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Abstract
This article aims to understand the locally periodic oscillating domain via unfolding operators.
A three-dimensional rough domain �ε , ε > 0 a small parameter, has been considered for
the study where the boundary is rapidly oscillating with high amplitude. Though there are
some articles with locally periodic boundary oscillations with small amplitude we do not
see any literature with high-amplitude (O(1)) locally periodic oscillating domains. In this
article, we attempt to study a problem in locally periodic rough domains with an eye towards
the general oscillating domains without periodicity. With our experience of handling such
domains and unfolding operators, we develop locally periodic unfolding operators to study
our problems.We consider a nonlinear inhomogeneous Robin boundary value problem posed
on this domain to demonstrate the utility of the newly defined operator.

Keywords Asymptotic analysis · Unfolding operator · Locally periodic oscillating
boundary domain · Homogenization

Mathematics Subject Classification 80M35 · 80M40 · 35B27

1 Introduction

Study of partial differential equations in domains with rough oscillating boundaries has been
of interest for the past several years due to its wide range of applications in several fields.
Due to the rapid oscillations of the boundary (the amplitude can be small like O(εα), α > 0
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or large like O(1)), an asymptotic analysis is called for to obtain the limit equation and it is
the topic of homogenization. There are various real-life applications like heat radiators, flows
in channels with rough boundaries, propagation of electromagnetic waves in regions having
rough interface, absorption–diffusion in biological structures, acoustic vibrations in amedium
with narrow channels, etc. For the literature on homogenization of boundary value problems
in rough domains, we refer to [2,5,6,10,13,15,19]. Recently, Braides et al. have studied the
homogenization of networks on oscillating boundary domain [14]. As mentioned, study on
oscillating domains is an active area of research and there is a vast amount of literature and
the present authors and collaborators have also published several papers in this direction.
See [2,3,21,24–26] and references therein. But, one of the fundamental assumption is the
periodicity of oscillating boundaries. We have made substantial progress starting with pillar-
type domains (see Fig. 1a); to branched structure domains (see Fig. 1b); to general smooth
domains (see Fig. 1c, d). Of course, these domains are motivated from applications like heat
radiators, jet engines, etc. (see Fig. 2a, b). Figure 2a leads to pillar-type domains, whereas
Fig. 2b models branched structures/circular domains.

In [18], the authors consider an oscillating boundary domain without the periodicity
assumption and study the asymptotic behavior of a brush problemwith a L1 source term using
oscillating test functionsmethod. But notmuch literature is available for rugous domainwhen
the periodicity is removed. In this paper, we are making an attempt to consider a domain with
oscillating boundaries which are locally periodic (see Fig. 3). We can also consider locally
periodic circular domains. This is a precursor to the study of general oscillating domains

a b

dc

Fig. 1 Oscillating domains
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a b

Fig. 2 Heat radiators

Fig. 3 Locally periodic smooth oscillating domain �ε

without periodicity assumption. Among several methods developed in the last five decades,
the periodic unfolding is the latest. We have successfully used it to study the asymptotic
analysis of optimal control/controllability problems and characterize optimal control, etc
(see [3,25,26]). Further, we have also introduced new unfolding operators as and when it is
necessary.

In fact, one of our novel and new approach was to characterize optimal controls using
unfolding operators (see [3,25]). Otherwise, we do not see how to characterize optimal
controls in oscillating domains. The periodic unfolding was developed by Cioranescu et. al.
to study the homogenization of boundary value problems with oscillating coefficients [16].
In [11], Blanchard et al. have modified the unfolding operators to study problems in periodic
rectangular oscillating domains (pillar-type domains). The problems with smooth oscillating
boundaries were much more difficult. In a novel way, we have developed general unfolding
operators for a wide class of oscillating domains (see [2]). For more literature on periodic
unfolding operators, we refer to [4,8,12,17,24,26]. For locally periodic oscillating domains,
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one can look at thework ofArrieta et al. [7,9], where they study the homogenization problems
posed on locally periodic oscillating domains with amplitude of order ε. Here, the oscillating
part shrinks down to the boundary of non-oscillating part of the domain as ε tends to zero.
These types of domains are referred as thin structures in the literature. For further works on
homogenization of locally periodic setup, we refer to [27,28].

In this article, we consider domains with locally periodic oscillations of amplitude O(1)
and there is no literature in this direction. We develop suitable unfolding operators for these
domains, and we use this successfully to study the homogenization of an elliptic problem
with nonlinear boundary condition. In [29], Ptashnyk has developed unfolding operators for
problems with locally periodic oscillating coefficients. The development of unfolding opera-
tors by Ptashnyk for problems with locally periodic highly oscillating coefficients motivated
us to develop unfolding operators for oscillating domains.

In the first part, we introduce and explain full geometry of the locally periodic oscillating
domain �ε ⊂ R

3, rigorously in Sect. 2. A two-dimensional schematic representation of
�ε is given in Fig. 3. After defining �ε , we introduce the unfolding operator T ε in Sect. 3
and study its properties. To demonstrate the applications of the new unfolding operator,
we consider the following linear elliptic equation in the domain �ε with a nonlinear, non-
homogeneous boundary condition on the oscillating domain. This type of model problem
has been considered by Mel’nyk on a periodic thick junction of type 3:2:1 (see [22]). All the
notations which are used in the following are given in Sect. 2.

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

− �yε + yε = f in �ε,

∂ν yε + εα1μ(x3, yε) = uε
ε on γ +

ε ,

yε = 0 on 	b,

yε is 	s − periodic.

(1.1)

Here, the boundary data uε
ε is given by

uε
ε(x) = uε

ε(x1, x2, x3) =:
{

εα2uε(x) i f x3 ∈ (M0, M1)

uε(x) i f x3 = M0 or M1.
(1.2)

where uε is a locally periodic data, defined on the oscillating boundary γ +
ε , arising from

a fixed data u ∈ L2
#(γ ). The detailed definition is given in Sect. 4. In future projects, it is

possible to use these data as control function. Further, f is a given function in L2
#(�); α1 ≥ 1

and α2 ≥ 1 are fixed constants; μ : [M0, M1]×R → R is an arbitrary smooth function such
that μ(·, 0) = 0 and

|∂x3μ(x3, s)| ≤ C0, C1 ≤ ∂sμ(x3, s) ≤ C2. (1.3)

The well-posedness of the problem is given in Sect. 4.
Our aim is to study the asymptotic behavior of the solution yε of problem (1.1) as ε

tends to zero. That is, when the number of pillars in the domain �ε grows to infinity and
the diameter of each pillar boils down to zero. Generally, in homogenization of oscillating
domains, people construct an extension operator (whichwill be problem dependent) to a fixed
domain and using that extension operator, one derives the limit equation. Sometimes, this
becomes difficult for certain problems and varies fromproblems to problems.Here,we use the
unfolding operator that we have developed to study the homogenization of the problem. Note
that this method just depends on the domain not on the problem unlike extension operators.
Now, we present the main homogenization result in the following theorem.
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Theorem 1.1 (Main theorem). Let yε = y+
ε χ�+

ε
+ y−

ε χ�− be the weak solution of (1.1).
Then, we have

y−
ε ⇀ y− weakly in H1 (�−) (1.4)

ỹ+
ε ⇀ h(x3) y

+ weakly in L2(I ; H1(M0, M1)), (1.5)

where y = y+χ�+ + y−χ�− is the weak solution of

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− ∂

∂x3

(

h(x3)
∂ y+

∂x3

)

+ h(x3)y
+ + δ1α1

l

d
μ(x3, y

+) = h(x3) f
+ + δ1α2

1

d
θ in �+,

− �y− + y− = f − in �−,

∂ y+

∂ν
= ρ1 on 	u,

y− = 0 on 	b,

y+ = y−, h(M0)
∂ y+

∂x3
+ ρ0 = ∂ y−

∂x3
on 	0,

y is 	s − periodic.

(1.6)

Here, f = f +
0 χ�+ + f −χ�− ; l(x3) = |∂Y (x3)|-the perimeter of the boundary of the

reference set Y (x3); h(x3) = |Y (x3)|-the Lebesgue measure of the set Y (x3); d(x1, x2) is
the Lipschitz function which decides the local periodicity as defined in Sect. 2 and

θ(x3) =
∫

z′∈∂Y (x3)
u(z′, x3)dγx3(z′).

The constants ρ0 and ρ1 are given by ρ0=
∫

z′∈Y ′(M0)

u
(
z′, M0

)
dz′, ρ1=

∫

z′∈Y (M1)

u
(
z′, M1

)

dz′, respectively and δab is the usual Kronecker delta function. Here, and in the sequel ψ̃

represents the zero extension of ψ to �+. �	

The layout of the paper is as follows. In Sect. 2, the locally periodic domain is described.
The unfolding operator for this domain is defined, and its properties are studied in Sect. 3.
The description of model problem and the uniform estimate of the solution (independent of
the parameter ε) are given in Sect. 4. The limit problem and the limit space are also presented
in this section. The proof of the main theorem is given in Sect. 5.

2 Domain description

The oscillating domain �ε consists of two parts, namely the oscillating upper part �+
ε and a

fixed lower part�−. First, we will describe the upper part�+
ε . Let η : I =: [0, 1]×[0, 1] →

[M0, M1] be a smooth function such that supp(η − M0) ⊂ I =: (0, 1) × (0, 1). Then, it
is extended to R

2, (1, 1)-periodically. Here, M0 and M1 are the minimum and maximum of
the smooth function η on I . Now we define the reference cell � as � = {(x ′, x3) : x ′ =
(x1, x2) ∈ I , 0 < x3 < η(x ′)} and �+ = {(x ′, x3) : x ′ ∈ I , M0 < x3 < η(x ′)}. We define
γ , the top upper surface of �, as γ = {(x ′, η(x ′)) : x ′ ∈ I }. The surface γ is divided into
two parts, namely the union of flat surfaces F and the lateral/non-flat surface S. That is, F is
defined as F =: {(x ′, η(x ′)) ∈ γ : ∇η(x ′) = 0} and it can be thought of union flat surfaces

at different heights as F =
⋃m

l=0
Fl with the flat surface at x3 = tl for M0 ≤ tl ≤ M1 is

123



S. Aiyappan et al.

given by Fl = {(x ′, x3) ∈ F : x3 = tl} and S = (∂�)+\F . For a ∈ [M0, M1), define the
reference set

Y (a) = {y′ ∈ I : η(y′) > a}.
and Y (M1) = {y′ ∈ I : η(y′) = M1}. We remark that Y (a) plays a major role in defining
the unfolding operator. This is the novel approach in the new definition of our unfolding
operators in locally periodic domain. We hope this study will be a precursor to the analysis
of general non-periodic case in future. Another reference set at x3 = M0 which will be
used later is Y ′(M0), which is defined as Y ′(M0) = I\Y (M0). We choose η such that
h(x3) =: |Y (x3)| > κ for all x3 ∈ [M0, M1] and for some κ > 0, where h(x3) is the two-
dimensional Lebesgue measure of the reference set Y (x3). Let α be an arbitrary constant
with 0 < α < 1 and Nε be defined as the smallest integer such that [εαNε] = 1. We
assume ε > 0 represents a family of real numbers converging to zero. The mesocell, �ε

K for
K = (k1, k2) ∈ K = {(n1, n2) ∈ Z

2 : 0 ≤ n1, n2 ≤ Nε − 1}, is defined as
�ε

K = (k1ε
α, (k1 + 1)εα) × (k2ε

α, (k2 + 1)εα).

Note that the unit cell I is covered by the closure of the union of the mesocells �ε
K . The

Lipschitz function d : I → [d1, d2] decides the local periodicity where d1 and d2 are
the minimum and maximum of the Lipschitz function d on I with 0 < d1 < d2. Let
xε
K = (xε

k1
, xε

k2
) be an arbitrarily point chosen in �ε

K . The translated unit cell IZ , where

Z = (i, j) ∈ Z
2, is defined by IZ = (i, i + 1) × ( j, j + 1). Now, define the counting set

Eε
K as

Eε
K = {Z = (i, j) ∈ Z2 : εdxε

K
IZ ⊂ �ε

K ∩ I }.
Here, dxε

K
denotes the value of d at xε

K that is dxε
K

= d(xε
K ). Now define �̂ε

K as

�̂ε
K =

⋃

Z∈Eε
K

εdxε
K
IZ

and the microcells �ε
K ,Z are given by

�ε
K ,Z = εdxε

K
IZ .

To reduce the complexity in the notation, we represent any x ∈ R
3 as x = (x ′, x3) where

x ′ = (x1, x2) ∈ R
2 and x3 ∈ R. The oscillating function ηε : I → [M0, M1] is defined as

ηε(x
′) =

∑

K∈K
η

(

d−1
xε
K

x ′

ε

)

χ
�̂ε

K
(x ′) + M0 χ{

I\∪K �̂ε
K

}(x ′).

Here,
x ′

ε
=
( x1

ε
,
x2
ε

)
. Now, define the oscillating upper part of the domain �ε to be

�+
ε = {(x ′, x3) : x ′ ∈ I , M0 < x3 < ηε(x

′)}.
The fixed lower part �− is defined as �− = {(x ′, x3) : x ′ ∈ I , g(x ′) < x3 < M0}, where
g : R

2 → (0, M ′) is a smooth and periodic function with period I . Here, g is chosen so that
M ′ < M0.

Now, the domain under consideration is defined by �ε = Interior
(
�+

ε ∪ �−
)

. The

oscillating boundary γ +
ε is given by γ +

ε = {(x ′, x3) : x ′ ∈ I , x3 = ηε(x ′)}. The bottom
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boundary 	b of �ε is defined by 	b = {(x ′, x3) : x3 = g(x ′), x ′ ∈ I }. The lateral and top
boundaries of �− denoted by 	s and 	0 are defined as

	s = {(i, x2, x3) : g(i, x2) ≤ x3 ≤ M0, i = 0, 1, }
∪{(x1, i, x3) : g(x1, i) ≤ x3 ≤ M0, i = 0, 1}

and 	0 = {(x1, x2, M0) : (x1, x2) ∈ I }, respectively. The common boundary 	ε is the lower
boundary of �+

ε given as 	ε = {(x ′, x3) ∈ �ε : x3 = M0}. The full domain or the limit
domain � is defined as � = {(x ′, x3) : x ′ ∈ I , g(x ′) < x3 < M1}, and the upper part �+
of the limit domain � is then defined as �+ = {(x ′, x3) : x ′ ∈ I , M0 < x3 < M1}. The
lateral boundaries 	s′ and top boundary 	u of the full domain � are defined as

	s′ = {(i, x2, x3) : g(i, x2) ≤ x3 ≤ M1, i = 0, 1}
∪{(x1, i, x3) : g(x1, i) ≤ x3 ≤ M1, i = 0, 1}

and 	u = {(x ′, M1) : x ′ ∈ I }. The periodic Sobolev space H1
# (�ε) is defined as

H1
# (�ε) = { f |�ε : f ∈ H1

loc(R
3), f is 	s − periodic}.

We call a function 	s-periodic if it takes the same value on the opposite lateral sides of the
domain �− in the sense of trace.

3 Unfolding operator

We now present the unfolding operator for the locally periodic oscillating domain �ε . For
x ′ ∈ R

2, we denote by [x ′] = ([x1], [x2]) and {x ′} = ({x1}, {x2}), where [t] represents the
integral part of t and {t} = t − [t].

The unfolded domain �U is defined as

�U =: {(x ′, x3, z′)| x ′ ∈ I , M0 < x3 < M1, z′ ∈ Y (x3)}.
In other words, �U = I × G, where G = {(x3, z′)|M0 < x3 < M1, z′ ∈ Y (x3)}.

Definition 3.1 (The unfolding operator) Let �+
ε and �U be the oscillating domain and the

unfolded domain, respectively. The operator which maps every function u : �+
ε → R to its

ε-unfolding is called the unfolding operator which is denoted by T ε. That is,

T ε : {u : �+
ε → R} → {v : �U → R}

defined by

T εφ(x ′, x3, z′) =
∑

K∈K
φ

(

εdxε
K

[

d−1
xε
K

x ′

ε

]

+ εdxε
K
z′, x3

)

χ
�̂ε

K
(x ′) for (x ′, x3, z′) ∈ �U .

Some of the important properties of the unfolding operators are listed below.

Proposition 3.2 For each fixed ε > 0, T ε is linear. Further, if u, v : �+
ε → R, then,

T ε(uv) = T ε(u)T ε(v).

The proof follows directly from the definition.
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Proposition 3.3 Let u ∈ L2(�+
ε ). Then,

∫

�U

T εu dxdz′ =
∫

�+
ε

u dx and ‖T εu‖L2(�u)
≤ ‖u‖L2(�+

ε ).

Proof

∫

�U

T εu dxdz′ =
M1∫

x3=M0

∫

z′∈Y (x3)

∑

K∈K

∫

x ′∈�̂ε
K

u

(

εdxε
K

[

d−1
xε
K

x ′

ε

]

+ εdxε
K
z′, x3

)

dx ′dz′dx3

=
M1∫

M0

∫

z′∈Y (x3)

∑

K∈K

∑

Z∈Eε
K

∫

x ′∈�ε
K ,Z

u(εdxε
K
Z + εdxε

K
z′, x3) dx ′dz′dx3

=
∑

K∈K

∑

Z∈Eε
K

ε2d2xε
K

M1∫

M0

∫

ζ ′∈εdxεK
(Z+Y (x3))

u(ζ ′, x3) ε−2d−2
xε
K
dζ ′dx3

=
∑

K∈K

∑

Z∈Eε
K

M1∫

M0

∫

x ′∈εdxεK
(Z+Y (x3))

u(x ′, x3) dx ′dx3

=
∫

�+
ε

u(x) dx .

This proves the first part. The second part follows from the first part by taking u = |u|2 and
applying Proposition 3.2. �	
Proposition 3.4 Let u ∈ H1(�+

ε ). Then, T εu ∈ L2(I ; H1(G)) and ‖T εu‖L2(I ;H1(G)) ≤
‖u‖H1(�+

ε ). Moreover,
∂

∂x3
T εu = T ε ∂u

∂x3
and

∂

∂z j
T εu = ε

∑

K∈K dxε
K
T ε ∂u

∂x j
χ

�̂ε
K

=

εdεT
ε ∂u

∂x j
, for j = 1, 2. Here, dε is a step function definedas dε(x ′) =:

∑

K∈K dxε
K
χ

�̂ε
K
(x ′).

Remark 3.5 It is easy see that the step function dε converges to d pointwise in I as
ε → 0. �	
Proof Since there is no oscillation in x3 direction (and hence no unfolding), we obtain that
∂

∂x3
T εu = T ε ∂u

∂x3
. Now look at the derivative of unfolding with respect to z j for j = 1, 2.

∂z j (T
εu) =

∑

K∈K
∂z j

(

u

(

εdxε
K

[

d−1
xε
K

x ′

ε

]

+ εdxε
K
z′, x3

))

χ
�̂ε

K
(x ′)

=
∑

K∈K
∂x j u

(

εdxε
K

[

d−1
xε
K

x ′

ε

]

+ εdxε
K
z′, x3

)

εdxε
K
χ

�̂ε
K
(x ′)

=
∑

K∈K
T ε∂x j u(x ′, x3, z′)εdxε

K
χ

�̂ε
K
(x ′) = εdεT

ε
(
∂xi u
)
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Now, we have

‖T εu‖2L2(I ;H1(G))
=
∫

I

‖T εu‖2H1(G)
dx ′

=
∫

�U

⎛

⎝
2∑

j=1

ε2d2ε T
ε

∣
∣
∣
∣
∂u

∂x j

∣
∣
∣
∣

2

+ T ε

∣
∣
∣
∣
∂u

∂x3

∣
∣
∣
∣

2

+ T ε|u|2
⎞

⎠ dx ′dx3dz′

≤
∫

�U

T ε

⎛

⎝
2∑

j=1

ε2d22

∣
∣
∣
∣
∂u

∂xi

∣
∣
∣
∣

2

+
∣
∣
∣
∣
∂u

∂x3

∣
∣
∣
∣

2

+ |u|2
⎞

⎠ dxdz′

=
∫

�+
ε

⎛

⎝
2∑

j=1

ε2
∣
∣
∣
∣
∂u

∂x j

∣
∣
∣
∣

2

+
∣
∣
∣
∣
∂u

∂x3

∣
∣
∣
∣

2

+ |u|2
⎞

⎠ dx ≤ ‖u‖2
H1(�+

ε )
< ∞.

�	
Proposition 3.6 Let u ∈ L2(�+). Then, T εu → u strongly in L2(�u).

Proof Consider φ ∈ D(�+). Write ‖T εφ−φ‖2
L2(�U )

= I1+ I2 where I1 and I2 are integrals

taken over ∪K �̂ε
K and ∪K�ε

K \�̂ε
K , respectively. We estimate them separately.

I1 =
∑

K∈K

∫

x ′∈�̂ε
K

M1∫

x3=M0

∫

z′∈Y (x3)

∣
∣
∣
∣φ

(

εdxε
K

[

d−1
xε
K

x ′

ε

]

+ εdxε
K
z′, x3

)

− φ
(
x ′, x3

)
∣
∣
∣
∣

2

≤ C
∑

K∈K

∫

x ′∈�̂ε
K

M1∫

M0

∫

z′∈Y (x3)

∣
∣
∣
∣

(

εdxε
K

[

d−1
xε
K

x ′

ε

]

+ εdxε
K
z′, x3

)

− (x ′, x3
)
∣
∣
∣
∣

2

≤ C
∑

K∈K

∫

x ′∈�̂ε
K

M1∫

M0

∫

z′∈Y (x3)

∣
∣
∣
∣

(

εdxε
K

[

d−1
xε
K

x ′

ε

]

+ εdxε
K
z′
)

− x ′
∣
∣
∣
∣

2

≤ C
∑

K∈K

∫

x ′∈�̂ε
K

2d2xε
K
ε2

≤ 2Cd22ε
2

Recall that here d2 is the maximum of the function d in I . In the second line above, we have
used the fact that φ is Lipschitz as φ ∈ D(�+) and C is the Lipschitz constant. Let C1 be
the maximum value of |φ|2 in �+ and C2 be the volume between the surfaces x3 = η and
x3 = M0. Then, the integral I2 becomes

I2 =
∑

K∈K

∫

x ′∈{�ε
K \�̂ε

K }

M1∫

x3=M0

∫

z′∈Y (x3)

∣
∣φ
(
x ′, x3

)∣
∣2

≤ C1C2

∑

K∈K
|�ε

K \�̂ε
K | ≤ C

∑

K∈K
2d2xε

K
ε(1+α) ≤ Cd22ε

(1+α)N 2
ε ≤ Cε(1−α)
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where C = C1C2 is a constant independent of ε. Hence, ‖T εφ − φ‖L2(�U ) → 0 as ε → 0.
Thus,

T εφ → φ in L2(�U ) ∀ φ ∈ D(�+).

The density of D(�+) in L2(�+) completes the proof. �	
Using the above proposition, one can prove the following result.

Proposition 3.7 If uε → u in L2(�+), then, T εuε → u strongly in L2(�u).

Proposition 3.8 Let uε ∈ L2(�+
ε ) and if T εuε⇀û weakly in L2(�u). Then,

ũε⇀

∫

Y (x3)

ûdz′ weakly in L2(�+).

Here and in the sequel ψ̃ represents the zero extension of ψ to �+.

Proof Let ψ ∈ D(�+), then,
∫

�+
ũεψ =

∫

�U

T εuεT
εψ

→
∫

�U

ûψ as ε → 0, by Proposition 3.6

=
∫

x ′∈I

M1∫

x3=M0

⎛

⎜
⎝

∫

z′∈Y (x3)

û dz′

⎞

⎟
⎠ψ dx3dx

′

=
∫

�+

⎛

⎜
⎝

∫

z′∈Y (x3)

û dz′

⎞

⎟
⎠ψ dx ∀ψ ∈ D(�+)

This completes the proof as D(�+) is dense in L2(�+). �	
Proposition 3.9 Let uε ∈ H1(�+

ε ) for every ε > 0 be such that T εuε⇀u weakly in

L2(I ; H1(G)). Then, ũε⇀

∫

Y (x3)

u dz′ and ∂̃uε

∂x3
⇀

∫

Y (x3)

∂u

∂x3
dz′ weakly in L2(�+).

Proof Given that T εuε⇀u weakly in L2(I ; H1(G)), which implies

T εuε⇀u and
∂

∂x3
T εuε⇀

∂u

∂x3
weakly in L2(�U ).

That is,

T εuε⇀u and T ε ∂uε

∂x3
⇀

∂u

∂x3
weakly in L2(�U ).

Using Proposition 3.8, we get ũε⇀

∫

Y (x3)

u dz′ in L2(�+) and
∂̃uε

∂x3
⇀

∫

Y (x3)

∂u

∂x3
dz′ in

L2(�+). This proves the proposition. �	
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Remark 3.10 It is interesting to observe that the locally periodic unfolding and the periodic
unfolding operators are close in the following sense. Let T ε

p be the periodic unfolding that
we have developed for smooth oscillating domain in [2]. Then, we have

‖T εφ − T ε
pφ‖L2(�U ) ≤ ‖T εφ − φ‖L2(�U ) + ‖T ε

pφ − φ‖L2(�U ) → 0

as ε → 0. �	

4 Homogenization

In this section, we will establish the well-posedness of the problem (1.1). Define the space
Vε to be the set all functions φ ∈ H1

# (�ε) with φ|	b = 0. The weak formulation of (1.1) is:
find yε ∈ Vε such that

∫

�ε

(∇ yε∇φ + yεφ) + εα1

∫

γ +
ε

μ(x3, yε)φ =
∫

�ε

f φ +
∫

γ +
ε

uε
εφ, ∀φ ∈ Vε. (4.1)

Recall here that the boundary data is given by

uε
ε =
{

εα2uε i f x3 ∈ (M0, M1)

uε i f x3 = M0 or M1,

where uε is defined by uε(x1, x2, x3) =:
∑

K∈K u

(
x1

εdxεK
, x2

εdxεK
, x3

)

χ
�̂ε

K
(x1, x2) for u ∈

L2
#(γ ). The second condition on μ in (1.3) makes μ monotonic. Thus, using the monotone

operator theory (see, for example, Lemma 2.1 and Corollary 2.2, Chapter 2 of [30]), we can
prove the existence and uniqueness of a weak solution of (4.1). We will derive the a priori
estimate in following subsection.

4.1 A priori estimate

The a priori estimate will be established once we estimate the surface integral of uε
ε yε over

γ +
ε . The upper boundary γ +

ε can be divided into two surfaces, namely Fε and Sε, which are

defined as Fε = {(x1, x2, x3) ∈ γ +
ε : ∇η(x1, x2) = 0} and Sε = γ +

ε \Fε , respectively. We
derive the estimates in the following propositions.

Proposition 4.1 Let yε ∈ Vε be the solution of the problem (4.1) and uε
ε be as in (1.2). Then,

there is a constant C > 0 such that
∫

Sε

uε
ε yε ≤ Cεα2−1‖T ε yε‖L2(I ;H1(G)) ≤ Cεα2−1‖yε‖H1(�ε)

. (4.2)

Proof The main ingredients of the proof are the slicing lemma for Hausdorff measures (see
Lemma 7.6.1 in [20] or Theorem 7.2 in [21]) and the properties of the unfolding operators.
We define the subset B ⊂ I to be such that S = {(x ′, η(x ′)) : x ′ ∈ B}.

∫

Sε

εα2uε yε dsε

= εα2
∑

K∈K

∑

Z∈Eε
K

∫

εdxεK
Z+εdxεK

B
u

(
x ′

εdxε
K

, ηε(x
′)
)

yε(x
′, ηε(x

′))
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√
√
√
√1 + 1

(εdxε
K
)2

∣
∣
∣
∣
∣
∇z′η

(
x ′

εdxε
K

)∣
∣
∣
∣
∣

2

dx ′

= εα2−1
∫

I
d−1
ε

∫

S
u(z′, η(z′)) T ε yε(x

′, η(z′), z′)

√

(εdε)2 + ∣∣∇z′η(z′)
∣
∣2

√

1 + ∣∣∇z′η(z′)
∣
∣2

dsdx ′

≤ εα2−1
∫

I
d−1
1

∫

S

∣
∣u(z′, η(z′)) T ε yε(x

′, η(z′), z′)
∣
∣ dsdx ′

≤ εα2−1d−1
1 ‖u‖L2(γ )‖T ε yε‖L2(I ;L2(∂G)) ≤ Cεα2−1‖T ε yε‖L2(I ;H1(G))

≤ Cεα2−1‖yε‖H1(�ε)
. (4.3)

In the last line of the estimate, we have used the continuity of the trace map. For the explicit
calculation of the term (4.3), see Lemma 5.3 in Sect. 5. �	

We derive the estimate on the flat boundaries in the proposition below.

Proposition 4.2 Let yε ∈ Vε be a solution of the problem (4.1) and uε
ε be as in (1.2). Then,

there is a constant C > 0 such that
∫

Ft
ε

uε
ε yε ≤ C‖yε‖H1(�ε)

f or t = M0 = t0, t1, t2, . . . tm = M1.

Here, Ft
ε are the flat surfaces in ∂�ε such that Fε =

⋃m

l=0
Ftl

ε .

Proof Let us first look at the integration on FM0
ε . Define the set Y ′(M0) = I\Y (M0).

∫

F
M0
ε

uε yεds =
∑

K∈K

∫

�̂ε
K

u

(
x ′

εdxε
K

, M0

)

yε(x
′, M0) dx

′

=
∑

K∈K

∑

Z∈Eε
K

∫

x ′∈εdxεK
(Z+Y ′

M0
)

u

(
x ′

εdxε
K

, M0

)

yε(x
′, M0) dx

′

=
∑

K∈K

∑

Z∈Eε
K

∫

z′∈Y ′
M0

u
(
z′, M0

)
yε(εdxε

K
Z + εdxε

K
z′, M0) ε2 d2xε

K
dz′

≤
∑

K∈K

∑

Z∈Eε
K

ε2 d2xε
K

(∫

z′∈Y ′
M0

|u(z′, M0)|2dz′
)1/2

(∫

z′∈Y ′
M0

|yε(εdxε
K
Z + εdxε

K
z′, M0)|2 dz′

)1/2

≤
(∫

γ

|u|2dσ

)1/2 ∑

K∈K

∑

Z∈Eε
K

ε2 d2xε
K

(∫

z′∈Y ′
M0

|yε(εdxε
K
Z + εdxε

K
z′, M0)|2 dz′

)1/2

≤
(∫

γ

|u|2dσ

)1/2 ∑

K∈K

∑

Z∈Eε
K

ε2d2xε
K

(∫

I
|yε(z′, M0)|2 dz′

)1/2
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≤ C
∑

K∈K

∑

Z∈Eε
K

ε2 d2xε
K
‖yε‖H1(�−) ≤ C‖yε‖H1(�ε)

.

Note that in the penultimate estimate, we have used the facts that u ∈ L2(γ ) and the trace
estimate for yε. Now we will estimate the integral on Ftl

ε for l = 1, 2, . . .m.

∫

F
tl
ε

uε yεds =
∑

K∈K

∫

�̂ε
K

u

(
x ′

εdxε
K

, tl

)

yε(x
′, tl) dx ′

=
∑

K∈K

∑

Z∈Eε
K

∫

x ′∈εdxεK
(Z+Y (tl ))

u

(
x ′

εdxε
K

, tl

)

yε(x
′, tl) dx ′

=
∑

K∈K

∑

Z∈Eε
K

∫

z′∈Y (tl )
u
(
z′, tl
)
yε(εdxε

K
Z + εdxε

K
z′, tl) ε2 d2xε

K
dz′

=
∑

K∈K

∑

Z∈Eε
K

∫

x ′∈εdxεK
IZ

∫

z′∈Y (tl )
u
(
z′, tl
)
yε(εdxε

K
Z + εdxε

K
z′, tl) dz′dx ′

=
∑

K∈K

∑

Z∈Eε
K

∫

x ′∈�̂ε
K

∫

z′∈Y (tl )
u
(
z′, tl
)
T ε yε(x

′, tl , z′) dz′dx ′

=
∫

x ′∈I

∫

z′∈Y (tl )
u
(
z′, tl
)
T ε yε(x

′, tl , z′) dz′dx ′

≤
(∫

z′∈Y (tl )
|u(z′, tl)|2dz′

)1/2 (∫

x ′∈I

∫

z′∈Y (tl )
|T ε yε(x

′, tl , z′)|2 dz′dx ′
)1/2

≤ C‖T ε yε‖L2(I ;L2(Y (tl )) ≤ C‖T ε yε‖L2(I ;H1(G)) ≤ C‖yε‖H1(�ε)
. �	

Proposition 4.3 Let yε ∈ Vε be a solution of the problem (4.1) and uε
ε be as in (1.2). Then,

there is a constant C > 0 such that
∫

γ +
ε

uε
ε yε ≤ C .

Proof Using Propositions 4.1 and 4.2, we get

∫

γ +
ε

uε
ε yε ≤ C‖yε‖H1(�ε)

(4.4)

for a constant C > 0 independent of ε. The second condition (see (1.3)) on μ allows us to
get some positive constants C1,C2 such that

C1s
2 ≤ μ(x3, s)s ≤ C2s

2 ∀ s ∈ R. (4.5)

By taking φ = yε in the weak formulation (4.1) and using the estimates (4.4) and (4.5), we
observe that the weak solution yε of Eq. (1.1) satisfies

‖yε‖H1(�ε)
≤ C (4.6)

where C > 0 is a constant independent of ε. Hence, the result follows. �	
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4.2 Limit problem

Now, we present the existence and uniqueness of the limit problem (1.6). Recall that h(x3) =
|Y (x3)|, where |Y (x3)| is the Lebesgue measure of the set Y (x3) at x3 ∈ [M0, M1]. Note that
the reference function η is chosen such that h is a strictly positive function in [M0, M1]. For
any function ψ ∈ L2(�), we denote ψ+ = ψ |�+ and ψ− = ψ |�− . Now, consider the space
W (�)

W (�) = {ψ ∈ L2(�) : ∂ψ

∂x3
∈ L2(�), ψ− ∈ H1(�−)}.

Note that W (�) is a Hilbert space with the inner product given by

〈u, v〉W = 〈hu, v〉L2(�+) + 〈h∂x3u, ∂x3v〉L2(�+) + 〈u, v〉H1(�−). (4.7)

The weak formulation of the limit equation (1.6) is: find y ∈ W (�) such that
∫

�+
h
(
∂x3 y

+∂x3φ + y+φ
)+
∫

�−

(∇ y−∇φ + y−φ
)+
∫

�+
δ1α1

l

d
μ(x3, y

+)φ

=
∫

�+
h f +φ +

∫

�−
f −φ +

∫

�+
δ1α2

1

d
θφ +

1∑

l=0

∫

I
ρlφ(x ′, Ml)dx

′ (4.8)

for all ψ ∈ W (�). Once again the monotonicity of μ will help us get the well-posedness of
the limit problem in the space W (�) as in the beginning of Sect. 4.

5 Convergence result

We will provide the proof of the main homogenization result in this section. First, we will
prove some preliminary results before dissolving the theorem. Recall the a priori estimate
(4.6): There exists a constant C > 0 independent of ε such that

‖yε‖H1(�ε)
≤ C . (5.1)

By using Proposition 3.4 and the estimate (5.1), we get
∥
∥T ε y+

ε

∥
∥
L2(I ;H1(G))

≤ ‖yε‖H1(�ε)
≤ C . (5.2)

As T εu+
ε is uniformly bounded in L2(I ; H1(G)), by the weak compactness, there exists a

subsequence (still denoted by ε) such that

T ε y+
ε ⇀y+ weakly in L2(I ; H1(G)). (5.3)

This implies

T ε y+
ε ⇀y+ weakly in L2(�U ),

T ε ∂ y+
ε

∂x3
= ∂

∂x3
T ε y+

ε ⇀
∂ y+

∂x3
weakly in L2(�U )

and for j = 1, 2

εT ε ∂ y+
ε

∂x j
= ∂

∂z j
T ε y+

ε ⇀
∂ y+

∂z j
weakly in L2(�U ). (5.4)
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Proposition 3.3 lends us a hand to get
∥
∥
∥
∥T

ε ∂ y+
ε

∂x j

∥
∥
∥
∥
L2(�U )

≤
∥
∥
∥
∥
∂ y+

ε

∂x j

∥
∥
∥
∥
L2(�+

ε )

≤ ‖yε‖H1(�ε)
≤ C . (5.5)

Here, the last inequality is derived by using the estimate (5.1). Now that T ε ∂ y+
ε

∂x j
is uniformly

bounded in the space L2(�U ) for i = 1, 2. Hence, from (5.4), we conclude that
∂ y+

∂z j
= 0,

for 1 ≤ j ≤ 2. This implies y+ is independent of z′. Now, we have

ỹ+
ε ⇀

∫

Y (x3)
y+dz′ and

∂̃ y+
ε

∂x3
⇀

∫

Y (x3)

∂ y+

∂x3
dz′ weakly in L2(�+) (5.6)

with the assistance of Propositions 3.8 and 3.9. This shows that

ỹ+
ε ⇀h(x3)y

+ and
˜∂ y+

ε

∂x3
⇀h(x3)

∂ y+

∂x3
weakly in L2(�+) as y+ is independent of z′.

(5.7)

Also we get the weak convergence of y−
ε as ‖y−

ε ‖H1(�−) ≤ ‖y−
ε ‖H1(�ε)

≤ C . Hence, we
have proved the following proposition.

Proposition 5.1 Let yε be the weak solution of (1.1). Then, there exist y+ ∈ L2(I ; H1

(M0, M1)) and y− ∈ H1(�−) such that

ỹ+
ε ⇀h(x3)y

+; ∂̃ y+
ε

∂x3
⇀h(x3)

∂ y+

∂x3
weakly in L2(�+) and

y−
ε ⇀y− weakly in H1(�−). �	

By using the estimate (5.5), we can find Pj ∈ L2(�U ) for j = 1, 2 such that for a subse-
quence

T ε ∂ yε
∂x j

⇀Pj weakly in L2(�U ). (5.8)

The following proposition will throw more lights on Pj’s.

Proposition 5.2 For j = 1, 2, we have
∫

Y (x3)
Pj (x

′, x3, z′) dz′ = 0 on �+ where Pj is defined as in (5.8).

Proof For φ ∈ D(�+), choose a test function

φε
j (x

′, x3) = εφ(x ′, x3)
∑

K∈K
dxε

K
χ

�̂k
ε

{
x j

εdxε
K

}

,

for j = 1, 2 in such a way that φε
j are continuous on �+

ε . Recall the step function dε(x ′) =:
∑

K∈K dxε
K
χ

�̂ε
K
(x ′). By applying unfolding operator on φε

j and by Proposition 3.4, we get

T εφε
j =
∑

K∈K
εdxε

K
z j T

εφχ
�̂ε

K
= εdεz j T

εφ,
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T ε
∂φε

j

∂x j
=
∑

K∈K

1

εdxε
K

∂

∂z j
T εφε

jχ�̂ε
K

=
∑

K∈K

(

εdxε
K
z j T

ε ∂φ

∂x j
+ T εφ

)

χ
�̂ε

K
= εdεz j T

ε ∂φ

∂x j
+ T εφ,

T ε
∂φε

j

∂xi
= εdεz j T

ε ∂φ

∂xi
, i �= j, i ∈ {1, 2},

T ε
∂φε

j

∂x3
= εdεz j T

ε ∂φ

∂x3
.

Let us recall the variational formulation of (4.1) with the test function φ̃ε
j .

∫

�ε

(
∇ yε∇φε

j + yεφ
ε
j

)
+ εα1

∫

γ +
ε

μ(x3, yε)φ
ε
j

=
∫

�ε

f φε
j +
∫

γ +
ε

εα2uεφε
j , ∀φ ∈ D(�+). (5.9)

As φε
j ∈ D(�+), we have

∫

�+
ε

(
∇ yε∇φε

j + yεφ
ε
j

)
+ εα1

∫

γ +
ε \	0∪	u

μ(x3, yε)φ
ε
j

=
∫

�+
ε

f φε
j +
∫

γ +
ε \	0∪	u

εα2uεφε
j . (5.10)

Now we will concentrate on the second integral of the above expression. Let Sε
1 = γ +

ε \	0 ∪
	u , B1 ⊂ I be such that Sε

1 = {(x ′, ηε(x ′)) : x ′ ∈ B1} and Sε
K ,Z = {(x ′, x3) ∈ Sε

1 : x ′ ∈
�̂ε

K ,Z }.

I1= : εα1

∫

γ +
ε

μ(x3, yε)φ
ε
jdsε = εα1

∑

K∈K

∑

Z∈Eε
K

∫

Sε
K ,Z

μ(x3, yε(x
′, x3))φε

j dsε

= εα1
∑

K∈K

∑

Z∈Eε
K

∫

εdxεK
Z+εdxεK

B1
μ(ηε(x

′), yε(x ′, ηε(x
′)))φε

j

√
√
√
√1 + 1

(εdxε
K
)2

∣
∣
∣
∣
∣
∇z′η

(
x ′

εdxε
K

)∣
∣
∣
∣
∣

2

dx ′

Now change x ′ = εdxε
K
Z + εdxε

K
z′ and use the periodicity of the reference function η.

I1 = εα1
∑

K∈K

∑

Z∈Eε
K

∫

B1
(η(z′), yε(εdxε

K
Z + εdxε

K
z′, η(z′)))εdxε

K
z jφ

√

(εdxε
K
)2 + ∣∣∇z′η(z′)

∣
∣2 εdxε

K
dz′

= εα1
∑

K∈K

∑

Z∈Eε
K

∫

εdxεK
IZ

∫

B1
z jμ(η(z′), T ε yε(x

′, η(z′), z′))T εφ

√

(εdxε
K
)2 + ∣∣∇z′η(z′)

∣
∣2dz′dx ′
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Thus, we have

|I1| ≤ εα1

∫

I

∫

B1
|z jμ(η(z′), T ε yε(x

′, η(z′), z′))T εφ|
√

1 + ∣∣∇z′η(z′)
∣
∣2dz′dx ′

= εα1

∫

I

∫

γ1

|z jμ(η(z′), T ε yε(x
′, η(z′), z′))T εφ|dsdx ′

≤ Cεα1‖μ(x3, T
ε yε)‖L2(I ;H1(G))‖z j T εφ‖L2(I ;L2(γ )) ≤ Cεα1‖T ε yε‖L2(I ;H1(G)).

Here, γ1 = γ \	0 ∪ 	u . In the above estimate, we have used the continuity of trace on the
space L2(I ; H1(G)). As both the norms are bounded, we have I1 → 0 as ε → 0. Similarly,
the last integration in (5.10) can also be proved to be zero as ε → 0. Now notice, for j fixed
∫

�+
ε

∇ y+
ε · ∇φε

j =
∫

�U

(

T ε ∂ y+
ε

∂xi
T ε

∂φε
j

∂xi

)

+ T ε ∂ y+
ε

∂x j
T ε

∂φε
j

∂x j
+ T ε ∂ y+

ε

∂x3
T ε

∂φε
j

∂x3
, i �= j

=
∫

�U

T ε ∂ y+
ε

∂xi
εdεz j T

ε ∂φ

∂xi
+ T ε ∂ y+

ε

∂x j

(

εdεz j T
ε ∂φ

∂x j
+ T εφ

)

+ T ε ∂ y+
ε

∂x3
εdεz j T

ε ∂φ

∂x3
.

Equation (5.10) gives,
∫

�U

T ε ∂ y+
ε

∂x j
T εφ = −

∫

�U

εdεz j

(

T ε ∂ y+
ε

∂xi
T ε ∂φ

∂xi
+ T ε ∂ y+

ε

∂x j
T ε ∂φ

∂x j
+ T ε ∂ y+

ε

∂x3
T ε ∂φ

∂x3
+ T ε yεT

εφ

)

− εα1

∫

γ +
ε \	0∪	u

μ(x3, yε)φ
ε
j +
∫

�U

εdεz j T
ε f T εφ

+
∫

γ +
ε \	0∪	u

εα2uεφε
j .

This implies,
∣
∣
∣
∣
∣
∣
∣

∫

�U

T ε ∂u+
ε

∂x j
T εφ

∣
∣
∣
∣
∣
∣
∣

≤ εmin{1,α1,α2}C‖T εφ‖L2(I ;H1(G)).

Hence,

lim
ε→0

∫

�U

T ε ∂ y+
ε

∂x j
T εφ =

∫

�U

Pjφ = 0 ∀φ ∈ D(�+).

Thus, we conclude that
∫

Y (x3)

Pjdz
′ ≡ 0 a.e �+ for j = 1, 2. �	

Proposition 5.3 Let uε
ε be the boundary data defined as in (1.1). Then,

lim
ε→0

∫

γ +
ε

uε
εφ dsε =

∫

�+
1

d

(∫

∂Y (x3)
u(z′, x3)dγt

)

φ dx

+
m∑

l=0

∫

I

(∫

z′∈Y (tl )
u
(
z′, tl
)
dz′
)

φ(x ′, tl)dx ′

for all φ ∈ C∞(�).
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Proof First let us look at the integration on the lateral surface of γ +
ε .

∫

Sε

εα2uεφ ds

= εα2
∑

K∈K

∑

Z∈Eε
K

∫

εdxεK
Z+εdxεK

B1
u

(
x ′

εdxε
K

, ηε(x
′)
)

φ(x ′, ηε(x
′))

√
√
√
√1 + 1

(εdxε
K
)2

∣
∣
∣
∣
∣
∇z′η

(
x ′

εdxε
K

)∣
∣
∣
∣
∣

2

dx ′

Now change x ′ = εdxε
K
Z + εdxε

K
z′ and use the periodicity of the reference function η and

u. We define the set B ⊂ I to be such that S = {(x ′, η(x ′)) : x ′ ∈ B}. Then,
∫

Sε

εα2uεφ ds

= εα2
∑

K∈K

∑

Z∈Eε
K

∫

B
u(z′, η(z′))φ(εdxε

K
Z + εdxε

K
z′, η(z′))

√

(εdxε
K
)2 + ∣∣∇z′η(z′)

∣
∣2 εdxε

K
dz′

= εα2−1
∑

K∈K

∑

Z∈Eε
K

∫

εdxεK
IZ
d−1
xε
K

∫

B
u(z′, η(z′)) T εφ

√

(εdxε
K
)2 + ∣∣∇z′η(z′)

∣
∣2dz′dx ′

= εα2−1
∫

I
d−1
ε

∫

B
u(z′, η(z′)) T εφ(x ′, η(z′), z′)

√

(εdε)2 + ∣∣∇z′η(z′)
∣
∣2

√

1 + ∣∣∇z′η(z′)
∣
∣2

√

(1 + ∣∣∇z′η(z′)
∣
∣2dz′dx ′

= εα2−1
∫

I
d−1
ε

∫

S
u(z′, η(z′)) T εφ(x ′, η(z′), z′)

√

(εdε)2 + ∣∣∇z′η(z′)
∣
∣2

√

1 + ∣∣∇z′η(z′)
∣
∣2

dsdx ′

Taking α2 = 1, we see that as ε → 0

∫

Sε

εuεφ ds −→
∫

I
d−1
∫

S
u(z′, η(z′)) φ(x ′, η(z′))

√∣
∣∇z′η(z′)

∣
∣2

√

1 + ∣∣∇z′η(z′)
∣
∣2
dsdx ′

=
∫

I
d−1
∫ M1

M0

∫ 1

0
u(z′, t) φ(x ′, t)

√∣
∣∇z′η(z′)

∣
∣2

√

1 + ∣∣∇z′η(z′)
∣
∣2

1

|∇Sπ |dγtdtdx
′

Here, |∇Sπ | is given by

|∇Sπ | = |∇z′η|
√
1 + |∇z′η|2 (5.11)

and dγt is the line element of the curve
{
z′ ∈ R

2 : η(z′) = t
}
. Here, we have used the slicing

lemma for Hausdorff measures (see Lemma 7.6.1 in [20] or Theorem 7.2 in [21]). Thus,
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lim
ε→0

∫

Sε

εuεφ dsε =
∫

I
d−1
∫ M1

M0

∫ 1

0
u(z′, t) φ(x ′, t)dγtdtdx ′.

Hence, we have

lim
ε→0

∫

Sε

εα2uεφ dsε =
⎧
⎨

⎩

∫

�+
1

d

(∫

∂Y (x3)
u(z′, x3)dγx3

)

φ(x)dx i f α2 = 1

0 i f α2 > 1.
(5.12)

Now we will look at the integration on the non-lateral parts.

∫

F
M0
ε

uεφ dsε =
∑

K∈K

∫

�̂ε
K

u

(
x ′

εdxε
K

, M0

)

φ(x ′, M0) dx
′

=
∑

K∈K

∑

Z∈Eε
K

∫

x ′∈εdxεK
(Z+Y ′

M0
)

u

(
x ′

εdxε
K

, M0

)

φ(x ′, M0) dx
′

=
∑

K∈K

∑

Z∈Eε
K

∫

z′∈Y ′
M0

u
(
z′, M0

)
φ(εdxε

K
Z + εdxε

K
z′, M0) ε2 d2xε

K
dz′

=
∫

I

∫

z′∈Y ′
M0

u
(
z′, M0

)
T εφ(x ′, M0, z

′) dz′ dx ′

ε→0−→
∫

I

(∫

z′∈Y ′
M0

u
(
z′, M0

)
dz′
)

φ(x ′, M0) dx
′.

Similarly, we have
∫

F
M1
ε

uεφdsε
ε→0−→
∫

x ′∈I

(∫

z′∈Y (M1)

u
(
z′, M1

)
dz′
)

φ(x ′, M1)dx
′

and for l = 1, 2, . . .m − 1, we have

εα2

∫

F
tl
ε

uεφdsε = εα2

∫

x ′∈I

∫

z′∈Y (tl )
u
(
z′, tl
)
T εφ(x ′, tl , z′) dz′dx ′

ε→0−→ 0.

Thus,

lim
ε→0

∫

γ +
ε

uε
εφ dsε =

∫

�+
1

d

(∫

∂Y (x3)
u(z′, x3)dγt

)

φ(x ′, x3)dx ′dx3 +
m∑

l=0

∫

F
tl
ε

uεφ dsε

=
∫

�+
1

d

(∫

∂Y (x3)
u(z′, x3)dγt

)

φ dx

+
∫

I

(∫

z′∈Y ′(M0)

u
(
z′, M0

)
dz′
)

φ(x ′, M0)dx
′

+
∫

I

(∫

z′∈Y (M1)

u
(
z′, M1

)
dz′
)

φ(x ′, M1)dx
′

=
∫

�+
1

d
θ(x3)φ dx +

∫

I
ρ0φ(x ′, M0)dx

′ +
∫

I
ρ1φ(x ′, M1)dx

′.

�	
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5.1 Proof of Theorem 1.1

As
∥
∥T ε y+

ε

∥
∥
L2(I ;H1(G))

is bounded, we have Mε = μ(x3, T ε y+
ε ) is also bounded in

L2(I ; H1(G)). Hence, there exists ζ ∈ L2(I ; H1(G)) such that for a subsequence

Mε⇀ζ weakly in L2(I ; H1(G)).

As in Lemma 5.1, we can prove that ζ is independent of z′. We will prove the result for the
case when α1 = 1. Now, let us look at the integral on the lateral part of the surface γ +

ε .

lim
ε→0

ε

∫

Sε

μ(x3, yε)φ =
∫

I
d−1
ε

∫

B1
μ(η(z′), T ε yε) T

εφ(x ′, η(z′), z′)
√

(εdε)2 + ∣∣∇z′η(z′)
∣
∣2

√

1 + ∣∣∇z′η(z′)
∣
∣2

dsdx ′

ε→0−→
∫

I
d−1
∫

B1
ζ φ

√∣
∣∇z′η(z′)

∣
∣2

√

1 + ∣∣∇z′η(z′)
∣
∣2
dsdx ′

=
∫

I
d−1
∫ M1

M0

∫

γt

ζ(x ′, t) φ(x ′, t)dγtdtdx ′ (5.13)

=
∫

�+
1

d
|∂Y (x3)| ζφ(x)dx =

∫

�+
l

d
ζφ(x)dx (5.14)

where l(x3) = |∂Y (x3)|-the perimeter of the boundary of the reference set Y (x3). In the line
(5.13), we have used the slicing lemma. First note that, by using the properties ofμ, the Trace
theorem and (4.6), we get

∣
∣
∣
∣ε

∫

γ +
ε \Sε

μ(x3, yε)φ

∣
∣
∣
∣ ≤ Cε

∫

γ +
ε \Sε

|yεφ|
≤ Cε‖yε‖H1(�ε)

‖φ‖H1(�ε)
≤ Cε.

Hence,

lim
ε→0

ε

∫

γ +
ε

μ(x3, yε)φ =
∫

�+
l

d
ζφ(x)dx ∀φ ∈ C∞(�). (5.15)

Next, we will identify ζ . Here, we will use the Browder–Minty technique to retrieve ζ . Recall
the variational formulation (4.1): find yε ∈ Vε such that

∫

�ε

(∇ yε∇φ + yεφ) + ε

∫

γ +
ε

μ(x3, yε)φ =
∫

�ε

f φ

+
∫

γ +
ε

uε
εφ, ∀φ ∈ C∞(�) with φ|	b = 0.

Using Lemmas 5.1, 5.2 and 5.3 and the convergence (5.15), we get
∫

�+
h(x3)

(
∂x3 y

+∂x3φ + y+φ
)+
∫

�−

(∇ y−∇φ + y−φ
)+
∫

�+
l

d
ζφ =

∫

�+
h(x3) f φ

+
∫

�−
f φ +

∫

�+
1

d

(∫

∂Y (x3)
u(z′, x3)dγx3

)

φ +
1∑

i=0

∫

I
ρiφ(x ′, Mi )dx

′ (5.16)
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As μ is monotonic and the other terms are nonnegative, we have
∫

�−
|∇ yε − ∇φ|2 +

∫

�−
|yε − φ|2 +

∫

�+
ε

∣
∣∂x3 yε − ∂x3φ

∣
∣2

+
∫

�+
ε

|∇x ′ yε|2 +
∫

�+
ε

|yε − φ|2

+ ε

∫

γε

(μ(x3, yε) − μ(x3, φ))(yε − φ) ≥ 0.

Upon expanding the above inequality, we obtain
∫

�+
ε

∣
∣∂x3 yε

∣
∣2 +

∫

�+
ε

|∇x ′ yε|2 +
∫

�+
ε

|yε|2 +
∫

�−
|∇ yε|2 +

∫

�−
|yε|2 + ε

∫

γ +
ε

μ(x3, yε)yε

− 2
∫

�+
ε

∂x3 yε∂x3φ +
∫

�+
ε

∣
∣∂x3φ

∣
∣2 − 2

∫

�+
ε

yεφ +
∫

�+
ε

|φ|2

− 2
∫

�−
∇ yε · ∇φ +

∫

�−
|∇φ|2 +

∫

�−
|φ|2 − 2

∫

�−
yεφ

− ε

∫

γ +
ε

μ(x3, yε)φ − ε

∫

γ +
ε

μ(x3, φ)yε + ε

∫

γ +
ε

μ(x3, φ)φ ≥ 0. (5.17)

We can find out the limit of all the terms in the inequality (5.17) except the first line. Thus,
we will concentrate on the terms in the first line of (5.17). Now, let us recall the variational
formulation with the test function φ = yε:

∫

�ε

(|∇ yε|2 + |yε|2
)+ ε

∫

γ +
ε

μ(x3, yε)yε =
∫

�ε

f yε +
∫

γ +
ε

uε
ε yε.

Using Lemma 5.1, 5.2 and 5.3 in the RHS of the above equation, we get as ε → 0

lim
ε→0

∫

�ε

f yε +
∫

γ +
ε

uε
ε yε

=
∫

�+
h(x3) f y

+ +
∫

�−
f y− +

∫

�+
1

d
θ(x3)y

+(x) dx

+
1∑

i=0

∫

I
ρi y

+(x ′, Mi )dx
′ (5.18)

Now recall the variational formulation of the limit equation (5.16) with y = y+χ�+ +y−χ�−
as the test function.

∫

�−

(|∇ y−|2 + |y−|2)+
∫

�+
h(x3)

∣
∣∂x3 y

+∣∣2 +
∫

�+
l

d
ζ y+dx +

∫

�+
h(x3) |y+|2

=
∫

�+
h(x3) f y

+ +
∫

�−
f y− +

∫

�+
1

d
θ y+dx +

1∑

i=0

∫

I
ρi y

+(x ′, Mi )dx
′ (5.19)

Notice that the RHS of (5.18) matches with the RHS of (5.19). Hence,
∫

�+
ε

∣
∣∂x3 yε

∣
∣2 +

∫

�+
ε

|∇x ′ yε|2 +
∫

�+
ε

|yε|2 +
∫

�−
|∇ yε|2 +

∫

�−
|yε|2 + ε

∫

γ +
ε

μ(x3, yε)yε

=
∫

�ε

f yε +
∫

γ +
ε

uε
ε yε
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ε→0−→
∫

�+
h(x3) f y

+ +
∫

�−
f y− +

∫

�+
1

d
θ(x3)y

+(x) dx +
1∑

i=0

∫

I
ρi y

+(x ′, Mi )dx
′

=
∫

�−

(|∇ y−|2 + |y−|2)+
∫

�+
h(x3)

∣
∣∂x3 y

+∣∣2 +
∫

�+
l

d
ζ y+dx +

∫

�+
h(x3) |y+|2

Using the above limit in the inequality (5.17) and passing to the limit as ε → 0, we get
∫

�−

∣
∣∇ y− − ∇φ

∣
∣2 +

∫

�−

∣
∣y− − φ

∣
∣2 +

∫

�+
h(x3)

∣
∣∂x3 y

+ − ∂x3φ
∣
∣2

+
∫

�+

∣
∣y+ − φ

∣
∣2 +

∫

�+
l

d
(ζ − μ(x3, φ)) (y+ − φ) ≥ 0.

By choosing φ = y − λψ for λ > 0 and ψ ∈ C1
c (�), we get

λ

(∫

�−
|∇ψ |2 +

∫

�−
|ψ |2 +

(∫

�+

∣
∣h(x3)∂x3ψ

∣
∣2 +

∫

�+
|ψ |2
))

+
∫

�+
l

d
(ζ − μ(x3, y

+ − λψ))ψ ≥ 0 .

By letting λ to go to 0, using the dominated convergence theorem, we obtain
∫

�+
l

d
(ζ − μ(x3, y

+))ψ ≥ 0.

Since ψ is an arbitrary element of C1
c (�) and d and l nonzero functions, we conclude that

ζ(x1, x2, x3) = μ(x3, y
+(x1, x2, x3)) a.e. (x1, x2, x3) ∈ �+.

Hence, Eq. (5.16) becomes
∫

�+
h(x3)

(
∂x3 y

+∂x3φ + y+φ
)+
∫

�−

(∇ y−∇φ + y−φ
)+
∫

�+
l

d
μ(x3, y

+)φ

=
∫

�+
h(x3) f φ +

∫

�−
f φ +

∫

�+
1

d
θ(x3)φ +

1∑

i=0

∫

I
ρiφ(x ′, Mi )dx

′.

Recall that here θ(x3) = ∫z′∈∂Y (x3)
u(z′, x3)dγx3(z′); the constants ρ0 and ρ1 are given by

ρ0 = ∫z′∈Y ′(M0)
u
(
z′, M0

)
dz′ and ρ1 = ∫z′∈Y (M1)

u
(
z′, M1

)
dz′. Note that when α1 > 1,

then (Ref. (5.14))

lim
ε→0

εα1

∫

γ +
ε

μ(x3, yε)φ = 0. (5.20)

Hence, using Eqs. 5.12 and 5.20, we can write the limit for the general case as
∫

�+
h(x3)

(
∂x3 y

+∂x3φ + y+φ
)+
∫

�−

(∇ y−∇φ + y−φ
)+ δ1α1

∫

�+
l

d
μ(x3, y

+)φ

=
∫

�+
h(x3) f φ +

∫

�−
f φ + δ1α2

∫

�+
1

d
θ(x3)φ +

1∑

i=0

∫

I
ρiφ(x ′, Mi )dx

′.

This completes the theorem. �	
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Remark 5.4 One can also establish the corrector results as in [1,18], but we have chosen
to skip the details in this article to keep the presentation simple. In fact, one just need to
follow the ideas explained in [1]. It can be observed that the structural contributions, namely
the multi-sheeted functions, of the oscillations in the boundary is not specifically visible as
appear in the literature like [3,23]. The reason behind this is that we did not split the newly
defined unfolding operators as it is done in [3]. We chose not to do so for just to keep the
presentation simple as it is already very technical. In other words, the structural contribution
of the oscillation in the boundary is hidden in the limit problem and can be extracted using
the techniques explained in [3]. �	
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