ f0‖L2(O) + ‖q‖L2(D)

)
, (4.2)

where C > 0 is independent of ε. We define the L2-cost functional Jε as

Jε(yε, q) =
1

2

∫
Oε
|yε − yd|2rdrdθ +

β

2

∫
O+
ε

|qε|2rdrdθ (4.3)

with the desired state yd ∈ L2(O). Now, we define the optimal control problem as follows.

Find (yε, qε) ∈ H1(Oε)× L2(D) such that

(Pε) Jε(yε, qε) = inf {Jε(yε, q)|(yε, q) ∈ H1(Oε)× L2(D), (yε, q) satisfies (4.1)}.

In this section, we analyze the control problem with the L2-cost functional. In Section 6, we study the
homogenization of the control problem with a Dirichlet cost functional. We have the following existence
result for each fixed ε > 0 (see Raymond [29]).

Theorem 4.1. For each ε > 0, the minimization problem (Pε) admits a unique solution.

The focus of the following subsection is the derivation of the optimality system and characterization
of the optimal control.

4.1. Optimality System

One of our main results is the derivation of the following optimality system and characterization of
optimal control via the unfolding operator which is given in the following theorem.

Theorem 4.2. Let (yε, qε) ∈ H1(Oε)× L2(D) be the optimal solution to (Pε), then the optimal control
is characterized by

qε(r, τ)|D =
−1

2πβ

∫ 2π

0
(T εp+

ε )(r, θ, τ) dθ (4.4)
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where yε satisfies (4.1) with qε = qε(r, θ
ε
) and the adjoint state pε satisfies the problem{

−∆pε + pε = yε − yd in Oε,

∂νpε = 0 on ∂Oε.
(4.5)

Conversely, if a pair (ŷε, p̂ε) satisfies the following system
−∆ŷε + ŷε = f0 + χO+

ε
Q̂ε; −∆ p̂ε + p̂ε = ŷε − yd in Oε,

∂νŷε = 0; ∂ν p̂ε = 0 on ∂Oε,

q̂ε(r, τ) =
−1

2πβ

∫ 2π

0
T ε p̂+

ε dθ on D,

then the pair (ŷε, q̂ε) is the optimal solution to (Pε). Here Q̂ε(r, θ) = q̂ε(r, θ
ε
).

Proof. Given q ∈ L2(D), let Fε(q) = Jε(yε(q), q), where yε(q) is the solution to the equation (4.1). Set
Qε(r, θ) = qε(r, θ

ε
).

Using appropriate computation on 1
λ

(Fε(qε + λq)− Fε(qε)) and taking limit as λ→ 0, we get

F′ε(qε)q =

∫
Oε

(yε − yd)wεrdrdθ + β

∫
Oε
χO+

ε
Qεq

εrdrdθ,

where qε(r, θ) = q(r, θ
ε
) and wε is the solution of the following equation{

−∆wε + wε = χO+
ε

qε in Oε,

∂νwε = 0 on ∂Oε.
(4.6)

We skip the computations involved and refer the reader to [1, 25] for detailed computations.
Since (yε, qε) is an optimal solution to (Pε), we have F′ε(qε)q = 0 for all q ∈ L2(D), it follows that∫

Oε
(yε − yd)wεrdrdθ = −β

∫
O+
ε

Qε qεrdrdθ.

Using integration by parts in equations (4.5) and (4.6) with test functions wε and pε, respectively, we get∫
Oε

(yε − yd)wεrdrdθ =

∫
O+
ε

p+
ε qεrdrdθ =⇒ −β

∫
O+
ε

Qεq
εrdrdθ =

∫
O+
ε

p+
ε qεrdrdθ, ∀q ∈ L2(D).

Now, note that T ε(Qε)(r, θ, τ) = qε(r, τ) and qε|D ⇀ q0|D weakly in L2(D). Applying the unfolding
operator we get,∫

O+
ε

Qεq
εrdrdθ =

1

2π

∫
Ou

T εQεT
εqεrdrdθdτ =

1

2π

∫
Ou

qεqrdrdθdτ =

∫
D

qεqrdrdτ.
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Similarly,∫
O+
ε

pεq
εrdrdθ =

1

2π

∫
Ou

T εp+
ε T εqεrdrdθdτ=

1

2π

∫
Ou

T εp+
ε qrdrdθdτ

=

∫
D

(
1

2π

∫ 2π

0
T εp+

ε dθ
)

qrdrdτ.

Since this is valid for all q ∈ L2(D), we get

qε = − 1

2πβ

[∫ 2π

0
T εp+

ε dθ
]

a.e. in D.

The converse can be proved easily with a reverse argument. �

The section that follows describes the homogenization of this control problem which is one of the main
contributions of this paper.

5. Homogenization

Recall h(r) = |Y(r)|, where |Y(r)| is the Lebesgue measure of the set Y(r) at r ∈ [r0, r1]. Note that
h is a strictly positive function in [r0, r1]. Let ψ be any function defined on O, then ψ can be written as
ψ = ψ+χO+ + ψ−χO− where ψ+ = ψ|O+ and ψ− = ψ|O− . Now, consider the anisotropic Sobolev
space

W(O) = {ψ ∈ L2(O) :
∂ψ

∂r
∈ L2(O), ψ− ∈ H1(O−) }.

Note that W(O) is a Hilbert space with the inner product

〈u, v〉W = 〈hu, v〉L2(O+) + 〈h∂ru, ∂rv〉L2(O+) + 〈∂ru, ∂rv〉L2(O−) + 〈 1
r2 ∂θu, ∂θv〉L2(O−) + 〈u, v〉L2(O−),

where

〈u, v〉L2(A) =:

∫
A

uv rdrdθ ∀ A ⊆ O.

Given f0 ∈ L2(O) and q ∈ L2(r0, r1), consider the limit state equation:



− ∂

∂r

(
h(r)

∂y +

∂r

)
− h(r)

r
∂y +

∂r
+ h(r)y + = h(r)( f +

0 + qχO+) in O+,

−∆y− + y− = f −0 in O−,
∂y +

∂ν
= 0 on ∂O,

y + = y−,
h(r1)

2π

∂y +

∂r
=
∂y−

∂r
in Γ0.

(5.1)
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The weak formulation of the above equation is given below.

Find y ∈ W(O) such that∫
O+

h(r)

2π

(
∂y +

∂r
∂ψ+

∂r
+ y +ψ+

)
rdrdθ +

∫
O−

(
∂y−

∂r
∂ψ−

∂r
+

1

r2

∂y−

∂θ

∂ψ−

∂θ
+ y−ψ−

)
rdrdθ

=

∫
O+

h(r)

2π
( f +

0 + q)ψ+rdrdθ +

∫
O−

f −0 ψ−rdrdθ,

for all ψ ∈ W(O). By Lax-Milgram theorem, there exists a unique weak solution in W(O) to problem
(5.1) and the solution operator is linear and continuous. Also we have the following a priori estimate:

‖y‖W(O) 6 C(‖ f‖L2(O) + ‖q‖L2(r0,r1)). (5.2)

Now, we will state the limit optimal control problem.

Find (y, q) ∈ W(O)× L2(r0, r1) such that

(P) J(y, q) = inf{J(y, q)|(u, q) ∈ W(O)× L2(r0, r1), (y, q) satisfies (5.1)},

where the cost functional J is defined as

J(y, q) =
1

2

∫
O−
|y− − yd|2rdrdθ +

1

4π

∫
O+

h(r)|y + − yd|2rdrdθ +
β

2

∫ r1

r0
h(r)|q|2rdr.

The following result can be easily verified as in the previous section.

Theorem 5.1. The optimal control problem (P) has a unique solution.

Now, we will establish the optimality system for the limit problem. The adjoint state p ∈ W(O) solves



− ∂

∂r

(
h(r)

∂p +

∂r

)
− h(r)

r
∂p +

∂r
+ h(r)p + = h(r)(y + − yd) in O+,

−∆p− + p− = (y− − yd) in O−,
∂p
∂ν

= 0 on ∂O,

p + = p−,
h(r1)

2π

∂p +

∂r
=
∂p−

∂r
on Γ0.

(5.3)

Theorem 5.2. If (y, q) is an optimal solution to (P), then

q =
−1

2πβ

∫ 2π

0
p +dθ,
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where p ∈ W(O) is the solution to the adjoint problem (5.3). Conversely, assume that the pair (ŷ, p̂) ∈
W(O)×W(O) solves the optimality system

− ∂

∂r

(
h(r)

∂ŷ +

∂r

)
− h(r)

r
∂ŷ +

∂r
+ h(r)ŷ + = h(r)( f +

0 + q̂) in O+,

− ∂

∂r

(
h(r)

∂p̂ +

∂r

)
− h(r)

r
∂ p̂ +

∂r
+ h(r)p̂ + = h(r)(ŷ + − yd) in O+,

−∆ŷ− + ŷ− = f −0 ; −∆ p̂− + p̂− = (ŷ− − yd) in O−,
∂ŷ
∂ν

= 0 ;
∂ p̂
∂ν

= 0 in ∂O,

ŷ + = ŷ−,
h(r1)

2π

∂ŷ +

∂r
=
∂ŷ−

∂r
; p̂ + = p̂−,

h(r1)

2π

∂ p̂ +

∂r
=
∂ p̂−

∂r
on Γ0,

q̂ =
−1

2πβ

∫ 2π

0
p̂+dθ,

(5.4)

then the pair (ŷ, q̂) is the optimal solution to (P).

The theorem can be proved by following the similar steps of Theorem 4.2. For completeness, we
give the proof in the appendix. Now, we will describe the main homogenization result in the following
subsection.

5.1. Convergence Analysis

The homogenization of the optimal control problem Pε is analyzed by changing the problem into
polar coordinates and applying the unfolding operator. The weak form of the state equation is given in
the following definition.

Definition 5.3. We say the function yε is a weak solution of the state equation (4.1) if yε satisfies∫
Oε

(
∂yε
∂r

∂ψ

∂r
+

1

r2

∂yε
∂θ

∂ψ

∂θ
+ yεψ

)
rdrdθ =

∫
Oε

( f0 + χO+
ε

Qε)ψ rdrdθ,

for all ψ ∈ H1(Oε).

In this subsection, we describe the homogenization of the optimal control problem. Assume that
(yε, qε) is the optimal solution to problem (Pε). Let yε(0) be the solution to problem (4.1) corresponding
to qε = 0, then from (4.2), we get ‖yε(0)‖H1(Oε) 6 C,where C > 0 is independent of ε. Using optimality
of the solution (yε, qε), we get

1

2

∫
Oε

(yε − yd)2rdrdθ +
β

2

∫
O+
ε

|Qε|2rdrdθ 6 C.

Thus, we have

‖Qε‖L2(O+
ε ) = ‖qε‖L2(D) 6 C and ‖yε‖L2(Oε) 6 C. (5.5)
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Further, pε satisfies ‖pε‖H1(Oε) 6 C. The zero extension of a function ϕ defined onO+
ε toO+ is denoted

by ϕ̃. That is,

ϕ̃ =

{
ϕ in O+

ε

0 in O+ \ O+
ε .

Now, we prove the main theorem of this section.

Theorem 5.4. Let (yε, qε) and (y, q) be the optimal solutions to (Pε) and (P), respectively. Then

ỹ +
ε ⇀

h(r)

2π
y + ,

∂̃y +
ε

∂r
⇀

h(r)

2π

∂y +

∂r
weakly in L2(O+),

p̃ +
ε ⇀

h(r)

2π
p + ,

∂̃p +
ε

∂r
⇀

h(r)

2π

∂p +

∂r
weakly in L2(O+), and (5.6)

y−ε ⇀ y−0 , p−ε ⇀ p− weakly in H1(O−),

where q =
−1

2πβ

∫ 2π

0
p +dθ and pε, p are the solutions of (4.5) and (5.3), respectively.

Proof. Since the sequence qε is bounded in L2(D) (by the estimate (5.5)), by weak compactness, there
exists a subsequence (still denoted by ε) and q0 such that qε ⇀ q0 weakly in L2(D). Recall the continuity
estimate (ref. (4.2)) of the state solution yε, that is,

‖yε‖H1(Oε) 6 C
(
‖ f0‖L2(O) + ‖qε‖L2(D)

)
, (5.7)

where C > 0 is independent of ε. Let us estimate T εy +
ε and its derivatives in the space L2(Ou). By the

Proposition 3.4, we get

‖T εyε‖L2(Ou) =
√

2π‖yε‖L2(O+
ε ),∥∥∥∥T ε ∂yε

∂r

∥∥∥∥
L2(Ou)

=
√

2π

∥∥∥∥∂yε
∂r

∥∥∥∥
L2(O+

ε )

, and∥∥∥∥T ε ∂yε
∂τ

∥∥∥∥
L2(Ou)

= ε
√

2π

∥∥∥∥∂yε
∂θ

∥∥∥∥
L2(O+

ε )

.

By the weak compactness, there exists a subsequence (still denoted by ε) such that

T εy +
ε ⇀ y +

0 weakly in L2(Ou), (5.8)

∂

∂r
T εy +

ε ⇀
∂y +

0

∂r
, that is, T ε ∂y +

ε

∂r
⇀

∂y +
0

∂r
weakly in L2(Ou), and (5.9)

∂

∂τ
T εy +

ε ⇀
∂y +

0

∂τ
, that is, εT ε ∂y +

ε

∂θ
⇀

∂y +
0

∂τ
weakly in L2(Ou). (5.10)
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From the Proposition 3.5, we have∥∥∥∥T ε ∂y +
ε

∂θ

∥∥∥∥
L2(Ou)

=
√

2π

∥∥∥∥∂y +
ε

∂θ

∥∥∥∥
L2(O+

ε )

6
√

2π‖yε‖H1(Oε).

The above estimate implies the boundedness of the sequence T ε ∂y +
ε

∂θ
in the space L2(Ou). From conver-

gence (5.10), it follows that
∂y +

0

∂τ
= 0. Hence, we conclude that

ỹ +
ε ⇀

1

2π

∫
Y(r)

y +
0 dτ and

∂̃y +
ε

∂r
⇀

1

2π

∫
Y(r)

∂y +
0

∂r
dτ weakly in L2(O+) (5.11)

with the help of Proposition 3.8. Since y +
0 is independent of τ, we write∫

Y(r)
y +

0 dτ = h(r)y +
0 and

∫
Y(r)

∂y +
0

∂r
dτ = h(r)

∂y +
0

∂r
. (5.12)

Thus, (5.11) becomes

ỹ +
ε ⇀

h(r)

2π
y +

0 and
∂̃y +

ε

∂r
⇀

h(r)

2π

∂y +
0

∂r
weakly in L2(O+). (5.13)

Recall that T ε ∂y +
ε

∂θ
is bounded in L2(Ou). Hence, by the weak compactness, there is an element P ∈

L2(Ou) such that up to a subsequence (still denoted by ε),

T ε ∂y +
ε

∂θ
⇀ P weakly in L2(Ou). (5.14)

Using the estimate for ‖yε‖H1(Oε), we have the boundedness of y−ε in the space H1(O−). Thus, up to
a subsequence (still denoted by ε)

y−ε ⇀ y−0 weakly in H1(O−). (5.15)

Define, y0 as

y0(x) =

{
y +

0 if x ∈ O+,
y−0 if x ∈ O−. (5.16)

Claim: y0 ∈ W(O).

We know that y0 ∈ L2(O) and
∂y0

∂r
∈ L2(O−). To prove y0 ∈ W(O), we need to show

∂y0

∂r
∈ L2(O).

Note that y +
0 is independent of τ and so is

∂y +
0

∂r
. Hence, we have

∂y +
0

∂r
∈ L2(O+) and also

∂y0

∂r
∈
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L2(O−). Thus, to show that
∂y0

∂r
∈ L2(O), it is enough to prove that the trace of y +

0 and y−0 are equal on

Γ0. Since y +
ε |Γε = y−ε |Γε implies the equality of the traces for the boundary unfolding operator. More

precisely, we have T ε
r1 (y +

ε |Γε) = T ε
r1 (y−ε |Γε) i.e.(

T ε(y +
ε )
)
|r=r1 = T ε

r1

(
y−ε |Γε

)
. (5.17)

From the weak continuity of the trace operator, we can write(
T ε(y +

ε )
)
|r=r1 ⇀ y +

0 |r=r1 weakly in L2((0, 2π)× Y(r0))

and from (5.15), we get

yε
−|r=r1 → y−0 |r=r1 strongly in L2(0, 2π).

This implies

T ε
r1

(
yε
−|r=r1

)
→ y−0 |r=r1 in L2((0, 2π)× Y(r1)).

Passing to the limit in (5.17) as ε→ 0 we get

y +
0 |r=r1 = y−0 |r=r1 in L2(0, 2π),

since y +
0 and y−0 are independent of τ .

Identification of the limit P in (5.14): Finally, we identify P which is identically zero.

For φ ∈ D(O+) and ζ(z) ∈ D(0, 2π), choose ψ ∈ D(0, 2π) such that ψ′(z) = ζ(z). Now choose a test
function

φε(r, θ) = εφ(r, θ)ψ
(
{ θ
ε
}
)
,

in such a way that φε is continuous on O+
ε . From the definition of the ε-unfolding of φε and by Proposi-

tion 3.5, we get

T εφε = εφ
(
r, ε
[
θ
ε

]
+ ετ

)
ψ(τ),

T ε ∂φ
ε

∂θ
=

1

ε

∂

∂τ
T εφε = ε

∂φ

∂θ

(
r, ε
[
θ

ε

]
+ ετ

)
ψ(τ) + φ

(
r, ε
[
θ

ε

]
+ ετ

)
ψ′(τ) and

T ε ∂φ
ε

∂r
= ε

∂φ

∂r

(
r, ε
[
θ

ε

]
+ ετ

)
ψ(τ).

From the above equations, we derive the following convergences as ε→ 0:

T εφε → 0, T ε ∂φ
ε

∂θ
→ φ(r, θ)ψ′(τ), and T ε ∂φ

ε

∂r
→ 0 in L2(Ou).
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Let us recall the variational formulation of (4.1) with the test function φε given by

∫
Oε

(
∂yε
∂r

∂φε

∂r
+

1

r2

∂yε
∂θ

∂φε

∂θ
+ yεφ

ε

)
rdrdθ =

∫
Oε

( f0 + χO+
ε

Qε)φ
ε rdrdθ (5.18)

Notice that∫
Oε

(
∂yε
∂r

∂φε

∂r
+

1

r2

∂yε
∂θ

∂φε

∂θ

)
rdrdθ =

∫
O+
ε

(
∂y+

ε

∂r
∂φε

∂r
+

1

r2

∂y+
ε

∂θ

∂φε

∂θ

)
rdrdθ

=
1

2π

∫
Ou

(
T ε ∂y +

ε

∂r
T ε ∂φ

ε

∂r
+

1

r2
T ε ∂y +

ε

∂θ
T ε ∂φ

ε

∂θ

)
rdrdθdτ

→ 1

2π

∫
Ou

P φ(r, θ)ψ′(τ) rdrdθdτ as ε→ 0; (5.19)

∫
Oε

yεφ
ε rdrdθ =

∫
O+
ε

y +
ε φ

ε rdrdθ =
1

2π

∫
Ou

T εy +
ε T εφε rdrdθdτ→ 0 as ε→ 0 (5.20)

and ∫
Oε

( f0 + χO+
ε

Qε)φ
ε rdrdθ =

∫
O+
ε

( f +
0 + Qε)φ

ε rdrdθ

=
1

2π

∫
Ou

T ε
(

f +
0 + Qε

)
T εφε rdrdθdτ

=
1

2π

∫
Ou

(
T ε f +

0 + qε
)

T εφεrdrdθdτ → 0 as ε→ 0. (5.21)

Combining (5.19), (5.20) and (5.21), we get∫
Ou

P φ(r, θ)ψ′(τ) = 0,

which implies

∫
O+

(∫
Y(r)

Pψ′(τ) dτ

)
φ(r, θ) rdrdθ = 0 ∀ φ ∈ D(O+).

That is, ∫
Y(r)

P(r, θ, τ)ψ′(τ)dτ = 0.
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Hence, ∫
Y(r)

P(r, θ, τ)ζ(τ) dτ = 0 a.e. in O+, ∀ζ ∈ D(0, 2π).

Thus, P ≡ 0 a.e. on O+.

Claim: y0 satisfies the limit equation: Choose a test function ψ ∈ C∞(O) in the variational formulation
of the polar form of (5.1), which is given by∫

Oε

(
∂yε
∂r

∂ψ

∂r
+

1

r2

∂yε
∂θ

∂ψ

∂θ
+ yεψ

)
rdrdθ :=

∫
O+
ε

(
∂y+

ε

∂r
∂ψ+

∂r
+

1

r2

∂y+
ε

∂θ

∂ψ+

∂θ
+ y+

ε ψ
+

)
rdrdθ

+

∫
O−

(
∂y−ε
∂r

∂ψ−

∂r
+

1

r2

∂y−ε
∂θ

∂ψ−

∂θ
+ y−ε ψ

−
)

rdrdθ

=

∫
Oε

( f0 + χO+
ε

Qε)ψ rdrdθ

First, let us look at the integral on O+
ε . As ε→ 0, we get∫

O+
ε

(
∂y +

ε

∂r
∂ψ+

∂r
+

1

r2

∂y +
ε

∂θ

∂ψ+

∂θ
+ y +

ε ψ
+

)
rdrdθ

=
1

2π

∫
Ou

(
T ε ∂y +

ε

∂r
T ε ∂ψ

+

∂r
+

1

r2
T ε ∂y +

ε

∂θ
T ε ∂ψ

+

∂θ
+ T εy +

ε T εψ+

)
rdrdθdτ

→ 1

2π

∫
Ou

(
∂y +

0

∂r
∂ψ+

∂r
+ y +

0 ψ
+

)
rdrdθdτ.

The terms on O− become∫
O−

(
∂y−ε
∂r

∂ψ−

∂r
+

1

r2

∂y−ε
∂θ

∂ψ−

∂θ
+ y−ε ψ

−
)

rdrdθ→
∫
O−

(
∂y−0
∂r

∂ψ−

∂r
+

1

r2

∂y−0
∂θ

∂ψ−

∂θ
+ y−0 ψ

−
)

rdrdθ

and on Oε the terms become∫
Oε

( f0 + χO+
ε

Qε)ψ rdrdθ =

∫
O+
ε

( f +
0 + Qε)ψ

+ rdrdθ +

∫
O−

f −0 ψ− rdrdθ

=
1

2π

∫
Ou

(
T ε f +

0 + T εQε

)
T εψ+rdrdθdτ+

∫
O−

f −0 ψ−rdrdθ

=
1

2π

∫
Ou

(
T ε f +

0 + qε
)

T εψ+rdrdθdτ+

∫
O−

f −0 ψ−rdrdθ

→ 1

2π

∫
Ou

( f +
0 + q0)ψ+rdrdθdτ+

∫
O−

f −0 ψ−rdrdθ.
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Hence, as ε→ 0, the limit variational formulation becomes

1

2π

∫
Ou

(
∂y +

0

∂r
∂ψ+

∂r
+ y +

0 ψ
+

)
rdrdθdτ+

∫
O−

(
∂y−0
∂r

∂ψ−

∂r
+

1

r2

∂y−0
∂θ

∂ψ−

∂θ
+ y−0 ψ

−
)

rdrdθ

=
1

2π

∫
Ou

( f +
0 + q0)ψ+ rdrdθdτ+

∫
O−

f −0 ψ− rdrdθ.

This shows that y0 satisfies the equation

∫
O+

h(r)

2π

(
∂y +

0

∂r
∂ψ+

∂r
+ y +

0 ψ
+

)
rdrdθ +

∫
O−

(
∂y−0
∂r

∂ψ−

∂r
+

1

r2

∂y−0
∂θ

∂ψ−

∂θ
+ y−0 ψ

−
)

rdrdθ

=

∫
O+

h(r)

2π
( f +

0 + q0)ψ+ rdrdθ +

∫
O−

f −0 ψ− rdrdθ

for all ψ ∈ C∞(O). As we know that C∞(O) is dense in W(O), the above equation is true for all ψ in
W(O). Therefore, y0 satisfies (5.1). Hence, we proved the convergences in (5.13).

Similarly, we can prove the following convergences.

p̃ +
ε ⇀

h(r)

2π
p +

0 ,
∂̃p +

ε

∂r
⇀

h(r)

2π

∂p +
0

∂r
weakly in L2(O+), and

y−ε ⇀ y−0 , p−ε ⇀ p−0 weakly in H1(O−),

where y0 satisfies (5.1) with q = q0 and p0 satisfies (5.3) with y = y0. To prove the convergence of the
optimality system, it is enough to prove q = q0. Recall the optimality condition (4.4):

qε(r, τ)|D =
−1

2πβ

∫ 2π

0
(T εp+

ε )(r, θ, τ) dθ. (5.22)

By the convergences of qε and T εp +
ε as ε→ 0, the equation (5.22) becomes

q0(r, τ) =
−1

2πβ

∫ 2π

0
p+

0 (r, θ, τ) dθ.

By noting the fact that p0 is independent of τ, we conclude that q0 is also independent of the variable τ.

Hence, q0 =
−1

2πβ

∫ 2π

0
p+

0 dθ. Therefore, we get the optimality system corresponding to the minimization

problem (P). Then the Theorem 5.2 says that, the optimal solution is (y0, q0). Hence by the uniqueness,
we have y = y0, p = p0 and q = q0 which completes the proof. �
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6. Dirichlet Cost Functional

In this section, we study the homogenization of the control problem with a Dirichlet cost functional
Gε defined by

Gε(zε, %) =
1

2

∫
Oε
|∇zε −∇zd|2rdrdθ +

β

2

∫
O+
ε

|%ε|2rdrdθ (6.1)

with %ε(r, θ) = %(r, θ
ε
) and the desired state zd ∈ H1(O). Given % ∈ L2(D) and the source term f0 ∈

L2(O), the function zε satisfies the state equation:{
−∆zε + zε = f0 + χO+

ε
%ε in Oε,

∂νzε = 0 on ∂Oε.
(6.2)

The optimal control problem with Dirichlet cost functional is described as follows.

Find (zε, %ε) ∈ H1(Oε)× L2(D) such that

(Eε) Gε(zε, %ε) = inf {Gε(zε, %)|(zε, %) ∈ H1(Oε)× L2(D), (zε, %) satisfies (6.2)}

6.1. Optimality System

We state the necessary and sufficient conditions for the optimality and also characterize the optimal
control via unfolding operator in the following theorem. The proofs of the results are either skipped or
sketched as they can be proved following the similar arguments as in Section 5.

Theorem 6.1. For each ε > 0, the minimization problem (Eε) admits a unique solution. Let (zε, %ε) ∈
H1(Oε)× L2(D) be the optimal solution to (Eε), then the optimal control is characterized by

%ε(r, τ)|D =
−1

2πβ

∫ 2π

0
(T εv+

ε )(r, θ, τ) dθ (6.3)

where zε satisfies (6.2) with %ε = Pε, that is %ε(r, θ) = Pε(r, θ) = %ε(r, θ
ε
) and the adjoint state vε

satisfies the problem{
−∆vε + vε = −∆(zε − zd) in Oε,

∂νvε = (∇zε −∇zd) · ν on ∂Oε.
(6.4)

Conversely, if a pair (ẑε, v̂ε) satisfies the following system
−∆ẑε + ẑε = f0 + χO+

ε
P̂ε; −∆v̂ε + v̂ε = −∆(ẑε − zd) in Oε,

∂νẑε = 0; ∂νv̂ε = (∇ẑε −∇zd) · ν on ∂Oε,

%̂ε(r, τ) =
−1

2πβ

∫ 2π

0
T εv̂+

ε dθ on D,

(6.5)

then the pair (ẑε, %̂ε) is the optimal solution to (Eε). Here P̂ε(r, θ) = %̂ε(r, θ
ε
).
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Limit Problem: Now, we will describe the limit problem. Given f0 ∈ L2(O) and % ∈ L2(r0, r1), consider
the limit state equation:

− ∂

∂r

(
h(r)

∂z+

∂r

)
− h(r)

r
∂z+

∂r
+ h(r)z+ = h(r)( f +

0 + %χO+) in O+,

−∆z− + z− = f −0 in O−,
∂z
∂ν

= 0 on ∂O,

z+ = z−,
h(r1)

2π

∂z+

∂r
=
∂z−

∂r
on Γ0,

(6.6)

where

z =

{
z+ if x ∈ O+

z− if x ∈ O−.

The limit optimal control problem is given below.

Find (z, %) ∈ W × L2(r0, r1) such that

(E) G(z, %) = inf{J(z, %)|(z, %) ∈ W × L2(r0, r1), (z, %) satisfies (6.6)}.

where the cost functional G is defined as

G(z, %) =
1

2

∫
O−
|∇z− −∇zd|2rdrdθ +

1

4π

∫
O+

h(r)|∂rz+ − ∂rzd|2rdrdθ +
β

2

∫ r1

r0
h(r)|%|2rdr.

Now, we will establish the optimality system for this limit problem. The adjoint state v ∈ W(O) solves



− ∂

∂r

(
h(r)

∂v +

∂r

)
− h(r)

r
∂v +

∂r
+ h(r)v + = − ∂

∂r

(
h(r)

∂(z + − zd)

∂r

)
− h(r)

r
∂(z + − zd)

∂r
in O+,

−∆v− + v− = −∆(z− − zd) in O−,
∂v +

∂ν
=

∂

∂r
(z + − zd) on Γb,

∂v−

∂ν
=

∂

∂ν
(z− − zd) on Γu,

v + = v−,
h(r1)

2π

∂v +

∂r
=
∂v−

∂r
on Γ0.

(6.7)

The following result can be easily verified as in the previous section.

Theorem 6.2. The optimal control problem (E) has a unique solution. If (z, %) is an optimal solution
to (E), then

% =
−1

2πβ

∫ 2π

0
v +dθ (6.8)



20 S. Aiyappan et al. / Control Problem on a Rough Circular Domain and Homogenization

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

where v ∈ W(O) is the solution to the adjoint problem (6.7). The converse is also true (similar to
Theorem 5.2).

Theorem 6.3. Let (zε, %ε) and (z, %) be the optimal solutions to (Eε) and (E), respectively. Then

z̃ +
ε ⇀

h(r)

2π
z + ,

∂̃z +
ε

∂r
⇀

h(r)

2π

∂z +

∂r
weakly in L2(O+),

ṽ +
ε ⇀

h(r)

2π
v + ,

∂̃v +
ε

∂r
⇀

h(r)

2π

∂v +

∂r
weakly in L2(O+), and (6.9)

z−ε ⇀ z−, v−ε ⇀ v− weakly in H1(O−),

where % =
−1

2πβ

∫ 2π

0
v +dθ and vε, v are the solutions of (6.4) and (6.7), respectively.

Proof. As in the proof of Theorem 5.4, we get

z̃ +
ε ⇀

h(r)

2π
z +
0 ,

∂̃z +
ε

∂r
⇀

h(r)

2π

∂z +
0

∂r
weakly in L2(O+), and

z−ε ⇀ z−0 weakly in H1(O−).

Now, we look at the convergence of the adjoint state vε. As the state zε is uniformly bounded, we get

‖vε‖H1(Oε) 6 C
(
zε‖H1(Oε) + ‖zd‖H1(O)

)
6 C, (6.10)

where C > 0 is independent of ε. Using this estimate and following the similar arguments of Theorem
5.4, we get the following convergences:

ṽ +
ε ⇀

h(r)

2π
v+

0 and
∂̃v +

ε

∂r
⇀

h(r)

2π

∂v+
0

∂r
weakly in L2(O+). (6.11)

Also, we know that T ε ∂v +
ε

∂θ
is bounded in L2(Ou). Hence, by the weak compactness, there is an element

R ∈ L2(Ou) such that up to subsequence (still denoted by ε),

T ε ∂v +
ε

∂θ
⇀ R weakly in L2(Ou).

Using the estimate for ‖vε‖H1(Oε), we have the boundedness of v−ε in the space H1(O−). Thus, up to a
subsequence (still denoted by ε)

v−ε ⇀ v−0 weakly in H1(O−). (6.12)
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Define v0 as

v0(x) =

{
v+

0 if x ∈ O+,
v−0 if x ∈ O−. (6.13)

Identification of the limit R:

We choose the same test function φε as in Theorem 5.4 which satisfies, as ε→ 0,

T εφε → 0, T ε ∂φ
ε

∂θ
→ φ(r, θ)ψ′(τ), and T ε ∂φ

ε

∂r
→ 0 in L2(Ou).

Let us recall the variational formulation of (6.4) with the test function φε given by

∫
Oε

(
∂vε
∂r

∂φε

∂r
+

1

r2

∂vε
∂θ

∂φε

∂θ
+ vεφε

)
rdrdθ =

∫
Oε

(
∂(zε − zd)

∂r
∂φε

∂r
+

1

r2

∂(zε − zd)

∂θ

∂φε

∂θ

)
rdrdθ,

for all ϕ ∈ H1(Oε). Now notice that∫
Oε

(
∂vε
∂r

∂φε

∂r
+

1

r2

∂vε
∂θ

∂φε

∂θ

)
rdrdθ =

∫
O+
ε

(
∂v+

ε

∂r
∂φε

∂r
+

1

r2

∂v+
ε

∂θ

∂φε

∂θ

)
rdrdθ

=
1

2π

∫
Ou

(
T ε ∂v +

ε

∂r
T ε ∂φ

ε

∂r
+

1

r2
T ε ∂v +

ε

∂θ
T ε ∂φ

ε

∂θ

)
rdrdθdτ

→ 1

2π

∫
Ou

1

r2
R φ(r, θ)ψ′(τ) rdrdθdτ as ε→ 0, (6.14)

∫
Oε

vεφε rdrdθ =

∫
O+
ε

v +
ε φ

ε rdrdθ =
1

2π

∫
Ou

T εv +
ε T εφε rdrdθdτ→ 0 as ε→ 0, (6.15)

and ∫
Oε

(
∂(zε − zd)

∂r
∂φε

∂r
+

1

r2

∂(zε − zd)

∂θ

∂φε

∂θ

)
rdrdθ

=
1

2π

∫
Ou

(
T ε ∂(z+

ε − zd)

∂r
T ε ∂φ

ε

∂r
+

1

r2
T ε ∂(z+

ε − zd)

∂θ
T ε ∂φ

ε

∂θ

)
rdrdθdτ

→ 1

2π

∫
Ou

1

r2

∂zd

∂θ
φ(r, θ)ψ′(τ) rdrdθdτ as ε→ 0; (6.16)

Combining the above equations, we get∫
Ou

1

r2
R φ(r, θ)ψ′(τ) rdrdθdτ =

∫
Ou

1

r2

∂zd

∂θ
φ(r, θ)ψ′(τ) rdrdθdτ,
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which implies

∫
O+

(∫
Y(r)

Rψ′(τ) dτ

)
φ(r, θ) rdrdθ = 0 ∀ φ ∈ D(O+).

That is (we skip the details here)

R =
∂zd

∂θ
.

Claim: v0 satisfies the limit equation. Choose a test function ψ ∈ C∞(O) in the variational formulation
of the polar form of (6.7), that is,∫

Oε

(
∂vε
∂r

∂ψ

∂r
+

1

r2

∂vε
∂θ

∂ψ

∂θ
+ vεψ

)
rdrdθ :=

∫
O+
ε

(
∂v+

ε

∂r
∂ψ+

∂r
+

1

r2

∂v+
ε

∂θ

∂ψ+

∂θ
+ v+

ε ψ
+

)
rdrdθ

+

∫
O−

(
∂v−ε
∂r

∂ψ−

∂r
+

1

r2

∂v−ε
∂θ

∂ψ−

∂θ
+ v−ε ψ

−
)

rdrdθ

=

∫
Oε

(
∂(zε − zd)

∂r
∂ψ

∂r
+

1

r2

∂(zε − zd)

∂θ

∂ψ

∂θ

)
rdrdθ.

Using the value of R and the convergence of vε, we show that v0 satisfies the equation∫
O+

h(r)

2π

(
∂v +

0

∂r
∂ψ+

∂r
+ v +

0 ψ
+

)
rdrdθ +

∫
O−

(
∂v−0
∂r

∂ψ−

∂r
+

1

r2

∂v−0
∂θ

∂ψ−

∂θ
+ v−0 ψ

−
)

rdrdθ

=

∫
O+

h(r)

2π

(
∂(z +

0 − zd)

∂r
∂ψ+

∂r

)
rdrdθ +

∫
O−

(
∂(z−0 − zd)

∂r
∂ψ−

∂r
+

1

r2

∂(z−0 − zd)

∂θ

∂ψ−

∂θ

)
rdrdθ

for all ψ ∈ C∞(O). As we know that C∞(O) is dense in W(O), the above equation is true for all ψ in
W(O). Therefore, v0 satisfies the weak formulation of the adjoint problem (6.7). Hence, we have the
following convergences:

ṽ +
ε ⇀

h(r)

2π
v +

0 ,
∂̃v +

ε

∂r
⇀

h(r)

2π

∂v +
0

∂r
weakly in L2(O+), and

v−ε ⇀ v−0 weakly in H1(O−).

To prove the convergence of the optimality system, it is enough to prove % = %0. Recall the optimality
condition (6.3) given by

%ε(r, τ)|D =
−1

2πβ

∫ 2π

0
(T εv+

ε )(r, θ, τ) dθ. (6.17)
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By the convergences of %ε and T εv +
ε , as ε→ 0, the optimality condition becomes

%0(r, τ) =
−1

2πβ

∫ 2π

0
v+

0 (r, θ, τ) dθ.

By the fact that v0 is independent of τ, we conclude that q0 also independent of the variable τ. Hence,

%0 =
−1

2πβ

∫ 2π

0
v+

0 dθ. Therefore, we get the optimality system corresponding to the minimization prob-

lem (E). Then Theorem 6.1 says that the optimal solution is (v0, %0). Hence by the uniqueness, we have
z = z0, v = v0 and % = %0 which completes the proof. �

7. Conclusions

We have analyzed the homogenization of an optimal control problem with two different cost function-
als posed on a rough circular domain. We used unfolding operators for this study. First, we converted
the problem into polar coordinates and then using the unfolding operator, we derived the limit problem.
The novelty, in addition to the main result namely the convergence analysis, is the characterization of
the optimal control in the non-homogenized level itself using the unfolding operator.

Appendix A

A.1. (Proof of Proposition 3.3)∫
Ou

T εu rdrdθdτ=

∫ r1

r0

∫
Y(r)

∫ 2π

0
u
(
r, ε
[
θ
ε

]
2π

+ ετ
)

rdθdτdr

=

∫ r1

r0

∫
Y(r)

N−1∑
k=0

∫ 2(k+1)επ

2kεπ
u(r, 2kεπ+ ετ) rdθdτdr

=

N−1∑
k=0

∫ 2(k+1)επ

2kεπ
dθ
∫ r1

r0

∫
Y(r)

u(r, 2kεπ+ ετ) dτrdr

= 2πε

N−1∑
k=0

∫ r1

r0

∫
Y(r)

u(r, 2kεπ+ ετ) dτrdr

= 2π

N−1∑
k=0

∫ r1

r0

∫
2kεπ+εY(r)

u(r, z) rdzdr

= 2π

∫
O+
ε

u(r, θ) rdrdθ.
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A.2. (Proof of Proposition 3.4)

For any u ∈ L2(O+
ε ), we get |u|2 ∈ L1(O+

ε ). Hence, Proposition 3.3 implies∫
Ou

|T εu|2 rdrdθ =

∫
Ou

T ε|u|2 rdrdθ = 2π

∫
O+
ε

|u|2 rdrdθ.

Hence, we get ‖T εu‖L2(Ou) =
√

2π‖u‖L2(O+
ε ) and thus we have the result. �

A.3. (Proof of Proposition 3.5)

By using the Definition 3.1, we can easily check that

∂

∂r
T εu = T ε ∂u

∂r
and

∂

∂τ
T εu = εT ε ∂u

∂θ
.

By the Proposition 3.4, we have

‖T εu‖L2(Ou) =
√

2π‖u‖L2(O+
ε ),

∥∥∥∥T ε ∂u
∂r

∥∥∥∥
L2(Ou)

=
√

2π

∥∥∥∥∂u
∂r

∥∥∥∥
L2(O+

ε )

and ∥∥∥∥ ∂∂τT εu
∥∥∥∥

L2(Ou)

= ε
√

2π

∥∥∥∥∂u
∂θ

∥∥∥∥
L2(O+

ε )

.

Hence, the result follows from the hypothesis. �

A.4. (Proof of Proposition 3.6)

Consider φ ∈ D(O+).

sup
(r,θ,τ)∈Ou

|(T εφ)(r, θ, τ)− φ(r, θ)|= sup
(r,θ,τ)∈Ou

∣∣φ(r, ε[ θ
ε
]2π + ετ)− φ(r, θ)

∣∣
6 mφ(2πε),

where mφ is the modulus of continuity of the function φ which is defined as

mφ(δ) = sup
z1,z2∈O+

{|φ(z1)− φ(z2)| : |z1 − z2| < δ}.
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Since φ is uniformly continuous in O+, mφ(2πε)→ 0 as ε→ 0. Hence,

sup
Ou

|T εφ− φ| → 0 as ε → 0.

Thus, T εφ→ φ in L2(Ou) ∀ φ ∈ D(O+). The density of D(O+) in L2(O+) completes the first part of
the proposition. To see the second part, suppose that yε → y in L2(O+). Then, Proposition 3.4 implies

‖T εyε − y‖L2(Ou) = ‖T εyε − T εy + T εy− y‖L2(Ou)

6 ‖T εyε − T εy‖L2(Ou) + ‖T εy− y‖L2(Ou)

= ‖T ε(yε − y)‖L2(Ou) + ‖T εy− y‖L2(Ou)

=
√

2π‖yε − y‖L2(O+
ε ) + ‖T εy− y‖L2(Ou)

6
√

2π‖yε − y‖L2(O+) + ‖T εy− y‖L2(Ou)

→ 0 as ε→ 0.

�

A.5. (Proof of Proposition 3.7)

Let ψ ∈ D(O+). Then, Propositions 3.2, 3.3 and 3.6 imply∫
O+

ỹεψ rdrdθ =
1

2π

∫
Ou

T εyεT εψ rdrdθdτ

→ 1

2π

∫
Ou

yψ rdrdθdτ as ε→ 0,

=

∫ 2π

0

∫ r1

r0

(
1

2π

∫
Y(r)

y dτ

)
ψ rdrdθ

=

∫
O+

(
1

2π

∫
Y(r)

y dτ

)
ψ rdrdθ ∀ψ ∈ D(O+).

This completes the proof as D(O+) is dense in L2(O+). �

A.6. (Proof of Proposition 3.8)

Since

T εyε ⇀ y and
∂

∂r
T εyε ⇀

∂y
∂r

weakly in L2(Ou),

which means

T εyε ⇀ y and T ε ∂yε
∂r

⇀
∂y
∂r

weakly in L2(Ou).
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Using Proposition 3.7, we get ỹε ⇀
1

2π

∫
Y(r)

y dτ in L2(O+) and
∂̃yε
∂r

⇀
1

2π

∫
Y(r)

∂y
∂r

dτ in L2(O+).

�

Appendix B

B.1. (Proof of Theorem 5.2)

Assume (y, q) is an optimal solution to (P) and y(q) is a solution of (5.1) for a fixed arbitrary q. Now,
set F(q) = J(y(q), q), then

F′(q)q =

∫
O−

(y− − yd)w−rdrdθ +

∫
O+

h(r)

2π
(y + − yd)w +rdrdθ + β

∫ r1

r0
h(r) qqrdr

where w is the solution of the equation (B.1) given below.

− ∂

∂r

(
h(r)

∂w +

∂r

)
− h(r)

r
∂w +

∂r
+ h(r)w + = q in O+,

−∆w− + w− = 0 in O−,
∂w
∂ν

= 0 on ∂O,

w + = w−,
h(r1)

2π

∂w +

∂r
=
∂w−

∂r
on Γ0.

(B.1)

Since (y, q) is a solution to (P), we have F′(q)q = 0 for all q ∈ L2(r0, r1). That is∫
O−

(y− − yd)w−rdrdθ +

∫
O+

h(r)

2π
(y + − yd)w +rdrdθ = −β

∫ r1

r0
h(r) qqrdr (B.2)

Choosing w and p as the test functions in the weak formulation of the equations (5.3) and (B.1) respec-
tively, we get∫

O+

h(r)

2π

(
∂w +

∂r
∂p +

∂r
+ w + p +

)
rdrdθ +

∫
O−

(
∂w−

∂r
∂p−

∂r
+

1

r2

∂w−

∂θ

∂p−

∂θ
+ w−p−

)
rdrdθ

=
1

2π

∫
O+

h(r)p +qrdrdθ

and ∫
O+

h(r)

2π

(
∂p +

∂r
∂w +

∂r
+ p +w +

)
rdrdθ +

∫
O−

(
∂p−

∂r
∂w−

∂r
+

1

r2

∂p−

∂θ

∂w−

∂θ
+ p−w−

)
rdrdθ

=

∫
O+

h(r)

2π
(y + − yd)w +rdrdθ +

∫
O−

(y− − yd)w−rdrdθ.
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This implies∫
O−

(y− − yd)w−rdrdθ +

∫
O+

h(r)

2π
(y + − yd)w +rdrdθ =

1

2π

∫
O+

h(r)p +qrdrdθ. (B.3)

Now, we compare the equations (B.2) and (B.3) to get

−β
∫ r1

r0
h(r) qqrdr =

1

2π

∫
O+

h(r)p +qrdrdθ =

∫ r1

r0
h(r)

(∫ 2π

θ=0

1

2π
p +dθ

)
qrdr.

Hence we get q =
−1

2πβ

∫ 2π

0
p +dθ. �
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