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Abstract
In this article, we study the homogenization of an elliptic variational form with oscillating 
coefficients in a circular, highly oscillating domain, where the oscillatory part is made of 
two materials with high contrasting conductivity (or diffusivity) with the source term in L1 . 
We incorporate this phenomenon, namely, highly oscillating boundary, rapid oscillating 
coefficient, and the oscillating part made of high contrasting materials, which leads to non-
uniform ellipticity as the oscillating parameter goes to 0. Further, due to the L1 source term, 
the solutions are interpreted as renormalized solutions. To achieve our primary goal, we 
have proved the strong convergence results in the context of the L2 source term in the first 
part (corrector results). In the second part, we have homogenized the renormalized vari-
ational form and established the relation between the �-stage renormalized solution and the 
limit renormalized solution via convergence results. The unfolding operator for the polar 
coordinates is a central tool for the analysis.

Keywords  Homogenization · Periodic unfolding · Oscillating boundary domain · Circular 
oscillating domain · Renormalized solution

Mathematics Subject Classification  80M40 · 80M35 · 35B27

1  Introduction

The homogenization of partial differential equations (PDEs) with strong contrasting dif-
fusivity is important because it appears in the modeling of several multi-scale physical 
problems, such as the double porosity model, effective properties of composite materials 
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with soft and hard cores, effective conductivity of composites made of high and low 
conductivity materials, effective behavior of composite materials bearing a high modu-
lus of reinforcement and so on.

Due to the wide range of applicability, several mathematicians have worked in this 
direction. Panasenko [26] has one of the earliest works on the multi-scale analysis of 
high contrast composites. Several research works have been carried out in this direction 
in the last two decades. The homogenization of a double porosity model in a single-
phase flow was studied in [4], which is an interesting piece of work. In [11], authors 
have considered the homogenization of a conductivity equation for a medium made up 
of highly conductive vertical fiber surrounded by another material assumed to be a poor 
conductor. In [29], the author investigates the homogenization of a stationary diffusion 
equation in a periodic composite medium made of two components with the ratio 
between the diffusion coefficients O( 1

�
2
�

) where � is the size of the period and �
�
→ 0. 

The homogenization of a hyperbolic PDE with strongly contrasting diffusive coefficients 
is performed in [24]. As a general reference for the homogenization procedure in com-
posites made of materials with high contrasting behavior, see Ch. 7 of [5]. For further 
reading in this direction, we refer to the articles [6, 10, 20, 27, 28] and references 
therein.

All the articles mentioned above are on fixed domains. Not much work has been carried 
out on homogenization in oscillating domains with high contrasting diffusivity coefficients. 
In this context, one of the earliest works on an oscillating domain is given in [18], in which 
the authors consider an elliptic variational form on a pillar-type oscillating domain where 
an insulator-type material covers the high conductive core part of the reference pillar. In 
[18], the authors have used the pillar type shape very crucially. In [25], using the method 
of unfolding operator, the work in [18] is generalized from pillar type oscillating domain to 
a very general oscillating domain. Also, an interior optimal control problem is considered 
subject to a variational form having high contrasting diffusive coefficients. In [16], homog-
enization of an elliptic variational form was studied in a thin domain with a pillar-type 
reference cell made from materials with high contrasting conductivities. Depending on the 
ratio between the width of conductive parts and insulating parts, different limit problems 
are obtained in [16]. To see more about the homogenization of oscillating domains, we 
refer to the articles [2, 3, 13, 23] and references therein.

All the references mentioned above had their source terms in L2 , which means the 
homogenization method took place in a correct Hilbert space setup. As in this paper, the 
source term is in L1 Banach space; one cannot expect the solution to be uniformly bounded 
in H1 . To resolve this issue, we will utilize R. J. DiPerna and P. L. Lions’ description of 
the renormalized solution for the Boltzmann equation, which they have introduced in [14]. 
In addition, in [7, 12], the notion of the renormalized solution has been adopted for the 
elliptic equation. We refer to the articles [8, 9, 15, 19, 21] and references therein for further 
information on the use of renormalized solutions. In the context of homogenization with L1 
source term, in [17], the authors first time have studied the homogenization of a variational 
form in non-periodic pillar type oscillating domain with source term f in L1 . In comparison 
with [17], the domain under consideration in the current work exhibits periodic circular 
type oscillations with high contrast diffusivity coefficients.

In this paper, we consider a general second-order elliptic variational form with 
high contrasting diffusivity coefficients in a circular oscillatory domain O

�
 (see Sect. 2 

regarding the description of O
�
 ). Here, we have analyzed the asymptotic behavior of the 

following model problem
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The novelty of our work is in three folds, 

	 (i)	 The domain under consideration is a circular type oscillating domain having the 
reference cell made of materials with high contrasting behavior.

	 (ii)	 The source term f in the equation is in L1.
	 (iii)	 Here, we are allowing an oscillating coefficient matrix with O(�) ellipticity constant 

in the insulating region I
�
.

For the analysis, we require strong convergence with source term f in L2 , a significant 
result not available in the circular oscillating domain. Also, our approach to circum-
vent the difficulty due to the reference configuration by using the periodic unfolding 
method for the circular oscillating domain is a novelty, in the context of homogeniza-
tion, compared to the existing literature. In the second part, we have homogenized the 
above problem (1) with source term f in L1.

The main contributions of this article are summarized in Theorem 1, Theorem 2 and 
Theorem 4. Theorem 1 is about the weak convergence of the solutions and their deriva-
tives when the source term f is in L2 . Using the weak convergence results, we have 
proved corrector results or strong convergence results which are available in Theorem 2 
in the context of L2 source term. In Theorem 4, the main homogenization results and 
convergence results for the renormalized variational form are described.

The rest of the article is organized as follows. In Sect.  2, we have discussed the 
configuration of the considered domain, the primary tool for the analysis that is polar 
unfolding operator, and the definition of some auxiliary functions needed for the analy-
sis. In Sect. 3, we have homogenized the considered variational form and also shown the 
corrector result when the source term is in L2 . The central result that is the homogeniza-
tion of the considered variational form with source term, f in L1 is presented in Sect. 4.

2 � Domain description and unfolding operator

2.1 � Domain description

Let 0 < r0 < r1 < r2 be real numbers and for the simplicity of presentation, we take 
� =

1

n
, n ∈ ℕ . Let Λ be a connected open subset of ℝ2 which is contained in the annulus 

O
+ = {(r, 𝜃) ∶ r0 < r < r1} with Lipschitz boundary which is the reference cell (See Fig. 1). 

It consists of two parts: namely insulating part I  and high conductive region C . Now define

where O+

�
 is the inner oscillating part with I

�
 and C

�
 as its insulating and conducting parts 

respectively. The domain O− is the outer fixed part, O
�
 is the oscillating domain and O is 

(1)

{
−div

((
�
2
�I

�

+ �C
�

+ �O
−

)
A�∇u

�

)
+ u

�
= f in O

�
,

A�∇u
�
⋅ �

� = 0 on �O
�
.

I
𝜀
=

{
(r, 𝜃) ∈ O

+ ∶

(
r,
{

𝜃

𝜀

}
2𝜋

)
∈ I

}
, C

𝜀
=

{
(r, 𝜃) ∈ O

+ ∶

(
r,
{

𝜃

𝜀

}
2𝜋

)
∈ C

}
,

O
+

𝜀
= int

(
I
𝜀
∪ C

𝜀

)
=

{
(r, 𝜃) ∈ O ∶

(
r,
{

𝜃

𝜀

}
2𝜋

)
∈ Λ

}
, O

− =
{
(r, 𝜃) ∶ r1 < r < r2

}
,

O
𝜀
= int

(
O

+

𝜀
∪O

−
)

and O = int
(
O

+ ∪O
−
)
,
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the limit domain. Also Γa,Γb are inner and outer boundaries of O and Γ0 is the interface. 

Here 
{

�

�

}
2�

=
�

�

−

[
�

2��

]
2� , where [⋅] and {⋅} denote the integer and fractional parts. For 

r ∈ (r0, r1) , define

The domains mentioned above are required to define the unfolded domain and unfolding 
operator. We assume the following properties: 

(1)	 The set YC(r) is connected for all r ∈ (r0, r1).
(2)	 There exists 𝜌 > 0 such that 0 < 𝜌 ≤ meas(YC(r)) < 2𝜋 for all r ∈ (r0, r1).

We now introduce the definition of unfolding operator on O
�
 and its properties.

2.2 � Periodic unfolding operator

Since the oscillations in O
�
 are in a circular direction, we need unfolding operators in polar 

coordinates to do the analysis. Here we will recall the definition of a polar unfolding operator 
for O+

�
 and its properties without proof. For proof, one can see [1]. First, we will define the 

unfolded domains in which the unfolded functions are defined.

YI(r) = {� ∈ [0, 2�] ∶ (r, �) ∈ I}, YC(r) = {� ∈ [0, 2�] ∶ (r, �) ∈ C},

Y(r) = YI(r) ∪ YC(r) = {� ∈ [0, 2�] ∶ (r, �) ∈ Λ}.

Fig. 1   Domain description
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The subscript U in OU refers to unfolding. Here OU ,OC and OI are the unfolded domains 
corresponding to O+

�
, C

�
 and I

�
 respectively.

Let �� ∶ OU → O
+

�
 be defined as ��(�, r, �) =

(
r, �

[
�

�

]
2�

+ ��

)
. The � - unfolding of a 

function u ∶ O
+

�
→ ℝ is the function u◦�� ∶ OU → ℝ. The operator which maps every func-

tion u ∶ O
+

�
→ ℝ to its � - unfolding is called the unfolding operator. Let the unfolding opera-

tor be denoted by T�, that is,

is defined by

where 
[
�

�

]
2�

=

[
�

2��

]
2� . Analogously, we can define the unfolding operators

Then, we have

If U ⊂ ℝ2 containing O+

�
 and u is a real-valued function on U, T�(u) will mean, T� acting on 

the restriction of u to O+

�
. Some important properties of the circular unfolding operator are 

stated below. For each 𝜀 > 0,

(1)	 T� is linear. Further, if u, v ∶ O
+

�
→ ℝ, then, T�(uv) = T�(u)T�(v).

(2)	 Let u ∈ L1(O+

�
). Then, 

(3)	 Let u ∈ L2(O+

�
). Then, T�u ∈ L2(OU) and ‖T�u‖L2(OU )

=
√
2�‖u‖L2(O+

�
).

(4)	 Let u, �u
�r
,
�u

��

∈ L2(O) . Then, T�u,
�

�r
T�u,

�

��

T�u ∈ L2(OU). Moreover, 

(5)	 Let u ∈ L2(O+). Then, T�u → u strongly in L2(OU). More generally, if u
�
→ u strongly 

in L2(O+) , then T�u
�
→ u strongly in L2(OU).

(6)	 Let, for every � , u
�
∈ L2(O+

�
) be such that T�u

�
⇀ u weakly in L2(OU). Then, 

OU = {(r, �, �) | � ∈ (0, 2�), r ∈ (r0, r1), � ∈ Y(r)},

OC = {(r, �, �) | � ∈ (0, 2�), r ∈ (r0, r1), � ∈ YC(r)},

OI = {(r, �, �) | � ∈ (0, 2�), r ∈ (r0, r1), � ∈ YI(r)}.

T� ∶ {u ∶ O
+

�
→ ℝ} → {T�(u) ∶ OU → ℝ}

T�(u)(r, �, �) = u
(
r, �

[
�

�

]
2�

+ ��

)
,

T�

C
∶ {u ∶ C

�
→ ℝ} → {T�(u) ∶ OC → ℝ}and

T�

I
∶ {u ∶ I

�
→ ℝ} → {T�(u) ∶ OI → ℝ}

T�(u) = �OC
T�

C
+ �OI

T�

I
.

∫
OU

T�(u) = 2� ∫
O

+
�

u.

�

�r
T�u = T�

�u

�r
and

�

��

T�u = �T�
�u

��

.
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 Here ũ
�
 denotes the zero extension of u

�
 to O.

(7)	 Let, for every 𝜀 > 0, u
�
∈ H1(O+

�
) be such that T�u

�
⇀ u and �

�r
T�u

�
⇀

�u

�r
 weakly in 

L2(OU). Then, 

All the above properties are valid for T�

I
 and T�

C
.

2.3 � Boundary unfolding operator

In order to get the interface conditions, we now introduce the following boundary unfolding 
operator T�

0
 on Γ�

C
 . For every 𝜀 > 0, let us denote the unfolded boundary of Γ�

C
 by ΓC, defined 

by

Define boundary unfolding operator T�

0
∶ {u ∶ Γ�

C
→ ℝ} → {T�

0
(u) ∶ ΓC → ℝ} as

Note that T�

0
(u) = T�(u)|r=r1 . Boundary unfolding operator also has similar properties as 

those of unfolding operator.

2.4 � Auxiliary functions

Here we recall some auxiliary functions that are important in studying renormalized solutions 
and homogenization with L1 data. The functions defined are standard and available in the lit-
erature. For details, we refer to [7, 12, 17, 22]. All the functions are defined from ℝ → ℝ.

ũ
�
⇀

1

2� ∫Y(r)

u(r, �, �)d� weakly in L2(O+).

ũ
�
⇀

1

2� ∫Y(r)

ud� and
�̃u

�

�r
⇀

1

2� ∫Y(r)

�u

�r
d� weakly in L2(O+).

ΓC = {(r1, �, �) ∶ � ∈ (0, 2�) and � ∈ YC(r1)}

T�

0
(u)(r1, �, �) = u

�

(
r1, �

[
�

�

]
2�

+ ��

)
.
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3 � Homogenization with L2 data

Let A = [ai,j]2×2 , be a 2 × 2 matrix, where the entries aij ∶ O → ℝ are Caratheodory type 
functions. Also, A is uniformly elliptic and bounded in O , that is, there exist 𝛼, 𝛽 > 0 such that

for all � ∈ ℝ2 and a.e in O . Define

Consider the following problem in the domain O
�
:

Here f ∈ L2(O) is a given function, �� is the outward normal vector on �O
�
 . The vari-

ational form corresponding to (2) is given as: Find u
�
∈ H1(O

�
) such that

The Lax-Milgram lemma guarantees the existence and uniqueness of u
�
 for all 𝜀 > 0 . We 

want to study the asymptotic behavior of u
�
 as � → 0 . Since the oscillations are in a circu-

lar fashion, to study the asymptotic behavior, we need to write the equation in polar form. 
Using polar identities, we get

⟨A(x)�, �⟩ ≥ ����2 and �A(x)�� ≤ ����

A�(r, �) = [a�
ij
(r, �)]2×2 =

{
A
(
r,

�

�

)
if (r, �) ∈ O

+,

A(r, �) if (r, �) ∈ O
−.

(2)

{
−div

((
�
2
�I

�

+ �C
�

+ �O
−

)
A�∇u

�

)
+ u

�
= f in O

�
,

A�∇u
�
⋅ �

� = 0 on �O
�
.

(3)∫
O

�

(
�
2
�I

�

+ �C
�

+ �O
−

)
A�∇u

�
∇v + u

�
v = ∫

O
�

fv for all v ∈ H1(O
�
).



	 A. K. Nandakumaran et al.

1 3

Now we can rewrite (3) as

for all v ∈ H1(O
�
) , where

On computation, we get det
[
�
�
�
�

�
�
�
�

]
=

1

r2
detA� . Since A� is coercive, the matrix 

[
�
�
�
�

�
�
�
�

]
 is 

also coercive uniformly in O+.
By the definition of the unfolding operator (see Sect.  2.2), we have 

T�(A�)(r, �, �) = A(r, �) . Since it is independent of � , for simplicity, we denote T�(A�) as 
A0 . Then, from the properties of the unfolding operator, we see that T�(��),T�(��), T�(��) 
and T�(��) converges to �, �, � and � strongly in L2(OU) , respectively, as � → 0 , where

Limit Problem: In order to define the solution of the homogenized variational form and 
cell problems, we need appropriate function spaces which we will define now. For any 
function � defined on O , we may write � = �

+
�O

+ + �
−
�O

− = (�+,�−) throughout this 
article. 

(1)	 Define V(O) =
{
� ∈ L2(O) ∶ (x ⋅ ∇�) ∈ L2(O) and � ∈ H1(O−)

}
, with the inner 

product 

 Note that since x is strictly away from origin, V(O) is a Hilbert space. Also, since 
x ⋅ ∇� ∈ L2(O), we have �+ = �

− on Γ0 . Hence V(O) can also be written as 

(2)	 For any r ∈ (r0, r1) , define Vr = {w ∈ H1(Y(r)) ∶ w = 0 a.e. inYC(r)} with the norm 

A�∇u
�
∇v =A�

[
�u

�

�r
cos(�) −

1

r

�u
�

��

sin(�)
�u

�

�r
sin(�) +

1

r

�u
�

��

cos(�)

][
�v

�r
cos(�) −

1

r

�v

��

sin(�)
�v

�r
sin(�) +

1

r

�v

��

cos(�)

]

=A�

[
cos(�)

sin(�)

] [
cos(�)

sin(�)

]
�u

�

�r

�v

�r
+

1

r
A�

[
cos(�)

sin(�)

] [
− sin(�)

cos(�)

]
�u

�

�r

�v

��

+
1

r
A�

[
− sin(�)

cos(�)

] [
cos(�)

sin(�)

]
�u

�

��

�v

�r
+

1

r2
A�

[
− sin(�)

cos(�)

] [
− sin(�)

cos(�)

]
�u

�

��

�v

��

.

(4)∫
O

+
�

((
�
2
�I

�

+ �C
�

) [��
�
�

�
�
�
�

][ �u
�

�r
�u

�

��

][
�v

�r
�v

��

]
+ u

�
v

)
+ ∫

O
−

A∇u
�
∇v + u

�
v = ∫

O
�

fv,

�
� = A�

[
cos(�)

sin(�)

] [
cos(�)

sin(�)

]
, �

� =
1

r
A�

[
cos(�)

sin(�)

] [
− sin(�)

cos(�)

]
,

�
� =

1

r
A�

[
− sin(�)

cos(�)

] [
cos(�)

sin(�)

]
and �

� =
1

r2
A�

[
− sin(�)

cos(�)

] [
− sin(�)

cos(�)

]
.

� = A0

[
cos(�)

sin(�)

] [
cos(�)

sin(�)

]
, � =

1

r
A0

[
cos(�)

sin(�)

] [
− sin(�)

cos(�)

]
,

� =
1

r
A0

[
− sin(�)

cos(�)

] [
cos(�)

sin(�)

]
and � =

1

r2
A0

[
− sin(�)

cos(�)

] [
− sin(�)

cos(�)

]
.

⟨�,�⟩V(O) = ⟨�,�⟩L2(O+) + ⟨(x ⋅ ∇�), (x ⋅ ∇�)⟩L2(O+) + ⟨�,�⟩H1(O−) .

V(O) =
{
(�+,�−) ∶ (�+, x ⋅ ∇�+) ∈ L2(O+) × L2(O),�− ∈ H1(O−),�+ = �

− on Γ0

}



Homogenization with strong contrasting diffusivity in a circular…

1 3

(3)	 Finally VU(O) =

{
� ∈ L2(OU) ∶ � = 0 inOC,

��

��

∈ L2(OU)

}
 with the inner product 

 Here also we use the subscript U because, VU(O) contains functions defined on the 
unfolded domain OU.

Now we are in a position to define the limit problem: Given f ∈ L2(O) , consider the 
PDE

where

Here � is uniquely defined by the family of cell problems: For r ∈ (r0, r1),

The weak form of the limit problem (5) is given by: Find u = u+�O
+ + u−�O

− ∈ V(O) such 
that

for all � ∈ V(O) . Since A is coercive, a0 is strictly positive, that is a0 > k for some k > 0 . 
Hence using Lax-Milgram lemma the PDE (7) has a unique solution in V(O).

Using the polar transformation r �

�r
u = (x ⋅ ∇u) , we can write the polar form of (7) as:

Find u ∈ V(O) such that

‖w‖Y(r) = ‖w‖L2(Y(r)) +
����
�w

��

����L2(Y(r)).

⟨u, v⟩VU (O) = ⟨u, v⟩L2(OU )
+

�
�u

��

,
�v

��

�
L2(OU )

.

(5)

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

−div

�
a0(x)

�x�2
�
x ⋅ ∇u+

�
x

�
+ b0u

+ = b0f in O
+,

−div(A(∇u−)) + u− = f in O
−,

a0(x)

�x�2
�
x ⋅ ∇u+

�
x ⋅ � = 0 on Γa,

A∇u− ⋅ � = 0 on Γb,

a0(x)

�x�2
�
x ⋅ ∇u+

�
x ⋅ � = A∇u− ⋅ � on Γ0,

u+ = u− on Γ0,

a0(r, �) = ∫YC(r)

⎛
⎜⎜⎜⎜⎝

det(A(r, �))

A(r, �)

�
− sin(�)

cos(�)

� �
− sin(�)

cos(�)

�
⎞
⎟⎟⎟⎟⎠
d� and b0(r) = ∫Y(r)

(1 − �)d�.

(6)

⎧
⎪⎨⎪⎩

find �(r, ⋅) ∈ Vr such that,

∫Y(r)

�

��(r, �)

��

�w(�)

��

d� + ∫Y(r)

�(r, �)w(�) d� = ∫Y(r)

w(�) d� for all w ∈ Vr.

(7)∫
O

+

a0(x)

|x|2 (x ⋅ ∇u)(x ⋅ ∇�) + b0u� + ∫
O

−

A∇u∇� + u� = ∫
O

+

b0f� + ∫
O

−

f�,
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The convergence theorem in the classical case where f ∈ L2 is given below.

Theorem 1  Let u
�
 , u and � be the solutions of (3), (8) and (6) respectively. Then as � → 0 , 

we have the following convergences (for the whole sequence �):

Proof  The proof will be accomplished in several steps.
Step 1:  (Weak convergences of unfolded sequences) In (4) take � = u

�
 as a test func-

tion to get

Note that we do not have uniform bound of u
�
 in H1(O

�
) due to high contrasting diffusivity. 

More precisely, the bound of u
�
 in H1(I

�
) is of order �−1 . Hence, we need to analyze the 

convergence of u
�
 in C

�
 and I

�
 separately. This is done via the unfolding operator.

From (9) and by the properties of unfolding operator and weak compactness of Hilbert 
spaces, there exist u0,w�

,wr, z� , zr ∈ L2(OU) and u− ∈ H1(O−) such that

To identify wr, zr and z
�
 take � ∈ C∞

c
(OC) and � ∈ C∞

c
(OI) . Then

(8)
∫
O

+

a0
�u

�r

��

�r
+ b0u� + ∫

O
−

A∇u∇� + u� = ∫
O

+

b0f� + ∫
O

−

f�, for all � ∈ V(O).

u
�
⇀ u weakly in H1(O−),

ũ
�
⇀ |Y(r)|u + (f − u)∫Y(r)

�d� weakly in L2(O+),

�C
�

�̃u
�

�r
⇀ |YC(r)|�u

�r
, �C

�

�̃u
�

��

⇀ −
1

2�

�u

�r ∫YC(r)

�

�

d� weakly in L2(O+),

��I
�

�̃u
�

�r
⇀ 0, ��I

�

�̃u
�

��

⇀ (f − u)∫Y(r)

��

��

d� weakly in L2(O+).

(9)
������
�C

�

�
�u

�

�r
�u

�

��

�������L2(O
�
)

+ �

������
�I

�

�
�u

�

�r
�u

�

��

�������L2(O
�
)

+ ‖∇u
�
‖L2(O−) + ‖u

�
‖L2(O

�
) ⩽ ‖f‖L2(O

�
).

(10)

T�(u
�
) ⇀ u0 weakly in L2(OU),

T�

C

([
�u

�

�r
�u

�

��

])
⇀

[
wr

w
�

]
weakly in (L2(OC))

2,

�T�

I

([
�u

�

�r
�u

�

��

])
⇀

[
zr
z
�

]
weakly in (L2(OI))

2,

u
�
⇀ u− weakly in H1(O−).
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Since � and � are arbitrary, we have

To identify w
�
 , consider

where � = �(r, �, �) ∈ C∞
c
(O+;C∞

per
(0, 2�)) and � = 0 on OI . That is we have chosen �� in 

such a way that it will vanish outside C
�
 . Then

Now use �� as a test function in (4). Since �� vanishes outside C
�
 , we get

Apply unfolding and pass to the limit as � → 0 to get

Since � is arbitrary, we have

Now for any � ∈ C∞
c
(OC) , we have

∫
OC

wr� = lim
�→0∫

OC

T�

C

(
�u

�

�r

)
� = lim

�→0∫
OC

�

�r
T�

C

(
u
�

)
�

= − lim
�→0∫

OC

T�

C
(u

�
)
��

�r
= −∫

OC

u0
��

�r
= ∫

OC

�u0

�r
�,

∫
OI

zr� = lim
�→0∫

OI

�T�

(
�u

�

�r

)
� = lim

�→0∫
OI

�

(
�

�r
T�

(
u
�

))
�

= − lim
�→0∫

OI

�T�

(
u
�

)(��

�r

)
= 0,

∫
OI

z
�
� = lim

�→0∫
OI

�T�

(
�u

�

��

)
� = lim

�→0∫
OI

�

��

T�

(
u
�

)
�

= − lim
�→0∫

OI

T�u
�

(
��

��

)
= −∫

OI

u0
��

��

= ∫
OI

�u0

��

� .

wr =
�u0

�r
, zr = 0 and z

�
=

�u0

��

.

(11)�
�(r, �) = ��

(
r, �,

�

�

)
,

(12)

T�

C
�
�(r, �, �) = ��

(
r, �

[
�

�

]
+ ��, �

)
,

T�

C

(
��

�

�r

)
(r, �, �) = �

��

�r

(
r, �

[
�

�

]
+ ��, �

)
,

T�

C

(
��

�

��

)
(r, �, �) = �

��

��

(
r, �

[
�

�

]
+ ��, �

)
+

��

��

(
r, �

[
�

�

]
+ ��, �

)
.

∫
C
�

[
�
�
�
�

�
�
�
�

][ �u
�

�r
�u

�

��

][
��

�

�r
���

��

]
+ u

�
� = ∫

C
�

f��,

∫
OC

([
� �

� �

] [
wr

w
�

] [
0
��

��

])
= ∫

OC

(
�wr + �w

�

)��
��

= 0.

w
�
= −

�

�

wr = −
�

�

�u0

�r
.
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which shows that u0 is independent of � in OC . That is, there exist u+ ∈ L2(O+) such that 
u0 = u+ in OC . Define u1 = u0 − u+ . Then we can write u0 as u0 = u+ + u1 with u+ ∈ L2(O+) 
and u1 vanishes on OC . Also, we can rewrite (10) as

Step 2 (Interface Condition):  In this step, we are going to prove that u+ = u− on Γ0 . By 
the continuity of trace operator and using properties of unfolding operator, we get

for any � ∈ C∞
c
(Γ0) . Hence, we have u+ = u− on Γ0 . Define

Since x ⋅ ∇u+ = r
�u+

�r
∈ L2(O+) and u− ∈ H1(O−) , the interface condition gives u ∈ V(O).

Now we are going to characterize u1 by cell problem (6) and then prove that u satisfies 
the limit problem.

Step 3 (Limit Problem): We now derive the limit equations using the results obtained 
in the previous steps. Let �

�
(r, �) = �(r, �) + �1

(
r, �,

�

�

)
 , where 𝜙 ∈ C1( ̄O) and 

�1 ∈ C∞(OU) with 1 periodic in � variable and �1 = 0 on OC . Now using �
�
 as a test func-

tion in (3), applying unfolding operator on both sides and letting � → 0 to get

From density arguments, (13) holds true for all � ∈ V(O) and �1 ∈ VU(O) . By averaging 
out, we see that (u, u1) ∈ V(O) × VU(O) satisfies the variational form

∫
OC

�u0

��

� = −∫
OC

u0
��

��

= − lim
�→0∫

OC

T�

C
(u

�
)
��

��

= − lim
�→0∫

OC

�

��

T�

C
(u

�
)�

= − lim
�→0∫

OC

�T�

C

(
�u

�

��

)
� = 0,

T�(u
�
) ⇀ u+ + u1 weakly in L2(OU),

T�

C

([
�u

�

�r
�u

�

��

])
⇀

[
1

−
�

�

]
�u+

�r
weakly in (L2(OC))

2,

�T�

I

([
�u

�

�r
�u

�

��

])
⇀

[
0

1

]
�u1

��

weakly in (L2(OI))
2,

u
�
⇀ u− weakly in H1(O−).

∫
ΓC

u+� = lim∫
ΓC

(
T�

C

(
u
�

))|||r=r1T
�

0
(�) = lim∫

ΓC

(
T�

0

(
u
�
|O+

))|||r=r1T
�

0
(�)

= lim∫
ΓC

(
T�

0

(
u
�
|−
O

))|||r=r1T
�

0
(�) = ∫

ΓC

u−�,

u = �O
+u+ + �

−
O
u−.

(13)

1

2� ∫
OC

(
1

�

(�� − ��)
�u

�r

��

�r
+ u�

)
rdrd�d�

+
1

2� ∫
OI

(
�

�u1

��

��1

��

+ (u + u1)(� + �1)

)
rdrd�d� + ∫

O
−

A∇u∇� + u� dx

=
1

2� ∫
OU

f (� + �1)rdrd�d� + ∫
O

−

f� dx.
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for all (�,�1) ∈ V(O) × VU(O) , where

From the ellipticity properties of A, (14) has a unique solution. Now to evaluate u1 in terms 
of u, put � = 0 in (14) to get,

Now using the cell problem as in (6) and by uniqueness, we may write

By replacing the expression for u1 from above equality, we can simplify (14) by putting 
�1 = 0 in (14), to get

On simplifying, we can write the limit problem as

with b0(r) = ∫
Y(r)

(1 − �)d� , where � is uniquely defined by the family of cell problems (6). 
Hence u is the solution of (8) and Theorem 1 is proved.

One of the central points of the current work is to homogenize (2) with L1 data. Now 
we need to prove the following corrector results which are very crucial to establish the 
homogenization with L1 data.

Theorem 2  (Corrector Results) Let u
�
, u, and � be as in Theorem 1. Define

(14)

∫
O

+

(
a0

�u

�r

��

�r
+

|YC(r)|
2�

u�

)
rdrd� + ∫

O
−

(A∇u∇� + u�)dx

+
1

2� ∫
OI

(
�

�u1

��

��1

��

+ (u + u1)(� + �1)

)
rdrd�d�

= ∫
O

+

|YC(r)|
2�

f�dx + ∫
O

−

f� rdrd� +
1

2� ∫
OI

f (� + �1)rdrd�d�,

a0(r, �) = ∫Y(r)

1

�

(�� − ��)d� = ∫Y(r)

⎛
⎜⎜⎜⎜⎝

det (A(r, �))

A(r, �)

�
− sin(�)

cos(�)

� �
− sin(�)

cos(�)

�
⎞
⎟⎟⎟⎟⎠
d�.

1

2� ∫
OI

�

�u1

��

��1

��

+ ∫
OI

(u + u1)�1 = ∫
OI

f�1.

u1(r, �, �) = (f (r, �) − u(r, �))�(r, �).

∫
O

+

a0
�u

�r

��

�r
+

|YC(r)|
2�

u� + ∫
O

−

A∇u∇� + u� +
1

2� ∫
OI

(u + (f − u)�)�

= ∫
O

+

|YC(r)|
2�

f� + ∫
O

−

f� +
1

2� ∫
OI

f�.

∫
O

+

a0
�u

�r

��

�r
+ b0u� + ∫

O
−

A∇u∇� + u� = ∫
O

+

b0f� + ∫
O

−

f�, for all � ∈ V(O).
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Then, we have the following strong convergences.

Proof  Let us define,

By expanding and rearranging, we get

where

On applying unfolding operator and passing to the limit as � → 0 , we get

�
�
∶ O

+

�
→ ℝ by �

�
(r, �) = �

(
r,
{

�

�

})
and

�
�
�
∶ O

+

�
→ ℝ by �

�
�
(r, �) =

��

��

(
r,
{

�

�

})
.

‖u
�
− u‖H1(O−) ⟶ 0,

���u� −
�
u + �I

�

(f − u)�
�

����L2(O
�
)
⟶ 0,

������

�
�u

�

�r
�u

�

��

�
−

�
1

−
�
�

�
�

�
�u

�r

������L2(C
�
)2

+

������
�

�
�u

�

�r
�u

�

��

�
−

�
0

(f − u)��
�

�������L2(I
�
)2

⟶ 0.

J� =∫
C
�

[
�
�
�
�

�
�
�
�

][ �u
�

�r
−

�u

�r
�u

��

+
�
�

�
�

�u

�r

][
�u

�

�r
−

�u

�r
�u

��

+
�
�

�
�

�u

�r

]
+ (u

�
− u)2

+ ∫
I
�

[
�
�
�
�

�
�
�
�

][
�
�u

�

�r

�
�u

��

− (f − u)��
�

][
�
�u

�

�r

�
�u

��

− (f − u)��
�

]
+
(
u
�
− u − (f − u)�

�

)2

+ ∫
O

−

A(∇u
�
− ∇u)(∇u

�
− ∇u) + (u

�
− u)2.

J� = J�
1
+ J�

2
+ J�

3
+ J�

4
,

J�
1
=∫

O
�

(
�
2
�I

�

+ �C
�

+ �O
−

)
A�∇u

�
∇u

�
+ (u�)2,

J�
2
= − ∫

C
�

[
�
�
�
�

�
�
�
�

][ �u
�

�r
�u

�

��

][
1
−��

�
�

]
�u

�r
− ∫

C
�

[
�
�
�
�

�
�
�
�

][
1
−��

�
�

][
�u

�

�r
�u

�

��

]
�u

�r

+ ∫
C
�

[
�
�
�
�

�
�
�
�

][
1
�
�

�
�

][
1
�
�

�
�

](
�u

�r

)2

+ ∫
C
�

(−2u
�
u + u2),

J�
3
= − ∫

I
�

[
�
�
�
�

�
�
�
�

][
�
�u

�

�r

�
�u

�

��

][
0

(f − u)��
�

]
− ∫

I
�

[
�
�
�
�

�
�
�
�

] [
0

(f − u)��
�

][
�
�u

�

�r

�
�u

�

��

]

+ ∫
I
�

[
�
�
�
�

�
�
�
�

] [
0

(f − u)��
�

] [
0

(f − u)��
�

]

+ ∫
I
�

−2u
�

(
u + (f − u)�

�

)
+
(
u + (f − u)�

�

)2
,

J�
4
=∫

O
−

−A∇u
�
∇u − A∇u∇u

�
+ A∇u∇u − 2u

�
u + u2.
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Similarly since T�

I
((f − u)�

�
) → (f − u)� = u1 and T�

I
((f − u)��

�
) → (f − u)

��

��

=
�u1

��

 as 
� → 0 , by using unfolding operator, we can arrive at

Also, we have

Using (3) and (14) we get

This implies that

Now coercivity of the matrix A completes the proof of the Theorem 2.

We are now in a position to study homogenization with L1 data.

4 � Homogenization with L1 data

Now we will consider the variational form with L1 data. Let A and A� be defined as in 
Sect. 3. Consider the following � dependent problem:

Here, f ∈ L1(O) is a given function, �� is the outward unit normal vector on �O
�
 . As it is 

well known, we remark that the solution is not defined in the usual weak formulation but 

lim
�→0

J�
2
= −

1

2� ∫
OC

([
� �

� �

][
1
−�

�

][
1
−�

�

](
�u

�r

)2

+ u2

)
.

lim
�→0

J�
3
= −

1

2� ∫
OI

([
� �

� �

] [
0
�u1

��

] [
0
�u1

��

]
+ (u + u1)

2

)
.

lim
�→0

J�
4
= −∫

O
−

(
A∇u∇u + u2

)
.

lim
�→0

J�
1
= lim

�→0∫
O

�

(
�
2
�I

�

+ �C
�

+ �O
−

)
A�∇u

�
∇u

�
+ (u�)2 = lim

�→0∫
O

�

fu
�

=
1

2� ∫
OC

fu + ∫
OI

f (u + u1) + ∫
O

−

fu

=
1

2� ∫
OC

1

�

(�� − ��)

(
�u

�r

)2

+ u2 +
1

2� ∫
OI

�

(
�u1

��

)2

+ (u + u1)
2

+ ∫
O

−

A∇u∇u + u2
(
by taking � = u and �1 = u1 in (14)

)

= −

(
lim
�→0

J�
2
+ lim

�→0
J�
3
+ lim

�→0
J�
4

)
.

lim
�→0

J� = 0.

(15)

{
−div

((
�
2
�I

�

+ �C
�

+ �O
−

)
A�∇u

�

)
+ u

�
= f in O

�
,

A�∇u
�
⋅ �

� = 0 on �O
�
.
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using the concept of renormalized solution. Recall the auxiliary function Tk defined as in 
Sect. 2.4. A function u

�
 is called a renormalized solution of (15) if

Here PC1
c
(ℝ) denotes the set of all Lipschitz continuous functions which are piece-wise 

differentiable on ℝ with compact support. In polar form, we can write (16) as

We want to study the asymptotic behavior of u
�
 as � → 0 . We prove that the limit prob-

lem nothing but (5) with f ∈ L1(O) . The corresponding formulation in polar coordinates 
is given below:

Limit problem: Given f ∈ L1(O) , consider the problem:

where a0 and b0 as in (5).
We recall the properties of renormalized solutions without proof. The proofs are 

available in [17]. 

	 (I)	 (Existence and uniqueness) There exist unique renormalized solutions for (16) 
and (17).

	 (II)	 (Energy equality) Following energy equalities hold for (16) and (17) respectively: 

(16)

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

u
𝜀
∈ L1(O

𝜀
) such that Tk(u𝜀) ∈ H1(O

𝜀
), for all k > 0,

1

k
��Tk(u𝜀)��2H1(O

𝜀
)
→ 0 as k → ∞,

∫
O

𝜀

�
𝜀
2
𝜒I

𝜀

+ 𝜒C
𝜀

+ 𝜒O
−

�
A𝜀∇Tk(u𝜀)∇(𝜓g(u

𝜀
)) + u

𝜀
𝜓g(u

𝜀
) = ∫

O
𝜀

f𝜓g(u
𝜀
),

for all k > 0,𝜓 ∈ H1(O
𝜀
) ∩ L∞(O

𝜀
), g ∈ PC1

c
(ℝ) with supp (g) ⊂ [−k, k].

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

find u
𝜀
∈ L1(O

𝜀
) such that Tk(u𝜀) ∈ H1(O

𝜀
), for all k > 0,

1

k
��Tk(u)��2H1(O

𝜀
)
→ 0 as k → ∞,

∫
O

𝜀

�
𝜀
2
𝜒I

𝜀

+ 𝜒C
𝜀

� �𝛼𝜀
𝛾
𝜀

𝛽
𝜀
𝜂
𝜀

��
𝜕

𝜕r
Tk(u𝜀)

𝜕

𝜕𝜃

Tk(u𝜀)

��
𝜕

𝜕r
(𝜓g(u

𝜀
))

𝜕

𝜕𝜃

(𝜓g(u
𝜀
))

�
+ Tk(u𝜀)𝜓g(u

𝜀
)

+∫
O

−

A∇Tk(u𝜀)∇(𝜓g(u
𝜀
)) + Tk(u𝜀)𝜓g(u

𝜀
) = ∫

O
𝜀

f𝜓g(u
𝜀
),

for all k > 0,𝜓 ∈ H1(O
𝜀
) ∩ L∞(O

𝜀
), g ∈ PC1

c
(ℝ) with supp (g) ⊂ [−k, k].

(17)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

find u ∈ L1(O) such that Tk(u) ∈ V(O) for all k > 0,

1

k
��Tk(u)��2V(O)

→ 0 as k → ∞,

∫
O

+

a0
𝜕

𝜕r
Tk(u)

𝜕(𝜓g(u))

𝜕r
+ b0Tk(u)𝜓g(u) + ∫

O
−

A(∇Tk(u)∇(𝜓g(u)) + Tk(u)𝜓g(u)

= ∫
O

+

b0f𝜓g(u) + ∫
O

−

f𝜓g(u),

for all k > 0,𝜓 ∈ V(O) ∩ L∞(O), g ∈ PC1
c
(ℝ) with supp (g) ⊂ [−k, k].
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	 (III)	 (Lipschitz Property) Let f1, f2 ∈ L1(O) and u1, u2 be renormalized solutions of 
(17) with f = f1 and f = f2 respectively. Then 

 Analogous result holds for (16) also.
Now we are going to prove an equivalent form of renormalized solution defined above.

Lemma 1  The renormalized formulation (16) is equivalent to the following formulation:

That is, u
�
 is a solution of (16) if and only if it is a solution of (18).

Proof  Let u
�
 be a solution of (18). Clearly for � and g as in (16), vg(u

�
) will satisfy the con-

ditions for w in (18). Hence u
�
 is a solution of (16).

Conversely, suppose that u
�
 is a solution of (16). Let w be a test function as in (18). 

Choose � = w and g = gp for 2p > k (defined in Sect. 2.4) in (16). Then it follows that

Since ∇w = 0 when |u
𝜀
| > k , we have ∇T2p(u�) = ∇Tk(u�) . Then using the Lebesgue domi-

nated convergence theorem, we have

and

∫
O

�

(
�
2
�I

�

+ �C
�

)
A�∇Tk(u�)∇Tk(u�) + u

�
Tk(u�) = ∫

O
�

fTk(u�),

∫
O

+

a0

(
�

�r
Tk(u)

)2

+ b0uTk(u) + ∫
O

−

A∇Tk(u)∇Tk(u) + uTk(u)

= ∫
O

+

b0fTk(u) + ∫
O

−

fTk(u).

‖u1 − u2‖L1(O) ≤ ‖f1 − f2‖L1(O).

(18)

⎧⎪⎪⎪⎨⎪⎪⎪⎩

find u
𝜀
∈ L1(O

𝜀
) such that Tk(u𝜀) ∈ H1(O

𝜀
), for all k > 0,

1

k
��Tk(u)��2H1(O

𝜀
)
→ 0 as k → ∞,

∫
O

𝜀

�
𝜀
2
𝜒I

𝜀

+ 𝜒C
𝜀

+ 𝜒O
−

�
A𝜀∇Tk(u𝜀)∇w + u

𝜀
w = ∫

O
𝜀

fw,

for all k > 0,w ∈ H1(O
𝜀
) ∩ L∞(O

𝜀
) such that ∇w = 0 when �u

𝜀
� > k.

∫
O

�

(
�
2
�I

�

+ �C
�

+ �O
−

)
A�∇T2p(u�)∇wgp(u�)+

∫
O

�

(
�
2
�I

�

+ �C
�

+ �O
−

)
A�∇T2p(u�)∇T2p(u�)wg

�
p
(u

�
) + u

�
wgp(u�) = ∫

O
�

fwgp(u�).

lim
p→∞∫

O
�

(
�
2
�I

�

+ �C
�

+ �O
−

)
A�∇T2p(u�)∇wgp(u�) + u

�
wgp(u�)

= ∫
O

�

(
�
2
�I

�

+ �C
�

+ �O
−

)
A�∇Tk(u�)∇w + u

�
w

lim
p→∞∫

O
�

fwgp(u�) = ∫
O

�

fw.
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Now from the third equality in (16), we have

Since this is true for all k > 0 , we see that u
�
 satisfies (18).

Now, we require a lemma which gives the boundedness of � given by the family of 
cell problems (6).

Lemma 2  Let the function � = �(r, �) be given by the family of the cell problems (6). Then 
there exists a constant C independent r, � such that,

Proof  By choosing �(r, ⋅) as test function in (6), and using the Young’s inequality in the 
right hand side, we deduce,

Then the coercivity of A ensures that 𝜂 > 𝛿 for some 𝛿 > 0 . Hence, there exists a constant 
C independent of r such that

Now, for each r ∈ (r0, r1), 𝜉(r, ⋅) ∈ Vr ⊂ H1(Y(r)) . Note that Y(r) is an open bounded sub-
set of ℝ . Hence �(r, ⋅) is absolutely continuous and there exist a constant K independent of 
r such that

Since C and K are independent of r, lemma is proved.

Theorem 3  (Corrector Results) Let u
�
, u be the unique renormalized solutions of (16) and 

(17), and �
�
 be as in Theorem 2 

(
�
�
(r, �) = �

(
r,
{

�

�

}))
 . Then as � → 0 , we have

Proof  Let f n be a sequence in L2(O) such that f n → f  in L1(O) . Let un
�
, un be the renormal-

ized solutions of (16) and (17) with source term f n . Then

������O
�

�
�
2
�I

�

+ �C
�

+ �O
−

�
A�∇T2p(u�)∇T2p(u�)wg

�
p
(u

�
)
�����

≤ ‖w‖L∞(O
�
)

1

p �
O

�

�∇T2p(u�)�2 → 0 as p → ∞.

|�(r, �)| ⩽ C for all r ∈ (r1, r2), � ∈ Y(r).

�Y(r)

�

(
��(r, �)

��

)2

+ (�(r, �))2 d� = �Y(r)

�(r, �) d� ≤ 1

2 �Y(r)

(�(r, �))2 d� +
1

2 �Y(r)

1 d�.

‖�(r, ⋅)‖H1(Y(r)) ≤ C�Y(r)� ≤ 2�C.

‖�(r, ⋅)‖L∞(Y(r)) ≤ K‖�(r, ⋅)‖H1(Y(r)) ≤ 2�KC.

‖‖‖u� −
(
u + �I

�

(f − u)�
�

)‖‖‖L1(O
�
)
⟶ 0.

(19)

‖‖‖u� −
(
u + �I

�

(f − u)�
�

)‖‖‖L1(O
�
)
≤

‖‖u� − un
�

‖‖L1(O
�
)
+
‖‖‖u

n
�
−
(
un + �I

�

(f n − un)�
�

)‖‖‖L1(O
�
)

+
‖‖‖
(
un + �I

�

(f n − un)�
�

)
−
(
u + �I

�

(f − u)�
�

)‖‖‖L1(O
�
)
.
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Now we can investigate each term on the right hand side of the above expression. From the 
Lipschitz Property of renormalized solutions (see [17]), we have

From Theorem 2 with f = f n , we have

Then again using Lipschitz property of renormalized solutions, we get

By using Lemma 2, we have

So all terms on the right hand side of (19 converge to 0 and hence we have Theorem 3.

Since Tk(u�) ∈ H1(O
�
) and Tk(u) ∈ V(O) for all k > 0 , the study of truncation func-

tions will be more interesting. The following theorem gives the convergence results of 
truncation function and their derivatives.

Theorem 4  Let u
�
, u be the unique renormalized solutions of (16) and (17), and � be given 

by the family of cell problems (6). Then as � → 0 , we have the following weak conver-
gences in L2(O+):

Also, we have the following weak convergence in H1(O−) , namely

Proof  From Theorem 3, directly follows that

On applying unfolding, we get

��u� − un
�

��L1(O
�
)
≤ ‖f n − f‖L1(O

�
) ⟶ 0 as n → ∞.

‖‖‖u
n
�
−
(
un + �I

�

(f n − un)�
�

)‖‖‖L2(O
�
)
⟶ 0 as � → 0.

���
�
un + �I

�

(f n − un)�
�

�
−
�
u + �I

�

(f − u)�
�

����L1(O
�
)

≤ ‖un − u‖L1(O
�
) +

��(f n − un − f + u)�
�

��L1(I
�
)

≤ ‖f n − f‖L1(O
�
) +

��(f n − un − f + u))�
�

��L1(I
�
)
.

‖f n − f‖L1(O
�
) +

��(f n − un − f + u))�
�

��L1(I
�
)
⟶ 0 as n → ∞.

(20)

�O
�

Tk(u�) ⇀
1

2� ∫Y(r)

Tk(u + (f − u)�)d�, �C
�

�

�r
Tk(u�) ⇀

�YC(r)�
2�

�

�r
Tk(u),

�C
�

�

��

Tk(u�) ⇀ −
1

2�

�

�r
Tk(u)∫YC(r)

�

�

d�,

��I
�

�

��

Tk(u�) ⇀
1

2� ∫YI(r)

�

��

Tk(u + (f − u)�)d� and ��I
�

�u
�

�r
⇀ 0.

⎫⎪⎪⎪⎬⎪⎪⎪⎭

(21)Tk(u�) ⇀ Tk(u) weakly in H1(O−).

‖‖‖Tk(u�) − Tk
(
u + �I

�

(f − u)�
�

)‖‖‖L2(O
�
)
⟶ 0.

T�u
�
− T�(u + �I

�

(f − u)�
�
) ⟶ 0 strongly in L1(OU) as � → 0.
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On the other hand

Define u1 = (f − u)� , which is a measurable function vanish on OC . Hence, we have

Since 
(
Tk(u�)

)2 ≤ u
�
Tk(u�) and A is coercive, from energy equality of (16), we can deduce 

that

Now from the properties of unfolding operators and weak compactness of Hilbert spaces, 
we have the following convergences:

for some w,wr,w�
, z, zr and z

�
 , which we need to identify. Since T�(Tk(u�)) = Tk(T

�(u
�
)) , 

using the Lipschitz property of truncation function Tk , we have

Then from (22), we have

Hence we have w = Tk(u) and z = Tk(u + u1) . Now to identify wr, zr and z
�
 , take 

� ∈ C∞
c
(OC) and � ∈ C∞

c
(OI) . Then

T�(u + �I
�

(f − u)�
�
) ⟶ u + �OI

(f − u)� strongly in L1(OU) as � → 0.

(22)T�u
�
⟶ u + �OI

u1 = u + u1 strongly in L1(OU) as � → 0.

����C
�

∇Tk(u�)
���L2(O

�
)
+ �

����I
�

∇Tk(u�)
���L2(O

�
)
+ ‖∇Tk(u�)‖L2(O−) + ‖Tk(u�)‖L2(O

�
) ⩽ ‖f‖L1(O).

T�

C

⎛⎜⎜⎝

⎡⎢⎢⎣

Tk(u�)
�

�r
Tk(u�)

�

��

Tk(u�)

⎤⎥⎥⎦

⎞⎟⎟⎠
⇀

⎡⎢⎢⎣

w

wr

w
�

⎤⎥⎥⎦
weakly in (L2(OC))

3,

T�

I

⎛⎜⎜⎝

⎡⎢⎢⎣

Tk(u�)

�
�

�r
Tk(u�)

�
�

��

Tk(u�)

⎤⎥⎥⎦

⎞⎟⎟⎠
⇀

⎡⎢⎢⎣

z

zr
z
�

⎤⎥⎥⎦
weakly in (L2(OI))

3,

�
OU

|T�(Tk(u�)) − Tk(u + u1)|2 ≤ �
OU

|Tk(T�(u
�
)) − Tk(u + u1)|2

≤ �
OU

2k|T�(u
�
) − (u + u1)|.

T�(Tk(u�)) ⟶ Tk(u + u1) strongly in L2(OU).
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Since � and � are arbitrary we have wr =
�

�r
Tk(u) , zr = 0 and z

�
=

�

��

Tk(u + u1).

Now the remaining one is w
�
 . Consider �� as in (11) and gk

�
 as in Sect. 2.4. Take � = �

� 
and g = gk

�
 in (16) to get

Now since gk
�
(u

�
) → �{|u

�
|≤k} a.e as � → 0 , by Lebesgue dominated convergence theorem, 

as � → 0 , we obtain:

Therefore, we have

The last two terms terms in (23) will converge to 0 as � → 0 from the definition of �� . 
Now, we look into the first two terms. To handle the first term in (23), let � = 1 and g = ĝk

𝛿
 

∫
OC

wr� = lim
�→0∫

OC

T�

C

(
�

�r
Tk(u�)

)
� = lim

�→0∫
OC

�

�r
T�

C

(
Tk(u�)

)
�

= − lim
�→0∫

OC

T�

C
(Tk(u�))

��

�r
= −∫

OC

Tk(u)
��

�r
= ∫

OC

�

�r
Tk(u)�,

∫
OI

zr� = lim
�→0∫

OI

�T�

(
�

�r
Tk(u�)

)
� = lim

�→0∫
OI

�

�

�r

(
T�Tk(u�)

)
�

= − lim
�→0∫

OI

�T�Tk(u�)

(
��

�r

)
= 0,

∫
OI

z
�
� = lim

�→0∫
OI

�T�

(
�

��

Tk(u�)
)
� = lim

�→0∫
OI

�

��

T�Tk
(
u
�

)
�

= − lim
�→0∫

OI

T�Tk(u�)

(
��

��

)
= −∫

OI

Tk(u + u1)
��

��

= ∫
OI

�

��

Tk(u + u1)� .

∫
O

�

(
�
2
�I

�

+ �C
�

+ �O
−

)
A�∇Tk+1(u�)∇Tk+1(u�)�

�(gk
�
)�(u

�
)

+ ∫
O

�

(
�
2
�I

�

+ �C
�

+ �O
−

)
A�∇Tk+1(u�)∇�

�gk
�
(u

�
) + ∫

O
�

u
�
�
�gk

�
(u

�
) = ∫

O
�

f��gk
�
(u

�
).

�
O

�

(
�
2
�I

�

+ �C
�

+ �O
−

)
A�∇Tk+1(u�)∇�

�gk
�
(u

�
)

⟶ �
O

�

(
�
2
�I

�

+ �C
�

+ �O
−

)
A�∇Tk+1(u�)∇�

�

�{|u
�
|≤k}

= �
O

�

(
�
2
�I

�

+ �C
�

+ �O
−

)
A�∇Tk(u�)∇�

�,

�
O

�

u
�
�
�gk

�
(u

�
) ⟶ �

O
�

u
�
�
�

�{|u
�
|≤k} and �

O
�

f��gk
�
(u

�
) ⟶ �

O
�

f��

�{|u
�
|≤k}.

(23)

lim sup
�→0 �

O
�

(
�
2
�I

�

+ �C
�

+ �O
−

)
A�∇Tk+1(u�)∇Tk+1(u�)�

�(gk
�
)�(u

�
)

+ �
O

�

(
�
2
�I

�

+ �C
�

+ �O
−

)
A�∇Tk(u�)∇�

� + �
O

�

u
�
�
�

�{|u
�
|≤k} = �

O
�

f��

�{|u
�
|≤k}.
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(as defined in Sect. 2.4) in (16). Here g is not compactly supported, but still we can use it 
as a test function in (16) due to Lemma 1. Thus

Since (ĝk
𝛿
)� =

1

𝛿

𝜒{k≤|u
𝜀
|≤k+𝛿} and u

𝜀
ĝk
𝛿
(u

𝜀
) ≥ 0 , we have

Therefore, we have

which implies

Hence from (23), we get

Since �� vanishes outside C
�
 , we have

Apply unfolding operator and pass to the limit as � → 0 using (12) to get

Since � is arbitrary,

Therefore we have

∫
O

𝜀

(
𝜀
2
𝜒I

𝜀

+ 𝜒C
𝜀

+ 𝜒O
−

)
A𝜀∇Tk+1(u𝜀)∇Tk+1(u𝜀)(ĝ

k
𝛿
)�(u

𝜀
) + ∫

O
𝜀

u
𝜀
ĝk
𝛿
(u

𝜀
) = ∫

O
𝜀

f ĝk
𝛿
(u

𝜀
).

1

� �
O

�

A�∇Tk+1(u�)∇Tk+1(u�)�{k≤�u
�
�≤k+�} ≤ ‖f‖L1(O).

lim sup
�→0

������O
�

�
�
2
�I

�

+ �C
�

+ �O
−

�
A�∇Tk+1(u�)∇Tk+1(u�)�

�(gk
�
)�(u

�
)
�����

≤ � lim sup
�→0

1

� �
O

�

�
�
2
�I

�

+ �C
�

+ �O
−

�
A�∇Tk+1(u�)∇Tk+1(u�)�{k≤�u

�
�≤k+�}

≤ �‖f‖L1(O),

lim
�→0

(
lim sup

�→0 ∫
O

�

(
�
2
�I

�

+ �C
�

+ �O
−

)
A�∇Tk+1(u�)∇Tk+1(u�)�

�(gk
�
)�(u

�
)

)
= 0.

lim
�→0∫

O
�

(
�
2
�I

�

+ �C
�

+ �O
−

)
A�∇Tk(u�)∇�

� = 0.

lim
�→0∫

C
�

A�∇Tk(u�)∇�
� = ∫

C
�

[
�
�
�
�

�
�
�
�

][
�

�r
Tk(u�)

�

��

Tk(u�)

][
�

�r
�
�

�

��

�
�

]
= 0.

0 = ∫
C
�

[
�
�
�
�

�
�
�
�

][
�

�r
Tk(u�)

�

��

Tk(u�)

][
�

�r
�
�

�

��

�
�

]
=

1

2� ∫
OC

[
� �

� �

] [
wr

w
�

] [
0
��

��

]

=
1

2� ∫
OC

(
�wr + �w

�

)��
��

.

w
�
= −

�

�

wr = −
�

�

�

�r
Tk(u).
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Then from property (6) of unfolding operator we have (20).
Since {Tk(u�)} is bounded in H1(O−) , by weak compactness there exist some 

v ∈ H1(O−) such that

But from Theorem 3, using the Lipschitz property of truncation function Tk we get

which gives v = Tk(u) . Thus we have (21) and hence Theorem 4.
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