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OSCILLATING PDE IN A ROUGH DOMAIN WITH A CURVED

INTERFACE: HOMOGENIZATION OF AN OPTIMAL

CONTROL PROBLEM

A. K. Nandakumaran* and Abu Sufian

Abstract. Homogenization of an elliptic PDE with periodic oscillating coefficients and associated
optimal control problems with energy type cost functional is considered. The domain is a 3-dimensional
region (method applies to any n dimensional region) with oscillating boundary, where the base of the
oscillation is curved and it is given by a Lipschitz function. Further, we consider general elliptic PDE
with oscillating coefficients. We also include very general type functional of Dirichlet type given with
oscillating coefficients which can be different from the coefficient matrix of the equation. We introduce
appropriate unfolding operators and approximate unfolded domain to study the limiting analysis. The
present article is new in this generality.
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1. Introduction

In this paper, we consider a general second order elliptic equation in a general oscillatory domain Ωε (see
Sect. 2 regarding the description of Ωε). Normally the high oscillations are posed on a straight boundary, whereas
in this paper, we consider very general oscillations on a curved boundary (see, Fig. 1). In this kind of rough
domain, we want to study the homogenization of an elliptic PDE with oscillating coefficients. More precisely,
we have considered an equation of the form

{
−div(Aε∇uε) + uε = f in Ωε,

Aε∇uε · νε = 0 on ∂Ωε,
(1.1)

where Aε(x) = A

(
x,
x′

ε

)
is elliptic. Thus the problem under consideration is very general than available in the

literature and the aim is to study the homogenization of the above problem. We also study the homogenization
of an associated optimal control problem. Again instead of the standard L2-cost functional, we wish to consider

Keywords and phrases: Optimal control, asymptotic analysis, unfolding operator, oscillating boundary, Homogenization.

Department of Mathematics, Indian Institute of Science, Bangalore, 560012, India.

* Corresponding author: nands@iisc.ac.in

Article published by EDP Sciences c© EDP Sciences, SMAI 2021

https://doi.org/10.1051/cocv/2020045
https://www.esaim-cocv.org
mailto:nands@iisc.ac.in
http://www.edpsciences.org


2 A. K. NANDAKUMARAN AND A. SUFIAN

cost functional of the form

Jε(θε) =
1

2

∫
Ωε

Bε∇uε · ∇uεdx+
β

2

∫
Ωε

|θε|2dx, (1.2)

where Bε(x) = B

(
x,
x′

ε

)
is also oscillatory which can be different form Aε. This indeed will cause additional

difficulties in the analysis even in the case of fixed domains. Indeed the oscillations will be sitting on the

boundary of the domain which is n− 1 dimensional. Hence Aε and Bε will be of the form Aε(x) = A

(
x,
x′

ε

)
and Bε(x) = B

(
x,
x′

ε

)
respectively, in generality with oscillations in all directions. Here x′ = (x1, · · · , xn−1).

One can simplify the case when there is oscillations only in one direction, that is Aε(x) = A
(
x,
x1

ε

)
. Similarly

Bε(x) = B
(
x,
x1

ε

)
. For example, when n = 3 the oscillatory domain has a slab-like structure if the oscillation

is only in one direction. In fact, we see clearly the laminate like effect in this case as in general homogenization
theory. On the other hand, we get pillar type oscillations if we consider oscillations in both directions, that is

Aε(x) = A
(
x,
x1

ε
,
x2

ε

)
. Similarly Bε(x) = B

(
x,
x1

ε
,
x2

ε

)
.

In addition to the generality, we have discussed so far, one of our major concerns is the development of the
unfolding operator for the general oscillating domain under consideration in this paper. We also introduce an
approximate unfolded domain together with a fixed limit unfolded domain which is important for the analysis
in our work (see Figs. 5 and 6). The unfolding operator which we develop is quiet new and we derive various
properties together with the convergences enjoyed by the newly introduced unfolding operators. In the last
10 years or so the unfolding operators have been used extensively by various authors including the present
authors and their collaborators (see [1, 2, 19, 35, 36]). Thus, we deal with, at least, three important aspects in
this paper, namely

(i) Consideration of two different oscillating matrices Aε and Bε, respectively for the equation and cost
functional. The homogenization is quite different even in the usual homogenization.

(ii) Consideration of curved boundary, where the oscillatory part of the domain is placed.
(iii) Development of appropriate unfolding operators for the domain and for the boundary.
This requires the introduction of certain approximate unfolded domains. Thus, the article is new and novel

even with fixed matrices A and B in place of Aε and Bε, respectively. For the clarity and understanding of the
results, we first present the work when the oscillations are only in one direction. Before going to the literature, we
briefly discuss the various sections of the article. The domain and the problem under consideration are explained
in Section 2. In Section 3, we present the approximate unfolded domain, the unfolding operators both for the
domain and boundary, the relevant properties satisfied by them, limit function space etc. The homogenization
without optimal control is carried out in Section 4, whereas in Section 5, we study the homogenization of
optimal control problem. In the remaining sections, we quickly analyze the homogenization of the general case,
where we consider the oscillations in multi-directions. To simplify matters, we consider the case when n = 3
(practical situation) with oscillations in two directions. We have realized that, without any difficulty, this can
be generalized to general dimension with multi-directional oscillations. The domain and problem description is
given in Section 6 and, the unfolding operators, related properties and homogenization results are presented in
Section 7.

Two different oscillating matrices for the equation and cost functional have been considered earlier in fixed
domains (see [25–29]) and this is the first time, we are considering it in oscillatory domain. It is natural to
expect a new homogenized matrix B#, which is not the homogenized limit B∗ of Bε. The matrix B# has the
contribution from both A and B.

Boundary-value problems in a domain with oscillating boundary arise in many fields of biology, physics and
engineering sciences. For instance, to understand the motion of ciliated microorganisms, the flow in a channel
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with rugose boundary, heat transmission through winglets, propagation of electromagnetic waves in regions with
rough boundaries, air flow through compression system in turbo machine such as a jet engine, the vibrations
of foundations of buildings (see [13, 18, 30] and references there in). It is often impossible to approach these
problems directly with numerical methods, because the rough boundary requires a large number of mesh points
in its neighborhood. Thus, the computational cost associated with such a problem grows rapidly when the
parameter ε gets smaller. Moreover, it can occur that the required discretization step becomes too small for the
machine precision. Then, the goal is to approach the problem on Ωε, when the oscillating parameter gets smaller,
with a non-oscillating or homogenized problem on Ω which can be numerically solved. Hence the optimal control
are also equally important in such domains.

We do not present a detailed survey. However we present some of the papers relevant to the present
manuscript. The homogenization in oscillating boundary domain with non flat base and with general ellip-
tic operators is relatively new in the literature and not many articles are available especially in the context of
optimal control problems. Further, we also consider optimal control problem with the cost functional involving
general oscillating matrix which is different from the coefficient elliptic matrix in the system. One of the main
article in this direction is [23], where the homogenization of an elliptic problem with L1 data posed on a pillar-
type domain with non-flat base and nonuniform cross sections has been studied by A. Gaudiello et al. Here they
consider a fixed coefficient matrix, that is without oscillations. Another significant result is the work of Mossino
and Sili [34], where they consider monotone operators with oscillating coefficients in a flat boundary. Needless
to say, it is not an optimal control problem and they use the method of two-scale convergence. In our several
papers, we used unfolding operators not only to do homogenization, but to characterize the optimal controls
as well. Thanks to the work of Mossino and Sili, we also establish certain short propositions in the last section
(Props. 7.5 and 7.6) in the context of unfolding operators analogous to the case of two scale convergence as in [34].

Regarding literature on optimal control problems, in [35], authors have considered an interior periodic optimal
control problem corresponding to Laplace operator in a pillar-type oscillating domain with L2-cost functional.
The authors have used unfolding operator corresponding to the pillar-type oscillations to characterize the optimal
control for the first time. In [1], unfolding operator for general periodic oscillating domain with flat base has
been introduced and authors have investigated asymptotic behavior of a semilinear PDE with principle part as
the Laplace operator and a corresponding interior optimal control problem have been studied in [2] by the same
authors. In [3], unfolding operators for locally periodic oscillating domain has been defined, again the base of
the oscillations is flat. In the context of homogenization of non-linear problems in oscillating domains, one can
see [22], where authors have analysed asymptotic behavior of a monotone type operator with nonlinear signorini
boundary condition. In [32], non-linear parabolic problem using asymptotic expansion has been studied. In all
the above cases, the base of the oscillations is flat wherever in our case we consider non-flat base and non-pillar
type oscillations. For further reading in this direction we suggest the readers to see [8–10, 19, 36] and references
there in.

The literature on oscillating thin domain that is where the amplitude of the oscillations is of O(ε) and
dimension redunction happens in the limit is quite rich. In [4, 5] authors have considered an elliptic PDE to
investigate the asymptotic behavior in thin oscillating domain with homogeneous Numann boundary condition.
Homogenization of an elliptic PDE in a localy periodic thin domain have been studied in [6], and in [7], authors
have developed unfolding operators for locally periodic thin domain. Moreover, they have obtained corrector
results in the same article. For further study in this direction, we refer to the readers [11, 14, 20, 21, 33] and
references there in. For general reading on homogenization of partial differential equations, readers can look into
[12, 15, 37] and references there in.

2. Domain and problem description

2.1. Domain description

For a fixed parameter ε = 1
m with m ∈ N, we consider the oscillating domain Ωε ⊂ R3. Throughout this

article, we denote any element x ∈ R3 as x = (x′, x3) where x′ = (x1, x2) ∈ R2. In fact, we can consider any
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Figure 1. Ωε.

ε > 0 that converges to zero. Again, the result is true in any Rn. Now, we will give the full description of the
oscillating domain Ωε and its boundaries below (Fig. 1).

Let g, h : (0, 1)2 → R be Lipschitz functions such that 0 < g(x′) < h(x′) for all x′ ∈ (0, 1)2 and η : R→ R be
a Lipschitz, 1-periodic real valued function having the following properties:

(1) There exist 0 < a < b < 1, such that supp(η|(0,1)) = [a, b] and η > 0.
(2) The supremum M = sup{η(x1) : x1 ∈ (0, 1)} is strictly positive and the Lebesgue measure
|{x1 ∈ (0, 1) : η(x1) = M}| ≥ δ > 0.

(3) Let Ω+ = {(x′, x3) : x′ ∈ (0, 1)2, h(x′) < x3 < h(x′)+M}. Now for each (x′, x3) ∈ Ω+, the set Y (x′, x3) =
{y1 ∈ (0, 1) : h(x′) + η(y1) > x3} is connected.

For x1 ∈ (0, 1), we denote ηε(x1) = η
(x1

ε

)
. We define the domain Ωε as

Ωε =
{

(x′, x3) : x′ ∈ (0, 1)2, g(x′) < x3 < h(x′) + ηε(x1)
}
.

We denote the boundary of Ωε by ∂Ωε. The oscillating part of the domain is denoted by Ω+
ε , which is defined

by

Ω+
ε =

{
(x′, x3) : x′ ∈ (0, 1)2, h(x′) < x3 < h(x′) + ηε(x1)

}
and the lower fixed part Ω− can be described as

Ω− = {(x′, x3) : x′ ∈ (0, 1)2, g(x′) < x3 < h(x′)}.

We denote the common boundary of Ω+
ε and Ω− by γεc :

γεc = {(x′, x3) ∈ Ωε : x3 = h(x′)}.

The full or limit domain which is the Hausdorff limit of Ωε is denoted by Ω (see Fig. 2):

Ω = {(x′, x3) : x′ ∈ (0, 1)2, g(x′) < x3 < h(x′) +M}.
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Figure 2. Ω.

Now from the definition of Ω+ and Ω− we have Ω = interior(Ω+ ∪ Ω−). The common boundary of Ω+ and Ω−

is denoted by γc which is defined by

γc = {(x′, x3) : x′ ∈ (0, 1)2, x3 = h(x′)}

We denote the boundary of Ω by ∂Ω.

2.2. Problem description

Let A (x, y1) = (ai,j (x, y1))
3
i,j=1 , be a 3 × 3 matrix where the entries ai,j : Ω × R → R are Caratheodory

type, 1−periodic in y1, and A(x, y1) is uniformly elliptic, symmetric and bounded in Ω × (0, 1), that is, there
exists α, β ∈ R+ such that,

〈A(x, y1)v, v〉 > α‖v‖2, ‖A(x, y1)v‖ 6 β‖v‖, for all v ∈ R3, x ∈ Ω, y1 ∈ (0, 1).

Notations: To write in a more conventional way we use the following notations in the sequel: A = A(x, y1) and

Aε = A
(
x,
x1

ε

)
.

Let us consider the following elliptic PDE{
−div (Aε∇uε) + uε = f in Ωε,

Aε∇uε · νε = 0 on ∂Ωε,
(2.1)

where νε is the outward unit normal vector to ∂Ωε and f ∈ L2(Ω). The weak formulation to the above PDE is
given as follows: find uε ∈ H1(Ωε) such that,∫

Ωε

Aε∇uε · ∇φdx+

∫
Ωε

uεφdx =

∫
Ωε

fφdx, for all φ ∈ H1(Ωε). (2.2)

The Lax-milligram lemma guarantees the existence and uniqueness of uε (see [24]) satisfying (2.2). Taking φ = uε
in the weak formulation, we get the uniform bound for ‖uε‖H1(Ωε), that is, there exists C ∈ R+, independent
of ε such that ‖uε‖H1(Ωε) ≤ C. Hereafter C will be denoted as a generic constant independent of ε. Our aim is



6 A. K. NANDAKUMARAN AND A. SUFIAN

to analyze the asymptotic behavior of uε as ε→ 0. We also consider interior optimal control problems, which
we will state in Sections 5 and 7. The existence, uniqueness and the estimate do not use anything special about
the oscillations in one direction and it is true with multi-directional oscillations.

To analyze the asymptotic behavior of these problems, a modified unfolding operator will be used which is
going to be introduced in the following section.

3. Unfolding operator

The periodic unfolding method is one of the most effective and latest tool in the theory of homogenization
which was first introduced in [16]. Here we first recall the definition and properties of periodic unfolding operator
for the fixed domain Ω−.

3.1. Periodic unfolding method

Let for any x ∈ Ω−, [x] =
(
[x1], [x2], [x3]

)
, where [xi] denote the greatest integer part xi and {x} =(

{x1}, {x2}, {x3}
)
, where {xi} = xi − [xi] is the fractional part of xi. To define unfolding operator in Ω−,

we use the following notations

Eε = {ξ ∈ Ω− : ε(ξ + (0, 1)3) ⊂ Ω−}

Ω̂−ε = interior

 ⋃
ξ∈Eε

(ε(ξ + (0, 1)3))

 and Λε = Ω−\Ω̂−ε .
(3.1)

Definition 3.1. For a Lebesgue-measurable function φ on Ω−, the unfolding operator Tε is defined as follows:

Tε(φ)(x, y) =

{
φ
(
ε
[
x
ε

]
+ εy

)
for a.e. (x, y) ∈ Ω̂−ε × (0, 1)3

0 for a.e. (x, y) ∈ Λε × (0, 1)3
.

The following is a compactness theorem:

Theorem 3.2. [16] Let {ψε} be a sequence in H1(Ω−) such that ψε ⇀ ψ weakly in H1(Ω−), then there exists
a sub-sequence of {ψε} still denote by {ψε} and ψ1 ∈ L2(Ω, H1

per((0, 1)3)), such that

Tε(∇ψε) ⇀ ∇ψ(x) +∇yψ1(x, y) in L2(Ω− × (0, 1)3).

A modified definition of Definition 3.1 was used in [19] to do homogenization in pillar type oscillating domain.
Later in [1], authors defined an unfolding operator for general periodic oscillating domains. For further study
on unfolding operators see [17] and references therein. In all the above articles, the base of the oscillation is a
horizontal plane. In this article, we are allowing the base of the periodic oscillation to be a graph of a Lipschitz
function, that is it can be a curved surface. The unfolding operators can be defined with oscillations in any
number of directions which is discussed in Section 7. Now, we define the modified unfolding operator for our
analysis in one directional oscillating domain. For every ε > 0, we define the approximate unfolded domain
corresponding to Ω+

ε as:

Ωuε =
{

(x′, x3, y1) : (x′, y1) ∈ (0, 1)3, h
(
ε
[x1

ε

]
+ εy1, x2

)
< x3 < h

(
ε
[x1

ε

]
+ εy1, x2

)
+ η(y1)

}
.

Definition 3.3. The unfolding operator T ε : {u : Ω+
ε → R} → {T εu : Ωuε → R} is defined by

T εu = χΩu
ε
T εu,
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where T ε is the unfolding operator given by

T εv(x1, x2, x3, y1) = v
(
ε
[x1

ε

]
+ εy1, x2, x3

)
. (3.2)

If O ⊂ R3 containing Ω+
ε and v is a real valued function on O, then

T εv = T ε
(
v|Ω+

ε

)
.

Like other unfolding operators it also enjoys the following integral equality:

Lemma 3.4. Let u ∈ L2(Ω+
ε ). Then ∫

Ωu
ε

T εudx′dx3dy1 =

∫
Ω+

ε

udx′dx3.

Proof. From the definition of unfolding,∫
Ωu

ε

T εu(x′, x3, y1)dx′dx3dy1

=

∫
x′∈(0,1)2

∫
y1∈(0,1)

∫ h(ε[ x1
ε ]+εy1,x2)+η(y1)

h(ε[ x1
ε ]+εy1,x2)

u
(
ε
[x1

ε

]
+ εy1, x3

)
dx′dx3dy1

=

m−1∑
i=0

∫
x1∈εi+ε(0,1)

∫
x2∈(0,1)

∫
y1∈(0,1)

∫ h(εi+εy1,x2)+η(y1)

h(ε(i+εy1,x2,x3)

u (εi+ εy1, x2, x3) dx1dx2dx3dy1

=

m−1∑
i=0

∫
y1∈(0,1)

∫
x2∈(0,1)

∫ h(εi+εy1,x2)+η(y1)

h(εi+εy1,x2)

εu (εi+ εy1, x2) dy1dx2dx3.

By making the change of variable, x1 = εi+ εy1, we get,

∫
Ωu

ε

T εu(x′, x3, y1)dx′dx3dy1 =

m−1∑
i=0

∫
εi+ε(0,1)

∫
(0,1)

∫ h(x′)+ηε(x1)

h(x′)

u(x′, x3)dx′dx3.

Hence the claim is proved.

Notice that the characteristic function, χΩu
ε
→ χΩu pointwise in R2, where Ωu is the fixed unfolded domain

defined as

Ωu =
{

(x′, x3, y1) : x′ ∈ (0, 1)2, y1 ∈ (0, 1), h(x′) < x3 < h(x′) + η(y1)
}
.

To get a transparent vision on the unfolded domain, we give 2-dimensional figures of h, η,Ωuε ,Ω
u, see

Figures 3, 4, 5, 6. Also, since h, η are Lipschitz functions, we have that

|Ωuε∆Ωu| = O(ε) (3.3)

where ∆ denote the symmetric difference between Ω+
ε , Ωu that is Ωuε∆Ωu = (Ωuε\Ωu)

⋃
(Ωu\Ωuε ) and | · |

denotes the usual Lebesgue measure. Because of the above relation (3.3), we have the following equality,
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Figure 3. h.

Figure 4. η.

for any v ∈ L2
loc(R3) :

∫
Ωu

ε

T εvdxdy1 =

∫
Ωu

T εvdxdy1 +O(ε). (3.4)

Since our aim is to analyze the asymptotic behavior of the sequence uε the solution of (2.2), whenever we apply
unfolding, we will make use of the relation (3.4).

Note: Throughout this article, we will use T ε and Tε as unfolding operators for the upper oscillating part and
the fixed lower part respectively.
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Figure 5. Ωuε for ε = 1
5 .

3.2. Boundary unfolding operator

In order to get the interface conditions, we now introduce the following boundary unfolding operator T εb on
γεc . For every ε > 0, let us denote the unfolded boundary of γεc by γuc , defined by

γuc = {(x′, h(x′), y1) : x′ ∈ (0, 1)2, y1 ∈ (a, b)}.

Define φεγc : γuc → γεc as

φεγc(x′, h(x′), y1) =
(
ε
[x1

ε

]
+ εy1, x2, h

(
ε
[x1

ε

]
+ εy1, x2

))
.

Define boundary unfolding operator T εb : {u : γεc → R} → {T εb : γuc → R} as T εb u = u ◦ φεγc .

Proposition 3.5. The boundary unfolding operator T εb enjoys the following properties:

(i) T εb is linear. Further, if u, v : γεc → R, then, T εb (uv) = T εb (u)T εb (v),
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Figure 6. Ωu.

(ii) for any φ ∈ L2(γc), ‖T εb φ− φ‖L2(γu
c ) → 0 as ε→ 0,

(iii) let {φε} is a sequence in L2(γc) such that ‖φε − φ‖L2(γc) → 0, then
‖T εb φε − φ‖L2(γu

c ) → 0,
(iv) for u ∈ L2(γε), then ‖T εb u‖L2(γu

c ) ' ‖u‖L2(γε
c ) when ε is small.

Proof. Proof of (i) is obvious, so we will give proof of (ii), (iii) and (iv).

Proof of (ii) and (iii): Let φ ∈ C∞c (γc), hence φ is Lipschitz, say with lipschitz constant L1. Also let the
Lipschitz constant for h is L2. Then∣∣∣φ(ε [x1

ε

]
+ εy1, x2, h

(
ε
[x1

ε

]
+ εy1, x2

))
− φ(x′, h(x′))

∣∣∣ 6 (L1 + L1L2)ε.

This implies T εb φ→ φ pointwise in γuc , hence in L2(γuc ). The density of C∞c (γc) in L2(γc) completes the proof
of (ii). To prove (iii), use triangle in inequality to get

‖T εb φε − φ‖L2(γu
c ) 6 ‖T εb φε − φε‖L2(γu

c ) + ‖φε − φ‖L2(γu
c ).
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Now, using (ii) and the convergence of φε → φ in L2(γc), we get (iii).

Proof of (iv): We have

‖u‖2L2(γε
c )

=

m−1∑
i=0

∫
εi+ε(a,b)

∫
(0,1)

u2(x′, h(x′))
√

1 + |∇h(x′)|2dx′

=

m−1∑
i=0

∫
εi+ε(0,1)

∫
(0,1)

∫
(a,b)

u2 (εi+ εy1, x2, h (εi+ εy1, x2))

√
1 + |∇h|2 (εi+ εy1, x2)dx′dy1

=

∫
(0,1)2

∫
(a,b)

(T εb u)2(x′, h(x′), y1)

√
1 + |∇h|2

(
ε
[x1

ε

]
+ εy1, x2

)
√

1 + |∇h(x′)|2
√

1 + |∇h(x′)|2dx′dy1.

Since

√
1 + |∇h|2

(
ε
[
x1

ε

]
+ εy1, x2

)√
1 + |∇h|2(x′)2

→ 1 as ε→ 0, the result follows.

3.3. Limit function space

Let us introduce the function space in the limit domain Ω, where the solution corresponding to homoge-
nized system belongs to. Let ω(x) = |Y (x′, x3)|, the Lebesgue measure of Y (x′, x3), where Y (x′, x3) = {y1 ∈
(0, 1) : h(x′) + η(y1) > x3}. For any ψ : Ω→ R, denote ψ+ = ψχΩ+ and ψ− = ψχΩ− . Define

Ĥ(Ω, ω) =

{
ψ ∈ C∞(Ω) : ψ ∈ L2(Ω),

∂ψ

∂xi
∈ L2(Ω) for i = 2, 3, ∇ψ− ∈ H1(Ω−)

}

with the following inner product for ψ, φ ∈ Ĥ(Ω, ω)

〈ψ, φ〉H(Ω,ω) =

∫
Ω+

ω

(
ψφ+

3∑
i=2

∂ψ

∂xi

∂φ

∂xi

)
dx+

∫
Ω−

(ψφ+∇ψ · ∇φ)dx. (3.5)

Now define H(Ω, ω) to be the completion of Ĥ(Ω, ω) with respect to the norm defined by the inner product
(3.5). We can characterize the space H(Ω, ω) as

H(Ω, ω) =

{
ψ ∈ L2(Ω) :

∂ψ

∂xi
∈ L2(Ω) for i = 2, 3, ∇ψ− ∈ H1(Ω−)

}
.

4. Homogenization

In this section, we obtain the limit problem corresponding to (2.1) by passing to the limit ε→ 0 in (2.2). We
also prove the existence and uniqueness of the solution of the limit problem. From the definition of unfolding
operator, we have

‖T ε(uε)‖2L2(Ωu) + ‖T ε∇uε‖2L2(Ωu) 6 ‖T
εuε‖2L2(Ωu

ε ) + ‖T ε(∇uε)‖2L2(Ωu
ε ) + o(1)

=

∫
Ωu

ε

(
|T εu|2 + |T ε∇uε|2

)
dxdy1 + o(1) =

∫
Ω+

ε

(
|uε|2 + |∇uε|2

)
dx+ o(1) 6 C.
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The last inequality follows from the boundedness of ‖uε‖H1(Ωε). Thus, we have the following proposition:

Proposition 4.1. The sequence of solutions uε to (2.1) satisfies the estimates:

‖T εuε‖L2(Ωu) 6 C, ‖T ε∇uε‖L2(Ωu) 6 C.

Analogous to the Propositions 7 and 8 in [34], we prove two propositions in the context of unfolded operators.
Let for each ε > 0, uε be the unique solution of (2.1). Let us define another sequence using the unfolded sequence
T εuε, say T εUε as

T εUε(x′, y1, x3) =
1

ε

(
T εuε −

1

|Y (x′, x3|)

∫
Y (x′,x3)

T εuε(x1, y1, x2, x3)dy1

)
. (4.1)

Proposition 4.2. The sequence defined in (4.1) is uniformly bounded in L2(Ωu).

Proof. Using Poincare-Writinger inequality in (4.1), we get

∫
Y (x′,x3)

|T εUε|2dy 6 C

∫
Y (x′,x3)

∣∣∣∣∣ ∂∂y1

(
1

ε

(
T εuε −

1

|Y (x′, x3|)

∫
Y (x′,x3)

T εuε(x1, y1, x2, x3)dy1

))∣∣∣∣∣
2

dy1

6 C

∫
Y (x′,x3)

∣∣∣∣1ε ∂T εuε∂y1

∣∣∣∣2 = C

∫
Y (x′,x3)

∣∣∣∣T ε ∂uε∂x1

∣∣∣∣2 dy1.

Now integrating both side with respect to x′ and x3 we get,∫
Ωu

|T εUε|2 6 C

∫
Ωu

∣∣∣∣T ε ∂uε∂x1

∣∣∣∣2 = C

∫
Ω+

ε

∣∣∣∣∂uε∂x1

∣∣∣∣2 6 C,

where C is a generic constant independent of ε.

As ‖T εUε‖ 6 C, by compactness there exist U1 ∈ L2(Ωu) such that T εUε ⇀ U1 in L2(Ωu). Then the following
proposition hold.

Proposition 4.3. Let for each ε > 0, uε be the unique solution of (2.1). Then

T ε ∂uε
∂x1

⇀
∂U1

∂y1
weakly in L2(Ωu).

Proof. Let ψ(x, y1) ∈ C∞c (Ωu). Let T ε
(
∂uε
∂x1

)
⇀ P1 in L2(Ωu). A simple integration by parts gives us the

following, ∫
Ωu

T ε
(
∂uε
∂x1

)
ψ(x, y1) =

∫
Ωu

1

ε

∂

∂y1
(T εuε)ψ(x, y1) = −

∫
Ωu

1

ε
T εuε

∂ψ

∂y1
= −

∫
Ωu

T εUε
∂ψ

∂x1
.

Now letting ε→ 0 in the above equation on both side, we get

∫
Ωu

P1ψ = −
∫

Ωu

U1
∂ψ

∂y1
.
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Since ψ is arbitrary, implies P1 =
∂U1

∂y1
a.e. in Ωu.

In the main convergence theorem we will explicitly calculate P1 in terms of ai,j , x2 and x3 directional deriva-
tives of the limit solution.

Limit Problem: We denote the limit matrices A+
0 and A−0 corresponding to the upper and lower parts. The

matrix A+
0 is defined as

A+
0 = A+

0 (x) =

∫
Y (x′,x3)

1

a11

[
a11a22 − a2

12 a23a11 − a12a13

a11a23 − a13a12 a11a33 − a2
13

]
dy1, for x ∈ Ω+. (4.2)

To introduce the matrix A−0 we need the following standard cell problems: For i = 1, 2, 3, let χi = χi(y) solves:
−divy(A(x, y1)∇χi) = divy(A(x, y1)ei), in (0, 1)3

χi is (0, 1)3-periodic,

M(χi) = 0,

(4.3)

where {ei : i = 1, 2, 3} is the standard basis of R3 and M(φ) =

∫
(0,1)3

φ(y)dy. Let

χ = [χ1 χ2 χ3]. Now, A−0 is defined by

A−0 (x) =

∫
(0,1)3

A(x, y1)
(
I +∇yχ

)
dy, for x ∈ Ω−, (4.4)

where I is the 3× 3 identity matrix and ∇yχ = [∇yχ1 ∇yχ2 ∇yχ3] is a 3× 3 matrix. The homogenized equation
is given by, 

−div2,3

(
A+

0 ∇2,3u
+
)

+ ω(x)u+ = ω(x)f in Ω+,

−div(A−0 ∇u−) + u− = f in Ω−,

A+
0 ∇2,3u

+ · (ν2, ν3) = 0 on γu,

u+ = u−, A+
0 ∇2,3u

+ · (σ2, σ3)−A−0 ∇u− · σ = 0 on γc,

A−0 ∇u · ν = 0 on ∂Ω−\γc,

(4.5)

where ν = (ν1, ν2, ν3) is the outward unit normal vector on ∂Ω and

σ = (σ1, σ2, σ3) =
(√

1 + |∇h(x′)|2
)−1

(
∂h

∂x1
,
∂h

∂x2
,−1

)
is the downward unit normal on γc and

∇2,3 =


∂

∂x2

∂

∂x3

 , div2,3 =

(
∂

∂x2
,

∂

∂x3

)
.

The limit system (4.5) is quite interesting and it shows the feature of laminate structure. Recall that we
have oscillations only in one direction, namely x1. Hence the oscillatory part is like laminates and it averages
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out in that direction like usual homogenization theory and we only have the presence of x2 and x3 variable in
the upper part of the domain. Indeed the oscillatory part is like laminates. The variational form for the above
system is given by: find u = u+χΩ+ + u−χΩ− ∈ H(Ω, ω) such that∫

Ω+

(
A+

0 ∇2,3u
+∇2,3φ

+ + ω(x)u+φ+
)

+

∫
Ω−

(A−0 ∇u−∇φ− + u−φ−) =

∫
Ω+

ω(x)fφ+dx+

∫
Ω−

fφ−,

for all φ = φ+χΩ+ + φ−χΩ− ∈ H(Ω, ω). We write u+
ε = uε|Ω+

ε
and u−ε = uε|Ω−

Now we state the main theorem of this section:

Theorem 4.4. (Homogenization) Let uε be the sequence of solution to (2.1). Then the following convergences
hold:

(i) T εu+
ε ⇀ u+ and T ε

(
∂u+

ε

∂xi

)
⇀ ∂u+

∂xi
weakly in L2(Ωu) for i = 2, 3,

(ii) u−ε ⇀ u− weakly in H1(Ω−).

Further u+ is independent of y1, u = u+χΩ+ +u−χΩ− ∈ H(Ω, ω) and u is the unique solution of the homogenized
system (4.5).

Proof. The proof will be accomplished in several steps.

Step 1: Taking φ ∈ C∞c (Ω+) as a test function in (2.2), we get∫
Ω+

ε

(
Aε∇u+

ε · ∇φ+ u+
ε φ
)

dx =

∫
Ω+

ε

fφdx.

Applying unfolding operator on both side of the above equation, by (3.4), we have∫
Ωu

(
T ε (Aε) T ε(∇u+

ε ) · T ε(∇φ) + T ε(u+
ε )T εφ

)
dxdy1 =

∫
Ωu

T ε(f)T ε(φ)dxdy1 + o(1). (4.6)

Thus,

lim
ε→0

∫
Ωu

(
T ε (Aε) T ε(∇u+

ε ) · T ε(∇φ) + T ε(u+
ε )T ε(φ)

)
dxdy1 = lim

ε→0

∫
Ωu

T ε(f)T ε(φ)dxdy1.

Now we try to pass to the limit as ε→ 0 in the above identity. By Proposition 4.1, we have

‖T εu+
ε ‖L2(Ωu) 6 C,

∥∥∥∥T ε(∂u+
ε

∂xi

)∥∥∥∥
L2(Ωu)

6 C for i = 1, 2, 3. Hence, there exist

u+, P1, P2, P3 ∈ L2(Ωu) such that

T εu+
ε ⇀ u+ weakly in L2(Ωu),

T ε
(
∂u+

ε

∂xi

)
⇀ Pi weakly in L2(Ωu), for i = 1, 2, 3.

Main issue is to compute Pi and connect it to u+. This is easy for P2 and P3 as the domain has oscillations in
x1 direction. We have

∂

∂xi
(T ε) = T ε

(
∂

∂xi

)
for i = 2, 3.
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But this is not the case for i = 1 and has to be dealt separately. First, we find out P2 and P3.

Claim: For i = 2, 3, Pi =
∂u+

∂xi
.

Proof: We have T ε
(
∂u+

ε

∂xi

)
⇀ Pi in L2(Ωu). Let φ ∈ C∞c (Ωu), so after sufficiently small ε > 0,

supp(φ) ⊂ Ωuε ∩ Ωu. Now, consider the following,

∫
Ωu

T ε
(
∂u+

ε

∂xi

)
φdxdy1 =

∫
Ωu

∂

∂xi
(T εu+

ε )φdxdy1 = −
∫

Ωu

T εu+
ε

∂φ

∂xi
dxdy1.

Letting ε→ 0 in the above equality, we obtain,∫
Ωu

Piφdxdy1 = −
∫

Ωu

u+ ∂φ

∂xi
dxdy1.

Since, φ ∈ C∞c (Ωu) is arbitrary, we get, Pi =
∂u+

∂xi
for i = 2, 3.

In order to find P1, we will make use of the fact that u+ is independent of y1.

Claim: The limit solution on upper part, that is u+, is independent of y1.

Proof: From the definition of unfolding operator, we have χΩu
ε

∂

∂y1
(T εu+

ε ) = εχΩu
ε
T ε
(
∂u+

ε

∂x1

)
. Hence∥∥∥∥ ∂

∂y1
(T εu+

ε )

∥∥∥∥
L2(Ωu)

< Cε. From the weak convergence of T ε(u+
ε ) in L2(Ωu), and boundedness of

∥∥∥∥ ∂

∂y1
(T εu+

ε )

∥∥∥∥ ,
we get

∂

∂y1
T εu+

ε ⇀
∂u+

∂y1
weakly in L2(Ωu). (4.7)

But, we have,

∥∥∥∥ ∂

∂y1
T εu+

ε

∥∥∥∥
L2(Ωu)

=

∥∥∥∥εT ε(∂u+
ε

∂x1

)∥∥∥∥
L2(Ωu)

→ 0 as ε → 0. This implies
∂u+

∂y1
= 0. Hence this

proves the claim, since Y (x′, x3) is connected for each (x′, x3) ∈ Ω+.

Now we will find P1. For that we use the oscillating test function φε(x) = εφ(x)ψ
({

x1

ε

})
, where φ ∈ C∞c (Ω+)

and ψ ∈ C∞per((0, 1)), where C∞per((0, 1)) denotes the space of smooth 1- periodic real valued functions. This test
function has the following properties,

T ε(φε)→ 0 strongly in L2(Ωu),

T ε
(
∂φε

∂xi

)
→ 0 strongly in L2(Ωu), for i = 2, 3,

T ε
(
∂φε

∂x1

)
= εT ε

(
∂φ

∂y1

)
ψ(y1) + T ε(φ)

dψ

dy1
(y1).

Hence, T ε
(
∂φε

∂x1

)
→ φ

dψ

dy1
strongly in L2(Ωu). Also from the assumptions on the coefficient matrix A, we

have T ε (Aε)→ A in L2(Ωu). Using φε as a test function in the weak formulation (4.6) and passing to the limit
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as ε→ 0, we get

∫
Ωu

A

 P1

∇2,3u
+

 ·
φψ′0

0

 dxdy1 = 0.

By simple matrix multiplication, we obtain∫
Ωu

(
a11P1 + a12

∂u+

∂x2
+ a13

∂u+

∂x3

)
φ

dψ

dy1
= 0.

Above equality holds for all φ ∈ C∞c (Ω+). Hence, we get

P1 = −a12

a11

∂u+

∂x2
− a13

a11

∂u+

∂x3
a.e in Ωu. (4.8)

Since, ψ ∈ C∞per((0, 1)) and A is uniformly elliptic, implies a11 > α (elliptic constant). Now, taking φ ∈ C∞c (Ω+)
as a test function in the weak formulation (2.2) and passing to the limit ε→ 0, we obtain

∫
Ωu

(
a11P1 + a12

∂u+

∂x2
+ a13

∂u+

∂x3

)
∂φ

∂x1
+

∫
Ωu

(
a12P1 + a22

∂u+

∂x2
+ a23

∂u+

∂x3

)
∂φ

∂x2

+

∫
Ωu

(
a13P1 + a23

∂u+

∂x2
+ a33

∂u+

∂x3

)
∂φ

∂x3
+

∫
Ωu

u+φ =

∫
Ωu

fφ.

(4.9)

The first integral in (4.9) is 0 by (4.8). Now, substituting the value of P1 given in (4.8) in the above expression,
it reduces to,

∫
Ωu

(
1

a11

[
a11a22 − a2

12 a23a11 − a12a13

a11a23 − a13a12 a11a33 − a2
13

]
∇2,3u

+ · ∇2,3φ+ u+φ

)
dxdy1 =

∫
Ωu

fφdxdy1.

Since u+ and φ are independent of y1, using the definition of Ωu, we get∫
Ω+

A+
0 ∇2,3u

+ · ∇2,3φdx+

∫
Ω+

ω(x)u+φdx =

∫
Ω+

ω(x)fφdx.

Step 2: Now, we look into to the lower fixed part. In the weak formulation (2.2), take φ ∈ C∞c (Ω−), we get∫
Ω−

(Aε∇uε · ∇φ+ uεφ) dx =

∫
Ω−

fφdx. (4.10)

Here we will use the unfolding operator for fixed domain. Since we already have ‖uε‖H1(Ω−) 6 C, then by
compactness Theorem 3.2, there exist, u− ∈ H1(Ω−) and u1 ∈ L2(Ω;H1

per((0, 1)3)) such that{
uε ⇀ u− weakly in H1(Ω−),

Tε(∇uε) ⇀ ∇u−(x) +∇yu1(x, y) weakly in L2(Ω× (0, 1)3).
(4.11)
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Now consider φε = φ0(x) + εφ1

(
x, xε

)
, where φ0 ∈ C∞c (Ω−) and φ1 ∈ C∞c (Ω;C∞per((0, 1)3)), as an oscillating

test function in the weak formulation (4.10), we obtain

∫
Ω−

(Aε∇uε · ∇φε + uεφ
ε)dx =

∫
Ω−

fφεdx. (4.12)

Applying unfolding operator on both sides, using the properties of unfolding operator ([16], Prop. 2.5) and
convergence (4.11), by letting ε→ 0 in (4.12), we obtain,

∫
Ω−×(0,1)3

A(∇u+∇yu1) · (∇φ0 +∇yφ1)dxdy +

∫
Ω−

uφ0dx =

∫
Ω−

fφ0dx. (4.13)

Put, φ0 = 0 in (4.13), we have

∫
Ω−×(0,1)3

A(∇u+∇yu1) · ∇yφ1dxdy = 0.

This can be written as ∫
Ω−×(0,1)3

A∇yu1 · ∇yφ1dxdy = −
∫

Ω−×(0,1)3
A∇u− · ∇yφ1dxdy.

Since φ1 ∈ C∞c (Ω;C∞per((0, 1)3)) was arbitrary, u1(x, y) satisfy the following PDE in y variable,

{
−divy (A(x, y1)∇yu1(x, y)) = divy(A(x, y1)∇u−(x)) in (0, 1)3

u1(x, y) is (0, 1)3 − periodic.
(4.14)

Using the solution of the cell problems (4.3), we can write u1(x, y) in L2
(
Ω;H1

per((0, 1)3)/R
)

as u1(x, y) =
3∑
i=1

∂u−

∂xi
χi. Now, take any φ ∈ C∞c (Ω−) as a test function in (4.10) and pass to the limit as ε→ 0 to get,

∫
Ω−×(0,1)3

A(x, y1)

(
∇u− +

3∑
i=1

∂u−

∂xi
∇yχi

)
· ∇φdxdy1 +

∫
Ω−

u−φdx =

∫
Ω−

fφdx.

Using the definition of χ, above equality becomes

∫
Ω−

(∫
(0,1)3

A(x, y1)(I +∇yχ)dy

)
∇u− · ∇φdx+

∫
Ω−

u−φdx =

∫
Ω−

fφdx.

Now applying the definition of A−0 given in (4.4) in the above expression, we get

∫
Ω−

A−0 ∇u− · ∇φdx+

∫
Ω−

u−φdx =

∫
Ω−

fφdx.
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Step 3: Now, we will show u+ = u− on γc. We have u+
ε = u−ε on γεc . Let φ ∈ C∞(Ωu) such that φ = 0 on ∂Ωu\γuc .

A simple integration by parts gives the following∫
Ωu

T ε
(
∂u+

ε

∂x3

)
φdxdy1 = −

∫
Ωu

T εu+
ε

∂φ

∂x3
dxdy1 +

∫
γu
c

T εb (u−ε )φσ3 + o(1),

where σ = (σ1, σ2, σ3, 0) is the downward unit normal on γuc . By passing to limit ε → 0 in the above identity
using (3.3) and Lemma 3.5 to get,∫

Ωu

∂u+

∂x3
φdxdy1 +

∫
Ωu

u+ ∂φ

∂x3
dxdy1 =

∫
γu
c

u−σ3φ.

Combining the first two integrals and applying integration by parts, we have∫
γu
c

u+σ3φ =

∫
γu
c

u−σ3φ, for all φ ∈ C∞c (Ω) with φ = 0 on ∂Ωu\γuc .

Hence, we have

u+ = u− on γuc .

Since u+ are u− are independent of y1, we have u+ = u− on γc.

Step 4: Taking φ ∈ C∞(Ω) as a test function in the weak formulation (2.2), we get,∫
Ω+

ε

(
Aε∇u+

ε · ∇φ+ u+
ε φ
)

+

∫
Ω−

(
Aε∇u−ε · ∇φ+ u−ε φ

)
=

∫
Ω+

ε

fφ+

∫
Ω−

fφ. (4.15)

We have,

lim
ε→0

∫
Ω+

ε

(
Aε∇u+

ε · ∇φ+ u+
ε φ
)

dx =

∫
Ω+

(
A+

0 ∇2,3u
+ · ∇2,3φ+ ω(x)u+φ

)
dx, (4.16)

and

lim
ε→0

∫
Ω−

Aε∇u−ε · ∇φdx+ u−ε φdx =

∫
Ω−

(A−0 ∇u− · ∇φ+ u−φ)dx. (4.17)

Hence, if we pass to the limit ε→ 0 in (4.15), using the above convergences (4.16) and (4.17), we get,∫
Ω+

(
A+

0 ∇2,3u
+ · ∇2,3φ+ ω(x)u+φ

)
dx+

∫
Ω−

(A−0 ∇u− · ∇φ+ u−φ)dx

=

∫
Ω+

ω(x)fφdx+

∫
Ω−

fφdx.

(4.18)

Since φ ∈ C∞(Ω) is arbitrary, hence by density, the above equality holds for all φ ∈ H(Ω, ω), and this is the weak
formulation corresponding to (4.5). Hence u is a weak solution to (4.5). To get the uniqueness of u ∈ H(Ω, ω),
we will use Lax Miligram lemma. For that one has to verify the following bilinear form corresponding to the
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left hand side of the variational equality (4.18), F : H(Ω, ω)×H(Ω, ω)→ R defined by

F (φ, ψ) =

∫
Ω+

(
A+

0 ∇2,3φ
+ · ∇2.3ψ

+ + ω(x)φ+ψ+
)

+

∫
Ω−

(A−0 ∇φ− · ∇ψ− + φ−ψ−)

is continuous and elliptic. This will follow from the fact that, A+
0 and A−0 are uniformly elliptic and bounded.

Ellipticity of A−0 is a classical result. Let us prove the ellipticity of A+
0 : for (λ2, λ3) ∈ R2, we have

α

∥∥∥∥(−a12

a11
λ2 −

a13

a11
λ3, λ2, λ3

)∥∥∥∥2

6 A

−a12a11
λ2 − a13

a11
λ3

λ2

λ3

 ·
−a12a11

λ2 − a13
a11
λ3

λ2

λ3


=

1

a11

[
a11a22 − a2

12 a23a11 − a12a13

a11a23 − a13a12 a11a33 − a2
13

] [
λ2

λ3

]
·
[
λ2

λ3

]
. (4.19)

Now integrate both sides over the set Y (x′, x3) with respect to y1, we obtain

αω(x)‖(λ2, λ3)‖2 6 A+
0

[
λ2

λ3

]
·
[
λ2

λ3

]
.

Since ω(x) > δ > 0, implies A+
0 elliptic. Hence, this also shows the convergence of the full sequence uε. This

completes the proof.

Remark 4.5. (1) Instead of taking the source term f ∈ L2(Ω), one can take fε ∈ L2(Ωε) whose zero extension
f̃ε to the whole domain Ω, weakly converges to f in L2(Ω).
(2) Note that in the above analysis, we could compute P2 and P3 directly as there were no oscillations in x2

and x3 directions. Then, we computed P1 in terms of the computed values of P2 and P3 . If we have oscillations
in more than one directions, say along x1 and x2 directions, then we will compute P1 and P2 in terms of the
computed value of P3. This result has shown in Section 7.

5. Homogenization of an optimal control problem

In this section, we consider an interior optimal control problem with general energy type cost functional in
Ωε. Here we restrict ourselves to 3-dimensional case to make simpler presentation. But the results can be extend

to any finite dimensional domain Ωε. Let Bε(x) = B
(
x, x1

ε

)
=
(
bi,j
(
x, x1

ε

))3
i,j=1

, be a family of 3× 3 matrices

and have the same properties as Aε defined in Section 2.2 namely the uniform ellipticity and boundedness.

Notations: To write in a more conventional way, we use the following notations for this section: B = B(x, y1)

and Bε = B
(
x,
x1

ε

)
.

We also assume that Aε and Bε are symmetric. Let us consider the following cost functional

Jε = Jε(θε) =
1

2

∫
Ωε

Bε∇uε · ∇uεdx+
β

2

∫
Ωε

|θε|2dx, (5.1)

where β > 0 is a fixed constant and given θε ∈ L2(Ωε), the function uε ∈ H1(Ωε) satisfies the following PDE,{
−div(Aε∇uε) + uε = f + θε in Ωε,

Aε∇uε · νε = 0 on ∂Ωε.
(5.2)
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Here f ∈ L2(Ωε) is the source term and θε is the control. The optimal control problem is to find (ūε, θ̄ε) ∈
H1(Ωε)× L2(Ωε) such that

Jε(ūε, θ̄ε) = inf{Jε(uε, θε) : (uε, θε) obeys (5.2)}. (5.3)

This type of problem was first considered in [29] in a fixed domain, in the case when the coefficient matrices
Aε and Bε are periodic. In [27], in fixed domain, authors have considered the case when coefficient matrices Aε

and Bε are H-convergent. In [28], this control problem with fixed A and B have been considered in perforated
domain. For further study in this direction we suggest the reader to see [25, 26] and references therein. Here we
consider the above optimal control problem (5.3) in an oscillating domain having curved interface. It is known
that the equation (5.2) admits a unique solution uε ∈ H1(Ωε) and also satisfies the following estimate,

‖uε‖H1(Ωε) 6 C(‖f‖L2(Ωε) + ‖θε‖L2(Ωε)), (5.4)

where C is a generic constant independent of ε. We also have the existence and uniqueness result for the optimal
control problem (5.3) for each fixed ε > 0 (see [31]).

Theorem 5.1. For each fixed ε > 0, the minimization problem (5.3) admits a unique solution (ūε, θ̄ε) ∈
H1(Ωε)× L2(Ωε).

The topic of discussion for this section is to analyze the asymptotic behavior of (ūε, θ̄ε)) as the oscillating
parameter ε→ 0. To achieve our goal, we will make use of the following characterization theorem.

Theorem 5.2. Let (ūε, θ̄ε) be the optimal solution to the optimal control problem (5.3), then the optimal control
is characterized by

θ̄ε = − 1

β
v̄ε,

where the adjoint state v̄ε, satisfies the following adjoint PDE{
−div(Aε∇v̄ε) + v̄ε = −div (Bε∇ūε) in Ωε,

(Aε∇v̄ε −Bε∇ūε) · νε = 0 on ∂Ωε.
(5.5)

Conversely, let (ūε, v̄ε) satisfies the following system
−div(Aε∇ūε) + ūε = f + θ̄ε in Ωε,

−div(Aε∇v̄ε) + v̄ε = −div (Bε∇ūε) in Ωε,

Aε∇ūε · νε = 0, (Aε∇v̄ε −Bε∇ūε) · νε = 0 on ∂Ωε.

θ̄ε = − 1

β
v̄ε.

(5.6)

Then (ūε, θ̄ε) is the optimal solution to the optimal control problem (5.3).

Proof. We present a quick proof for the sake of completion. Given θε ∈ L2(Ωε), denote Fε(θε) = Jε(uε(θε), θε)
where uε(θε) is the solution to (5.2). Evaluating the limit of

1

λ
(Fε(θ̄ε + λθε)− Fε(θ̄ε))
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as λ→ 0 and denoting the limit by F ′(θ̄ε)θε, we get

F ′ε(θ̄ε)θε =

∫
Ωε

Aε∇ūε · ∇wθεdx+ β

∫
Ωε

θ̄εθεdx,

where wθε is the solution to the following PDE,{
−div (Aε∇wθε) + wθε = θε in Ωε,

Aε∇wθε · νε = 0 on ∂Ωε.
(5.7)

As (ūε, θ̄ε) is the optimal solution, we have

F ′ε(θ̄ε)θε = 0, for all θε ∈ L2(Ωε).

Hence, we get, ∫
Ωε

Aε∇ūε · ∇wθεdx = −β
∫

Ωε

θ̄εθεdx. (5.8)

Let v̄ε satisfies (5.5). Using wθε as a test function in (5.5) and v̄ε in (5.7), we obtain

∫
Ωε

Aε∇ūε · ∇wθεdx =

∫
Ωε

v̄εθεdx. (5.9)

Hence from (5.8) and (5.9), we have

θ̄ε = − 1

β
v̄ε.

This completes the proof of forward part.

Conversely, from the identity (5.9), Gateaux derivative of Fε at θε = − 1

β
v̄ε vanishes in all the direction. Since

J is strictly convex, hence Fε is strictly convex which implies that the pair

(
ūε,−

1

β
v̄ε

)
is the optimal solution

to the considered optimal control problem (5.3).

5.1. Homogenized optimal control problem

To introduce the homogenized or limit problem, we need the following cell problems. For each x ∈ Ω− and
i = 1, 2, 3, let χi = χi(y) and Ni = Ni(y) solve the following system

−divy(A(x, y1)∇χi) = divy(A(x, y1)ei) in (0, 1)3,

−divy(A(x, y1)∇Ni) = divy(B(x, y1) (I +∇yχ) ei) in (0, 1)3,

χi, ηi are (0, 1)2 − periodic in y and M(χi), M(Ni) = 0.

(5.10)

Now define the matrices B±#, for x ∈ Ω±:

B−#(x) =

∫
(0,1)3

(B(x, y1)(I +∇yχ) +A(x, y1)∇yN)dy, for x ∈ Ω−,
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B+
#(x) =

∫
(0,1)

B+(x, y1)dy1, for x ∈ Ω−,

where

B+(x, y1) =
1

a11

[
b22a

2
11 − 2a11b12a12 + a2

12b11 b23a
2
11 + a2

12b11 − b13a12a11 − a11b12a13,

b23a
2
11 + a2

12b11 − b13a12a11 − a11b12a13 b33a
2
11 − 2a11b13a13 + a2

13b11

]
,

N = [N1 N2 N3] and χ = [χ1 χ2 χ3] . The state equation for the control θ ∈ L2(Ω) is given by



−div2,3

(
A+

0 ∇2,3u
+
)

+ ω(x)u+ = ω(x)f + ω(x)θ in Ω+,

−div(A−0 ∇u−) + u− = f + θ in Ω−,

A+
0 ∇2,3u

+ · (ν2, ν3) = 0 on γu,

u+ = u−, A+
0 ∇2,3u

+ · (σ2, σ3)−A−0 ∇u− · σ = 0 on γc,

A−0 ∇u− · ν = 0 on ∂Ω−\γc,

(5.11)

where A±0 , ∇2,3u
+ and div2,3 are defined as in Section 4. The limit optimal control problem is defined as follows:

find (ū, θ̄) ∈ H(Ω, ω)× L2(Ω) such that

J(ū, θ̄) = inf{J(u, θ) : (u, θ) ∈ H(Ω, ω)× L2(Ω) satisfies (5.11)}, (5.12)

where the cost functional J is given by

J(u, θ) =
1

2

∫
Ω+

B+
#∇2,3u

+ · ∇2,3u
+dx+

1

2

∫
Ω−

B−#∇u
−∇u−dx+

β

2

∫
Ω

|θ|2dx.

Remark 5.3. It is quite intuitive that the limit problem will be in the full domain Ω which is the Hausdorff
limit of Ω+

ε . Indeed the limit problem is independent of ε defined in the full domain Ω. We expect that in the
limit there will be interactions between Aε and Bε, namely the coefficient matrix of the equation and matrix
in the cost functional and that is what we get as B#. In other words, the matrix B# has the contribution both
from the state and cost, whereas the coefficient matrix of the state equation should not be affected by coefficient
matrix of the cost functional. This indeed is demonstrated by our limit problem and we get the limit coefficient
matrix as A+

0 .

We have the symmetricity and the ellipticity of B+
# and B−# (will prove it in the sequel of proof of

Thm. 5.7). This gives the existence and uniqueness of the optimal solution to the optimal control problem
(5.12). The characterization and optimality system is given by the following theorem:

Theorem 5.4. (Existence and characterization) Let (ū, θ̄) be the optimal solution to the optimal control problem
(5.12), then the optimal control is given by

θ̄ = − 1

β
v̄,
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where the adjoint state v̄ satisfies the following adjoint PDE

−div2,3

(
A+

0 ∇2,3v̄
+
)

+ ω(x)v̄+ = −div2,3

(
B+

#∇2,3ū
+
)

in Ω+,

−div(A−0 ∇v̄−) + v̄− = −div(B−#∇ū
−) in Ω−,(

A+
0 ∇2,3v̄

+ −B+
#∇2,3ū

+
)
· (ν2, ν3) = 0 on γu,

v̄+ = v̄−,
(
A+

0 ∇2,3v̄
+ −B+

#∇2,3ū
+
)
· (σ2, σ3)−A−0 ∇v̄− · σ = 0 on γc,

A−0 ∇v̄ · ν = 0 on ∂Ω−\γc.

(5.13)

Conversely, assume that (u, v) ∈ H(Ω, ω)×H(Ω, ω) satisfies the following system,

−div2,3(A+
0 ∇2,3u

+) + ω(x)u+ = ω(x)f+ − 1

β
ω(x′, x3)v+ in Ω+,

−div2,3(A+
0 ∇2,3v

+) + ω(x)v+ = −div2,3(B+
#∇2,3u

+) in Ω+,

−div(A−0 ∇u−) + u− = f− − 1

β
v− in Ω−,

−div(A−0 ∇v−) + v− = −div
(
B−#∇u

−
)

in Ω−,

(5.14)

together with the boundary conditions A+
0 ∇2,3u

+ · (ν2, ν3) = 0,
(
A+

0 ∇2,3v
+ −B+

#∇2,3u
+
)
· (ν2, ν3) = 0 on γu,

A−0 ∇u− · ν = 0, (A−0 ∇v− · ν −B
−
#∇u

− · ν) = 0 on ∂Ω−\γc,

and the interface conditions u+ = u−, A+
0 ∇2,3u

+ · (σ2, σ3)−A−0 ∇u− · σ = 0 on γc,

v+ = v−,
(
A+

0 ∇2,3v
+ −B+

#∇2,3u
+
)
· (σ2, σ3)− (A−0 ∇v− −B

−
#∇u

−) · σ = 0 on γc.

Then the pair

(
u,− 1

β
v

)
is the optimal solution to the optimal control problem (5.12).

We now present the convergence analysis.

5.2. Convergence analysis

Let (ūε, θ̄ε) be the optimal solution to the problem (5.3). Let uε(0) be the solution to the problem (5.2)
corresponding to θε = 0. Then, from (5.4) we get, ‖uε(0)‖H1(Ωε) 6 C. Now using the optimality of the solution
(ūε, θ̄ε), we have

Jε(ūε, θ̄ε) 6 Jε(uε(0), 0).

This implies the following inequality

1

2

∫
Ωε

Bε∇ūε · ∇ūεdx+
β

2

∫
Ωε

|θ̄ε|2dx 6 C.
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Since B is uniformly elliptic, it follows that

‖θ̄ε‖L2(Ωε) 6 C and ‖∇ūε‖L2(Ωε) 6 C. (5.15)

The uniform bound on ‖θ̄ε‖L2(Ωε) gives the uniform bound on ‖ūε‖H1(Ωε) as ūε satisfies (5.2) and uniform bound
of ‖v̄ε‖H1(Ωε) follows from (5.5).

We also have the similar type of convergence as Propositions (4.2) and (4.3).
Let for each ε > 0, ūε, v̄ε be optimal state and corresponding adjoint state respectively. Let us define two

sequences using the unfolded sequence T εŪε and T εV̄ε as

T εŪε(x′, y1, x3) =
1

ε

(
T εūε −

1

|Y (x′, x3|)

∫
Y (x′,x3)

T εūε(x1, y1, x2, x3)dy1

)

T εV̄ε(x′, y1, x3) =
1

ε

(
T εv̄ε −

1

|Y (x′, x3|)

∫
Y (x′,x3)

T εv̄ε(x1, y1, x2, x3)dy1

)
.

(5.16)

Proposition 5.5. The sequences defined in (5.16) is uniformly bounded in L2(Ωu).

As ‖T εŪε‖L2(Ωu), ‖T εŪε‖L2(Ωu) 6 C, by compactness there exist Ū1, V̄1 ∈ L2(Ωu) such that

T εŪε ⇀ Ū1, and T εV̄ε ⇀ V̄1 in L2(Ωu).

Then the following proposition holds.

Proposition 5.6. Let for each ε > 0, ūε and v̄ε are as described earlier. Let

T ε ∂ūε
∂x1

⇀ p1, and T ε ∂v̄ε
∂x1

⇀ q1 weakly in L2(Ωu).

Then p1 =
∂Ū1

∂y1
and q1 =

∂V̄1

∂y1
.

In the proof of Theorem 5.7 to be given below. We will write explicitly p1, q1 in terms of ai,j , bi,j , x2 and x3

directional derivative of limit optimal state and adjoint state.
The following theorem gives us the full convergence of optimal state, control and adjoint state corresponding

to the optimal control problem (5.3). We recall that the notation ∼ is used to denote the extended function
from Ω+

ε to Ω+ by 0. Recall that ω(x) is defined on the upper part Ω+ as in subsection 3.3 and let ω(x) = 1 in
Ω−.

Theorem 5.7. Let (ūε, θ̄ε) and (ū, θ̄) be the optimal solution to (5.3) and (5.12) respectively. Also, let v̄ε and
v̄ are the adjoint states corresponding to the optimal control problem (5.3) and (5.12) respectively. Then

˜̄u+
ε ⇀ ω(x)ū+,

∂̃u+
ε

∂xi
⇀ ω(x)

∂ū+

∂xi
weakly in L2(Ω+), for i = 2, 3

˜̄v+
ε ⇀ ω(x)v̄+,

∂̃v+
ε

∂xi
⇀ ω(x)

∂v̄+

∂xi
weakly in L2(Ω+), for i = 2, 3

ū−ε ⇀ ū−, v̄−ε ⇀ v̄−weakly in H1(Ω−),˜̄θε ⇀ −ω(x)
1

β
v̄, weakly in L2(Ω).

(5.17)
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Proof. The proof will be accomplished in several steps by homogenizing the system (5.6). We will show that the
homogenized system corresponding to (5.6) is the system (5.14). To do this, the system (5.6) will be divided
into two parts, namely Ω+

ε and Ω−. Then analyze the asymptotic behavior in these two parts separately. These
are connected via interface conditions.
Step 1: Using the uniform bound on ‖ūε‖H1(Ωε) and ‖v̄ε‖H1(Ωε), by Proposition 4.1, we have

(i) ‖T εū+
ε ‖L2(Ωu) 6 C, ‖T ε∇ū+

ε ‖L2(Ωu) 6 C

(ii) ‖T εv̄+
ε ‖L2(Ωu) 6 C, ‖T ε∇v̄+

ε ‖L2(Ωu) 6 C.
(5.18)

As in the proof of the Theorem 4.4, we get u+, p1 ∈ L2(Ωu) such that

(i) T εū+
ε ⇀ u+ weakly in L2(Ωu)

(ii) T ε
(
∂ū+

ε

∂x1

)
⇀ p1 weakly in L2(Ωu)

(iii) T ε
(
∂ū+

ε

∂xi

)
⇀

∂u+

∂xi
weakly in L2(Ωu), for i = 2, 3,

(iv) p1 = −a12

a11

∂u+

∂x2
− a13

a11

∂u+

∂x3
.

(5.19)

Further, we see that u+ is independent of y1. Convergence takes place along a subsequence. Similarly, there
exist v+, q1 ∈ L2(Ωu) such that

(i) T εv̄+
ε ⇀ v+ weakly in L2(Ωu)

(ii) T ε
(
∂v̄+

ε

∂x1

)
⇀ q1 weakly in L2(Ωu)

(iii) T ε
(
∂v̄+

ε

∂xi

)
⇀

∂v+

∂xi
weakly in L2(Ωu), for i = 2, 3,

(5.20)

and v+ is independent of y1.

Step 2: We now compute q1. To do so, we use oscillating test functions of the form φε(x) = εφ(x)ψ
({

x1

ε

})
,

where φ ∈ C∞c (Ω+) and ψ ∈ C∞per((0, 1)) in the weak formulation of (5.5), to obtain∫
Ω+

ε

(Aε∇v̄ε∇φε + v̄εφ
ε)dx =

∫
Ω+

ε

Bε∇ūε∇φεdx. (5.21)

As in the proof of Theorem 4.4, applying unfolding operator for the upper part on both sides and letting ε→ 0
to obtain

∫
Ωu

A

 q1

∇2,3v
+

 .
φψ′(y1)

0
0

dxdy1 =

∫
Ωu

B

 p1

∇2,3u
+

 .
φψ′(y1)

0
0

 dxdy1.

By simple matrix multiplication on the above equality gives,∫
Ωu

(
a11q1 + a12

∂v+

∂x2
+ a13

∂v+

∂x3

)
φ

dψ

dy1
dxdy1 =

∫
Ωu

(
b11p1 + b12

∂u+

∂x2
+ b13

∂u+

∂x3

)
φ

dψ

dy1
dxdy1.
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Since φ and ψ are arbitrary, the above equality implies

a11q1 + a12
∂v+

∂x2
+ a13

∂v+

∂x3
= b11p1 + b12

∂u+

∂x2
+ b13

∂u+

∂x3
a.e in Ωu.

The uniform ellipticity of A, implies a11 > α (elliptic constant). Hence, we have

q1 = −a12

a11

∂v+

∂x2
− a13

a11

∂v+

∂x3
+
b11

a11
p1 +

b12

a11

∂u+

∂x2
+
b13

a11

∂u+

∂x3
a.e in Ωu. (5.22)

Let us denote

p̃1 =
b11

a11
p1 +

b12

a11

∂u+

∂x2
+
b13

a11

∂u+

∂x3
. (5.23)

Then q1 = −a12

a11

∂v+

∂x2
− a13

a11

∂v+

∂x3
+ p̃1.

Take φ+ ∈ C∞c (Ω+) as a test function in (5.5), and applying unfolding operator on both sides and let ε → 0.
As in the proof of Theorem 4.4, we obtain

∫
Ωu

A
 q1

∇2,3v
+

 · ∇φ+ + v+φ+

 dxdy1 =

∫
Ωu

B

 p1

∇2,3u
+

 · ∇φ+dxdy1. (5.24)

Use (5.19)(iv) in the above equation to get∫
Ωu

[(
−a12

∂v+

∂x2
− a13

∂v+

∂x3
+ a11p̃1 + a12

∂v+

∂x2
+ a13

∂v+

∂x3

)
∂φ+

∂x1

+

(
−a

2
12

a11

∂v+

∂x2
− a12a13

a11

∂v+

∂x3
+ a12p̃1 + a22

∂v+

∂x2
+ a23

∂v+

∂x3

)
∂φ+

∂x2

+

(
−a12a13

a11

∂v+

∂x2
− a2

13

a11

∂v+

∂x3
+ a13p̃1 + a23

∂v+

∂x2
+ a33

∂v+

∂x3

)
∂φ+

∂x3
+ v+φ+

]
dxdy1

=

∫
Ωu

[(
b11p1 + b12

∂u+

∂x2
+ b13

∂u+

∂x3

)
∂φ+

∂x1
+

(
b12p1 + b22

∂u+

∂x2
+ b23

∂u+

∂x2

)
∂φ+

∂x2
(5.25)

+

(
b13p1 + b23

∂u+

∂x2
+ b33

∂u+

∂x3

)
∂φ+

∂x3

]
dxdy1.

The first term of the left hand side integral in (5.25) vanishes due to (5.22). Thus, we have the following identity∫
Ωu

[(
−a

2
12

a11

∂v+

∂x2
− a12a13

a11

∂v+

∂x2
+ a22

∂v+

∂x2
+ a23

∂v+

∂x3

)
∂φ+

∂x2

+

(
−a12a13

a11

∂v+

∂x2
− a2

13

a11

∂v+

∂x2
+ a23

∂v+

∂x2
+ a33

∂v+

∂x3

)
∂φ+

∂x3
+ v+φ+

]
dxdy1

=

∫
Ωu

[(
b12p1 + b22

∂u+

∂x2
+ b23

∂u+

∂x2

)
∂φ+

∂x2
+

(
b13p1 + b23

∂u+

∂x2
+ b33

∂u+

∂x3

)
∂φ+

∂x3

− a12p̃1
∂φ+

∂x2
− a13p̃1

∂φ+

∂x3

]
dxdy1.
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Substituting the expression for p1 given in (5.19) and p̃1 given in (5.23) in the above equality, we get the
following ∫

Ω+

(
A+

0 ∇2,3v
+ · ∇2,3φ

+ + ω(x)v+φ+
)

dx =

∫
Ω+

B+
#∇2,3u

+ · ∇2,3φ
+dx. (5.26)

Now, for the state equation, choosing ψ+ ∈ C∞c (Ω+), we can pass to the limit in the following equation∫
Ω+

ε

(Aε∇ū+
ε · ∇ψ+ + ū+

ε ψ
+)dx =

∫
Ω+

ε

(f + θ̄ε)ψ
+dx.

By the characterization of the optimal control, above equality can be written as∫
Ω+

ε

(Aε∇ū+
ε · ∇ψ+ + ū+

ε ψ
+)dx =

∫
Ω+

ε

(f − 1

β
v̄ε)ψ

+dx. (5.27)

As in the proof of Theorem 4.4, applying unfolding operator for the upper part on both sides and letting ε→ 0,
we obtain ∫

Ω+

(
A+

0 ∇2,3v
+ · ∇2,3ψ

+ + ω(x)v+ψ+
)

dx =

∫
Ω+

ω(x)

(
f − 1

β
v+

)
ψ+dx. (5.28)

Now we consider the state equation in the lower part: for any ψ− ∈ C∞c (Ω−), we have∫
Ω−

(Aε∇ū−ε · ∇ψ− + ū−ε ψ
−)dx =

∫
Ω−

(f + θ̄ε)ψ
−dx.

By the characterization of the optimal control, above equation can be written as∫
Ω−

(Aε∇ū−ε · ∇ψ− + ū−ε ψ
−)dx =

∫
Ω−

(
f − 1

β
v̄−ε

)
ψ−dx. (5.29)

Since ‖ū−ε ‖H1(Ω−) 6 C and ‖v̄−ε ‖H1(Ω−) 6 C, there exist u−, v− ∈ H1(Ω−) such that

Tεū
−
ε → u−, and Tεv̄

−
ε → v−, strongly in L2(Ω− × (0, 1)3). (5.30)

Moreover, by compactness Theorem 3.2, there exist u1, v1 ∈ L2(Ω;H1
per((0, 1)3)) such that

Tε(∇ū−ε ) ⇀ ∇u− +∇yu1, and Tε(∇v̄ε) ⇀ ∇v− +∇yv1, weakly in L2(Ω× (0, 1)3). (5.31)

Similar to the proof of Theorem 4.4, applying unfolding for the fixed lower part on both sides of (5.29) and
letting ε→ 0, we obtain the following∫

Ω−
(A−0 ∇u− · ∇ψ− + u−ψ−)dx =

∫
Ω−

(
f − 1

β
v−
)
ψ−dx. (5.32)

Let us consider the adjoint equation in the lower part: For any φ− ∈ C∞c (Ω−) we have∫
Ω−

(Aε∇v̄−ε · ∇φ− + v−ε φ
−)dx =

∫
Ω−

Bε∇ū−ε · ∇φ−dx. (5.33)
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Take φε = φ0(x) + εφ1

(
x, xε

)
, where φ0 ∈ C∞c (Ω−) and φ1 ∈ C∞c (Ω;C∞per((0, 1)3)), as a test function in (5.33),

we get ∫
Ω−

(Aε∇v̄−ε · ∇φε + v−ε φ
ε)dx =

∫
Ω−

Bε∇ū−ε · ∇φεdx. (5.34)

Apply unfolding operator on both sides of (5.34) and letting ε→ 0, by (5.31)(ii), we obtain∫
Ω−×(0,1)3

(A(∇v− +∇v−1 ) · (∇φ0 +∇yφ1) + v−φ0)dxdy

=

∫
Ω−×(0,1)3

B(x, y1)(∇u− +∇yu1) · (∇φ0 +∇yφ1)dxdy.

(5.35)

Put, φ0 = 0 in (5.35) to get∫
Ω−×(0,1)3

A(∇v− +∇v−1 ) · ∇yφ1dxdy =

∫
Ω−×(0,1)3

B(x, y1)(∇u− +∇yu1) · ∇yφ1dxdy.

In the same way as in the proof of Theorem 4.4, we have u1(x, y) =

3∑
i=1

∂u−

∂xi
χi. Hence, above equality reduces

to ∫
Ω−×(0,1)3

A∇v−1 · ∇yφ1dxdy =

∫
Ω−×(0,1)3

(B(x, y1)(I +∇yχ)∇u− · ∇yφ1 −A∇v− · ∇yφ1)dxdy1.

Since φ1 ∈ C∞c (Ω;C∞per((0, 1)3)) is arbitrary, for each x ∈ Ω−, v1(x, y) satisfies the following PDE in y variable,

{
−divy (A(x, y1)∇yv1(x, y)) = −divy(B(x, y1)(I +∇yχ)∇u− −A∇v−) in (0, 1)3

v1(x, y) is (0, 1)3 − periodic.
(5.36)

Using the cell problem (5.10), we can write v1(x, y) =

3∑
i=1

(
∂v−

∂xi
χi −

∂u−

∂xi
Ni

)
.

Now put φ1 = 0 in (5.35), definition of A−0 and B−# to produce the homogenized equation for v−

∫
Ω−

(A−0 ∇v− · ∇φ0 + v−φ0)dx =

∫
Ω−

B−#∇u
− · ∇φ0dx. (5.37)

Now for (ψ, φ) ∈ C∞(Ω)× C∞(Ω), we can pass to the limit ε→ 0 in the following system



∫
Ωε

(Aε∇ūε · ∇ψ + ūεψ)dx =

∫
Ωε

(f + θ̄ε)ψdx,

∫
Ωε

(Aε∇v̄ε · ∇φ+ v̄εφ)dx =

∫
Ωε

Bε∇v̄ε · ∇φdx,
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and the limit is 
∫

Ω+

(
A+

0 ∇2,3u
+ · ∇2,3ψ + ω(x)u+ψ

)
dx+

∫
Ω−

(A−0 ∇v− · ∇ψ + u−ψ)dx

=

∫
Ω+

ω(x)

(
f − 1

β
v+

)
ψdx+

∫
Ω+

(
f − 1

β
v+

)
ψdx,

∫
Ω+

(
A+

0 ∇2,3v
+ · ∇2,3φ+ ω(x)v+φ

)
dx+

∫
Ω−

(A−0 ∇v− · ∇φ+ v−φ)dx

=

∫
Ω+

B+
#∇2,3u

+ · ∇2,3φdx+

∫
Ω−

B−#∇u
− · ∇φdx.

(5.38)

Following the same path as in the proof of Theorem 4.4, we can show u, v ∈ H(Ω, ω) by showing u+ =
u− and v+ = v− on γc. The system (5.38) holds for all (ψ, φ) ∈ C∞(Ω) × C∞(Ω) and hence it is true for
all (ψ, φ) ∈ H(Ω, ω) × H(Ω, ω). This system is the weak formulation for the limit optimality system (5.14).
The system (5.38) has a unique solution if we have A+

0 , A
−
0 , B

+
#, B

−
# are elliptic. The matrix A−0 is elliptic and

symmetric is a classical result. For ellipticity and symmetricity of B−#, we refer to ([27], Thm. 4.3). Ellipticity

of A+
0 has already proved in Section 4. If we replace A by B in (4.19), we get the ellipticity of B+

#. Hence this
shows that (u, v) is the unique weak solution to the limit system (5.14) and hence convergence of the whole
sequence follows. Thus, by uniqueness, we have ū = u and v̄ = v.

6. k directional oscillating domian

The definition of unfolding operator defined in Section 3 can be generalized to n-dimensional domain with any
k (k < n) directional oscillating domain. For example, pillar-type oscillations in 2-directions in a 3 dimensional
oscillating domain. To present in a simpler way, we consider n = 3 and k = 2. Here the oscillating domain has 2
directional oscillations and the coefficient matrices under consideration have oscillations in 2−directions (x1 and
x2). We present the details when n = 3 and k = 2 and this can be extended without any additional difficulty
to any n.

6.1. Domain description

Let h, g : (0, 1)2 → R be Lipschitz real valued functions such that 0 < g(x′) < h(x′) for all x′ ∈ (0, 1)2 and
η : R2 → R be 1-periodic continuous real valued function having the following properties:

(1) there exist 0 < a < b < 1, supp
(
η|(0,1)2

)
= [a, b]2 and η > 0,

(2) the supremum M = sup{η(x′) : x′ ∈ (0, 1)2} is strictly positive and the Lebesgue measure
|{x′ ∈ (0, 1)2 : η(x′) = M)}| ≥ δ > 0,

(3) for each (x′, x3) ∈ Ω+ = {(x′, x3) : x′ ∈ (0, 1)2, h(x′) < x3 < h(x′) +M},
Y (x′, x3) = {y′ ∈ (0, 1)2 : h(x′) + η(y′) > x3} is connected.

Here 1−periodicity of η means η(x′ + (i, j)) = η(x′) for all x′ ∈ R2 and for all (i, j) ∈ Z2. For x′ ∈ (0, 1)2, we

define ηε(x′) = η
(
x′

ε

)
. The oscillating domain Ωε is defined as

Ωε =
{

(x′, x3) : x′ ∈ (0, 1)2, g(x′) < x3 < h(x′) + ηε(x′)
}
.

We denote the boundary of Ωε by ∂Ωε. The oscillating part of the domain is denoted by Ω+
ε , that is

Ω+
ε =

{
(x′, x3) : x′ ∈ (0, 1)2, h(x′) < x3 < h(x′) + ηε(x′)

}
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and the lower fixed part Ω− is given by

Ω− = {(x′, x3) : x′ ∈ (0, 1)2, g(x′) < x3 < h(x′)}.

We denote the common boundary of Ω+
ε and Ω− by γεc which is defined by

γεc = {(x′, x3) ∈ Ωε : x3 = h(x′)}.

The full or limit domain which is the Hausdorff limit of Ωε is denoted by Ω (see Fig. 2), which is defined by

Ω = {(x′, x3) : x′ ∈ (0, 1)2, g(x′) < x3 < h(x′) +M}.

The upper and the lower part of the limit domain are Ω+ and Ω− and Ω = interior(Ω+ ∪ Ω−). The common
boundary of Ω+ and Ω− is denoted by γc which is defined by

γc = {(x′, x3) : x′ ∈ (0, 1)2, x3 = h(x′)}.

We denote the boundary of Ω by ∂Ω.

6.2. Problem description

We consider the following following elliptic PDE in divergence form,{
−div (Aε∇uε) + uε = f in Ωε,

Aε∇uε · νε = 0 on ∂Ωε,
(6.1)

where νε is the outward unit normal vector to ∂Ωε, A
ε = A

(
x, x

′

ε

)
=
(
ai,j

(
x, x

′

ε

))3

i,j=1
, where ai,j : Ω ×

(0, 1)2 → R with 1−periodic in y′, and A(x, y′) is uniformly elliptic and bounded, that is, there exists α, β ∈ R+

such that,

〈A(x, y′)v, v〉 > α‖v‖2, ‖A(x, y′)v‖ 6 β‖v‖ for all v ∈ R3, x ∈ Ω, y′ ∈ (0, 1)2.

and f ∈ L2(Ω).

7. Unfolding operator for two-directional oscillating domain
and homogenization

For the study of these oscillations we will use periodic unfolding along x′. The periodic unfolding of a function
v : R3 → R along x′ is defined as

T εv(x′, x3, y
′) = v

(
ε

[
x′

ε

]
+ εy′, x3

)
. (7.1)

Now, we define the modified unfolding operator for our analysis. For every ε > 0, the unfolded domain
corresponding to Ω+

ε denoted by Ωuε , is defied by

Ωuε =

{
(x′, x3, y

′) : x′, y′ ∈ (0, 1)2, h

(
ε

[
x′

ε

]
+ εy′

)
< x3 < h

(
ε

[
x′

ε

]
+ εy′

)
+ η(y′)

}
.
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Definition 7.1. The unfolding operator T ε : {u : Ω+
ε → R} → {T εu : Ωuε → R} is defined by

T εu = χΩu
ε
T εu,

where T ε is the unfolding operator given by (7.1).

If O ⊂ R3 containing Ω+
ε and v is a real valued function on O, then

T εv = T ε
(
v|Ω+

ε

)
.

Remark 7.2. Here the base of the oscillation is given by the function h. If we take h as a constant function,
then unfolded domain and unfolding operator will be similar to the unfolded domain and unfolding operator
defined in [1].

Like other unfolding operators, it also enjoys the following integral equality.

Lemma 7.3. Let u ∈ L2(Ω+
ε ). Then ∫

Ωu
ε

T εudx′dx3dy′ =

∫
Ω+

ε

udx′dx3.

Notice that, χΩu
ε
→ χΩu pointwise in R2, where

Ωu =
{

(x′, x3, y) : x′, y′ ∈ (0, 1)2, h(x′) < x3 < h(x′) + η(y′)
}
.

Also, since h, η are Lipschitz functions, we have that

|Ωuε∆Ωu| = O(ε), (7.2)

where ∆ denote the symmetric difference between Ω+
ε , Ωu and | · | denotes the Lebesgue measure. Because of

the above relation (7.2), we have the following relation, for any v ∈ L2
loc(R3),∫

Ωu
ε

T εvdxdy′ =

∫
Ωu

T εvdxdy′ +O(ε). (7.3)

7.1. Boundary unfolding operator

In order to get the interface conditions, we will use the following boundary unfolding which is nothing but
the restriction of general unfolding operator on the oscillating common boundary γεc . For every ε > 0, let us
denote the unfolded boundary of γεc by γuc , which is defined by,

γuc = {(x′, h(x′), y′) : x′ ∈ (0, 1)2, y′ ∈ (a, b)2}.

Define φεγc : γuc → γεc as

φεγc(x′, h(x′), y′) =

(
ε

[
x′

ε

]
+ εy′, h

(
ε

[
x′

ε

]
+ εy′

))
.

Then define the boundary unfolding operator T εb : {u : γεc → R} → {T εb : γuc → R} as T εb u = u ◦ φεγc
Proposition 7.4. T εb satisfies the following properties:
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(i) T εb is linear. Further, if u, v : γεc → R, then, T εb (uv) = T εb (u)T εb (v),
(ii) for any φ ∈ L2(γc), ‖T εb φ− φ‖L2(γu

c ) → 0 as ε→ 0,
(iii) let {φε} is a sequence in L2(γc) such that ‖φε − φ‖L2(γc) → 0,

then ‖T εb φε − φ‖L2(γu
c ) → 0,

(iv) for u ∈ L2(γε), we have ‖T εb u‖L2(γu
c ) ' ‖u‖γε

c
for ε small.

Limit space: As the domain has oscillations in 2-directions, in the limit, on upper part there will be only x3

directional derivative. We recall that Y (x′, x3) = {y′ ∈ (0, 1)2 : h(x′) + η(y′) > x3} and ω(x) = |Y (x′, x3)|. The
limit function space is defined as

H(Ω, ω) =

{
ψ ∈ L2(Ω) :

∂ψ

∂x3
∈ L2(Ω),∇ψ ∈ L2(Ω−)

}
.

The above function space with the following inner product is a Hilbert space: for ψ, φ ∈ H(Ω, ω)

〈ψ, φ〉H(Ω,ω) =

∫
Ω+

ω

(
ψ+φ+ +

∂ψ+

∂x3

∂φ+

∂x3

)
dx+

∫
Ω−

(ψ−φ− +∇ψ− · ∇φ−)dx.

Let for each ε > 0, uε be the unique solution of (6.1). Let us define another sequence using the unfolded
sequence T εuε, say T εUε as

T εUε(x′, y′, x3) =
1

ε

(
T εuε −

1

|Y (x′, x3|)

∫
Y (x′,x3)

T εuε(x′, y′, x3)dy′

)
. (7.4)

Proposition 7.5. The sequence defined in (7.4) is uniformly bounded in L2(Ωu).

Proof. Using Poincare-Writinger inequality in (7.4) with respect to y′, we get

∫
Y (x′,x3)

|T εUε|2dy 6 C

∫
Y (x′,x3)

∣∣∣∣∣∇y′
(

1

ε

(
T εuε −

1

|Y (x′, x3|)

∫
Y (x′,x3)

T εuε(x′, y′, x3)dy′

))∣∣∣∣∣
2

dy′

6 C

∫
Y (x′,x3)

∣∣∣∣1ε∇y′T εuε
∣∣∣∣2 = C

∫
Y (x′,x3)

|T ε∇x′uε|2dy′.

Now integrating both sides with respect to x′ and x3 we get,∫
Ωu

|T εUε|2 6 C

∫
Ωu

|T ε∇x′uε|2 = C

∫
Ω+

ε

|∇x′uε|2 6 C,

where C is a generic constant independent of ε.

As ‖T εUε‖ 6 C, by compactness there exist U1 ∈ L2(Ωu) such that T εUε ⇀ U1 in L2(Ωu). Then the following
proposition holds.

Proposition 7.6. Let for each ε > 0, uε be the unique solution of (6.1). Then

T ε∇x′uε ⇀ ∇y′U1 weakly in (L2(Ωu))2.
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Proof. Let ψ(x, y′) ∈ (C∞c (Ωu))2. Let T ε(∇x′uε) ⇀ D′ in (L2(Ωu))2. A simple integration by parts gives us the
following,∫

Ωu

T ε(∇x′uε)ψ(x, y′) =

∫
Ωu

1

ε
∇y′(T εuε)ψ(x, y′) = −

∫
Ωu

1

ε
T εuεdivy′ψ = −

∫
Ωu

T εUεdivy′ψ.

Now letting ε→ 0 in the above equation on both sides, we get

∫
Ωu

D′ψ = −
∫

Ωu

U1divy′ψ.

Since ψ is arbitrary, implies D′ = ∇y′U1.

Further as in Theorem 4.4, we can write ∇y′U1 in terms of ai,j and
∂u+

∂x3
as

∇y′U1 =

[
a11 a12

a12 a22

]−1 [
a13

a23

]
∂u+

∂x3
.

Similar type of results hold for the adjoint state also.
Following the same path as in Sections 4 and 5, we get a similar type of theorem.

Theorem 7.7. Let uε be the sequence of solution to (6.1). Then, following convergences hold,

(i) ũ+
ε ⇀ ω(x)u+ and

∂̃u+
ε

∂x3
⇀ ω(x)

∂u+

∂x3
weakly in L2(Ω+),

(ii) u−ε ⇀ u− weakly in H1(Ω−).

Further, u = u+χΩ+ + u−χΩ− belongs to H(Ω, ω) and u is the unique solution of the following system

− ∂

∂x3

(
A+

0

∂u+

∂x3

)
+ ω(x)u+ = ω(x)f in Ω+,

− div(A−0 ∇u−) + u− = f in Ω−,

∂u+

∂x3
· ν3 = 0 on γu,

u+ = u−, A+
0

∂u+

∂x3
σ3 −A−0 ∇u− · σ = 0 on γc,

A−0 ∇u · ν = 0 on ∂Ω−\γc.

Here

A+
0 =

∫
Y (x,x3)

detA

detA′
dy′, and A−0 (x) =

∫
(0,1)3

A(x, y′)
(
I +∇yχ

)
dy, for x ∈ Ω−, (7.5)

where χ is the solution of a similar type of cell problem defined in (4.3). Here A′ is the 2 × 2 submatrix of A

given by A′ =

[
a11 a12

a12 a22

]
.

Optimal control problem: Let Bε = B
(
x, x

′

ε

)
= (bi,j(x))3

i,j=1 be a 3× 3 matrix valued function having the

same property as A defined in Section 6. We also assume that A and B are symmetric. Let us consider the
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following cost functional

Jε = Jε(θε) =
1

2

∫
Ωε

Bε∇uε · ∇uεdx+
β

2

∫
Ωε

|θε|2dx. (7.6)

β > 0 being a fixed constant, (uε, θε) ∈ H1(Ωε)× L2(Ωε) satisfies the following PDE,{
−div(Aε∇uε) + uε = f + θε in Ωε,

Aε∇uε · νε = 0 on ∂Ωε.
(7.7)

The optimal control problem is to find (ūε, θ̄ε) ∈ H1(Ωε)× L2(Ωε) such that

Jε(ūε, θ̄ε) = inf{Jε(uε, θε) : (uε, θε) obeys (7.7)}. (7.8)

7.2. Homogenized problem

Let

W (x, y′) =



a12a23

−a2
12 + a11a22

− a13a22

−a2
12 + a11a22

a12a13

−a2
12 + a11a22

− a11a23

−a2
12 + a11a22

1


,

then define a 1× 1 matrix B+
# as

B+
#(x) =

∫
Y (x,x3)

B(x, y′)W (x, y′) ·W (x, y′)dy′

and

B−#(x) =

∫
(0,1)3

(B(x, y′)(I +∇yχ) +A(x, y′)∇yN)dy, for x ∈ Ω−

where χ and N are the solutions of a similar type of cell problems defined in (5.10).
The limit state equation for the control θ ∈ L2(Ω) is given by



− ∂

∂x3

(
A+

0

∂u+

∂x3

)
+ ω(x)u+ = ω(x)f + ω(x)θ in Ω+,

−div(A−0 ∇u−) + u− = f + θ in Ω−,

∂u+

∂x3
· η3 = 0 on γu,

u+ = u−, A+
0

∂u+

∂x3
σ3 −A−0 ∇u− · σ = 0 on γc,

A−0 ∇u− · ν = 0 on ∂Ω−\γc.

(7.9)
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Then, the limit optimal control problem is : find (ū, θ̄) ∈ H(Ω, ω)× L2(Ω) such that

J(ū, θ̄) = inf{J(u, θ) : (u, θ) ∈ H(Ω, ω)× L2(Ω) satisfies (7.9)}, (7.10)

where the cost functional J is defined as

J(u, θ) =
1

2

∫
Ω+

B+
#

(
∂u+

∂x3

)2

dx+
1

2

∫
Ω−

B−#∇u
− · ∇u−dx+

β

2

∫
Ω

|θ|2dx. (7.11)

Theorem 7.8. Let (ū, θ̄) be the optimal solution to the optimal control problem (7.10), the optimal control is
characterized by

θ̄ = − 1

β
v̄,

where the adjoint state v̄ satisfies the following adjoint PDE

− ∂

∂x3

(
A+

0

∂v̄+

∂x3

)
+ ω(x)v̄+ = − ∂

∂x3

(
B+

#

∂ū+

∂x3

)
in Ω+

−div(A−0 ∇v̄−) + v̄− = −div(B−#∇v̄
−) in Ω−

∂v̄+

∂x3
ν3 = 0 on γu

v̄+ = v̄−,

(
A+

0

∂v̄+

∂x3
−B+

#

∂u+

∂x3

)
σ3 − (A−0 ∇v̄− −B

−
#∇ū

−) · σ = 0 on γc

A−0 ∇v̄ · ν = 0 on ∂Ω−\γc.

(7.12)

Conversely, assume that (u, v) ∈ H(Ω, ω)×H(Ω, ω) satisfies the following system,

− ∂

∂x3

(
A+

0

∂u+

∂x3

)
+ ω(x)u+ = ω(x)f − ω(x)

1

β
v+ in Ω+,

− ∂

∂x3

(
A+

0

∂v+

∂x3

)
+ ω(x)v+ = − ∂

∂x3

(
B+

#

∂u+

∂x3

)
in Ω+,

−div(A−0 ∇u−) + u− = f − 1

β
v− in Ω−,

−div(A−0 ∇v−) + v− = −div(B−#∇u
−) in Ω−,

(7.13)

together with the boundary conditions
∂u+

∂x3
· ν3 = 0,

∂v+

∂x3
· ν3 = 0 on γu,

A−0 ∇v · ν = 0 on ∂Ω−\γc,

and the interface conditions
u+ = u−, v+ = v− on γc,
∂u+

∂x3
σ3 −A−∇u− · σ = 0,(

A+
0

∂v̄+

∂x3
−B+

#

∂u+

∂x3

)
σ3 − (A−0 ∇v− −B

−
#∇u

−) · σ = 0 on γc.
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Then the pair (u,− 1
β v) is the optimal solution to the optimal control problem (7.10).

Theorem 7.9. Let (ūε, θ̄ε) and (ū, θ̄) be the optimal solution to (7.8) and (7.10) respectively. Also let v̄ε and
v̄ are the adjoint states corresponding to the optimal control problem (7.8) and (7.10) respectively. Then

˜̄u+
ε ⇀ ω(x)ū+,

∂̃u+
ε

∂x3
⇀ ω(x)

∂ū+

∂x3
weakly in L2(Ω+),

˜̄v+
ε ⇀ ω(x)v̄+,

∂̃v+
ε

∂x2
⇀ ω(x)

∂v̄+

∂x3
weakly in L2(Ω+),

ū−ε ⇀ ū−, v̄−ε ⇀ v̄−weakly in H1(Ω−)˜̄θε ⇀ −ω(x)
1

β
v̄, weakly in L2(Ω).

(7.14)
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