

D. Champion, J.-C. Belfiore, G. Rekaya and E. Viterbo

Introduction

Outer-Coded Space-Time Block Codes

Code construction a la Ungerboeck

The Golden Code

A quaternary partition

How to increase the coding gain?

The Golden Leech Lattice GA₂₄

A trellis-coded Golden modulation

Conclusion

Coding the Golden Code Doing some arithmetics in a quaternion algebra

Jean-Claude Belfiore[†]

Joint work with David Champion [†] Ghaya Rekaya[†] Emanuele Viterbo[‡]

[†]École Nationale Supérieure des Télécommunications, Paris, FRANCE

[‡]Politecnico di Torino, ITALY

December, 9th 2005 Email: belfiore@enst.fr http://www.comelec.enst.fr/~belfiore

IISc Symposium on Coding Theory Bangalore, India

- In standards for which a space-time code solution is defined (it can be the Alamouti code, the Spatial Multiplexing (VBLAST) or the Golden Code), a binary outer code is concatenated (convolutional code, LDPC code, turbo-code).
- These standards are
 - IEEE 802.11n (WiFi)
 - IEEE 802.16e (WiMax and WiBro)
 - 3GPP (3G systems)
- Concatenating a binary outer code is quite easy to do for the Alamouti code and the S.M.
- But we do not know how to correctly label the Golden Code
- This talk will give a first answer to this question, but it will also ask some new questions and enlight new problems.

D. Champion, J.-C. Belfiore, G. Rekaya and E. Viterbo

Introduction

Outer-Coded Space-Time Block Codes

Code construction a la Ingerboeck

The Golden Code

A quaternary partition

How to increase the coding gain?

The Golden Leech Lattice GA₂₄

A trellis-coded Golden modulation

Outline

Coding the Golden Code

D. Champion, J.-C. Belfiore, G. Rekaya and E. Viterbo

Introduction

Outer-Coded Space-Time Block Codes

Code construction a la Ungerboeck

The Golden Code

A quaternary partition

How to increase the coding gain?

The Golden Leech Lattice GA₂₄

A trellis-coded Golden modulation

Conclusion

Outer-Coded Space-Time Block Codes

- The quasi static fading channel
- The inner/outer codes

2 Code construction a la Ungerboeck

- \bullet An example in $\mathbb Z$
- Another example

The Golden Code

A quaternary partition

- The partitionning ideal
- The Gosset Lattice E₈

Mow to increase the coding gain?

6 The Golden Leech Lattice GΛ₂₄

A trellis-coded Golden modulation

Code and simulation results

Outline

Coding the Golden Code

D. Champion, J.-C. Belfiore, G. Rekaya and E. Viterbo

Introductio

Outer-Coded Space-Time Block Codes

The quasi static fading channe. The inner/outer codes

Code construction a la Ungerboeck

The Golden Code

A quaternary partition

How to increase the coding gain?

The Golden Leech Lattice I A₂₄

A trellis-coded Golden nodulation

Conclusion

Outer-Coded Space-Time Block Codes

- The quasi static fading channel
- The inner/outer codes

2 Code construction a la Ungerboeck

- An example in \mathbb{Z}
- Another example
- The Golden Code

A quaternary partition

- The partitionning ideal
- The Gosset Lattice E₈
- How to increase the coding gain?
- ${\color{black} {\scriptsize 0} {\scriptsize 0} }$ The Golden Leech Lattice ${\mathscr{G}} \Lambda_{24}$
- A trellis-coded Golden modulation
 Code and simulation results

The quasi static fading channel

Received signal

$$\mathbf{Y}_{n_r \times T} = \mathbf{H}_{n_r \times n_t} \cdot \mathbf{X}_{n_t \times T} + \mathbf{W}_{n_r \times T}$$
(1)

with **H** perfectly known at the receiver.

• H is assumed constant during the transmission of one codeword.

Code construction a la Ungerboeck The Golden Code

The quasi static fading channel

A quaternary partition

How to increase the coding gain?

The Golden Leech Lattice GA₂₄

A trellis-coded Golden modulation

Code construction criterions

• $\mathbf{X}_i - \mathbf{X}_j$ is the difference between two codewords.

Some common claims

- Rank Criterion: The minimum rank of the difference of any pair of non equa codewords should be maximized
- Optimization Determinant criterion: Maximize (only for high SNR)

$$\begin{array}{ll} \min \\ \mathbf{X}_i \neq \mathbf{X}_j \\ \mathbf{X}_i, \mathbf{X}_j \in \mathscr{C} \end{array} \quad \mathrm{det} \left((\mathbf{X}_i - \mathbf{X}_j) \left(\mathbf{X}_i - \mathbf{X}_j \right)^{\dagger} \right)$$

Trace criterion: Maximize (only for low SNR

$$\begin{array}{l} \min \\ \mathbf{X}_{i} \neq \mathbf{X}_{i} \\ \mathbf{X}_{i}, \mathbf{X}_{j} \in \mathscr{C} \end{array} \quad \mathrm{Tr} \left(\left(\mathbf{X}_{i} - \mathbf{X}_{j} \right) \left(\mathbf{X}_{i} - \mathbf{X}_{j} \right)^{\dagger} \right) \\ \end{array}$$

• We will satisfy all these criteria, but some surprises could happen

Coding the Golden Code

D. Champion, J.-C. Belfiore, G. Rekaya and E. Viterbo

Introduction

Outer-Coded Space-Time Block Codes

The quasi static fading channel The inner/outer codes

Code construction a la Ungerboeck

The Golden Code

A quaternary partition

How to increase the oding gain?

The Golden Leech Lattice GA₂₄

A trellis-coded Golden modulation

Code construction criterions

- $\mathbf{X}_i \mathbf{X}_j$ is the difference between two codewords.
- Some common claims
 - Rank Criterion: The minimum rank of the difference of any pair of non equal codewords should be maximized
 - Obterminant criterion: Maximize (only for high SNR)

$$\begin{array}{ll} \min & \det \left(\left(\mathbf{X}_i - \mathbf{X}_j \right) \left(\mathbf{X}_i - \mathbf{X}_j \right)^\dagger \right) \\ \mathbf{X}_i \neq \mathbf{X}_j \\ \mathbf{X}_i, \mathbf{X}_j \in \mathscr{C} \end{array}$$

Trace criterion: Maximize (only for low SNR)

$$\begin{array}{ll} \min & \operatorname{Tr} \left((\mathbf{X}_i - \mathbf{X}_j) (\mathbf{X}_i - \mathbf{X}_j)^{\dagger} \right) \\ \mathbf{X}_i \neq \mathbf{X}_j \\ \mathbf{X}_i, \mathbf{X}_j \in \mathscr{C} \end{array}$$

• We will satisfy all these criteria, but some surprises could happen

Coding the Golden Code

D. Champion, J.-C. Belfiore, G. Rekaya and E. Viterbo

Introductio

Outer-Coded Space-Time Block Codes

The quasi static fading channel The inner/outer codes

Code construction a la Ungerboeck

The Golden Code

A quaternary partition

How to increase the coding gain?

The Golden Leech Lattice GA₂₄

A trellis-coded Golden modulation

Code construction criterions

- $\mathbf{X}_i \mathbf{X}_j$ is the difference between two codewords.
- Some common claims
 - Rank Criterion: The minimum rank of the difference of any pair of non equal codewords should be maximized
 - Obterminant criterion: Maximize (only for high SNR)

$$\begin{array}{ll} \min & \det \left(\left(\mathbf{X}_i - \mathbf{X}_j \right) \left(\mathbf{X}_i - \mathbf{X}_j \right)^\dagger \right) \\ \mathbf{X}_i \neq \mathbf{X}_j \\ \mathbf{X}_i, \mathbf{X}_j \in \mathscr{C} \end{array}$$

Trace criterion: Maximize (only for low SNR)

$$\begin{array}{ll} \min & \operatorname{Tr}\left(\left(\mathbf{X}_{i} - \mathbf{X}_{j} \right) \left(\mathbf{X}_{i} - \mathbf{X}_{j} \right)^{\dagger} \right) \\ \mathbf{X}_{i} \neq \mathbf{X}_{j} \\ \mathbf{X}_{i}, \mathbf{X}_{j} \in \mathscr{C} \end{array}$$

• We will satisfy all these criteria, but some surprises could happen

Coding the Golden Code

D. Champion, J.-C. Belfiore, G. Rekaya and E. Viterbo

Introductio

Outer-Coded Space-Time Block Codes

The quasi static fading channel The inner/outer codes

Code construction a la Ungerboeck

The Golden Code

A quaternary partition

How to increase the coding gain?

The Golden Leech Lattice GA₂₄

A trellis-coded Golden modulation

- Inner code Space-Time Block Code

We propose here a Ungerboeck-type binary labelling for the Golden code

Coding the Golden Code

D. Champion, J.-C. Belfiore, G. Rekaya and E. Viterbo

Introduction

Outer-Coded Space-Time Block Codes The quasi static fading channe. The inner/outer codes

Code construction a la Ungerboeck

The Golden Code

A quaternary partition

How to increase the coding gain?

The Golden Leech Lattic I A₂₄

A trellis-coded Golden modulation

- Inner code Space-Time Block Code
- Outer Code Binary code (Convolutional, Block, LDPC, Turbo,...)

• We propose here a Ungerboeck-type binary labelling for the Golden code

Coding the Golden Code

D. Champion, J.-C. Belfiore, G. Rekaya and E. Viterbo

Introduction

Outer-Coded Space-Time Block Codes The quasi static fading channe The inner/outer codes

Code construction a la Ungerboeck

The Golden Code

A quaternary partition

How to increase the coding gain?

The Golden Leech Lattic GA₂₄

A trellis-coded Golden modulation

Outline

Coding the Golden Code

D. Champion, J.-C. Belfiore, G. Rekaya and E. Viterbo

Introduction

Outer-Coded Space-Time Block Codes

Code construction a la Ungerboeck

An example in Z Another exampl

The Golden Code

A quaternary partition

How to increase the coding gain?

The Golden Leech Lattic I A₂₄

A trellis-coded Golden nodulation

Conclusion

Outer-Coded Space-Time Block Codes
 The quasi static fading channel

• The inner/outer codes

2 Code construction a la Ungerboeck

- An example in $\mathbb Z$
- Another example

Ine Golden Code

A quaternary partition

- The partitionning ideal
- The Gosset Lattice E₈
- I How to increase the coding gain?
-] The Golden Leech Lattice $\mathscr{G}\Lambda_{24}$
- A trellis-coded Golden modulation
 Code and simulation results

Lattice formulation

Lattice \mathbb{Z} is partitionned into 2 subsets:

- Even integers 2ℤ
- **Odd** integers $2\mathbb{Z} + 1$
- The set $\mathbb{Z}/2\mathbb{Z}$ is a quotient ring isomorphic to \mathbb{F}_2 .
- A quaternary partition (multiple of 4) would give a labelling with the alphabet $\mathbb{Z}/4\mathbb{Z},$ isomorphic to $\mathbb{Z}_4.$

Coding the Golden Code

D. Champion, J.-C. Belfiore, G. Rekaya and E. Viterbo

Introduction

Outer-Coded Space-Time Block Codes

Code construction a la Ungerboeck

An example in Z Another example

The Golden Code

A quaternary partition

How to increase the coding gain?

The Golden Leech Lattic I A₂₄

A trellis-coded Golden modulation

Lattice formulation

Lattice $\ensuremath{\mathbb{Z}}$ is partitionned into 2 subsets:

- **()** Even integers $2\mathbb{Z}$
- $\textcircled{Odd integers } 2\mathbb{Z} + 1$
- The set $\mathbb{Z}/2\mathbb{Z}$ is a quotient ring isomorphic to $\mathbb{F}_2.$
- A quaternary partition (multiple of 4) would give a labelling with the alphabet $\mathbb{Z}/4\mathbb{Z}$, isomorphic to \mathbb{Z}_4 .

Coding the Golden Code

D. Champion, J.-C. Belfiore, G. Rekaya and E. Viterbo

Introduction

Outer-Coded Space-Time Block Codes

Code construction a la Ungerboeck

An example in Z Another example

The Golden Code

A quaternary partition

How to increase the coding gain?

The Golden Leech Lattice I A24

A trellis-coded Golden modulation

Lattice formulation

Lattice $\ensuremath{\mathbb{Z}}$ is partitionned into 2 subsets:

- **()** Even integers $2\mathbb{Z}$
- $\textcircled{Odd integers } 2\mathbb{Z} + 1$
- The set $\mathbb{Z}/2\mathbb{Z}$ is a quotient ring isomorphic to $\mathbb{F}_2.$
- A quaternary partition (multiple of 4) would give a labelling with the alphabet $\mathbb{Z}/4\mathbb{Z},$ isomorphic to $\mathbb{Z}_4.$

Coding the Golden Code

D. Champion, J.-C. Belfiore, G. Rekaya and E. Viterbo

Introduction

Outer-Coded Space-Time Block Codes

Code construction a la Ungerboeck

An example in Z Another example

The Golden Code

A quaternary partition

How to increase the coding gain?

The Golden Leech Lattic I A₂₄

A trellis-coded Golden modulation

Binary partition of $\mathbb{Z}[i]$

Figure: Partition a la Ungerboeck: the Euclidean minimum distance is increased

Lattice formulation

Lattice $\mathbb{Z}[i]$ is partitionned into 2 subsets:

- In Multiples of 1+i: $(1+i)\mathbb{Z}[i]$ (Do not forget that $N_{\mathbb{Q}(i)/\mathbb{Q}}(1+i) = |1+i|^2 = 2$)
- Output: The other integers: $(1+i)\mathbb{Z}[i]+1$

• The set $\mathbb{Z}[i]/(1+i)\mathbb{Z}[i]$ is a quotient ring isomorphic to \mathbb{F}_2 .

D. Champion, J.-C. Belfiore, G. Rekaya and E. Viterbo

Introduction

Outer-Coded Space-Time Block Codes

Code construction a la Ungerboeck

An example in 2

Another example

The Golden Code

A quaternary partition

How to increase the coding gain?

The Golden Leech Lattic I A₂₄

A trellis-coded Golden modulation

Binary partition of $\mathbb{Z}[i]$

Figure: Partition a la Ungerboeck: the Euclidean minimum distance is increased

Lattice formulation

Lattice $\mathbb{Z}[i]$ is partitionned into 2 subsets:

- **(**) Multiples of 1+i: $(1+i)\mathbb{Z}[i]$ (Do not forget that $N_{\mathbb{Q}(i)/\mathbb{Q}}(1+i) = |1+i|^2 = 2$)
- 2 The other integers: $(1+i)\mathbb{Z}[i]+1$
- The set Z[i]/(1+i)Z[i] is a quotient ring isomorphic to F₂.

Coding the Golden Code

D. Champion, J.-C. Belfiore, G. Rekaya and E. Viterbo

Introduction

Outer-Coded Space-Time Block Codes

Code construction a la Ungerboeck

An example in 2

Another example

The Golden Code

A quaternary partition

How to increase the coding gain?

The Golden Leech Lattice I A₂₄

A trellis-coded Golden modulation

- Take an element with norm 4. Obviously, 2 is OK. $2\mathbb{Z}[i]$ is a principal ideal of norm 4.
- Form the quotient $\mathbb{Z}[i]/2\mathbb{Z}[i]$. This quotient ring has cardinality 4 (the norm of the ideal $2\mathbb{Z}[i]$) and the class representatives are 0, 1, i, 1+i.
- We have in fact

 $\mathbb{Z}[i]/2\mathbb{Z}[i] \cong \mathbb{F}_2 \oplus u \cdot \mathbb{F}_2 \quad u^2 = 0$

- by associating u to the class whose representative is 1+i.
 - Check that $(1+i)^2 = 2i$ is a multiple of 2
- Now replace $\mathbb{Z}[i]$ by the Golden Code ...
 - Things are becoming (much) less obvious

Criterion for partition

We propose to partition the Golden Code in order to have a chain with increasing minimum determinant and (perhaps) increasing minimum Euclidean distance. Note that the norm is replaced here, by the reduced norm.

Coding the Golden Code

D. Champion, J.-C. Belfiore, G. Rekaya and E. Viterbo

Introduction

Outer-Coded Space-Time Block Codes

Code construction a la Ungerboeck

An example in 2

Another example

The Golden Code

A quaternary partition

How to increase the coding gain?

The Golden Leech Lattice GA₂₄

A trellis-coded Golden modulation

- Take an element with norm 4. Obviously, 2 is OK. $2\mathbb{Z}[i]$ is a principal ideal of norm 4.
- Form the quotient Z[i]/2Z[i]. This quotient ring has cardinality 4 (the norm of the ideal 2Z[i]) and the class representatives are 0, 1, i, 1 + i.

```
    We have in fact
```

 $\mathbb{Z}[i]/2\mathbb{Z}[i] \cong \mathbb{F}_2 \oplus u \cdot \mathbb{F}_2 \quad u^2 = 0$

by associating u to the class whose representative is 1+i.

- Check that $(1+i)^2 = 2i$ is a multiple of 2
- Now replace $\mathbb{Z}[i]$ by the Golden Code ...
 - Things are becoming (much) less obvious

Criterion for partition

We propose to partition the Golden Code in order to have a chain with increasing minimum determinant and (perhaps) increasing minimum Euclidean distance. Note that the norm is replaced here by the reduced norm.

Coding the Golden Code

D. Champion, J.-C. Belfiore, G. Rekaya and E. Viterbo

Introduction

Outer-Coded Space-Time Block Codes

Code construction a la Ungerboeck

An example in 2

Another example

The Golden Code

A quaternary partition

How to increase the coding gain?

The Golden Leech Lattic I A₂₄

A trellis-coded Golden modulation

- Take an element with norm 4. Obviously, 2 is OK. $2\mathbb{Z}[i]$ is a principal ideal of norm 4.
- Form the quotient Z[i]/2Z[i]. This quotient ring has cardinality 4 (the norm of the ideal 2Z[i]) and the class representatives are 0, 1, i, 1 + i.
- We have in fact

 $\mathbb{Z}[i]/2\mathbb{Z}[i] \cong \mathbb{F}_2 \oplus u \cdot \mathbb{F}_2 \quad u^2 = 0$

by associating u to the class whose representative is 1+i.

• Check that $(1+i)^2 = 2i$ is a multiple of 2

• Now replace $\mathbb{Z}[i]$ by the Golden Code ...

Things are becoming (much) less obvious

Criterion for partition

We propose to partition the Golden Code in order to have a chain with increasing minimum determinant and (perhaps) increasing minimum Euclidean distance. Note that the norm is replaced have by the reduced norm.

Coding the Golden Code

D. Champion, J.-C. Belfiore, G. Rekaya and E. Viterbo

Introduction

Outer-Coded Space-Time Block Codes

Code construction a la Ungerboeck

An example in ¹

Another example

The Golden Code

A quaternary partition

How to increase the coding gain?

The Golden Leech Lattic GA₂₄

A trellis-coded Golden modulation

- Take an element with norm 4. Obviously, 2 is OK. $2\mathbb{Z}[i]$ is a principal ideal of norm 4.
- Form the quotient Z[i]/2Z[i]. This quotient ring has cardinality 4 (the norm of the ideal 2Z[i]) and the class representatives are 0, 1, i, 1 + i.
- We have in fact

 $\mathbb{Z}[i]/2\mathbb{Z}[i] \cong \mathbb{F}_2 \oplus u \cdot \mathbb{F}_2 \quad u^2 = 0$

by associating u to the class whose representative is 1+i.

- Check that $(1+i)^2 = 2i$ is a multiple of 2
- Now replace $\mathbb{Z}[i]$ by the Golden Code ...
 - Things are becoming (much) less obvious

Criterion for partition

We propose to partition the Golden Code in order to have a chain with increasing minimum determinant and (perhaps) increasing minimum Euclidean distance. Note that the norm is replaced here by the **reduced** norm.

Coding the Golden Code

D. Champion, J.-C. Belfiore, G. Rekaya and E. Viterbo

Introduction

Outer-Coded Space-Time Block Codes

Code construction a la Ungerboeck

An example in 2

Another example

The Golden Code

A quaternary partition

How to increase the coding gain?

The Golden Leech Lattice GA₂₄

A trellis-coded Golden modulation

- Take an element with norm 4. Obviously, 2 is OK. $2\mathbb{Z}[i]$ is a principal ideal of norm 4.
- Form the quotient Z[i]/2Z[i]. This quotient ring has cardinality 4 (the norm of the ideal 2Z[i]) and the class representatives are 0, 1, i, 1 + i.
- We have in fact

 $\mathbb{Z}[i]/2\mathbb{Z}[i] \cong \mathbb{F}_2 \oplus u \cdot \mathbb{F}_2 \quad u^2 = 0$

by associating u to the class whose representative is 1+i.

- Check that $(1+i)^2 = 2i$ is a multiple of 2
- Now replace $\mathbb{Z}[i]$ by the Golden Code ...
 - Things are becoming (much) less obvious

Criterion for partition

We propose to partition the Golden Code in order to have a chain with increasing minimum determinant and (perhaps) increasing minimum Euclidean distance. Note that the norm is replaced here by the **reduced** norm.

Coding the Golden Code

D. Champion, J.-C. Belfiore, G. Rekaya and E. Viterbo

Introduction

Outer-Coded Space-Time Block Codes

Code construction a la Ungerboeck

An example in 2

Another example

The Golden Code

A quaternary partition

How to increase the coding gain?

The Golden Leech Lattice GA₂₄

A trellis-coded Golden modulation

Outline

Coding the Golden Code

D. Champion, J.-C. Belfiore, G. Rekaya and E. Viterbo

Introduction

Outer-Coded Space-Time Block Codes

Code construction a la Ungerboeck

The Golden Code

A quaternary partition

How to increase the coding gain?

The Golden Leech Lattice GA₂₄

A trellis-coded Golden modulation

Conclusion

Outer-Coded Space-Time Block Codes

- The quasi static fading channel
- The inner/outer codes

2 Code construction a la Ungerboeck

- ${\scriptstyle \bullet}$ An example in ${\mathbb Z}$
- Another example

The Golden Code

A quaternary partition

- The partitionning ideal
- The Gosset Lattice E₈
- How to increase the coding gain?
-] The Golden Leech Lattice $\mathscr{G}\Lambda_{24}$
- A trellis-coded Golden modulation
 Code and simulation results

- $\mathbb{Q}(i)$ is the base field (QAM modulations)
- $\mathbb{K} = \mathbb{Q}(i, \theta)$ is a quadratic extension over $\mathbb{Q}(i)$ whose Galois group is $\{1, \sigma\}$. $\gamma \in \mathbb{Q}(i)$ is not a norm of an element of \mathbb{K} .
- A quaternion algebra is a cyclic division algebra of index 2.

Formal construction

- Cyclic algebrase, of ~ [c₁ + c₂, c₃] with (c₁, c₂, c) K^{*} e² - - y and z - a - - p - d(c)
- Conjugate: If $q = \alpha + \alpha \cdot e$, then $d = \sigma(\alpha) \alpha \cdot e$.
- Reduced Norm: $N_t(q) = q\bar{q} \in \mathbb{Q}(t)$

Conjugate: Matrix of cofactors Reduced News: N (a) = detX

Coding the Golden Code

D. Champion, J.-C. Belfiore, G. Rekaya and E. Viterbo

Introduction

Outer-Coded Space-Time Block Codes

Code construction a la Ungerboeck

The Golden Code

A quaternary partition

How to increase the coding gain?

The Golden Leech Lattice GA₂₄

A trellis-coded Golden modulation

- $\mathbb{Q}(i)$ is the base field (QAM modulations)
- $\mathbb{K} = \mathbb{Q}(i, \theta)$ is a quadratic extension over $\mathbb{Q}(i)$ whose Galois group is $\{1, \sigma\}$. $\gamma \in \mathbb{Q}(i)$ is not a norm of an element of \mathbb{K} .
- A quaternion algebra is a cyclic division algebra of index 2.

Formal construction

Matrix construction

- Cyclic algebra: $\mathscr{A} = \{z_1 + z_2 \cdot e\}$ with $z_1, z_2 \in \mathbb{K}$ $e^2 = \gamma$ and $z \cdot e = e \cdot \sigma(z)$
- **Conjugate:** If $q = z_1 + z_2 \cdot e$, then $\tilde{q} = \sigma(z_1) z_2 \cdot e$
- Reduced Norm: $N_r(q) = q\tilde{q} \in \mathbb{Q}(i)$

• Cyclic algebra

$$\mathscr{A} = \begin{cases} \mathbf{X}_q = \begin{bmatrix} z_1 & z_2 \\ \gamma \cdot \sigma(z_2) & \sigma(z_1) \end{cases}$$

with $z_1, z_2 \in \mathbb{K}$.

- Conjugate: Matrix of cofactors
- Reduced Norm: $N_r(q) = \det X_q$

Coding the Golden Code

D. Champion, J.-C. Belfiore, G. Rekaya and E. Viterbo

Introduction

Outer-Coded Space-Time Block Codes

Code construction a la Ungerboeck

The Golden Code

A quaternary partition

How to increase the coding gain?

The Golden Leech Lattice GA₂₄

A trellis-coded Golden modulation

- $\mathbb{Q}(i)$ is the base field (QAM modulations)
- $\mathbb{K} = \mathbb{Q}(i, \theta)$ is a quadratic extension over $\mathbb{Q}(i)$ whose Galois group is $\{1, \sigma\}$. $\gamma \in \mathbb{Q}(i)$ is not a norm of an element of \mathbb{K} .
- A quaternion algebra is a cyclic division algebra of index 2.

Formal construction

Matrix construction

- Cyclic algebra: $\mathscr{A} = \{z_1 + z_2 \cdot e\}$ with $z_1, z_2 \in \mathbb{K}$ $e^2 = \gamma$ and $z \cdot e = e \cdot \sigma(z)$
- **Conjugate:** If $q = z_1 + z_2 \cdot e$, then $\tilde{q} = \sigma(z_1) z_2 \cdot e$
- Reduced Norm: $N_r(q) = q\tilde{q} \in \mathbb{Q}(i)$

Even cargebra: $\mathcal{A} = \begin{cases} \mathbf{X}_q = \begin{bmatrix} z_1 & z_2 \\ \gamma \cdot \sigma(z_2) & \sigma(z_1) \end{cases}$ with $z_1, z_2 \in \mathbb{K}$.

- Conjugate: Matrix of cofactors
- Reduced Norm: N_r(q) = det X_q

Coding the Golden Code

D. Champion, J.-C. Belfiore, G. Rekaya and E. Viterbo

Introduction

Outer-Coded Space-Time Block Codes

Code construction a la Ungerboeck

The Golden Code

A quaternary partition

How to increase the coding gain?

The Golden Leech Lattice GA₂₄

A trellis-coded Golden modulation

- $\mathbb{Q}(i)$ is the base field (QAM modulations)
- $\mathbb{K} = \mathbb{Q}(i, \theta)$ is a quadratic extension over $\mathbb{Q}(i)$ whose Galois group is $\{1, \sigma\}$. $\gamma \in \mathbb{Q}(i)$ is not a norm of an element of \mathbb{K} .
- A quaternion algebra is a cyclic division algebra of index 2.

Formal construction

Matrix construction

- Cyclic algebra: $\mathscr{A} = \{z_1 + z_2 \cdot e\}$ with $z_1, z_2 \in \mathbb{K}$ $e^2 = \gamma$ and $z \cdot e = e \cdot \sigma(z)$
- **Conjugate:** If $q = z_1 + z_2 \cdot e$, then $\tilde{q} = \sigma(z_1) z_2 \cdot e$
- Reduced Norm: $N_r(q) = q\tilde{q} \in \mathbb{Q}(i)$

• Cyclic algebra: $\mathcal{A} = \left\{ \mathbf{X}_{q} = \begin{bmatrix} z_{1} & z_{2} \\ \gamma \cdot \sigma(z_{2}) & \sigma(z_{1}) \end{bmatrix} \right\}$

with
$$z_1, z_2 \in \mathbb{K}$$
.

- Conjugate: Matrix of cofactors
- Reduced Norm: $N_r(q) = \det X_q$

Coding the Golden Code

D. Champion, J.-C. Belfiore, G. Rekaya and E. Viterbo

Introduction

Outer-Coded Space-Time Block Codes

Code construction a la Ungerboeck

The Golden Code

A quaternary partition

How to increase the coding gain?

The Golden Leech Lattice GA₂₄

A trellis-coded Golden modulation

The Golden Code

- Extracted from a cyclic algebra of index 2 $\mathscr{A} \triangleq (\mathbb{K} = \mathbb{Q}(i, \theta)/\mathbb{Q}(i), \sigma, i)$ with $\theta = \frac{1+\sqrt{5}}{2}$ and $\sigma : \theta \mapsto \overline{\theta} = \frac{1-\sqrt{5}}{2}$.
 - Ring of integers of \mathbb{K} is $\mathscr{O}_{\mathbb{K}} = \{a + b\theta \mid a, b \in \mathbb{Z}[i]\}.$
 - Let $\alpha = 1 + i i\theta$ and $\mathscr{I}_{\alpha} = (\alpha)$ be the principal ideal generated by α .

Maximum = Maxi

Minimum squared determinant is

Coding the Golden Code

D. Champion, J.-C. Belfiore, G. Rekaya and E. Viterbo

Introduction

Outer-Coded Space-Time Block Codes

Code construction a la Ungerboeck

The Golden Code

A quaternary partition

How to increase the coding gain?

The Golden Leech Lattice I A₂₄

A trellis-coded Golden modulation

- Extracted from a cyclic algebra of index 2 $\mathscr{A} \triangleq (\mathbb{K} = \mathbb{Q}(i, \theta)/\mathbb{Q}(i), \sigma, i)$ with $\theta = \frac{1+\sqrt{5}}{2}$ and $\sigma : \theta \mapsto \overline{\theta} = \frac{1-\sqrt{5}}{2}$.
 - Ring of integers of \mathbb{K} is $\mathscr{O}_{\mathbb{K}} = \{a + b\theta \mid a, b \in \mathbb{Z}[i]\}.$
 - Let $\alpha = 1 + i i\theta$ and $\mathscr{I}_{\alpha} = (\alpha)$ be the principal ideal generated by α .
- The Golden Code is

Formal constructionMatrix construction $\mathscr{G} = \left\{ \frac{1}{\sqrt{5}} (z_1 + z_2 \cdot e) \right\}$ with $z_1, z_2 \in \mathscr{I}_{\alpha}$, $\mathscr{G} = \left\{ \frac{1}{\sqrt{5}} \begin{bmatrix} z_1 & z_2 \\ i \cdot \sigma(z_2) & \sigma(z_1) \end{bmatrix} \right\}$ with $z_1, z_2 \in \mathscr{I}_{\alpha}$, $e^2 = i$ and $z \cdot e = e \cdot \sigma(z)$ $\mathscr{G} = \left\{ \frac{1}{\sqrt{5}} \begin{bmatrix} z_1 & z_2 \\ i \cdot \sigma(z_2) & \sigma(z_1) \end{bmatrix} \right\}$

Minimum squared determinant is

$$\begin{array}{ll} \delta_{\min}(\mathscr{G}) = & \min_{\substack{\mathsf{X} \in \mathscr{G} \\ \mathsf{X} \neq \mathbf{0}}} & |\mathsf{det}\,\mathsf{X}|^2 = \frac{1}{25} |N_{\mathbb{K}/\mathbb{Q}(i)}(\alpha)|^2 = \frac{1}{25} |2+i|^2 = \frac{1}{5} \\ \end{array}$$

Coding the Golden Code

D. Champion, J.-C. Belfiore, G. Rekaya and E. Viterbo

Introduction

Outer-Coded Space-Time Block Codes

Code construction a la Ungerboeck

The Golden Code

A quaternary partition

How to increase the coding gain?

The Golden Leech Lattice GA₂₄

A trellis-coded Golden modulation

- Extracted from a cyclic algebra of index 2 $\mathscr{A} \triangleq (\mathbb{K} = \mathbb{Q}(i, \theta)/\mathbb{Q}(i), \sigma, i)$ with $\theta = \frac{1+\sqrt{5}}{2}$ and $\sigma : \theta \mapsto \overline{\theta} = \frac{1-\sqrt{5}}{2}$.
 - Ring of integers of \mathbb{K} is $\mathscr{O}_{\mathbb{K}} = \{a + b\theta \mid a, b \in \mathbb{Z}[i]\}.$
 - Let $\alpha = 1 + i i\theta$ and $\mathscr{I}_{\alpha} = (\alpha)$ be the principal ideal generated by α .
- The Golden Code is

Matrix construction					

Minimum squared determinant is

$$\begin{split} \delta_{\min}(\mathscr{G}) &= \min_{\substack{\mathbf{X} \in \mathscr{G} \\ \mathbf{X} \neq \mathbf{0}}} |\det \mathbf{X}|^2 = \frac{1}{25} |N_{\mathbb{K}/\mathbb{Q}(i)}(\alpha)|^2 = \frac{1}{25} |2+i|^2 = \frac{1}{5} \end{split}$$

Coding the Golden Code

D. Champion, J.-C. Belfiore, G. Rekaya and E. Viterbo

Introduction

Outer-Coded Space-Time Block Codes

Code construction a la Ungerboeck

The Golden Code

A quaternary partition

How to increase the coding gain?

The Golden Leech Lattice GA₂₄

A trellis-coded Golden modulation

- Extracted from a cyclic algebra of index 2 $\mathscr{A} \triangleq (\mathbb{K} = \mathbb{Q}(i, \theta)/\mathbb{Q}(i), \sigma, i)$ with $\theta = \frac{1+\sqrt{5}}{2}$ and $\sigma : \theta \mapsto \overline{\theta} = \frac{1-\sqrt{5}}{2}$.
 - Ring of integers of \mathbb{K} is $\mathscr{O}_{\mathbb{K}} = \{a + b\theta \mid a, b \in \mathbb{Z}[i]\}.$
 - Let $\alpha = 1 + i i\theta$ and $\mathscr{I}_{\alpha} = (\alpha)$ be the principal ideal generated by α .
- The Golden Code is

Formal construction	Matrix construction				
$\begin{aligned} \mathscr{G} &= \left\{ \frac{1}{\sqrt{5}} \left(z_1 + z_2 \cdot e \right) \right\} \text{ with } z_1, z_2 \in \mathscr{I}_{\alpha}, \\ e^2 &= i \text{ and } z \cdot e = e \cdot \sigma(z) \end{aligned}$	$\mathcal{G} = \left\{ \frac{1}{\sqrt{5}} \left[\begin{array}{cc} z_1 & z_2 \\ i \cdot \sigma(z_2) & \sigma(z_1) \end{array} \right] \right\} \text{ with } \\ z_i = \alpha \left(x_i + y_i \theta \right) \text{ and } x_i, y_i \in \mathbb{Z}[i].$				

Minimum squared determinant is

$$\begin{split} \delta_{\min}(\mathscr{G}) = & \min_{\substack{\mathsf{X} \in \mathscr{G} \\ \mathsf{X} \neq \mathbf{0}}} |\det \mathsf{X}|^2 = \frac{1}{25} |N_{\mathbb{K}/\mathbb{Q}(i)}(\alpha)|^2 = \frac{1}{25} |2+i|^2 = \frac{1}{5} \end{split}$$

Coding the Golden Code

D. Champion, J.-C. Belfiore, G. Rekaya and E. Viterbo

Introduction

Outer-Coded Space-Time Block Codes

Code construction a la Ungerboeck

The Golden Code

A quaternary partition

How to increase the coding gain?

The Golden Leech Lattice GA₂₄

A trellis-coded Golden modulation

- Extracted from a cyclic algebra of index 2 $\mathscr{A} \triangleq (\mathbb{K} = \mathbb{Q}(i, \theta)/\mathbb{Q}(i), \sigma, i)$ with $\theta = \frac{1+\sqrt{5}}{2}$ and $\sigma : \theta \mapsto \overline{\theta} = \frac{1-\sqrt{5}}{2}$.
 - Ring of integers of \mathbb{K} is $\mathscr{O}_{\mathbb{K}} = \{a + b\theta \mid a, b \in \mathbb{Z}[i]\}.$
 - Let $\alpha = 1 + i i\theta$ and $\mathscr{I}_{\alpha} = (\alpha)$ be the principal ideal generated by α .
- The Golden Code is

Formal constructionMatrix construction $\mathscr{G} = \left\{ \frac{1}{\sqrt{5}} (z_1 + z_2 \cdot e) \right\}$ with $z_1, z_2 \in \mathscr{I}_{\alpha}$, $\mathscr{G} = \left\{ \frac{1}{\sqrt{5}} \begin{bmatrix} z_1 & z_2 \\ i \cdot \sigma(z_2) & \sigma(z_1) \end{bmatrix} \right\}$ with $e^2 = i$ and $z \cdot e = e \cdot \sigma(z)$ $z_i = \alpha (x_i + y_i \theta)$ and $x_i, y_i \in \mathbb{Z}[i]$.

• Minimum squared determinant is

$$\begin{split} \delta_{\min}(\mathscr{G}) &= \min_{\substack{\mathbf{X} \in \mathscr{G} \\ \mathbf{X} \neq \mathbf{0}}} |\det \mathbf{X}|^2 = \frac{1}{25} |N_{\mathbb{K}/\mathbb{Q}(i)}(\alpha)|^2 = \frac{1}{25} |2+i|^2 = \frac{1}{5} \end{split}$$

Coding the Golden Code

D. Champion, J.-C. Belfiore, G. Rekaya and E. Viterbo

Introduction

Outer-Coded Space-Time Block Codes

Code construction a la Ungerboeck

The Golden Code

A quaternary partition

How to increase the coding gain?

The Golden Leech Lattice GA₂₄

A trellis-coded Golden modulation

Outline

Coding the Golden Code

D. Champion, J.-C. Belfiore, G. Rekaya and E. Viterbo

Introduction

Outer-Coded Space-Time Block Codes

Code construction a la Ungerboeck

The Golden Code

A quaternary partition

The partitionning ideal The Gosset Lattice **E**8

How to increase the coding gain?

The Golden Leech Lattic I A₂₄

A trellis-coded Golden nodulation

Conclusion

- Outer-Coded Space-Time Block Codes
 - The quasi static fading channel
 - The inner/outer codes
- 2 Code construction a la Ungerboeck
 - ${\scriptstyle \bullet}$ An example in ${\mathbb Z}$
 - Another example
- The Golden Code

A quaternary partition

- The partitionning ideal
- The Gosset Lattice E₈

How to increase the coding gain?

] The Golden Leech Lattice $\mathscr{G}\Lambda_{24}$

A trellis-coded Golden modulation
 Code and simulation results

What we are looking for ...

An ideal whose norm is a power of 2 (Communication engineers want to send bits and not trits or everything else). This power must be as small as possible.

• We have adjoined to $\mathbb K$ the element *e* such that $e^2 = i$.

Methodolo

Construct, $U \in \mathcal{K}(\{i\}) = 0$ (§1.9) and look for ideals whose norms are a point 2.

The smallest power of 2 which works is 4 corresponding to a princip ideal generated by

 $(1-\theta)(t+\zeta_{3})$

 \sim Replace ζ_{0} by a but be carefull with the non-commutativity.

Coding the Golden Code

D. Champion, J.-C. Belfiore, G. Rekaya and E. Viterbo

Introduction

Outer-Coded Space-Time Block Codes

Code construction a la Ungerboeck

The Golden Code

A quaternary partition The partitionning ideal The Gosset Lattice E₈

How to increase the coding gain?

The Golden Leech Lattic GA₂₄

A trellis-coded Golden modulation

What we are looking for ...

An ideal whose norm is a power of 2 (Communication engineers want to send bits and not trits or everything else). This power must be as small as possible.

• We have adjoined to \mathbb{K} the element *e* such that $e^2 = i$.

Methodology

Construct $\mathbb{L} \triangleq \mathbb{K}(\sqrt{i}) = \mathbb{Q}(\zeta_8, \theta)$ and look for ideals whose norms are a power of 2.

• The smallest power of 2 which works is 4 corresponding to a principal ideal generated by

$$(1-\theta)(i+\zeta_8)$$

• Replace ζ_8 by *e* but be carefull with the non commutativity!

Coding the Golden Code

D. Champion, J.-C. Belfiore, G. Rekaya and E. Viterbo

Introduction

Outer-Coded Space-Time Block Codes

Code construction a la Ungerboeck

The Golden Code

A quaternary partition The partitionning ideal The Gosset Lattice E₈

How to increase the coding gain?

The Golden Leech Lattice GA₂₄

A trellis-coded Golden modulation

What we are looking for ...

An ideal whose norm is a power of 2 (Communication engineers want to send bits and not trits or everything else). This power must be as small as possible.

• We have adjoined to \mathbb{K} the element *e* such that $e^2 = i$.

Methodology

Construct $\mathbb{L} \triangleq \mathbb{K}\left(\sqrt{i}\right) = \mathbb{Q}\left(\zeta_8, \theta\right)$ and look for ideals whose norms are a power of 2.

• The smallest power of 2 which works is 4 corresponding to a principal ideal generated by

$$(1-\theta)(i+\zeta_8)$$

• Replace ζ_8 by *e* but be carefull with the non commutativity!

Coding the Golden Code

D. Champion, J.-C. Belfiore, G. Rekaya and E. Viterbo

Introduction

Outer-Coded Space-Time Block Codes

Code construction a la Ungerboeck

The Golden Code

A quaternary partition The partitionning ideal The Gosset Lattice E₈

How to increase the coding gain?

The Golden Leech Lattice GA₂₄

A trellis-coded Golden modulation

• Let β be the quaternion $\beta = i \, (1-\theta) + (1-\theta) \, e$ with matrix representation

$$\mathbf{X}_{\beta} = \begin{bmatrix} i(1-\theta) & 1-\theta \\ i(1-\bar{\theta}) & i(1-\bar{\theta}) \end{bmatrix}$$

Definition

The left quaternionic ideal generated by β is

 $\mathfrak{P} = \{ g \cdot \beta \mid g \in \mathscr{G} \}$

- Because $N_r(\beta) = 1 + i$, the Golden code can be partitionned into 4 subsets: \mathfrak{P} and 3 translated versions.
- Minimum determinant of each subset is $\delta_{\min} = 2 \cdot \delta_{\min}(\mathscr{G})$

Coding the Golden Code

D. Champion, J.-C. Belfiore, G. Rekaya and E. Viterbo

Introduction

Outer-Coded Space-Time Block Codes

Code construction a la Ungerboeck

The Golden Code

A quaternary partition The partitionning ideal

The Gosset Lattice E_8

How to increase the coding gain?

The Golden Leech Lattice GA₂₄

A trellis-coded Golden modulation

A quaternionic ideal with reduced norm 4

$$\mathbf{X}_{eta} = \begin{bmatrix} i\left(1- heta
ight) & 1- heta \\ i\left(1-ar{ heta}
ight) & i\left(1-ar{ heta}
ight) \end{bmatrix}$$

Definition

The left quaternionic ideal generated by β is

 $\mathfrak{P} = \{ g \cdot \beta \mid g \in \mathscr{G} \}$

- Because $N_r(\beta) = 1 + i$, the Golden code can be partitionned into 4 subsets: \mathfrak{P} and 3 translated versions.
- Minimum determinant of each subset is $\delta_{\min} = 2 \cdot \delta_{\min}(\mathscr{G})$

Coding the Golden Code

D. Champion, J.-C. Belfiore, G. Rekaya and E. Viterbo

Introduction

Outer-Coded Space-Time Block Codes

Code construction a la Ungerboeck

The Golden Code

A quaternary partition The partitionning ideal The Gosset Lattice E₈

How to increase the coding gain?

The Golden Leech Lattice I A₂₄

A trellis-coded Golden nodulation

$$\mathbf{X}_{\beta} = \begin{bmatrix} i(1-\theta) & 1-\theta \\ i(1-\bar{\theta}) & i(1-\bar{\theta}) \end{bmatrix}$$

Definition

The left quaternionic ideal generated by β is

 $\mathfrak{P} = \{ \mathbf{g} \cdot \boldsymbol{\beta} \mid \mathbf{g} \in \mathscr{G} \}$

- Because $N_r(\beta) = 1 + i$, the Golden code can be partitionned into 4 subsets: \mathfrak{P} and 3 translated versions.
- Minimum determinant of each subset is $\delta_{\min} = 2 \cdot \delta_{\min}(\mathscr{G})$

Coding the Golden Code

D. Champion, J.-C. Belfiore, G. Rekaya and E. Viterbo

Introduction

Outer-Coded Space-Time Block Codes

Code construction a la Ungerboeck

The Golden Code

A quaternary partition The partitionning ideal The Gosset Lattice E₈

How to increase the coding gain?

The Golden Leech Lattice I A₂₄

A trellis-coded Golden nodulation

• In fact, the quotient ring is the commutative ring

 $\mathscr{G}/\mathfrak{P}\cong\mathbb{F}_2\oplus u\cdot\mathbb{F}_2$

with $u^2 = 0$.

• Representatives of the 4 classes are 0, α , αe and $\alpha(1+e)$; u is associated to $\alpha(1+e)$.

Multiplication table of $\mathbb{F}_2 \oplus u \cdot \mathbb{F}_2$ *is*

Coding the Golden Code

D. Champion, J.-C. Belfiore, G. Rekaya and E. Viterbo

Introduction

Outer-Coded Space-Time Block Codes

Code construction a la Ungerboeck

he Golden Code

A quaternary partition The partitionning ideal The Gosset Lattice E₈

How to increase the coding gain?

The Golden Leech Lattic I A₂₄

A trellis-coded Golden modulation

• In fact, the quotient ring is the commutative ring

 $\mathscr{G}/\mathfrak{P}\cong\mathbb{F}_2\oplus u\cdot\mathbb{F}_2$

with $u^2 = 0$.

• Representatives of the 4 classes are 0, α , αe and $\alpha(1+e)$; u is associated to $\alpha(1+e)$.

Multiplication table of $\mathbb{F}_2 \oplus u \cdot \mathbb{F}_2$ *is*

×	0	1	u	1+u
0	0	0	0	0
1	0	1	и	1+u
и	0	и	0	и
1+u	0	1+u	u	1

Coding the Golden Code

D. Champion, J.-C. Belfiore, G. Rekaya and E. Viterbo

Introduction

Outer-Coded Space-Time Block Codes

Code construction a la Ungerboeck

he Golden Code

A quaternary partition The partitionning ideal The Gosset Lattice E₈

How to increase the coding gain?

The Golden Leech Lattice I A₂₄

A trellis-coded Golden modulation

Lattice and ideal partition

Coding the Golden Code

• The principal left quaternionic ideal \mathfrak{P}^2 is isomorphic (as a lattice) to the Gosset lattice whose construction A is

 $E_8 = 2\mathbb{Z}^8 + (8, 4, 4)$

where (8,4,4) is the extended Hamming code (or Reed-Müller code).

Equivalent E₈ lattice

In fact, \mathfrak{P}^2 and \mathcal{E}_8 are equivalent lattices i.e. there is a unitary transform (to guarantee the diversity order) and a base change. For example, the unimodular transform matrix is (in complex form)

$$T = \begin{bmatrix} i & -i & 0 & i \\ -i & 0 & i & i \\ 1 & -1 & 0 & i \\ -1 & 0 & i & i \end{bmatrix}$$

Coding the Golden Code

D. Champion, J.-C. Belfiore, G. Rekaya and E. Viterbo

Introduction

Outer-Coded Space-Time Block Codes

Code construction a la Ungerboeck

he Golden Code

A quaternary partition The partitionning ideal The Gosset Lattice E₈

How to increase the coding gain?

The Golden Leech Lattic GA₂₄

A trellis-coded Golden modulation

• The principal left quaternionic ideal \mathfrak{P}^2 is isomorphic (as a lattice) to the Gosset lattice whose construction A is

 $E_8 = 2\mathbb{Z}^8 + (8, 4, 4)$

where (8,4,4) is the extended Hamming code (or Reed-Müller code).

Equivalent E₈ lattice

In fact, \mathfrak{P}^2 and E_8 are equivalent lattices i.e. there is a unitary transform (to guarantee the diversity order) and a base change. For example, the unimodular transform matrix is (in complex form)

$$T = \begin{bmatrix} i & -i & 0 & i \\ -i & 0 & i & i \\ 1 & -1 & 0 & i \\ -1 & 0 & i & i \end{bmatrix}$$

Coding the Golden Code

D. Champion, J.-C. Belfiore, G. Rekaya and E. Viterbo

Introduction

Outer-Coded Space-Time Block Codes

Code construction a la Ungerboeck

The Golden Code

A quaternary partition The partitionning ideal The Gosset Lattice **E**8

How to increase the coding gain?

The Golden Leech Lattic GA₂₄

A trellis-coded Golden modulation

• Binary labelling after reduction

Quotient group				Identification							
CA /M	J	1	0	0	0	0	0	0	0	$\left \right $	
3/2]	1	1	0	0	0	0	0	0	۱ آ	
m/m^2		1	0	1	0	0	0	0	0	1	
-φ/φ-		0	1	0	1	0	0	0	0	Ì	
$\frac{m^2}{(1+i)m}$		1	1	1	0	0	0	0	1		Reed-Müller
$\mathcal{P} / (1 + 0) \mathcal{P}$]	1	1	0	1	1	0	0	0	۱ آ	i teeu-iviuliei
$(1 + i) \mathfrak{N} / 2(\ell)$		'1	1	1	1	1	1	1	1	۱ ۱	(9.4.4) and a
$(1+I)\mathfrak{P}/2\mathfrak{G}$	1	1	0	1	0	1	0	1	0	Ì	(0,4,4) code

Columns permutation: (1 2 5 4 7 6 3 8)

Coding the Golden Code

D. Champion, J.-C. Belfiore, G. Rekaya and E. Viterbo

Introduction

Outer-Coded Space-Time Block Codes

Code construction a la Ingerboeck

The Golden Code

A quaternary partition The partitionning ideal The Gosset Lattice E₈

How to increase the coding gain?

The Golden Leech Lattic I A₂₄

A trellis-coded Golden modulation

Quotient group	Coset leaders										Identification
(A) m	J	1	0	0	0	0	0	0	0	$\left(\right)$	
9/P]	1	1	0	0	0	0	0	0	ſ	
m /m2		1	0	1	0	0	0	0	0	$\left \right $	
/	1	0	1	0	1	0	0	0	0	ſ	
$\mathfrak{M}^2/(1+i)\mathfrak{M}$		1	1	1	0	0	0	0	1	$\left \right $	Reed-Müller
$\gamma / (1 + i) \gamma$]	1	1	0	1	1	0	0	0	\int	i teeu-iviuliei
$(1 + i) \Re / 2(\ell)$		´ 1	1	1	1	1	1	1	1	$\left \right $	(8.4.4) codo
(1+1)p/29	1	1	0	1	0	1	0	1	0	Ì	(0,4,4) code

• Columns permutation: (1 2 5 4 7 6 3 8)

Coding the Golden Code

D. Champion, J.-C. Belfiore, G. Rekaya and E. Viterbo

Introduction

Outer-Coded Space-Time Block Codes

Code construction a la Ingerboeck

The Golden Code

A quaternary partition The partitionning ideal The Gosset Lattice E₈

How to increase the coding gain?

The Golden Leech Lattic GA₂₄

A trellis-coded Golden modulation

The Gosset lattice $\mathscr{G}E_8$ (simulations)

Simulation results

Figure: $\mathscr{G}E_8$ versus Golden Code (12 bits p.c.u.)

Outline

Coding the Golden Code

D. Champion, J.-C. Belfiore, G. Rekaya and E. Viterbo

Introduction

Outer-Coded Space-Time Block Codes

Code construction a la Ungerboeck

The Golden Code

A quaternary partition

How to increase the coding gain?

The Golden Leech Lattice GA₂₄

A trellis-coded Golden modulation

Conclusion

Outer-Coded Space-Time Block Codes

- The quasi static fading channel
- The inner/outer codes
- 2 Code construction a la Ungerboeck
 - \bullet An example in $\mathbb Z$
 - Another example
- The Golden Code
- A quaternary partition
 - The partitionning ideal
 - The Gosset Lattice E₈

B How to increase the coding gain?

- The Golden Leech Lattice $\mathscr{G}\Lambda_{24}$
- A trellis-coded Golden modulation
 Code and simulation results

• Codeword is
$$\mathfrak{Q} = (q_1, q_2, \cdots q_N).$$

Minimum determinant

The minimum determinant is

$$\min_{\mathfrak{Q} \in \mathscr{C} \smallsetminus \{0\}} \det \mathfrak{Q} \cdot \mathfrak{Q}^{\dagger} = \min_{\mathfrak{Q} \in \mathscr{C} \smallsetminus \{0\}} \sum_{i=1}^{N} \det \left(q_{i} \cdot q_{j}^{\dagger} \right) + \sum_{j > i} \left\| \tilde{q}_{i} \cdot q_{j} \right\|_{F}^{2}$$

Coding the Golden Code

D. Champion, J.-C. Belfiore, G. Rekaya and E. Viterbo

Introduction

Outer-Coded Space-Time Block Codes

Code construction a la Ungerboeck

The Golden Code

A quaternary partition

How to increase the coding gain?

The Golden Leech Lattice GA₂₄

A trellis-coded Golden modulation

Minimum determinant

The minimum determinant is

$$\min_{\mathfrak{Q}\in\mathscr{C}\smallsetminus\{0\}}\det\mathfrak{Q}\cdot\mathfrak{Q}^{\dagger}=\min_{\mathfrak{Q}\in\mathscr{C}\smallsetminus\{0\}}\sum_{i=1}^{N}\det\left(q_{i}\cdot q_{i}^{\dagger}\right)+\sum_{j>i}\left\|\tilde{q}_{i}\cdot q_{j}\right\|_{F}^{2}$$

Coding the Golden Code

D. Champion, J.-C. Belfiore, G. Rekaya and E. Viterbo

Introduction

Outer-Coded Space-Time Block Codes

Code construction a la Ungerboeck

The Golden Code

A quaternary partition

How to increase the coding gain?

The Golden Leech Lattice GA₂₄

A trellis-coded Golden modulation

Outline

Coding the Golden Code

D. Champion, J.-C. Belfiore, G. Rekaya and E. Viterbo

Introduction

Outer-Coded Space-Time Block Codes

Code construction a la Ungerboeck

The Golden Code

A quaternary partition

How to increase the coding gain?

The Golden Leech Lattice $\mathcal{G}\Lambda_{24}$

A trellis-coded Golden modulation

- Outer-Coded Space-Time Block Codes
 - The quasi static fading channel
 - The inner/outer codes
- 2 Code construction a la Ungerboeck
 - ${\scriptstyle \bullet}$ An example in ${\mathbb Z}$
 - Another example
- The Golden Code
- A quaternary partition
 - The partitionning ideal
 - The Gosset Lattice E₈
- How to increase the coding gain?
- 6 The Golden Leech Lattice GΛ₂₄
 - A trellis-coded Golden modulation
 Code and simulation results

D. Champion, J.-C. Belfiore, G. Rekaya and E. Viterbo

Introduction

Outer-Coded Space-Time Block Codes

Code construction a la Ungerboeck

The Golden Code

A quaternary partition

How to increase the coding gain?

The Golden Leech Lattice $\mathcal{G}\Lambda_{24}$

A trellis-coded Golden modulation

Conclusion

Construction of Λ_{24} [Conway Sloane 86]

The Leech lattice Λ_{24} consists of the vectors

 $(e_1 + a + t, e_2 + b + t, e_3 + c + t)$

with $e_1, e_2, e_3 \in E_8$, $a + b + c \equiv 0 \pmod{E_8}$ and a, b, c, t are in a list of cosets representatives.

Construction of $\mathcal{G}\Lambda_{24}$

Same construction as above. Simply replace E_8 with $\mathscr{G}E_8$ and use partition of figure 5.

Construction of Λ_{24} [Conway Sloane 86]

The Leech lattice Λ_{24} consists of the vectors

 $(e_1 + a + t, e_2 + b + t, e_3 + c + t)$

with $e_1, e_2, e_3 \in E_8$, $a + b + c \equiv 0 \pmod{E_8}$ and a, b, c, t are in a list of cosets representatives.

Construction of $\mathcal{G}\Lambda_{24}$

Same construction as above. Simply replace E_8 with $\mathscr{G}E_8$ and use partition of figure 5.

Coding the Golden Code

D. Champion, J.-C. Belfiore, G. Rekaya and E. Viterbo

Introduction

Outer-Coded Space-Time Block Codes

Code construction a la Ungerboeck

The Golden Code

A quaternary partition

How to increase the coding gain?

The Golden Leech Lattice $\mathcal{G}\Lambda_{24}$

A trellis-coded Golden modulation

The Leech lattice $\mathcal{G}\Lambda_{24}$ (*simulations*)

Simulation results

Figure: $\mathcal{G}\Lambda_{24}$ versus Golden Code (12 bits p.c.u.)

Coding the Golden Code

D. Champion, J.-C. Belfiore, G. Rekaya and E. Viterbo

Introduction

Outer-Coded Space-Time Block Codes

Code construction a la Ingerboeck

he Golden Code

A quaternary partition

How to increase the coding gain?

The Golden Leech Lattice $\mathcal{G}\Lambda_{24}$

A trellis-coded Golden modulation

Outline

Coding the Golden Code

D. Champion, J.-C. Belfiore, G. Rekaya and E. Viterbo

Introduction

Outer-Coded Space-Time Block Codes

Code construction a la Ungerboeck

The Golden Code

A quaternary partition

How to increase the coding gain?

The Golden Leech Lattice GA₂₄

A trellis-coded Golden modulation

Code and simulations

- Outer-Coded Space-Time Block Codes
 - The quasi static fading channel
 - The inner/outer codes
- 2 Code construction a la Ungerboeck
 - ${\scriptstyle \bullet}$ An example in ${\mathbb Z}$
 - Another example
- The Golden Code
- A quaternary partition
 - The partitionning ideal
 - The Gosset Lattice E₈
- How to increase the coding gain?
-) The Golden Leech Lattice $\mathscr{G}\Lambda_{24}$

The partition

Partition Chain of ${\mathscr G}$

Figure: Partition chain for the trellis construction

Coding the Golden Code

Code

- With a 4-state code, we can achieve 1.5dB gain
- With a 16-state code, it is possible to achieve 3dB gain

Bit c_0 is set to 0.

General Coding gain

In general, to achieve 1.5 rdB asymptotic gain compared to the Golden code, we need a trellis with 2^{2r} state.

Coding the Golden Code

D. Champion, J.-C. Belfiore, G. Rekaya and E. Viterbo

Introduction

Outer-Coded Space-Time Block Codes

Code construction a la Ungerboeck

The Golden Code

A quaternary partition

How to increase the coding gain?

The Golden Leech Lattice GA₂₄

A trellis-coded Golden modulation

Code and simulations

Code

- With a 4-state code, we can achieve 1.5dB gain
- With a 16-state code, it is possible to achieve 3dB gain

Bit c_0 is set to 0.

General Coding gain

In general, to achieve 1.5 rdB asymptotic gain compared to the Golden code, we need a trellis with 2^{2r} state.

Coding the Golden Code

D. Champion, J.-C. Belfiore, G. Rekaya and E. Viterbo

Introduction

Outer-Coded Space-Time Block Codes

Code construction a la Ungerboeck

The Golden Code

A quaternary partition

How to increase the coding gain?

The Golden Leech Lattice GA₂₄

A trellis-coded Golden modulation

Code and simulations

Belfiore, G. Rekava and E. Viterbo

Code and simulations

D. Champion, J.-C. Belfiore, G. Rekaya and E. Viterbo

Introduction

Outer-Coded Space-Time Block Codes

Code construction a la Ungerboeck

The Golden Code

A quaternary partition

How to increase the coding gain?

The Golden Leech Lattice GA₂₄

A trellis-coded Golden modulation

- Lots of unsolved problems (roles of Euclidean distances and determinants, link with capacity approaching codes, new mappings, ...)
- But this first attempt gives encouraging results
- Generalization to other division algebras (perfect space-time block codes)

D. Champion, J.-C. Belfiore, G. Rekaya and E. Viterbo

Introduction

Outer-Coded Space-Time Block Codes

Code construction a la Ungerboeck

The Golden Code

A quaternary partition

How to increase the coding gain?

The Golden Leech Lattice GA₂₄

A trellis-coded Golden modulation

- Lots of unsolved problems (roles of Euclidean distances and determinants, link with capacity approaching codes, new mappings, ...)
- But this first attempt gives encouraging results
- Generalization to other division algebras (perfect space-time block codes)

D. Champion, J.-C. Belfiore, G. Rekaya and E. Viterbo

Introduction

Outer-Coded Space-Time Block Codes

Code construction a la Ungerboeck

The Golden Code

A quaternary partition

How to increase the coding gain?

The Golden Leech Lattice G∧₂₄

A trellis-coded Golden modulation

- Lots of unsolved problems (roles of Euclidean distances and determinants, link with capacity approaching codes, new mappings, ...)
- But this first attempt gives encouraging results
- Generalization to other division algebras (perfect space-time block codes)

Thank you for your attention!