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The network coding network for this talk .....
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• What is capacity?

• How robustly can we communicate?

• Do we know the network?

• How do we achieve capacity?

• ??????
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Problem Description
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A network

Vertices: V
Edges: E ⊆ V × V , e = (v, u) ∈ E
Edge capacity: C(e)(= 1)
Network: G = (V, E)
Source nodes: {v1, v2, . . . , vN} ⊆ V
Sink nodes: {u1, u2, . . . , uK} ⊆ V
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µ (rate one) input random processes at v:
X (v) = {X(v,1), X(v,2), . . . , X(v, µ(v)}

ν Output random processes at u:
Z (u) = {Z(u,1), Z(u,2), . . . , Z(u, ν(u))}

Random processes on edges: Y (e)

A connection:
c = (v, u, X (v, u)), X (v, u) ⊆ X (v)

A connection is established if Z (u) ⊃ X (v, u)

Set of connections: C

The pair (G, C ) defines a network coding problem .
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Is the problem (G, C ) solvable?

How do we find a solution?

This is fairly idealized (synchronization, protocol, dynamic

behaviour, error free,...) but gives insights into possible limits and

opportunities.
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//////The An Example

x y

Receiver 2 Receiver 1

Sender 1 Sender 2

[1] Ahlswede, N. Cai, S.-Y. R. Li, and R. W. Yeung, “Network
Information Flow”, IEEE-IT, vol. 46, pp. 1204-1216, 2000

[2] S.-Y. R. Li, R. W. Yeung, and N. Cai “Linear Network Coding”,
preprint, 2000
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//////The An Example
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yx−y

x−y

x=(x−y)+y

x−y

y=x−(x−y)

Receiver 2 Receiver 1

Sender 1 Sender 2

[1] Ahlswede, N. Cai, S.-Y. R. Li, and R. W. Yeung, “Network
Information Flow”, IEEE-IT, vol. 46, pp. 1204-1216, 2000

[2] S.-Y. R. Li, R. W. Yeung, and N. Cai “Linear Network Coding”,
preprint, 2000
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Towards an “algebraic” characterization?

⇒
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A network

⇒ A(I − F )−1BT = I
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All operations at network nodes are assumed linear∗!

e e
X(v,i)

Y(e )Y(e )
21

e3 Y(e )3

21 e e
Y(e )Y(e )

n1

e3 3

n1

Z(e )

Y (e3) =
∑

i

αiX(v, i) +
∑

j=1,2

βjY (ej)

Z(v, j) =
n∑

j=1

εjY (ej).

∗F2m is the finite field with m elements: we can add, subtract, divide and multiply

elements in F2m without going crazy!

10



A simple example

e

e

e

e

e

X
Z

X Z

1

2

1

2

3

4

5

1

2

Y (e1) = α1,e1X1 + α2,e1X2

Y (e2) = α1,e2X1 + α2,e2X2

Y (e3) = βe1,e3Y (e1)

Y (e4) = βe1,e4Y (e1)

Y (e5) = βe2,e5Y (e2) + βe3,e5Y (e3)

Z1 = εe4,1Y (e4) + εe5,1Y (e5)

Z2 = εe4,2Y (e4) + εe5,2Y (e5)
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In matrix form (after solving the linear system)
(

Z1

Z2

)

=

(

εe4,1 εe5,1

εe4,2 εe5,2

)

︸ ︷︷ ︸
B

(

βe1,e4
0

βe1,e3
βe3,e5

βe2,e5

)

︸ ︷︷ ︸
G

(

α1,e1
α1,e2

α2,e1
α2,e2

)

︸ ︷︷ ︸
A

(

X1

X2

)

We define three matrices A, G, B

The main question becomes: Is G invertible?

We collect all parameters as: ξ = (ξ1, ξ2, . . . , ) = (. . . , αe,l, . . . , βe′,e, . . . , εe′,j, . . .)

12



A linear system

X(v,1)

X(w,1)

X(w,2)

X(v’,1)

Z(u,1)

Z(u,2)

Z(u,3)

Z(u’,1)

A linear network

Input vector: xT = (X(v,1), X(v,2), . . . , X(v′, µ(v′)))

Output vector: zT = (Z(u,1), Z(u,2), . . . , Z(u′, ν(u′)))

Transfer matrix: M , z = Mx = B · G · A x
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z = Mx = B · GT · A x

where the entries in B, G, A are functions of the weights . . . , αe,l, . . . , βe′,e, . . . , εe′,j, . . .

ξ = (ξ1, ξ2, . . . , ) = (. . . , αe,l, . . . , βe′,e, . . . , εe′,j, . . .)

For acyclic networks the elements of G (and hence M )

are polynomial functions in variables ξ = (ξ1, ξ2, . . . , )

⇒ an algebraic characterization of flows....
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An algebraic Min-Cut Max-Flow condition

Let network be given with a source v and a sink v′ . The following
three statements are equivalent:

1. A point-to-point connection c = (v, v′, X (v, v′)) is possible.

2. The Min-Cut Max-Flow bound is satisfied for a rate R(c) =

|X (v, v′)|.

3. The determinant of the R(c)×R(c) transfer matrix M is nonzero
over the ring of polynomials F[ξ]

3. ⇒ We have to study the solution sets of polynomial equations.
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Multicast:
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System Transfer matrix 

C = {(v, u1, X (v)), (v, u2, X (v)), . . . , (v, uK, X (v))}

M is a |X (v)| × K|X (v)| matrix.

mi(ξ) = det(Mi(ξ))

Choose the coefficients in F̄ so that all mi(ξ) are unequal to zero.

Find a solution of
∏

i mi(ξ) 6= 0
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An innocent looking Lemma

Let F[X1, X2, . . . , Xn] be the ring of polynomials over an infinite

field F in variables X1, X2, . . . , Xn . For any non-zero element

f ∈ F[X1, X2, . . . , Xn] there exists an infinite set of n-tuples

(x1, x2, . . . , xn) ∈ F
n such that f(x1, x2, . . . , xn) 6= 0 .

(x6 − x4 − x2 + x) does not have have a non-solution in F2, F3, F4

but in F5 we have 26 − 24 − 22 + 2 = 46 ≡ 1(mod 5).
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An innocent looking Lemma
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The main Multicast Theorem:

Theorem Let (G, C ) be a multicast network coding problem. There

exists a linear network coding solution for (G, C ) over a finite field

F2m for some large enough m if and only if there exists a flow of

sufficient capacity between the source and each sink individually.
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Random Network Coding

For large fields (q ∼ 220) randomly finding a solution to the polyno-

mial equations is very unlikely.

A random assignment will work with high probability.

Each node chooses coefficients at random.

The compound effect of the choice can be tracked by measuring the

MIMO impulse response with pilot tones (as part of the packet of

separately ⇒ noncoherent communication)
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One reason the non-multicast case is difficult - linear network coding

X(v,1)

X(w,1)

X(w,2)

X(v’,1)

Z(u,1)

Z(u,2)

Z(u,3)

Z(u’,1)

A linear network

Input vector: xT = (X(v,1), X(v,2), . . . , X(v′, µ(v′)))

Output vector: zT = (Z(u,1), Z(u,2), . . . , Z(u′, ν(u′)))

Transfer matrix: M , z = Mx
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The non-multicast problem (G, C )

K sinks
general directed

network

N sources

i

j

M =









M1,1 M1,2 . . . M1,K
M2,1 M2,2 M2,K

... Mi,j
...

MN,1 MN,2 . . . MN,K









Mi,j : transfer matrix between source i and sink j.

Some Mi,j have to be non-singular — Some Mi,j have to be zero!
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So why is the general case so much harder?

For the general case we need to find solutions, i.e. zeros of some

system of polynomial equations!

For the multicast case we need to find non solutions to some system

of polynomial equations!

Another way to phrase this is: In a multicast setup everybody wants

everything so the issue of interference is moot (there is no problem

at all to distribute random processes of entropy rate corresponding

to the demands)!

For the general case we may have carefully balanced solutions where

some unwanted information cancels out in clever ways.....
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The good news

There exists an algorithm (based on Grobner bases) to solve the

general linear, scalar network coding problem!

(complexity critically dependent on maximal field size)
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The bad news

From: A. Rasala-Lehman and E. Lehman, ”Vector-Linear Network

Codes: Is the Model Broken”, preprint, March 2004

By combining networks requiring vector length that are multiples of

primes the following bound is derived:

Theorem There exist directed networks with O(n) nodes such that a

solution to the network coding problem requires at least an alphabet

size of 2(e

√
n1/3

)
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Worse news

A,B

A,A’ B,B’

A,B’ A’,B A’,B’

B,B’,B’,B’’’

A,B’ A’,B’

A,A’,A’’,A’’’

A’’’,B’’’A’’,B’’
A,B

A’’,B’’’
A’,B

A’’’,B’’
A,B

A,A’ B,B’

A,B’ A’,B A’,B’ A,B

A,A’ B,B’

A,B’ A’,B A’,B’

a) b) c)  d)  

In the general problem a time sharing combination of several solutions which
themselves violate the constraints may be necessary. (This cannot happen in the
multicast case!)

Doubling the bandwidth more than doubles capacity! Tripling the bandwidth does

not work! Not all network coding problems can be solved as convex combinations

of scalar ones.
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Really bad news... or maybe....

R. Dougherty, C. Freiling, and K. Zeger, ”Insufficiency of Linear Cod-
ing in Network Information Flow”, preprint, 2004

This network is not solvable over any Galois field, including vector
versions thereof

(still the network has a linear feel to it....)
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Excellent news...

R. Dougherty, C. Freiling, and K. Zeger, ”Insufficiency of Linear Cod-
ing in Network Information Flow”, preprint, February 2004

So far we only have a collection of (very clever) countre examples
— let's focus on practical constructions
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Constructing non-optimal but good and generic solutions:

K sinks
general directed

network

N sources

i

j

Scalability

Incremental/decremental solutions

Self-organizing,
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Phasing in a new user

i

j

A new user and demand from i to j can only be accomodated if we

can re-use a link in the network.

The dashed links provide the remedy we need to re-use a link.
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A classification of network coding solutions

Class 1: “Routing” - each Ye is a function of at most on Xi

Class 2: Ye is either 0, Xi or Xi ⊕ Xj - “butterfly” class

...
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Packing butterflies

a

a+b

a+b
a+b

ba

b

a,b

a,b

b

ba

a

a,b

S2

R1R1

S1 S2

R1R1

S1

Generalizing the flow decomposition of butterfly networks we can
formulate a linear program to solve Class II network coding prob-
lems!
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Finding solutions in Class 2 - a flow formulation
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R1R1

S1
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Finding solutions in Class 2 - a flow formulation
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Finding solutions in Class 2 - a flow formulation
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S2

R1R1

S1
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Finding solutions in Class 2 - a flow formulation

a

a+b

a+b
a+b

ba

b

"poisened flows" (red poisened by blue
and blue poisened by red)

"antidote flows" 

S2

R1R1

S1
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Finding solutions in Class 2 - a flow formulation

S2

R1

S1

R1

r(
1
→

2)

r(
2
→

1)
−

p(1
→

2) −p(2
→
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→
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−
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−
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1
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Finding solutions in Class 2 - a flow formulation

R1

p(1
→

2)

q(1
→

2)

S1

r(
1
→

2)

p
(1
→

2
)

S2

R1

r(
2
→

1)

p(2
→

1)

q(
1→

2)

p
(2
→

1
)
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Observations

• x(1) is a flow from S1 to D1.

• x(2) is a flow from S2 to D2.

• p() + q(·) + r(·) forms a loop.
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• p(1 → 2) is a `virtual' flow with a `host' x(2).

• q(1 → 2) is a `virtual' flow with a `host' x(1).

• r(1 → 2) is a flow that consumes resources and does not need

a host.

• p(·), q(·), and r(·) are uninterrupted paths.



Generalizing the idea

• pe(m → n, u) for every edge e. u keeps track of the `origin' of

the poison.

• Similarly qe(m → n, u) and re(m → n, u).

• We will search for butterfly structures.
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Searching for Butterfly structures

Allow loops made of p(m → n, u), q(m → n, u), and r(m → n, u).

For all nodes v, u, and for all flows m and n.
∑

e:head(e)=v

pe(m → n, u) + qe(m → n, u) + re(m → n, u)

=
∑

e:tail(e)=v

pe(m → n, u) + qe(m → n, u) + re(m → n, u)
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Searching for Butterfly structures

Ensure that each of p(m → n, u), q(m → n, u), and r(m → n, u) is

an unbroken path. At node u

∑

e:head(e)=u

qe(m → n, u) ≤
∑

e:tail(e)=u

qe(m → n, u) (1)

At any other node v,
∑

e:head(e)=v

qe(m → n, u) ≥
∑

e:tail(e)=v

qe(m → n, u) (2)
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Searching for Butterfly structures

Ensure that each of p(m → n, u), q(m → n, u), and r(m → n, u) is

an unbroken path. At node u

∑

e:head(e)=u

pe(m → n, u) ≥
∑

e:tail(e)=u

pe(m → n, u) (3)

At any other node v,
∑

e:head(e)=v

pe(m → n, u) ≤
∑

e:tail(e)=v

pe(m → n, u) (4)
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Searching for Butterfly structures

• If m-th and n-th flows overlap, “generate” poison (and conse-

quently the loops).

• Ensure that a maximum of two flows are overlapping. This en-

sures that the butterfly structures are disjoint.
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List of equations

xe(n) is a flow of the desired rate from Sn to Dn.

pe(n → m, u) = pe(m → n, u) if tail(e) = u

(5)

the coding advantage
︷ ︸︸ ︷∑

u

∑

m,n
max(pe(m → n, u), pe(n → m, u))+

n∑

i=1

xe(i) +
∑

u

∑

m,n
(re(m → n, u) + re(n → m, u))

︸ ︷︷ ︸

resource demanding flows

≤ ze (6)
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Virtual hosts

xe(n) +
∑

u

∑

m
pe(m → n, u) + qe(m → n, u) ≥ 0 (7)

A solution to these equations can be used to identify the butterfly

structures and a network coding solution can be computed.
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Queuing vs. Network Coding

i

j

A link has to be reused

Should we queue packets or should we network-code them?
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Queuing vs. Network Coding
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Some observations and statements

Network coding is a way to trade excess capacity in parts of the

network for bottleneck capacity somewhere else.

Using an already used link comes at the price of providing other

seemingly uncorrelated connections.

Network coding structures can be decomposed into these re-use

and remedy patterns (with increasing levels of complexity)
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Some observations and statements

• The non-multicast case is far more difficult with even decide-
ability of vector linear problems unknown.

• In general, linear solutions are not sufficient to achieve capac-
ity

• Still, we do not need to only consider optimal solutions

• Class 2 network codes seem to be the sweet spot

• For Class 2 we can give an LP characterized by flows.
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• The LP shows scalability, robustness and other desirable fea-

tures.

• Network coding is characterized as transmitting evidence rather

than information directly, We get all the benefits of diversity

(not only the benefits of diversity routing).



Thanks! www.networkcoding.info

51



Non-multicast connections -use of cost criterion

• We propose a linear optimization problem whose minimum cost is no greater
than the minimum cost of any routing solution

• Moreover, feasible solutions correspond to network codes that perform lin-
ear operations on vectors created from the source processes

• Main idea: create a set partition of {1, . . . , M} that represents the sources
that can be mixed (combined linearly) on links going into i.

• Code construction steps through the nodes in topological order, examining
the outgoing links and defining global coding vectors on them.
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Non-multicast connections -use of cost criterion

• For any node i, let T(i) denote the sinks that are accessible from i

• Let C(i) be a set partition of {1, . . . , M} that represents the sources that
can be mixed (combined linearly) on links going into i. For a given C ∈ C(i),
the sinks that receive a source process in C by way of link (j, i) in A (set of
arcs) either receive all the source processes in C or none at all.
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Non-multicast connections -use of cost criterion

minimize
∑

(i,j)∈A aijzij

subject to cij ≥ zij =
∑

C∈C(j) y
(C)
ij , ∀ (i, j) ∈ A,

y
(C)
ij ≥ ∑

m∈C x
(t,m)
ij , ∀ (i, j) ∈ A, t ∈ T , C ∈ C(j),

x
(t,m)
ij ≥ 0, ∀ (i, j) ∈ A, t ∈ T , m = 1, . . . , M,

∑

{j|(i,j)∈A}
x
(t,m)
ij −

∑

{j|(j,i)∈A}
x
(t,m)
ji =







Rm if v = sm and m ∈ D(t),

−Rm if m ∈ D(i),

0 otherwise,

∀ i ∈ A, t ∈ T , m = 1, . . . , M, (8)

where we define D(i) := ∅ for i in N \ T . Again, the optimization
problem can be easily modified to accommodate convex cost func-
tions.
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Is the non-multicast case interesting?
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Summary:

The non multicast scenario exhibits far more subtleties than the

multicast setup. This is due to the fact that cancellations now need

to be carefully arranged.

There are some generalizations to vector solutions which can be

incorporated into the algebraic framework.

Not even the principle problem of linearity vs. nonlinear operation

is entirely clear.

From a practical point of view a non interacting arrangement of mul-

ticast is most interesting and robust.
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The transfer matrix

Let a matrix F be defined as an |E|×|E|matrix where fi,j is defined
as βei,ej , i.e. the coefficient with which Y (ei) is mixed into Yej .

e

e

e

e

e

X
Z

X Z

1

2

1

2

3

4

5

1

2 F =








0 0 βe1,e3
βe1,e4

0
0 0 0 0 βe2,e5

0 0 0 0 βe3,e5

0 0 0 0 0
0 0 0 0 0








Summing the “path gains”:

P = I + F + F 2 + . . . = (I − F)−1 =








0 0 βe1,e3
βe1,e4

βe1,e3
βe3,e5

0 0 0 0 βe2,e5

0 0 0 0 βe3,e5

0 0 0 0 0
0 0 0 0 0








Observe that G = (I − F )−1 is polynomial
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Young optimization students
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