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OSCILLATING PDE IN A ROUGH DOMAIN WITH A CURVED
INTERFACE: HOMOGENIZATION OF AN OPTIMAL
CONTROL PROBLEM

A. K. NANDAKUMARAN® AND ABU SUFIAN

Abstract. Homogenization of an elliptic PDE with periodic oscillating coefficients and associated
optimal control problems with energy type cost functional is considered. The domain is a 3-dimensional
region (method applies to any n dimensional region) with oscillating boundary, where the base of the
oscillation is curved and it is given by a Lipschitz function. Further, we consider general elliptic PDE
with oscillating coefficients. We also include very general type functional of Dirichlet type given with
oscillating coefficients which can be different from the coefficient matrix of the equation. We introduce
appropriate unfolding operators and approximate unfolded domain to study the limiting analysis. The
present article is new in this generality.
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1. INTRODUCTION

In this paper, we consider a general second order elliptic equation in a general oscillatory domain Q. (see
Sect. 2 regarding the description of 2. ). Normally the high oscillations are posed on a straight boundary, whereas
in this paper, we consider very general oscillations on a curved boundary (see, Fig. 1). In this kind of rough
domain, we want to study the homogenization of an elliptic PDE with oscillating coefficients. More precisely,
we have considered an equation of the form

—div(A*Vue) + ue = f in Q, (11)
AfVu, -v. =0 on 99, ’

!/
where A°(z) = A (337 x) is elliptic. Thus the problem under consideration is very general than available in the
€

literature and the aim is to study the homogenization of the above problem. We also study the homogenization
of an associated optimal control problem. Again instead of the standard L?-cost functional, we wish to consider
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cost functional of the form

1
Je(0:) = 5/Q B*Vu. - Vu.dz + g/ﬁ |0 |2dz, (1.2)

!
where B*(z) = B (:r, i) is also oscillatory which can be different form A°. This indeed will cause additional

difficulties in the analysis even in the case of fixed domains. Indeed the oscillations will be sitting on the

/
boundary of the domain which is n — 1 dimensional. Hence A° and B¢ will be of the form A°(x) = A (x, i)

x/
and B°(z) = B (x, ) respectively, in generality with oscillations in all directions. Here 2’ = (21, -+ ,Z5—1).
€

T
One can simplify the case when there is oscillations only in one direction, that is A°(z) = A (x, —1) Similarly
€

Be(z) =B (:177 ﬂ) For example, when n = 3 the oscillatory domain has a slab-like structure if the oscillation
€

is only in one direction. In fact, we see clearly the laminate like effect in this case as in general homogenization
theory. On the other hand, we get pillar type oscillations if we consider oscillations in both directions, that is
As(x)=A (a:, E, E) Similarly B¢(z) = B (m, E, E)

In addition tg thi) generality, we have discussed8 SO Efaur, one of our major concerns is the development of the
unfolding operator for the general oscillating domain under consideration in this paper. We also introduce an
approximate unfolded domain together with a fixed limit unfolded domain which is important for the analysis
in our work (see Figs. 5 and 6). The unfolding operator which we develop is quiet new and we derive various
properties together with the convergences enjoyed by the newly introduced unfolding operators. In the last
10 years or so the unfolding operators have been used extensively by various authors including the present
authors and their collaborators (see [1, 2, 19, 35, 36]). Thus, we deal with, at least, three important aspects in
this paper, namely

(i) Consideration of two different oscillating matrices A° and B¢, respectively for the equation and cost
functional. The homogenization is quite different even in the usual homogenization.

(ii) Consideration of curved boundary, where the oscillatory part of the domain is placed.

(iii) Development of appropriate unfolding operators for the domain and for the boundary.

This requires the introduction of certain approximate unfolded domains. Thus, the article is new and novel
even with fixed matrices A and B in place of A® and B¢, respectively. For the clarity and understanding of the
results, we first present the work when the oscillations are only in one direction. Before going to the literature, we
briefly discuss the various sections of the article. The domain and the problem under consideration are explained
in Section 2. In Section 3, we present the approximate unfolded domain, the unfolding operators both for the
domain and boundary, the relevant properties satisfied by them, limit function space etc. The homogenization
without optimal control is carried out in Section 4, whereas in Section 5, we study the homogenization of
optimal control problem. In the remaining sections, we quickly analyze the homogenization of the general case,
where we consider the oscillations in multi-directions. To simplify matters, we consider the case when n = 3
(practical situation) with oscillations in two directions. We have realized that, without any difficulty, this can
be generalized to general dimension with multi-directional oscillations. The domain and problem description is
given in Section 6 and, the unfolding operators, related properties and homogenization results are presented in
Section 7.

Two different oscillating matrices for the equation and cost functional have been considered earlier in fixed
domains (see [25-29]) and this is the first time, we are considering it in oscillatory domain. It is natural to
expect a new homogenized matrix By, which is not the homogenized limit B* of B®. The matrix By has the
contribution from both A and B.

Boundary-value problems in a domain with oscillating boundary arise in many fields of biology, physics and
engineering sciences. For instance, to understand the motion of ciliated microorganisms, the flow in a channel
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with rugose boundary, heat transmission through winglets, propagation of electromagnetic waves in regions with
rough boundaries, air flow through compression system in turbo machine such as a jet engine, the vibrations
of foundations of buildings (see [13, 18, 30] and references there in). It is often impossible to approach these
problems directly with numerical methods, because the rough boundary requires a large number of mesh points
in its neighborhood. Thus, the computational cost associated with such a problem grows rapidly when the
parameter € gets smaller. Moreover, it can occur that the required discretization step becomes too small for the
machine precision. Then, the goal is to approach the problem on (2., when the oscillating parameter gets smaller,
with a non-oscillating or homogenized problem on €2 which can be numerically solved. Hence the optimal control
are also equally important in such domains.

We do not present a detailed survey. However we present some of the papers relevant to the present
manuscript. The homogenization in oscillating boundary domain with non flat base and with general ellip-
tic operators is relatively new in the literature and not many articles are available especially in the context of
optimal control problems. Further, we also consider optimal control problem with the cost functional involving
general oscillating matrix which is different from the coefficient elliptic matrix in the system. One of the main
article in this direction is [23], where the homogenization of an elliptic problem with L' data posed on a pillar-
type domain with non-flat base and nonuniform cross sections has been studied by A. Gaudiello et al. Here they
consider a fixed coefficient matrix, that is without oscillations. Another significant result is the work of Mossino
and Sili [34], where they consider monotone operators with oscillating coefficients in a flat boundary. Needless
to say, it is not an optimal control problem and they use the method of two-scale convergence. In our several
papers, we used unfolding operators not only to do homogenization, but to characterize the optimal controls
as well. Thanks to the work of Mossino and Sili, we also establish certain short propositions in the last section
(Props. 7.5 and 7.6) in the context of unfolding operators analogous to the case of two scale convergence as in [34].

Regarding literature on optimal control problems, in [35], authors have considered an interior periodic optimal
control problem corresponding to Laplace operator in a pillar-type oscillating domain with L2?-cost functional.
The authors have used unfolding operator corresponding to the pillar-type oscillations to characterize the optimal
control for the first time. In [1], unfolding operator for general periodic oscillating domain with flat base has
been introduced and authors have investigated asymptotic behavior of a semilinear PDE with principle part as
the Laplace operator and a corresponding interior optimal control problem have been studied in [2] by the same
authors. In [3], unfolding operators for locally periodic oscillating domain has been defined, again the base of
the oscillations is flat. In the context of homogenization of non-linear problems in oscillating domains, one can
see [22], where authors have analysed asymptotic behavior of a monotone type operator with nonlinear signorini
boundary condition. In [32], non-linear parabolic problem using asymptotic expansion has been studied. In all
the above cases, the base of the oscillations is flat wherever in our case we consider non-flat base and non-pillar
type oscillations. For further reading in this direction we suggest the readers to see [8-10, 19, 36] and references
there in.

The literature on oscillating thin domain that is where the amplitude of the oscillations is of O(e) and
dimension redunction happens in the limit is quite rich. In [4, 5] authors have considered an elliptic PDE to
investigate the asymptotic behavior in thin oscillating domain with homogeneous Numann boundary condition.
Homogenization of an elliptic PDE in a localy periodic thin domain have been studied in [6], and in [7], authors
have developed unfolding operators for locally periodic thin domain. Moreover, they have obtained corrector
results in the same article. For further study in this direction, we refer to the readers [11, 14, 20, 21, 33] and
references there in. For general reading on homogenization of partial differential equations, readers can look into
[12, 15, 37] and references there in.

2. DOMAIN AND PROBLEM DESCRIPTION

2.1. Domain description

For a fixed parameter ¢ = % with m € N, we consider the oscillating domain 2. C R3. Throughout this
article, we denote any element z € R as x = (2/,x3) where 2/ = (x1,72) € R2. In fact, we can consider any
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X2

FIGURE 1. Q..

€ > 0 that converges to zero. Again, the result is true in any R™. Now, we will give the full description of the
oscillating domain 2, and its boundaries below (Fig. 1).

Let g,h : (0,1)> = R be Lipschitz functions such that 0 < g(z’) < h(2') for all 2’ € (0,1)? and n: R — R be
a Lipschitz, 1-periodic real valued function having the following properties:

(1) There exist 0 < a < b < 1, such that supp(n|,1)) = [a,b] and 1 > 0.

(2) The supremum M = sup{n(z1): x; € (0,1)} is strictly positive and the Lebesgue measure
{z1 € (0,1) : n(x1) = M}| > 6 > 0.

(3) Let QT = {(2/,2z3) : 2’ € (0,1)2, h(z') < z3 < h(a’) + M}. Now for each (z/,z3) € O, the set Y (2, x3) =
{y1 € (0,1) : h(z') + n(y1) > x3} is connected.

For z1 € (0,1), we denote n°(z1) =17 (%) . We define the domain €, as
Qe = {(2,23) 12’ € (0,1)%, g(2') < x5 < h(z) +n°(z1)} .

We denote the boundary of Q. by 9Q.. The oscillating part of the domain is denoted by Q, which is defined
by

QF = {(x’,xg) s’ €(0,1)2, h(2)) < 23 < h(z) + ne(xl)}
and the lower fixed part €2~ can be described as
Q" ={(2',23): 2/ €(0,1)%, g(z') <23 < h(2)}.
We denote the common boundary of QF and Q= by ~¢:
ve ={(2',z3) € Qe : 3 = h(z')}.
The full or limit domain which is the Hausdorff limit of €2, is denoted by €2 (see Fig. 2):

Q={(a',23): 2" € (0,1)2,g(z") < x3 < h(z') + M}.
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FIGURE 2. Q.

Now from the definition of Q and 2~ we have Q = interior(Q+ U Q~). The common boundary of Q and Q~
is denoted by ~, which is defined by

Ye = {(2',23) : 2’ € (0,1)2, 23 = h(2')}
We denote the boundary of 2 by 0f2.

2.2. Problem description

Let A(x,y1) = (a;, (J:,yl))?jzl, be a 3 x 3 matrix where the entries a;; :  x R — R are Caratheodory
type, 1—periodic in y;, and A(z,y;) is uniformly elliptic, symmetric and bounded in Q x (0,1), that is, there

exists a, 8 € RT such that,
(A(z,y1)v,v) = aHU||2, |A(z, y1)v| < Bllv]], for all v € R z€Q, y1 €(0,1).

Notations: To write in a more conventional way we use the following notations in the sequel: A = A(z,y;) and

A :A(x,ﬂ).

3

Let us consider the following elliptic PDE

{ —div (A°Vue) +ue = f in Q. (2.1)

A*Vu. -v. =0 on 09,

where v is the outward unit normal vector to 92, and f € L?(Q). The weak formulation to the above PDE is
given as follows: find u. € H!(Q.) such that,

/ AV, - Vodr + / uspdx = / fodx, forall ¢ € H(Q.). (2.2)
Q. Q. Q.

The Lax-milligram lemma guarantees the existence and uniqueness of u, (see [24]) satisfying (2.2). Taking ¢ = u.
in the weak formulation, we get the uniform bound for ||u.|| g1 (q.), that is, there exists C' € R, independent
of & such that |[uc||1(q.) < C. Hereafter C' will be denoted as a generic constant independent of e. Our aim is
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to analyze the asymptotic behavior of u. as e — 0. We also consider interior optimal control problems, which
we will state in Sections 5 and 7. The existence, uniqueness and the estimate do not use anything special about
the oscillations in one direction and it is true with multi-directional oscillations.

To analyze the asymptotic behavior of these problems, a modified unfolding operator will be used which is
going to be introduced in the following section.

3. UNFOLDING OPERATOR

The periodic unfolding method is one of the most effective and latest tool in the theory of homogenization
which was first introduced in [16]. Here we first recall the definition and properties of periodic unfolding operator
for the fixed domain Q™.

3.1. Periodic unfolding method

Let for any = € Q7, [z] = ([z1], [%2], [#3]), where [z;] denote the greatest integer part x; and {z} =
({z1}, {z2}, {x3}), where {z;} = x; — [x,] is the fractional part of x;. To define unfolding operator in Q,
we use the following notations

E.={£€Q : ¢+ (0,1)>) cQ7}
SAZE_ = interior U (e(6+(0,1)*) 3 and A, = Q‘\Q;. (3.1)
EEE.

Definition 3.1. For a Lebesgue-measurable function ¢ on 27, the unfolding operator 7 is defined as follows:

~

) e(e[2] +ey) forae (z,y) € Q7 x (0,1)3
@)@y = { 0 for a.e. (z,y) € A x (0,1)%

The following is a compactness theorem:

Theorem 3.2. [16] Let {1} be a sequence in H'(Q7) such that . — 1 weakly in H*(2™), then there exists
a sub-sequence of {1.} still denote by {1c} and ¢y € L?(Q, HL,,.((0,1)3)), such that

T.(Vihe) — Vip(z) + Vb (2, y) in L2 Q™ x (0,1)%).

A modified definition of Definition 3.1 was used in [19] to do homogenization in pillar type oscillating domain.
Later in [1], authors defined an unfolding operator for general periodic oscillating domains. For further study
on unfolding operators see [17] and references therein. In all the above articles, the base of the oscillation is a
horizontal plane. In this article, we are allowing the base of the periodic oscillation to be a graph of a Lipschitz
function, that is it can be a curved surface. The unfolding operators can be defined with oscillations in any
number of directions which is discussed in Section 7. Now, we define the modified unfolding operator for our
analysis in one directional oscillating domain. For every € > 0, we define the approximate unfolded domain
corresponding to QF as:

x x
Q= {(x’,xs,yl) t(a'y1) € (0,1)%, A (e {?1] +6y1,x2) <zz<h (e {?1} +€y1,x2) +77(y1)}-
Definition 3.3. The unfolding operator 7°¢ : {u: QF — R} — {T°u: Q¥ — R} is defined by

Tu = xquT u,
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where T¢ is the unfolding operator given by
€ €
Tev(x1,72,73,y1) = v (5 [?} +€y17$2,$3> . (3:2)
If O C R? containing QF and v is a real valued function on O, then
Too =T (tlg: ).

Like other unfolding operators it also enjoys the following integral equality:

Lemma 3.4. Let u € L?(Q}). Then

Teudz'dzsdy, :/ uda'dzs.
+

€

e

Proof. From the definition of unfolding,

/ T (x/az?nyl)dz/dx:idyl

ZL]teyr,@a)+n(y1) T
— / / / U (s [—} + ey, 9:3) dz’dzsdy,
2'€(0,1)2 Jy,€(0,1) €

+6y1 5132

(eitey1,w2)+n(y1)
/ / / / (€i+5y1,$2,$3) dxldxgdxgdyl
x1€ei+¢e(0,1) Jx2€(0,1) Jy1€(0,1) Jh(e(i+eyr,x2,x3)
m—

(giteyr,z2)+n(y1)
= / / / EU (5i + ey1, $2) dyldl‘gdl‘zg.
y1€(0,1) Jz22€(0,1) J h(eiteyr,x2)

By making the change of variable, x1 = €i + €y, we get,

" z')+n° (z1)
Teu(a', x3,y1)de'dzgdy, = Z / / / u(z’, xg)dz’da;.
Qu i—0 Jeit+e(0,1) J(0,1) Jh(z')

Hence the claim is proved. O

m

i=

Notice that the characteristic function, xou — xqu pointwise in R?, where Q% is the fixed unfolded domain
defined as

Q= {(x/axl’nyl) RS (07 1)27y1 € (07 1)7 h(x/) <r3< h(x/) +77(y1)} .

To get a transparent vision on the unfolded domain, we give 2-dimensional figures of h,n, Q¥ Q", see
Figures 3, 4, 5, 6. Also, since h,n are Lipschitz functions, we have that

IQEAQY| = O(e) (3.3)

where A denote the symmetric difference between QF, Q% that is Q*AQ* = (QU\Q*) U (Q“\Q¥) and |- |
denotes the usual Lebesgue measure. Because of the above relation (3.3), we have the following equality,
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X2
1
0
1
FIGURE 3. h.
X2
|
. T
X1
FIGURE 4. n.
for any v € L} (R?) :
Tevdzdy; = Tevdady; + O(e). (3.4)
Qu Qu

Since our aim is to analyze the asymptotic behavior of the sequence u. the solution of (2.2), whenever we apply
unfolding, we will make use of the relation (3.4).

Note: Throughout this article, we will use 7°¢ and T, as unfolding operators for the upper oscillating part and
the fixed lower part respectively.
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FIGURE 5. QY for ¢ = L.

3.2. Boundary unfolding operator

In order to get the interface conditions, we now introduce the following boundary unfolding operator 7,7 on
~¢. For every € > 0, let us denote the unfolded boundary of v by v¥, defined by

’Yf = {(x/ah(xl)ayl) : 1'/ € (Oa 1)2ay1 € (a7b)}
Define ¢S : v — ¢ as
e (] / _ Z1 Z1
'yc(x ,h(.’IJ )7y1) - (E |: c i| +€y1ax2ah/ (E |: - i| +€y1ax2)) .

Define boundary unfolding operator 7,° : {u: v — R} = {7 : 7% = R} as Tju =uo ¢5 .
Proposition 3.5. The boundary unfolding operator T,> enjoys the following properties:
(1) TE is linear. Further, if u, v:~5 — R, then, T2 (uv) = 7,7 (w) T (v),
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FIGURE 6. Q.

(i) for any & € L2(r), |6 — dlliacagy = 0 as € =0,
(idi) let {¢:} is a sequence in L*(v.) such that ||pe — ¢||12(y,) — 0, then

HIEEQSE - ‘ZSHLQ(%*) — 0,
(iv) foru e L*(v.), then | TEull 2 (yey = lullL2(ve) when € is small.

Proof. Proof of (i) is obvious, so we will give proof of (i), (i74) and (iv).

Proof of (ii) and (4ii): Let ¢ € C°(y.), hence ¢ is Lipschitz, say with lipschitz constant L;. Also let the
Lipschitz constant for h is Ly. Then

‘(b (E [%] + ey, w9, h (5 [%] + Eyl,x2>) — (', h(x"))| < (L1 + L1Ly)e.

This implies 77¢ — ¢ pointwise in y¥, hence in L?(y%). The density of C2°(v,) in L?(v.) completes the proof
of (7). To prove (#ii), use triangle in inequality to get

175 ¢e — llL2(yu) < 1Ty e — Bellzz(ye) + (|9 — PllL2(yu)-
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Now, using (i7) and the convergence of ¢. — ¢ in L%(v.), we get (iii).

Proof of (iv): We have

HUHQL?('yg)

m—1

S [ e RGP
i—o Jeite(ab) J(0,1)

m—1
= Z / / / u? (i + ey, 2o, h (g8 + ey1, 12)) \/1—1— IVh|? (gi + eyy, 22)dz’ dy,
o Jeite(0,1) J(0,1) J(ah)

\/1 + VA (e [%} +5y17x2)
— T5u21'/’hx/’y \/Wdl’ldy
I RGO — R e da,

1+ VR (¢ [2] + ey, )
1+ |Vh|2(2)?

Since — 1 as ¢ — 0, the result follows. O

3.3. Limit function space

Let us introduce the function space in the limit domain €2, where the solution corresponding to homoge-
nized system belongs to. Let w(z) = |Y (2, 23)|, the Lebesgue measure of Y (z/,23), where Y (2, 23) = {y1 €
(0,1): h(2') +n(y1) > x3}. For any ¢ : Q — R, denote )™ = 1)xq+ and 1)~ = ¢hyq-. Define

HQ,w) = {1/1 € C>®(Q): ¢ € LA(Q), % € L*(Q) fori=2,3, VY~ € Hl(Q)}
with the following inner product for v, ¢ € H (Q,w)
L9y 99
B = [ <¢¢>+ > gran ) | o+ v voya. (35)

Now define H(,w) to be the completion of f[(ﬂ,w) with respect to the norm defined by the inner product
(3.5). We can characterize the space H(f,w) as

H(Q,w) = {w € L*(Q): % € L*(Q) fori=2,3, V¢~ € Hl(Q)} :

4. HOMOGENIZATION

In this section, we obtain the limit problem corresponding to (2.1) by passing to the limit e — 0 in (2.2). We
also prove the existence and uniqueness of the solution of the limit problem. From the definition of unfolding
operator, we have

T2 (el 22y + 1TVl F2quy < IT Ul F2uy + 1T (Vue) [ 22qu) + o(1)

= / (|T5ul® + |T°Vu.|?) dedy; + o(1) = / (Jue? + |Vue|?) dz + o(1) < C.
Qe

af
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The last inequality follows from the boundedness of ||uc||f1(q.). Thus, we have the following proposition:

Proposition 4.1. The sequence of solutions u. to (2.1) satisfies the estimates:

HTEU€||L2(Q1L) < C, HTEVUE||L2(Q'LL) <C.

Analogous to the Propositions 7 and 8 in [34], we prove two propositions in the context of unfolded operators.
Let for each € > 0, u. be the unique solution of (2.1). Let us define another sequence using the unfolded sequence
TCu., say TeU, as

1 1
< / _ = N € . 4.1
T Ua(x 7yl,$3) c (T Ue \Y(x’,$3|) A(z xg)T ’U“E(xlaylvx27x3)dy1> ( )

Proposition 4.2. The sequence defined in (4.1) is uniformly bounded in L*(Q%).
Proof. Using Poincare-Writinger inequality in (4.1), we get

2

0 1
/ |T€U€|2dy < C/ Ts /7/ TEUE(I17y1,$2,I3)dy1 dyl
Y (z',x3) Y (z',x3) ayl |Y(‘T 7$3|) Y (z',x3)
2 2
< 0/ laT Ue = C/ Te Oue dy;.
Y (2 ,z3) | € ayl Y (z',x3) Oxq
Now integrating both side with respect to z’ and z3 we get,
du. |? du. |?
/ U <c | TR = c/ <
Qu Qu 8$1 of 8ZE1

where C is a generic constant independent of ¢. O

As || TeU.|| < O, by compactness there exist U; € L?(Q%) such that T°U. — U; in L?(Q%). Then the following
proposition hold.

Proposition 4.3. Let for each € > 0, u. be the unique solution of (2.1). Then

ou oU,
€ € _\ L2 QU
o, i weakly in L*(Q").
Proof. Let ¢¥(z,y1) € C°(Q"). Let T°¢ (gus> — P in L?(Q%). A simple integration by parts gives us the
1
following,
. { Ou. B 10, . B ey oy U o
Lo (G ) v = [ g ugptem == [ Irugt - - [ ot

Now letting ¢ — 0 in the above equation on both side, we get

_ Oy
Ju o= [ v
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oU
Since v is arbitrary, implies P| = a—l a.e. in Q. O
Y1

In the main convergence theorem we will explicitly calculate P; in terms of a; j, 2 and 3 directional deriva-
tives of the limit solution.

Limit Problem: We denote the limit matrices AS‘ and A, corresponding to the upper and lower parts. The
matrix A is defined as

2

AF = A (2) = / 1| anax—ay;  azan — G2U3 | Qyy, for z € QF (4.2)

, . .
Y (2! z5) @11 11023 — A13412 11033 — ay3

To introduce the matrix A, we need the following standard cell problems: For ¢ = 1,2, 3, let x; = xi(y) solves:

—divy, (A(z,y1)Vx:) = divy (A(z, y1)e;), in (0, 1)
xi is (0, 1)3-periodic, (4.3)

where {e; : i = 1,2, 3} is the standard basis of R? and M (¢) = / o(y)dy. Let

(0,1)%
X = [x1 x2 x3]. Now, Ay is defined by

A (z) = /(0 s A(z,y1)(I + Vyx)dy, for z € Q, (4.4)

where I is the 3 x 3 identity matrix and V,x = [Vyx1 VyX2 VyXxs] is a 3 x 3 matrix. The homogenized equation
is given by,

—diva 3 (Af Vasu®) + w(z)u™ =w(z)f in QF,

—div(4A, Vu")+u” =f in Q7

AFVasut - (v2,13) =0 on 7y, (4.5)
ut =u", Al Vasu® - (02,03) — AgVu™ -0 =0 on 7,

AyVu-v=0 on 909\,

where v = (v, 12, v3) is the outward unit normal vector on 9 and

o= (01,09,03) = ( 1+ |Vh(:c’)|2)_1 ( Oh Oh 1)

(9561 ’ 8$2 ’

is the downward unit normal on v, and

0

Oz . a 0
Va3 = 8362 , divyz = <(’93&2’ (‘3303>

O3

The limit system (4.5) is quite interesting and it shows the feature of laminate structure. Recall that we
have oscillations only in one direction, namely x;. Hence the oscillatory part is like laminates and it averages
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out in that direction like usual homogenization theory and we only have the presence of zo and z3 variable in
the upper part of the domain. Indeed the oscillatory part is like laminates. The variational form for the above
system is given by: find u = uTxq+ +u " xq- € H(Q,w) such that

/ (A3V2’3U+V2’3¢+ + w(x)u+¢+) +/ (AgVu™Vo~ +u"¢7) = / w(z)fotdr +/ fo,
Q+ Q-+ Q-

for all ¢ = ¢*xq+ + ¢ xa- € H(Qw). We write ul = uc|qr and us = ue|o-
Now we state the main theorem of this section:

Theorem 4.4. (Homogenization) Let u. be the sequence of solution to (2.1). Then the following convergences
hold:

(i) Tuf — ut and T° (%f) - % weakly in L*(Q%) fori=2,3,
(ii) uz — u™ weakly in H' (7).

Further u™ is independent of y1, u = utxo+ +u~ xq- € H(Q,w) and u is the unique solution of the homogenized
system (4.5).

Proof. The proof will be accomplished in several steps.

Step 1: Taking ¢ € C°(Q1) as a test function in (2.2), we get
/ (A*Vul - Vo +ul¢)de = / fodx.
of ot
Applying unfolding operator on both side of the above equation, by (3.4), we have

luUTMﬂT%WJwTWV@+7W@Tﬁ@¢wm= T=(f) T (¢)dxdys + o(1). (4.6)

Qu

Thus,

lim [ (7% (A) T=(Vul) - T=(V9) + T=(u)T=(9)) dedyy = lim | T=(f)T(¢)dwdy:.

e—=0 Jou Qu
Now we try to pass to the limit as € — 0 in the above identity. By Proposition 4.1, we have
out
ut, Py, Py, P3 € L?(Q%) such that

< C for i = 1,2, 3. Hence, there exist
L2(Qw)
Teul — ut weakly in L?(Q"),

c (91,62— . 2 u ;
T B — P; weakly in L*(Q"), for i =1,2,3.

Main issue is to compute P; and connect it to wt. This is easy for P, and P3 as the domain has oscillations in
x1 direction. We have

O o (0 .
8%1-(7—)_7— <5:c1) for i=2,3.
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But this is not the case for ¢ = 1 and has to be dealt separately. First, we find out P> and Ps.

+
Claim: For i =2,3, P, = Ou .
8%—

out
Proof: We have T° 8; ) — P;in L?(Q%). Let ¢ € C°(Q%), so after sufficiently small & > 0,
supp(¢p) C Q¥ N Q. Now, consider the following,

/ 7o (29 pazay = [ -2 (Teut)pdudy, = Tur 22 dedy,
w 8xi Qu 8331 Qu 6 '

Letting € — 0 in the above equality, we obtain,

/ P;¢pdxdy; = —/ ut 09 dxdy; .
w w ({91'Z

) +
Since, ¢ € C° (") is arbitrary, we get, P, = aL for 1 = 2, 3.
Zq

In order to find P;, we will make use of the fact that u™ is independent of ;.

Claim: The limit solution on upper part, that is «*, is independent of y;.

0
o (T°ul) = exquT® (3;1 . Hence

0
TE +
()

Proof: From the definition of unfolding operator, we have xqu

< Ce. From the weak convergence of 7¢(u7) in L?(2"), and boundedness of

)

v TE +
Hayl
we get

L2(Qw)
+
0 Teul — ou” weakly in L%(Q"). (4.7

oy c Oy
+
’7'5 - eT* (8u€ > — 0 as ¢ — 0. This implies ou” = 0. Hence this
(‘3y1 L2(Qv) 81‘1 L2(Qu) 8y1

proves the claim, since Y (2, z:3) is connected for each (z/,23) € QF.

+

But, we have,

Now we will find P;. For that we use the oscillating test function ¢°(x) = e¢(z ({ o }) where ¢ € C2°(QT)
and ¢ € Cpe,.((0,1)), where Cp¢,.((0,1)) denotes the space of smooth 1- periodic real valued functions. This test

per
function has the following properties,

T°(¢°) — 0 strongly in L*(Q%),

T (g(b ) — 0 strongly in L*(Q%), for i = 2,3,
;

(06N (99 Cod
T (50 ) =<7 (5 ) vtow) + T*@) 3 ()
Hence, T°¢ <g¢ — gb% strongly in  L?(Q"). Also from the assumptions on the coefficient matrix A, we
1 1

have 7¢ (A¢) — Ain L?(Q%). Using ¢¢ as a test function in the weak formulation (4.6) and passing to the limit
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as € — 0, we get

By ol
/ A -1 0 | dedy; = 0.
“ VQ’LD,’U,Jr 0

By simple matrix multiplication, we obtain

out
/u <G11P1 + a2 31; + a13 ) ¢d751

Above equality holds for all ¢ € C°(QT). Hence, we get

a2 Out a3 Out .
p =22 _ 377 ) v, 4.8
! a11 02 ail 3363 aem ( )

Since, 1 € C2,.((0,1)) and A is uniformly elliptic, implies a1; > « (elliptic constant). Now, taking ¢ € C°(Q)
as a test function in the weak formulation (2.2) and passing to the limit ¢ — 0, we obtain

ou™t 3(;5 out 8¢
[ (mnpranGe g ) 22 o, # [ (PG raGe) 22

out 0
+/ <013P1 + azs 8u + a33 ) Bd) + utg = fo.
Qu T3 Qu Qu

(4.9)

The first integral in (4.9) is 0 by (4.8). Now, substituting the value of P; given in (4.8) in the above expression,
it reduces to,

2
/ ( 1 [ ai1a22 — a1 23011 — 412013
.\ G 2
: 11 la1nags — a13a12 11433 — G73

Since u* and ¢ are independent of y;, using the definition of Q%, we get

Vagu® - Vaso+ U+¢> dady, = Jodady:.
Qu

/ A3V273u+-V2,3¢dx—|—/ w(x)zﬁgi)dx:/ w(zx) fode.
Qt Qt

O+

Step 2: Now, we look into to the lower fixed part. In the weak formulation (2.2), take ¢ € C°(Q27), we get

/ (A°Vue - Vo + ue ) de = / fodz. (4.10)
_ o

Here we will use the unfolding operator for fixed domain. Since we already have ||u.|[g1o-) < C, then by
compactness Theorem 3.2, there exist, u~ € H'(Q7) and uy € L*(Q; H},.((0,1)?)) such that

{ ue — u~ weakly in HY(Q7), (4.11)

T.(Vu.) = Vu™ (x) + Vyui(z,y) weakly in L*(Q x (0,1)3).
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Now consider ¢¢ = ¢o(x) + e¢1 (z, L), where ¢g € C°(27) and ¢1 € C(;C52,.((0,1))), as an oscillating

Ve per
test function in the weak formulation (4.10), we obtain

/ (A*Vue - Vo + u¢%)dx = / fotda. (4.12)
- o0

Applying unfolding operator on both sides, using the properties of unfolding operator ([16], Prop. 2.5) and
convergence (4.11), by letting e — 0 in (4.12), we obtain,

/ A(Vu+ Vyur) - (Voo + Vyor)dzdy —|—/ upodr = / fodx. (4.13)
Q- x(0,1)3 Q- Q-
Put, ¢g = 0 in (4.13), we have
/ A(Vu+ Vyuy) - Vyprdady = 0.
Q= x(0,1)3

This can be written as

/ AVyuy - Vyprdedy = 7/ AVu™ - Vy¢rdady.
Q—x(0,1)3 Q—x(0,1)3

Since ¢; € C°(Q; C,.((0,1)3)) was arbitrary, uj(x,y) satisfy the following PDE in y variable,

per

{ —divy (A(z,y1)Vyui(z,y)) = divy(A(z,y1)Vu~ () in (0,1)3 (4.14)

up(z,y) is (0,1)% — periodic.

Using the solution of the cell problems (4.3), we can write u(z,y) in L? (Q; H},,.((0,1)%)/R) as ui(z,y) =
3 Ou-
81‘,‘

Xi- Now, take any ¢ € C°(Q27) as a test function in (4.10) and pass to the limit as ¢ — 0 to get,
i=1

3
-
/ Alz,y) [ Vum +3 TV, xi | - Vodady: + / u"pdz = / fodaz.
Q- x(0,1)3 — Ox; Q- a-
Using the definition of y, above equality becomes
/ </ Az, y1)(I + Vyx)dy) Vu~ - Veodr +/ u” ¢pdr = fodx.
- \Jo? - Q-

Now applying the definition of Ay given in (4.4) in the above expression, we get

/ Ay Vu™ - Vedx —|—/ u” ¢pdr = fode.
_ _ o0
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Step 3: Now, we will show u™ = 4~ on .. We have ul = uZ on <. Let ¢ € C°°(Q") such that ¢ = 0 on 9Q*\y2.

A simple integration by parts gives the following

+
/ TE Oug odxdy; = —/ Tgu:%dxdyl +/ Ty (uZ )pos + o(1),
u 6373 Qu 8.2?3 v

where o = (01, 02,03,0) is the downward unit normal on v¥. By passing to limit € — 0 in the above identity

using (3.3) and Lemma 3.5 to get,

out

0
¢dxdy1+/ u+—¢dmdy1 :/ u- o3.
Qu 6$3 u (9.1?3 yu

Combining the first two integrals and applying integration by parts, we have
/ uto3¢p = / u~o3p, forall ¢ € C(Q) with ¢ =0 on IN*\ 2.
v v

Hence, we have

ut =u" on Y

Since uT are u~ are independent of y;, we have uT = 4~ on 7.
b)

Step 4: Taking ¢ € C°() as a test function in the weak formulation (2.2), we get,

/Q: (Aevuj.v¢+uj¢)+/ (AEVUE'v¢+us¢):/gs+f¢+/9_f¢’

We have,

lim (A*Vul - Vo +ut¢)de = / (Ag Vasu® - Vo304 w(z)ut¢) dz,
O+

e—0 Q:—

and

lim A*Vu_ - Vodr + u_ ¢pdx = / (AgVu™ - Vo +u ¢)de.
e—=0 Jo- O-

Hence, if we pass to the limit ¢ — 0 in (4.15), using the above convergences (4.16) and (4.17), we get,

| (420" Vags + vl o) dot [ (4590 Vot u o)ds
Q+ Q-

:/Q+ w(x)f¢dx+/ﬂ_ fodx.

(4.15)

(4.16)

(4.17)

(4.18)

Since ¢ € C*°(Q) is arbitrary, hence by density, the above equality holds for all ¢ € H(Q,w), and this is the weak
formulation corresponding to (4.5). Hence u is a weak solution to (4.5). To get the uniqueness of u € H(Q,w),
we will use Lax Miligram lemma. For that one has to verify the following bilinear form corresponding to the
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left hand side of the variational equality (4.18), F : H(Q,w) X H(Q,w) — R defined by
F(o,9) = /+ (A5 V30" - Vos™ +w(z)pty™) +/ (Ag Vo™ -V~ +¢7¢7)
Q Q-

is continuous and elliptic. This will follow from the fact that, AJ and A; are uniformly elliptic and bounded.
Ellipticity of A, is a classical result. Let us prove the ellipticity of AS‘ : for (A2, A3) € R?, we have

_ai2 ), _ a3 —g12 5, 413
a2 ais 2 ail )\2 arl )\3 (111)\ a11/\3
——)\2 - *As,)\z, A3 <A Az : A2
/\3 /\3
1 l aiaz —ajy  aszarn — a12a131 [)\2} [/\2} ( )
_ b . . 4.19
411 |a11a93 — a13a12 ai1as33 — 0%3 As As

Now integrate both sides over the set Y (2, z3) with respect to y;, we obtain

awt@lOa P < a8 2] 2]

Since w(z) = § > 0, implies Asr elliptic. Hence, this also shows the convergence of the full sequence u.. This
completes the proof. O

Remark 4.5. (1) Instead of taking the source term f € L%(Q), one can take f. € L?(£2.) whose zero extension
f- to the whole domain €, weakly converges to f in L2(Q).

(2) Note that in the above analysis, we could compute P, and P3 directly as there were no oscillations in x
and x3 directions. Then, we computed P; in terms of the computed values of P, and Ps . If we have oscillations
in more than one directions, say along x; and zo directions, then we will compute P; and P, in terms of the
computed value of Ps. This result has shown in Section 7.

5. HOMOGENIZATION OF AN OPTIMAL CONTROL PROBLEM

In this section, we consider an interior optimal control problem with general energy type cost functional in
Q).. Here we restrict ourselves to 3-dimensional case to make simpler presentation. But the results can be extend
to any finite dimensional domain .. Let B¢(z) = B (ac, %) = (bi,j (a:, %))?,j:l’ be a family of 3 x 3 matrices
and have the same properties as A° defined in Section 2.2 namely the uniform ellipticity and boundedness.

Notations: To write in a more conventional way, we use the following notations for this section: B = B(x,y1)
T
and B* =B (x —)

We also assume that A° and B¢ are symmetric. Let us consider the following cost functional

1

Je = J:(0:) = 5/ B*Vu, - Vu.dx + g/ |0 |2dz, (5.1)
Qe Q.

where 3 > 0 is a fixed constant and given 0. € L?(.), the function u. € H*(£2.) satisfies the following PDE,

(5.2)

—div(A*Vue) +ue. = f+ 6. in Q,
A*Vue -v. =0 on 09..
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Here f € L%((.) is the source term and . is the control. The optimal control problem is to find (u.,0.) €
H'(Q:) x L*(Q.) such that

Je(te,0:) = inf{J(ue,0:) : (ue,6:) obeys (5.2)}. (5.3)

This type of problem was first considered in [29] in a fixed domain, in the case when the coefficient matrices
A® and B¢ are periodic. In [27], in fixed domain, authors have considered the case when coefficient matrices A®
and B¢ are H-convergent. In [28], this control problem with fixed A and B have been considered in perforated
domain. For further study in this direction we suggest the reader to see [25, 26] and references therein. Here we
consider the above optimal control problem (5.3) in an oscillating domain having curved interface. It is known
that the equation (5.2) admits a unique solution u. € H'(€.) and also satisfies the following estimate,

el .y < CUS 20 + 196l 22 (2.)), (5:4)

where C' is a generic constant independent of €. We also have the existence and uniqueness result for the optimal
control problem (5.3) for each fixed & > 0 (see [31]).

Theorem 5.1. For each fixzed € > 0, the minimization problem (5.3) admits a unique solution (u.,0;) €
HY(©) x L2(2.).

The topic of discussion for this section is to analyze the asymptotic behavior of (u.,0.)) as the oscillating
parameter € — 0. To achieve our goal, we will make use of the following characterization theorem.

Theorem 5.2. Let (uc,0:) be the optimal solution to the optimal control problem (5.3), then the optimal control
1s characterized by

1_
e = T 5 Vs,

B

|

where the adjoint state v., satisfies the following adjoint PDE

—div(A°V7.) + 0. = —div(B*Va.) in ., (5.5)
(A°Vo. — B°Viue) v =0 on 99Q.. .
Conversely, let (e, ) satisfies the following system
—div(A°Va.) + 1. = f+ 0. in Q.
—div(A*V7.) + 0. = —div(B°Va.) in Q.,
AV, v =0, (A°Vo. — BVa.) -v. =0 on 9. (5.6)
- 1
05 =5 7565

Then (i, 0.) is the optimal solution to the optimal control problem (5.3).

Proof. We present a quick proof for the sake of completion. Given 0. € L%(€).), denote F.(0.) = J.(uc(6.),0:)
where u.(6.) is the solution to (5.2). Evaluating the limit of

%(Fa(e’g ML) — FL(0.))
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as A — 0 and denoting the limit by F’(6.)0., we get
F/(0.)0. = / AV, - Vwg_ dz + ﬂ/ 0.0.dx,
Q. Qe

where wy_ is the solution to the following PDE,

21

—div (A*Vwy,) + wg, = 0. in €, (5.7)
A*Vuwg, -ve =0 on 09.. ’
As (@, 0.) is the optimal solution, we have
F!(0.)0. =0, forall 6. € L*(.).
Hence, we get,
/ AV, - Vwg_ dz = —B/ 0.0.dzx. (5.8)
Q. Qe
Let v, satisfies (5.5). Using wp_ as a test function in (5.5) and o, in (5.7), we obtain
/ A*Vi, - Vwg_dz :/ U.0.dx. (5.9)
Qe Qe
Hence from (5.8) and (5.9), we have
_ 1
0. = ——0e
B
This completes the proof of forward part.
1
Conversely, from the identity (5.9), Gateaux derivative of F. at §. = ——7. vanishes in all the direction. Since

1
J is strictly convex, hence F; is strictly convex which implies that the pair (ug, —51)6) is the optimal solution

to the considered optimal control problem (5.3).

5.1. Homogenized optimal control problem

O

To introduce the homogenized or limit problem, we need the following cell problems. For each z € 0~ and

1=1,2,3, let x; = x:(y) and N; = N;(y) solve the following system
—divy (A(z,y1)Vxi) = divy (A(z,y1)e;) in (0,1)3,
—divy (A(z,y1)VN;) = divy(B(z,y1) (I + Vyx)e;) in (0,1)3,
Xi,ni are (0,1)% — periodic in y and M (y;), M(N;) = 0.

Now define the matrices Bi, for z € OF:

Byle) = [ (Bl +V,0 + Alwn)V, Ny, fors e @

(5.10)
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B;;(x) = Bt (z,y1)dy:, forz e Q,
(0,1)
where
baoa?; — 2a11b12a12 + ajabiy basa?; + afabi — bigaizaiy — arbizars,
B*(z.y1) = —
T, Y1) = — ’
a1 bzsafl + Q%lel — bizai2a11 — a11bi2a13 b33a%1 — 2a11b13a13 + a%gbll

N =[N; Ny N3] and x = [x1 X2 Xx3] - The state equation for the control § € L?(Q) is given by

—diva 3 (Af Vasu®) + w(z)u™ = w(@)f + w(z)d in QF,
—div(AgVu")+u~ =f+6 in Q7
AfVazut - (va,v3) =0 on 7, (5.11)

U -, AfVasut - (09,03) —AgVu~ -0 =0 on ~,

AyVu™ v =0 on 00\,

where AQi, Vasu™ and divy 3 are defined as in Section 4. The limit optimal control problem is defined as follows:
find (u,0) € H(Q,w) x L*(Q) such that

J(u,0) = inf{J(u,0) : (u,0) € H(Q,w) x L*(Q) satisfies (5.11)}, (5.12)
where the cost functional J is given by

1 1
J(u,0) = 2. B;V273u+ - Vazutdr + 3 ) B,Vu Vu~dz + g ; |0)%dz.

Remark 5.3. It is quite intuitive that the limit problem will be in the full domain 2 which is the Hausdorff
limit of QF. Indeed the limit problem is independent of ¢ defined in the full domain Q. We expect that in the
limit there will be interactions between A° and B¢, namely the coefficient matrix of the equation and matrix
in the cost functional and that is what we get as By. In other words, the matrix By has the contribution both
from the state and cost, whereas the coefficient matrix of the state equation should not be affected by coefficient
matrix of the cost functional. This indeed is demonstrated by our limit problem and we get the limit coefficient
matrix as A:{ .

We have the symmetricity and the ellipticity of B; and B, (will prove it in the sequel of proof of
Thm. 5.7). This gives the existence and uniqueness of the optimal solution to the optimal control problem
(5.12). The characterization and optimality system is given by the following theorem:

Theorem 5.4. (Erxistence and characterization) Let (i, 0) be the optimal solution to the optimal control problem
(5.12), then the optimal control is given by
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where the adjoint state v satisfies the following adjoint PDE

—d’ivgg, (A3V2,317+) + LU(.’I,')@+ = —di’l)z’;g (B;Vz’gﬂ—i_) m Q+7
—div(Ay Vo~ ) + 07 = —div(ByVu~) in Q,
(ASFVZSW - B;Vz:sfﬁ) (v2,v3) =0 on 7, (5.13)
5 (A(—)FV273’L_1+ — B;VQ737TL+> . (0'270'3) — AO_VE* 0 = 0 on e,
AgVi-v=0 on 00 \7..

ot =0~

Conversely, assume that (u,v) € H(Q,w) x H(Q,w) satisfies the following system,

1
—divg 3(Af Vazu™) + w(@)ut = w(x) f - Bw(x’, z3)vt in QF,

—di’l}g’g(AgVQ’;;’U-i_) + W($)7)+ = —divg’g(B;VQ,gqu) m Q+,

1 (5.14)
—div(AgVu™ ) +u” = f~ — vi in Q7
—div(Ag V™) + v~ = —div (B;Vu_) in Q,
together with the boundary conditions
A3V273u+ . (VQ, Vg) = 0, (AE)’_VQ’:;’UJF - B;VZgu*) . (1/2, 1/3) =0 on Yus

AgVu™ v =0, (A4gVv~ -v=B,Vu -v)=0 on 00\,
and the interface conditions

ut =u", AfVasut - (09,03) —AgVu~ -0 =0 on 7.,

vt =07, (Angw — B;Vz,gu*‘) (02,03) — (Ay Vv~ — B;Vu_) co=0 on ..

1
Then the pair (u, —ﬁv> is the optimal solution to the optimal control problem (5.12).
We now present the convergence analysis.

5.2. Convergence analysis

Let (@e,0.) be the optimal solution to the problem (5.3). Let u.(0) be the solution to the problem (5.2)
corresponding to . = 0. Then, from (5.4) we get, [|[us(0)| g1 (0.) < C. Now using the optimality of the solution
(tie, ), we have

Je (e, 0:) < Jo(uc(0),0).

This implies the following inequality

1 _
—/ BEVﬂE-Vﬂgdm—t—é/ 16.|%dx < C.
2 Jo. 2 Jo.
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Since B is uniformly elliptic, it follows that
||§€||L2(QE) < C and ||Vﬂg||L2(QE) <C. (5.15)

The uniform bound on ||0. || ;2. ) gives the uniform bound on ||t || g1 (o, ) as @. satisfies (5.2) and uniform bound
of || || g1 (. follows from (5.5).

We also have the similar type of convergence as Propositions (4.2) and (4.3).

Let for each € > 0, ., 0. be optimal state and corresponding adjoint state respectively. Let us define two
sequences using the unfolded sequence 7°U, and T¢V. as

_ 1 1
TU (2, y1,23) = = | TCUe — 7/ Teu.(x1,y1, 22, 23)d
(31, 33) € < : Y (2', 23)) Y (z',x3) Ao, 41, 32, 25) 01

(5.16)

_ 1 1
TV (2! =TV — ——— AR, d )
5(1‘ aylvx?)) - ( Ve \Y(x’,x3|) /Y(x,’xg) Ug($17y1,$2,$3) yl)

Proposition 5.5. The sequences defined in (5.16) is uniformly bounded in L?(2%).
As |70 L2(0w), I TUe || 12(0wy < C, by compactness there exist Uy, V3 € L?(Q*) such that
TeU. — Uy, and TV, — V; in L?(Q).
Then the following proposition holds.
Proposition 5.6. Let for each € > 0, 4. and v, are as described earlier. Let

Ol
81‘1

dve
T¢ — p1, and Taa—v — q1 weakly in L*(Q").
X1

ol
Then py o and qy o

In the proof of Theorem 5.7 to be given below. We will write explicitly p1, ¢1 in terms of a; j, b; 5, 2 and x3
directional derivative of limit optimal state and adjoint state.

The following theorem gives us the full convergence of optimal state, control and adjoint state corresponding
to the optimal control problem (5.3). We recall that the notation ~ is used to denote the extended function
from QF to Q@ by 0. Recall that w(x) is defined on the upper part Q* as in subsection 3.3 and let w(z) =1 in
Q.

Theorem 5.7. Let (i.,0.) and (u,0) be the optimal solution to (5.3) and (5.12) respectively. Also, let v, and
v are the adjoint states corresponding to the optimal control problem (5.3) and (5.12) respectively. Then

~ out our

7t ot N ) 20t ) =

ad — w(z)am, oz, w(x) oz, weakly in L*(Q7), fori=2,3

— + .

v = w(x)v, 881;; —\w(x)(?;;l weakly in L*(QT), fori=2,3 (5.17)

— 0~ weakly in H*(Q7),

v, weakly in L*(Q).
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Proof. The proof will be accomplished in several steps by homogenizing the system (5.6). We will show that the
homogenized system corresponding to (5.6) is the system (5.14). To do this, the system (5.6) will be divided
into two parts, namely QF and Q~. Then analyze the asymptotic behavior in these two parts separately. These
are connected via interface conditions.

Step 1: Using the uniform bound on ||4.| g1 (q.) and [|Tc|| g1 (q.), by Proposition 4.1, we have

(1) IT5as || L2 m)

C, IT°Vas ||z @w < (5.18)
(i) | T°0F || L2 (v <

C
C, TVl |2 auy < C.

NN

As in the proof of the Theorem 4.4, we get ut,p; € L?(Q") such that
(i) Teut — u™ weakly in L*(Q%)

(i) T° <8x ) — p; weakly in L*(Q%)
1

o (5.19)
(#4i) (8%1) (Q"), fori=2,3,

ai2 8u+ ai13 8u+

(XY =
( )p1 a11 Oz a1 3I3

Further, we see that u™ is independent of y;. Convergence takes place along a subsequence. Similarly, there
exist v, q; € L%(%) such that

(i) T°oF — v weakly in L*(Q%)

ovt

.. € e N : 2 u
(1) T (6:61) q1 weakly in L*(Q") (5.20)

o e [OUF ovt
(71d) T ((%i ) oz,

and vT is independent of y;.

weakly in L*(Q"), for i = 2,3,

Step 2: We now compute g;. To do so, we use oscillating test functions of the form ¢°(z) = ep(x ({””1 })
where ¢ € C°(QF) and ¢ € Cpe,.((0, 1)) in the weak formulation of (5.5), to obtain

/Q+ (AVaYS + 067 )de = | BT dr, (5.21)

As in the proof of Theorem 4.4, applying unfolding operator for the upper part on both sides and letting ¢ — 0
to obtain

a o' (y1) P o' (y1)
// A . 0 dzdyy :/ B . 0 dxdy; .

VQ73U+ 0 V273u+ 0

By simple matrix multiplication on the above equality gives,

ovT d out out d
/ <a11q1 + Cl128TE2 + a13 o ) ¢id$dy1 / (b1lp1 +bio— 025 +biz— o ) ¢ld$dy1~



26 A. K. NANDAKUMARAN AND A. SUFIAN

Since ¢ and 1 are arbitrary, the above equality implies

vt Ot out Out _
B +aiz— Da =b11p1 + bro—— By + b13 8u3 a.e in Q"

aj1qr +alg—

The uniform ellipticity of A, implies a11 > « (elliptic constant). Hence, we have

a2 8’U+ ais 81}* b11 b12 6’UJ b13 8’[1, .
= = — 4 — . Q. 5.22
o a1y Ory  ayy Ors | ay | ap Oxg | ay Oxs e (5:22)
Let us denote
- b bis Out  bys Out
Pr=—pit oo 2 (5.23)

b1 .
a11 a11 0xa a11 Ox3

a2 vt a3 vt
Then ¢; = _ckes T + p1.
a1 81‘2 ai 8$3

Take ¢ € C°(QF) as a test function in (5.5), and applying unfolding operator on both sides and let € — 0.
As in the proof of Theorem 4.4, we obtain

[ |4

Use (5.19)(iv) in the above equation to get

ovt ovt ovt ovt\ oot
—a12— — a135— + ap1 + a2 + a3
w (9£E2 8

q1 b1
Vot +vteT | dady, = / B - Votdady. (5.24)

VQ73U+ V2,3u+

(9 81’3 8351

2 + + +
a1 v arzai3 OvT v o™\ 06T
( ai1 8$2 aill 8 + a12p1 + @225 8562 +az 8.%3 > 61‘2
+ + + + +
4oL gl 0T _ %% + ai3p1 + 023% +azz— OuvT ) 997 + v ¢t |dedy
a1 6332 a1 8333 633 8333 8 I3
Out out\ 9T out Out\ 9ot
= b b b —_— b b b 5.25
/u{(upl-i- 12a +138x3>8x1+<12p1+ 228x2+238x2>8m2 ( )
out out +
+ | b13p1 + ba3 + b33 09 dzdy;.
8$2 6.1‘3 8l‘3

The first term of the left hand side integral in (5.25) vanishes due to (5.22). Thus, we have the following identity

/ |: (_aﬁ@?ﬁ . a12a13 (9’U+ T a9y 81}+ + a23 ) 8¢+
Qu (9x3

a1 8x2 ail 8%2 81’2 afEQ
ajparz Qv a?; OvT ovt ovt\ 0¢T ‘o
_— = N dzd
+ ( ail 8I2 ail 81'2 %23 52s 5 tassg 5‘ 8333 v (b ren
Ou™ ou™ 0¢+ ou™ ouT\ Ot
= b b b b b b -
/u {( 12P1 + b22 92 + b23 83:2) 92 ( 13P1 + 2 g + 033 8:53) B

O¢™ O¢™
—a12p1 7— — a13p1 - — |dxdy;.
(%2 8
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Substituting the expression for p; given in (5.19) and p; given in (5.23) in the above equality, we get the
following

/ (AHVQ73U+ . VQ,3¢+ + UJ(I’)’U+¢+) dx = / B;V2,3u+ . V213¢+d$. (526)
Q+ Q4+

Now, for the state equation, choosing ¥ € C°(Q1), we can pass to the limit in the following equation
/ (Acvat - vyt +ufypT)de = / (f +0:)yTda.
oF QF

By the characterization of the optimal control, above equality can be written as

1
/ (Asval - vyt +atyT)de = / (f — =) tda. (5.27)
Qf oF B

As in the proof of Theorem 4.4, applying unfolding operator for the upper part on both sides and letting ¢ — 0,
we obtain

1v+) Yde. (5.28)

/ (AE)"V27311+ . V2,3¢+ + w(m)v+w+) dz = /
o+ B

Q4+

o(o) (1 -
Now we consider the state equation in the lower part: for any ¥~ € C°(Q7), we have

/_(AEV@; VYT FasyT)de = / (f +0-)pda.

By the characterization of the optimal control, above equation can be written as

/ (A°Vaug - VY~ +a 9y )de = / (f - ;v6> P~ dx. (5.29)
_ o

Since ||uz || g1o-) < C and |07 || g2 (o-) < C, there exist u™, v~ € H'(Q7) such that
T.aZ —u~, and T.o7 — v~ , strongly in L*(Q~ x (0,1)*). (5.30)
Moreover, by compactness Theorem 3.2, there exist uy,v1 € L*(Q; H}.,.((0,1)?)) such that

T.(Va;) = Vu~ + Vyui, and T.(Vo.) = Vo~ + V,v1, weakly in L*(Q x (0,1)%). (5.31)

Similar to the proof of Theorem 4.4, applying unfolding for the fixed lower part on both sides of (5.29) and
letting € — 0, we obtain the following

/W(AaVu_ VYT Ty )de = /Q, (f - ;U—) w-dz. (5.32)

Let us consider the adjoint equation in the lower part: For any ¢~ € C°(£27) we have

/ AV Ve +07¢ e = | BTVaAT - Voda. (5.33)

Q-
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Take ¢° = ¢o(x) +e¢1 (z,2) , where ¢o € C°(27) and ¢1 € C°(Q; C52,.((0,1)?)), as a test function in (5.33),
we get

/ (A°V5T - V¢F +v7¢%)dz = / BEVaC - Veda. (5.34)
Apply unfolding operator on both sides of (5.34) and letting ¢ — 0, by (5.31)(ii), we obtain

/ (A(Vo™ + Vo) - (Voo + Vyo1) + v~ ¢g)dady
o (5.35)
= x(0,1)3

Put, ¢p =0 in (5.35) to get

/ A(Vv™ +Voy ) - Vyprdedy = / B(z,y1)(Vu™ + Vyuq) - Vyordady.
Q- x(0,1)3 Q- x(0,1)3

3
u
In the same way as in the proof of Theorem 4.4, we have uq(z,y) = E D xi- Hence, above equality reduces
; €T;
i=1

to

/ AV - Vyoidady = / (B(z,y1)( + Vyx)Vu™ - Vyp1 — AVo™ - Vyo1)dady;.
Q-x(0,1)3 Q=x(0,1)3

Since ¢1 € C°(Q;C22,.((0,1)3)) is arbitrary, for each z € Q7 v1(z,y) satisfies the following PDE in y variable,

per

—divy (A(z,y1)Vyvi(z,y)) = —divy(B(z,y1)(I + Vyx)Vu~ — AVv~) in (0,1)3
: 3 S (5.36)
v1(z,y) is (0,1)® — periodic.
5o ou~
Using the cell problem (5.10), we can write vy (z,y) = ; (axixi - amiNZ).
Now put ¢1 = 0 in (5.35), definition of Ay and B, to produce the homogenized equation for v~
/ (Ay Vv~ - Voo + v ¢p)da = / B,Vu™ - Voda. (5.37)
Q- Q-

Now for (¢, ¢) € C°(Q2) x C*°(Q), we can pass to the limit ¢ — 0 in the following system

/ (A*Va. - Vip + u1p)dz = / (f + 0.)ydu,
Q.

Qe

/ (A°Vo. - Vo + v.¢)dx :/ B*Vu, - Vdz,
QE QE
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and the limit is

/ (Af Vasu™ - Va1 +w(z)u +1/))dx+ (Ag Vo™ -V +u¢)dz
O+

:/ ()<fv wdx+/m(v wdx

| (439200" Voo 4 wlpute) ot [ (A5V0" ot oo
Q+ Q-

= / B;V273u+ -V 3¢dx —l—/ B;Vu_ -Vedzx.
Q+ Q-

(5.38)

Following the same path as in the proof of Theorem 4.4, we can show u,v € H(Q,w) by showing u™ =
u~ and vT = v~ on 7. The system (5.38) holds for all (¢,¢) € C*°(2) x C>(Q) and hence it is true for
all (¢¥,¢) € H(Q,w) x H(Q,w). This system is the weak formulation for the limit optimality system (5.14).
The system (5.38) has a unique solution if we have A, Ay, B;, B, are elliptic. The matrix Ay is elliptic and
symmetric is a classical result. For ellipticity and symmetricity of B#, we refer to ([27], Thm. 4.3). Ellipticity
of AJ has already proved in Section 4. If we replace A by B in (4.19), we get the ellipticity of B; Hence this
shows that (u,v) is the unique weak solution to the limit system (5.14) and hence convergence of the whole
sequence follows. Thus, by uniqueness, we have & = u and v = v. O

6. kK DIRECTIONAL OSCILLATING DOMIAN

The definition of unfolding operator defined in Section 3 can be generalized to n-dimensional domain with any
k (k < n) directional oscillating domain. For example, pillar-type oscillations in 2-directions in a 3 dimensional
oscillating domain. To present in a simpler way, we consider n = 3 and k = 2. Here the oscillating domain has 2
directional oscillations and the coefficient matrices under consideration have oscillations in 2—directions (z; and
22). We present the details when n = 3 and k = 2 and this can be extended without any additional difficulty
to any n.

6.1. Domain description
Let h,g: (0,1)2 — R be Lipschitz real valued functions such that 0 < g(z) < h(2’) for all 2’ € (0,1)? and

n: R? — R be 1-periodic continuous real valued function having the following properties:

(1) there exist 0 < a < b <1, supp (77|(071)2) = [a,b]? and > 0,
(2) the supremum M = sup{n(z’) : z’ € (0,1)?} is strictly positive and the Lebesgue measure
o' € (0,12 n(@’) = M)} 26> 0,
(3) for each (2/,23) € QT = {(a’/,23) : 2’ € (0,1)%, h(z') < x3 < h(z') + M},
Y (2, 23) = {y € (0,1)%: h(2’) + n(y’) > z3} is connected.
Here 1—periodicity of n means n(z’ + (i,7)) = n(z') for all 2/ € R? and for all (i,j) € Z2. For 2’ € (0,1)?, we
define n®(2') =7 ( ) The oscillating domain €. is defined as

Qe = {(a',23) 12" € (0,1)%, g(a) < x5 < h(a") +0°(2')} .
We denote the boundary of Q. by 9Q.. The oscillating part of the domain is denoted by Q7 that is

OF = {(@,25) 1 2’ € (0,1)%, h(z') < x5 < h(z') +1°(a")}
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and the lower fixed part Q™ is given by
Q" = {(2,23): 2 €(0,1)%, g(2') < 23 < h(z')}.
We denote the common boundary of QF and Q~ by ¢ which is defined by
ve ={(2',z3) € Qe : 3 = h(z')}.
The full or limit domain which is the Hausdorff limit of 2. is denoted by € (see Fig. 2), which is defined by
Q= {(a',23) : 2" € (0,1)%, g(z') < 23 < h(z') + M}.

The upper and the lower part of the limit domain are QF and Q= and Q = interior(Q+ UQ~). The common
boundary of Q7 and Q™ is denoted by 7. which is defined by

Ye = {(2',23) : 2’ € (0,1), 23 = h(z')}.
We denote the boundary of £ by 0.

6.2. Problem description

We consider the following following elliptic PDE in divergence form,

{ —div (A°Vue) +ue = f in Q. (6.1)

A*Vue, v =0 on 09,

’

3
z )) , where a;; : {1 x
ij=1 ’

where v, is the outward unit normal vector to 9., A = A (:v, %') = (am (x, =

(0,1)2 — R with 1—periodic in y’, and A(x,%’) is uniformly elliptic and bounded, that is, there exists a, 3 € Rt
such that,
(A(x,y")v,v) = al|v|?, ||A(z,y)v|| < B|jv| for all v € R®, 2 € Q, o € (0,1)%
and f € L*(Q).
7. UNFOLDING OPERATOR FOR TWO-DIRECTIONAL OSCILLATING DOMAIN

AND HOMOGENIZATION

For the study of these oscillations we will use periodic unfolding along z’. The periodic unfolding of a function
v:R3 = R along 2’ is defined as

/
Tv(2',23,9') = v (5 [x } + sy’,x3> . (7.1)

£

Now, we define the modified unfolding operator for our analysis. For every € > 0, the unfolded domain
corresponding to QF denoted by Q¥ is defied by

0 = (et wr e 07 (e [Z] war) <mun (e [2] ver) ).

9
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Definition 7.1. The unfolding operator 7°¢ : {u: QF — R} — {T°u: Q¥ — R} is defined by
T u = xuT u,

where T¢ is the unfolding operator given by (7.1).

If O C R? containing QF and v is a real valued function on O, then
To=T" (U|Q?) :
Remark 7.2. Here the base of the oscillation is given by the function h. If we take h as a constant function,

then unfolded domain and unfolding operator will be similar to the unfolded domain and unfolding operator
defined in [1].

Like other unfolding operators, it also enjoys the following integral equality.

Lemma 7.3. Let u € L?(Q}). Then

Tsudm’dxgdy’:/ uda’'dzs.

Qv of

Notice that, xqu — xqu pointwise in R?, where
Q" ={(«',z3,9) : o',y € (0, 1)2, h(z') < z3 < h(z') +n(y)}.

Also, since h,n are Lipschitz functions, we have that

QAQ"] = 0(e), (7.2)
where A denote the symmetric difference between QF, Q“ and | - | denotes the Lebesgue measure. Because of
the above relation (7.2), we have the following relation, for any v € L7 _(R?),

Tevdzdy = Tevdzdy' + O(e). (7.3)
Qu Qu

7.1. Boundary unfolding operator

In order to get the interface conditions, we will use the following boundary unfolding which is nothing but
the restriction of general unfolding operator on the oscillating common boundary ~Z. For every ¢ > 0, let us
denote the unfolded boundary of % by v, which is defined by,

e ={(@" h(a"),y) : 2" €(0,1)%,y € (a,b)*}.

s = (o [2] reran(:[2] ver)).

Then define the boundary unfolding operator 7y : {u:v: = R} — {77 : 7' = R} as Tyu =wuo ¢,

Define ¢7_: vy — 7¢ as

Proposition 7.4. 7;° satisfies the following properties:
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(1) TE is linear. Further, if u, v:~5 — R, then, T2 (uv) = 77 (w) T (v),
(i) Jor any 6 € (10, [0~ 6y 0 a5 =0,
(iii) let {¢:} is a sequence in L*(v.) such that ||¢c — ¢||12(4.) — 0,
then ”7775(155 - ¢||L2(’yé‘) — 0,
(iv) foru e L*(v:), we have | Tul p2(yuy = ||ullye for e small.

Limit space: As the domain has oscillations in 2-directions, in the limit, on upper part there will be only x3
directional derivative. We recall that Y (2, x3) = {y/ € (0,1)? : h(z') +n(y') > 23} and w(z) = |Y (2, 23)|. The
limit function space is defined as

H(Q,w) = {w € L*(Q): 8% € L*(Q),Vy € LQ(Q‘)} .

The above function space with the following inner product is a Hilbert space: for ¢, ¢ € H(Q,w)

out 05+

(W, D) w) = /QJr w (¢+¢+ * Jrs Oxs

) dax + /m (Y~ ¢~ + Vb~ - Vo )dz.

Let for each € > 0, us be the unique solution of (6.1). Let us define another sequence using the unfolded
sequence T Cu., say T<U, as

1 1
U.(z,y, _ = e, _ / e 'yl xs)dy' | 74
Ty, ms) € (T YT Y (2] Y(m/v:cg)Tua(m Vo) y) 74

Proposition 7.5. The sequence defined in (7.4) is uniformly bounded in L*(Q%).
Proof. Using Poincare-Writinger inequality in (7.4) with respect to y’, we get

2

1 1
/ |T°U.|?dy < C Vg | = | TFu: — ,7/ Teuc (2, y  z3)dy’ dy’
Y (z',x3) Y (z/,x3) € |Y(SU ,$3|) Y (z',x3)
1 2
<C -VyTu| =C |TEV prue 2 dy’.
Y (2 x3) | € Y (2 ,23)
Now integrating both sides with respect to ' and z3 we get,
/ 1TU.|* < c/ 1TV pue|? = c/ \Varuel? < C,
u Qu Q;r
where C is a generic constant independent of €. O

As || TeU.|| € C, by compactness there exist U; € L?(Q%) such that 75U, — Uy in L?(Q%). Then the following
proposition holds.

Proposition 7.6. Let for each € > 0, u. be the unique solution of (6.1). Then

TV rue — V Uy weakly in (L*(Q"))%.
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Proof. Let ¥(z,y') € (C2°(Q%))2. Let T¢(Vu.) — D' in (L?(Q%))2. A simple integration by parts gives us the
following,

1 1
TE(Vaou)b(z,y') = | =V (T u)(z,y') = = [ =T ucdivyy = — [ TUdivy1p.
Qu Qu € Qu € Qu

Now letting ¢ — 0 in the above equation on both sides, we get

D'y = — / Urdivy .
Qu u

Since 1 is arbitrary, implies D' = V,,/U;. O

Jr
. ) ) u
Further as in Theorem 4.4, we can write V,/U; in terms of a; ; and —— as

(9:L‘3
V.U — ay; a2 aiz| ou
y/ 1 —_ .
a1z Q22 az3| Oxs

Similar type of results hold for the adjoint state also.
Following the same path as in Sections 4 and 5, we get a similar type of theorem.

Theorem 7.7. Let uc be the sequence of solution to (6.1). Then, following convergences hold,

¥ +
(i) uf — w(x)ut and 2%63 w(m)(zuTS weakly in L*(QF),

(ii) uZ — u~ weakly in H'(Q7).

Further, u = uTxq+ +u~ xa- belongs to H(Q,w) and u is the unique solution of the following system

0 <A+8u+> +w(@)ut =w(@)f in QF,

Oz " Oz
—div(AgVu ) +u” =f in Q7
E v3=0 on
81'3 3 — Vs
+ - 4 Out —T7—
ut=u", Ajs—o3—AyVu -o=0 on 7,
3x3

AjVu-v=0 on 09 \7..

Here

det A
AS‘ = / ° dy', and Ay (z) = / A(I,y’)([ + Vyx)dy, forxz e Q™ (7.5)
Y (z,z3) det A/ (0,1)3

where x is the solution of a similar type of cell problem defined in (4.3). Here A’ is the 2 X 2 submatriz of A

. a1l a2
wen by A’ = .
g v {alz a22]

Optimal control problem: Let B* = B (a:, %) = (bij(2))} j=1 be a 3 x 3 matrix valued function having the

same property as A defined in Section 6. We also assume that A and B are symmetric. Let us consider the
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following cost functional

Je (7.6)

1
Je(ea) = 5/9 stus - Vuedz + g/@ |06‘2dx

B > 0 being a fixed constant, (u.,0.) € H* () x L?(£2) satisfies the following PDE,

{

The optimal control problem is to find (7., 0.) € H'(2.) x L?(.) such that

—div(A*Vue) 4+ ue = f+ 6. in Q,
A*Vu. -v. =0 on 09..

Je(te, 0:) = inf{Jc(ue,0:) : (ue,6:) obeys (7.7)}.

7.2. Homogenized problem
Let

W(ZL‘, yl) =

112023

413022

2
—ajy + aj1a22

12013

3
—ajy + aj1a22

411023

2
—a7y + G11022

2
—a7jy + G11022

then define a 1 x 1 matrix B; as

and

B-

o) = / (Bla,y)(I+ V) + Ale,y )V, N)dy, for z € 0
(0,1)3

where x and N are the solutions of a similar type of cell problems defined in (5.10).
The limit state equation for the control § € L?(Q) is given by
0 Lout

_ Y o +_ : +
O (Ao 3x3> +w(z)u w(@)f +w(x)d in O,
—div(Ag Ve )+u” =f+60 in Q7
ou*
8.133

ut=uT, Af

‘m3 =0 on 7y,

ut
T%ag—AaVu_ -o0=0 on 7,
AyVu™ v =0 on 00 \..
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Then, the limit optimal control problem is : find (@, ) € H(Q,w) x L?(Q2) such that

J(@,0) = inf{J(u,0) : (u,0) € H(Q,w) x L*(Q) satisfies (7.9)}, (7.10)
where the cost functional J is defined as

1 L(out\ 1 o o B[ o
J(u,@)fi/QJrB# (83:;;) dx+§/ﬂ_B#Vu -Vu d$+§/ﬂ|9| dz. (7.11)

Theorem 7.8. Let (,0) be the optimal solution to the optimal control problem (7.10), the optimal control is
characterized by

0=——1,

B

where the adjoint state v satisfies the following adjoint PDE

—+ _—
g (A*av)—kw(x)v*: 0 (B+au ) in QF

_aixg 0 6503 _371173 # 8953
—div(Ag V7)) + 0 = —div(B,VvT) in Q7
ot
aLl/g =0 on v (7.12)
8x3

+ out
ot =07, (A+—B+> 03— (A4 Vo~ —=B,Vu")-0=0 on 7
3
AgVo-r=0 on 00 \"e.

Conversely, assume that (u,v) € H(Q,w) x H(Q,w) satisfies the following system,

—% (Aarg:; +w(z)ut =w(z)f — w(ac)%v"r in QF,
+ +
o <A0+g";3> Pl =5 <B ;?;3) in 4, (7.13)
—div(AgVu™ ) +u” = f - Bv_ in Q7
—div(Ay Vo~) +v” = —div(B,Vu~) in Q7
together with the boundary conditions
ou™ vt

8(E3 Vs ) 8(E3 Vs on Yu,

AgVo-v=0 on 90\,
and the interface conditions

wt=u", vt =0v" on 7.,

out

%03 —A"Vu -0=0,
T3

<A+8v+ _B+8u+

PN oy — (AgVo~ — BzVu )0 = .
0 Bs #ax3>0'3 (Ay Vo 4Vu ) 0=0 on 7
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1

Then the pair (u, —B’U) is the optimal solution to the optimal control problem (7.10).

Theorem 7.9. Let (u.,0.) and (@,0) be the optimal solution to (7.8) and (7.10) respectively. Also let v. and
U are the adjoint states corresponding to the optimal control problem (7.8) and (7.10) respectively. Then

~ out ou*

TN TRl €\ in L2(QT

g —w(z)a™, i w(x r weakly in L*(Q7),

-~ vt ot

N . e o T2(0+

Ve —w(x)vT, D3 w(x) o weakly in L*(Q7), (7.14)
a; — U, v. — v weakly in H'(Q7)

v, weakly in L*(Q).
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