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Chapter 1

Preliminary Background and
Definitions

1.1 Introduction

Elliptic curve cryptography is now widely being used in designing many cryptographic protocols.
One of the main properties that is used in overwhelming number of protocols is the (modified)
WEeil or Tate pairing. Pairing-based protocols are used in a variety of protocols and pairing has
found applications in the solution of ID-based cryptograhic schemes and short signature schemes.
Although elliptic curves have other uses in cryptography ( like the ElGamal encryption based on
the hardness of discrete log problem in elliptic curve groups) we would mainly concentrate on
pairing-based cryptography. (For more on elliptic curve cryptography see e.g. [35]).

We first include some background material on elliptic curves. We then concentrate on speci-
fying several versions of Diffie-Hellman problems. Security of various protocols are based on the
hardness of these problems. We also deal with the security notion and security models for different
cryptographic primitives.

1.2 Elementary Concepts on Elliptic Curves

Let K be a field and K its algebraic closure. An elliptic curve over K is defined by a Weierstrass
equation

E/K:y2+a1$y+a3y = 234 a9x? + auz + ag

where a1, as, a3, a4, ag € K and there are no “singular points”. If L D K, then the set of L-rational
points on F is

E(L)={(z,y) eLX L:y’+aizy+asy = z°+asa’+asz+ag}U{0O},



where O is a special point , called the point at infinity. If L D K, then E(L) D E(K). We denote
E(K) by E. Simplified Weierstrass equation is as follows.

Case 1: If char(K) # 2,3, then the equation simplifies to y> = z* 4+ az + b, a,b € K and

4a® + 270 # 0.

Case 2: If char(K) = 2, then the equation simplifies to

y? +xy = 2> +ax’ + b, a,b € K, b# 0, non-supersingular, or
y?+cy=x34+ax+b, a,bc€ K, c#0, supersingular.

For any L D K, the set E(L) is an abelian group under the “chord-and-tangent law”. Consider
E/K :y* = 23 4+ az + b. Addition formulae are as follows:

1.

AT ol R

P+0O=0+P=P, foral Pec E(L).

-0=0.

If P=(z,y) € E(L), then —P = (z, —y).

IfQ=—P, then P+ Q = O,

If P = (z1,51) € E(L), @ = (z2,52) € E(L), P # —Q, then P + Q = (z3,y3), where

3 =N — 1 — 29, y3 = Az — 73) — y1, and

A o= LW ifp£Q;

T2 —-T1

3z? .
A= P =Q.

For the purpose of cryptography, assume henceforth that K = IF, i.e. the finite field of character-
istic p and of order ¢ = p™,m odd and K = Um>1IFgm. The following are three important results
on the group order of elliptic curve groups.

Theorem 1.2.1 (Hasse’s Theorem) #E(IFy) = q+ 1 —t, |t| < 2,/q. Consequently, #E(IF;) = q.

Theorem 1.2.2 (Schoof’s Algorithm) #E(IF,) can be computed in polynomial time.

Theorem 1.2.3 (Weil Theorem) Lett = g+ 1—#E(IF,). Let o, B be complex roots of T? —tT+q €
Z|T). Then #E(F ) =q¢" +1—of —p* for all k > 1.

The structure of elliptic curve groups is summarized by the following results.

— Let E be an elliptic curve defined over IF,. Then E(IF,) = Z,,, ® Z,,,, where na|n; and na|(¢—1).

— E(IF,) is cyclic if and only if ny = 1.

— P € E is an n-torsion point if nP = O and E[n] is the set of all n-torsion points.

— If ged(n, q) =1, then E[n| = Z, & Z,.



1.2.1 Supersingular Elliptic Curves
An elliptic curve E/IF, is supersingular if p|t where ¢t = ¢+ 1 — #E(IF,).

Theorem 1.2.4 (Waterhouse) E/IF, is supersingular if and only if t> = 0,q,2q,3q or 4q. The
group structure is given by the following result.

Theorem 1.2.5 (Schoof) Let E/TF, be supersingular with t = ¢+ 1 — #E(IF,). Then

~N

. If t? = q,2q or 3q, then E(IF,) is cyclic.

NS

Cft? =4q and t = 2\/q, then E(F,) = Z 4 1 ® Z jq-1.

o

L Ift* =4q and t = —2,/q, then E(Fy) = Z 4101 ® Z 41

B

. Ift =0 and ¢ # 3 mod 4, then E(IF,) is cyclic.

v

. Ift =0 and ¢ = 3 mod 4, then E(IF,) is cyclic or E(IF;) = Z¢11 & Z».
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1.2.2 Divisors and Weil Pairing

Let E be an elliptic curve defined over a field IF, and given by the equation C(z,y) = 0, where
C(xz,y) is the polynomial defining E. We consider the set of IF »-rational points of E. The group
of divisors of E(IF») is the free abelian group generated by the points of E(IF,»). Thus any divisor
D is of the form

D = > np(P).

PeE(IF n)

where np € Z. The support of a divisor D is the set of points {P € E|np # 0}. We will only
consider zero divisors, i.e., divisors where > np = 0.

A rational function f on E is an element of the field of fractions of the ring IF [z, y]/(C(z,v)).
If P = (z,y), then by f(P) we mean f(z,y). The divisor of a rational function f is defined by

div(f) = Y ordp(f)(P)

peE(IF )

where ordp(f) is the order of the zero/pole that f has at P. A divisor D is said to be principal if
D = div(f), for a rational function f.

Theorem 1.2.6 A divisor D = ZPeE(IF ") np(P) is principal if and only if
q

1. > np=0 and



2. > npP =0.
Two divisors Dy and Ds are said to be equivalent (D1 ~ Ds) if Dy — Dy is principal.

Theorem 1.2.7 Any zero divisor D = Y np(P) is equivalent to a (unique) divisor of the form
(@) — (O) for some Q € E(IF4n).

Given a rational function f and a zero divisor D = Y np(P), define

foy = I r@ee

PeE(IF n)
Now we define the important notion of Weil pairing.

Definition 1.2.8 Let P,Q € E[n], the subset of all n-torsion points of the IF ;-rational points of an
elliptic curve E defined over IFy. Let Dp be a divisor which is equivalent to (P) — (O). Then nDp
is principal and hence there exists a rational function fp such that div(fp) = nDp. Define Dg and
fo analogously. Let Dp and Dg have disjoint support. Then Weil pairing e(P, Q) is defined as

fr(Dgq)

(PQ) = Dy

(One can define another pairing function, called Tate pairing [5, 31, 29](cf chapter 3),with properties
very similar to the Weil pairing).

1.2.3 Weil Pairing and Bilinear Map

Let E be an elliptic curve defined over IFy. Let n be an integer with ged(n,q) =1 and IF r be the
smallest extension of IF, such that E[n] C E(IF ). (This implies that n?|#E(FF ;) and n|(¢* —1).)
Let yin, be the subgroup of order n in IF;,. Then Weil pairing € is a map € : E[n] x E[n] — p, with
the following properties.

1. (Bilinearity) : For all R, S,T € E[n],

(a) &S + R, T) = &(S,T) - &(R,T),
(b) &(S,T + R) = &(S,T) - (S, R).

[N

. (Non-degeneracy) : Let S € E[n]. If e(S,T) =1 for all T € E[n], then § = O.

w

. (Computability) : € can be computed efficiently.
4. (Identity) : €(S,S) =1 for all S € En].

ot

. (Alternation) : €(S,T) = e(T,S) ..



The property of bilinearity defined above implies the following: é(aS,bT) = &(S,T)% for all
S, T € Gy and a,b € Z.

Lemma 1.2.9 Let P € E[n] have order n. Then Py, Py € E[n] are in the same coset of (P) within
E[n] if and only if (P, Py) = €(P, P»).

Theorem 1.2.10 Let P € E[n| have order n. Let R € E[n] be such that é(P, R) has order n.
Then f: (P) — u, defined by f(Q) = e(Q, R) is a group isomorphism.

As a consequence of the above, we have the following important fact.

En]/(P) = Zn = pin.
We next define bilinear pairing or bilinear map.

Definition 1.2.11 Let G1,G2 be two groups of the some large prime order q. We view Gy as
an additive group and Go as a multiplicative group. Let P be an arbitrary generator of Gy. (aP
denotes P added to itself a times). Assume that discrete logarithm problem (DLP) is hard in both
G1 and G3. A mapping e : G? — Gy satisfying the following properties is called a cryptographic
bilinear map.

(Bilinearity) : e(aP,bQ) = e(P, Q) for all P,Q € Gy and a,b € Zy.
(Non-degeneracy): e(P,P) # 1. i.e. if P is a generator of G1, then e(P, P) is a generator of Gs.
(Computability) : There exists an efficient algorithm to compute e(P,Q) for all P,Q € G;.

Modified Weil Pairing [17] and Tate Pairing [5], [31] are examples of cryptographic bilinear
maps. Currently, active research is being carried out to obtain efficient algorithms to compute
pairings.

Following are some important properties of bilinear pairings.

1. e(S,0) =1 and e(0,S) =1 for all S € G;.
2. e(S,—T) =e(=S5,T) =e(S,T)~"! for all S,T € G1.
3. e(S,T) =e(T,S) for all S,T € G;.
4. Let S € Gy. If e(S,T) =1 for all T € Gy, then S = O.
We now illustrate by an example how bilinear map can be derived from Weil pairing. We fix a

supersingular curve E over IF,, p > 3 and p = 2 mod 3, given by y?> = 23 + 1. E(IF,) contains
p + 1 points. Let P € E(IF,) be a point of order n where n|(p + 1). The set E(IF,2) contains a
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point @ of order n which is linearly independent of the points in E(IF,). Hence E(IF,2) contains a
subgroup isomorphic to Z,>. Denote this by E[n]. Let G; the subgroup of points generated by P.
Let ¢ € IF)2 be a non-trivial root of 234+ 1= 0mod p. Then ¢(z,y) = (¢z,y) is an automorphism
on E. The map ¢ is called a distortion map.

Note : E[n] is the group generated by P and ¢(P).

Let G2 be the subgroup of IF, of order n and € : E[n] x E[n] — G be the Weil pairing map.
The modified Weil pairing e : G1 X G1 — G5 is defined by

e(P,Q) = e(P,¢(Q)).

It is not hard to check that e is a cryptographic bilinear pairing.

Henceforth, we take G, Gs, e as defined in Definition 1.2.11 for the rest of the article unless
mentioned otherwise.

For a set .S, we use the notation a€rS or a «— S to mean that a is randomly chosen from S
and the notation | to denote concatenation of data items (c¢f. A|B|C). Unless otherwise stated,
we assume that the messages are arbitrary length finite binary strings and the above setup holds
for the cryptographic protocols throughout the presentation. We define a function f(m) to be
negligible if it is less than # for every fixed [ > 0 and sufficiently large integer m.

1.3 Diffie-Hellman Problems

1. Computational Diffie-Hellman (CDH) problem in G :
Instance : (P,aP,bP) for some a,b € Z.
Output : abP.

The success probability of any probabilistic, polynomial-time algorithm A in solving CDH
problem in G is defined to be :

SuccSOH = Prob[A(P,aP,bP) = abP : a,beR 7).
CDH

CDH assumption : For every probabilistic, polynomial-time algorithm A, Succ i, is negligi-
ble.

2. Decisional Diffie-Hellman (DDH) problem in G :
Instance : (P, aP,bP,cP) for some a,b,c € Z;.
QOutput : yes if ¢ = ab mod ¢ and output no otherwise.
Comments : DDH problem in G is easy. DDH problem in GG1 can be solved in polynomial
time by verifying e(aP,bP) = e(P,cP). This is the well known MOV reduction [17] : The
DLP in (G is no harder than the DLP in G5.



The advantage of any probabilistic, polynomial-time, 0/1-valued algorithm A in solving DDH
problem in some group G =< P > of order ¢ is defined to be :

AdvBPH = |Prob[A(P, aP,bP, cP) = 1] — Prob[A(P,aP,bP,abP) = 1] : a,b, c€ g Z*|.
A,G q

DDH assumption in G: For every probabilistic, polynomial-time, 0/1-valued algorithm A,

AdvOR is negligible.

Gap Diffie-Hellman (GDH) group : A prime order group G; is a GDH group if there exists
an efficient polynomial-time algorithm which solves the DDH problem in GG; and there is no
probabilistic polynomial-time algorithm which solves the CDH problem with non-negligible
probability of success. The domains of bilinear pairings provide examples of GDH groups.
The MOV reduction [42] essentially introduces a method to solve DDH in G, whereas there
is no known efficient algorithm for solving CDH in G, in general.

. Weak Diffie-Hellman (W-DH) problem in a group G; :
Instance : (P, Q,sP) for P,Q € G and for some s € Z.
Output : sQ.

Comments : W-DH problem is equivalent to CDH problem.

. Reversion of CDH (RCDH) problem in G :

Instance : (P,aP,rP) for some a,r € Z.

Output : bP,b € Z; satisfying a = rb mod g.

Comments : RCDH problem is equivalent to CDH problem in G; [25].

. (k + 1)-exponent problem ((k + 1)-EP) in G;:

Instance : (P,yP,y*P,...,y*P)for a random y € Zy.
Output : yF+1P.

Comments : (k + 1)-EP is no harder than CDH problem.

. k-Diffie-Hellman Inversion (k-DHI) problem in G :

Instance : (P,yP,y*P,...,y*P) for a random y € Zy.

Output : éP.

Comments : k-DHI problem is polynomially equivalent to (k + 1)-EP.

. k-Strong Diffie-Hellman (k-SDH) problem in G :

Instance : (P,yP,y*P,...,y*P) for a random y € Zy.

Output : (e, ﬁP) where ¢ € Z;.

Comments : k-SDH problem is a stronger version of k-DHI problem. When ¢ is pre-specified,
k-SDH problem is polynomially equivalent to k-DHI. £-SDH problem has a simple random
self reduction in G;.



1.4 Bilinear Diffie-Hellman Problems

1. Bilinear Diffie-Hellman (BDH) problem in (G1, G2, e€) :
Instance : (P,aP,bP,cP) for some a,b,c € Zj.
Output : e(P, P)**,

2. Decisional Bilinear Diffie-Hellman (DBDH) problem in (G1, G2, e) :
Instance : (P,aP,bP,cP,r) for some a,b,cErZ;, reErGo.
Output : yes if r = e(P, P)®® and output no otherwise.

3. Decisional Hash Bilinear Diffie-Hellman (DHBDH) problem in (G1, G2, e) :
Instance : (P,aP,bP, cP,r) for some a,b,c,r € Z; and a one way hash function H : G2 — Z.
Output : yes if r = H(e(P, P)®°) mod ¢ and output no otherwise.
Comments : The DHBDH problem in (G1,G2,¢e) is a hash version of the decisional BDH
problem in (G1,Ga,e) .

4. k-Bilinear Diffie-Hellman Inversion (k-BDHI) problem in (G1,G2,e€) :
Instance : (P,yP,y*P,...,y*P) for some y € Zy.

Output : e(P, P)i € Go.
Comments : 1-BDHI assumption is polynomially equivalent to the standard BDH assump-
tion. It is not known if the k-BDHI assumption, for k£ > 1, is polynomially equivalent to BDH.

5. k-Decisional Bilinear Diffie-Hellman Inversion (k-DBDHI) problem in (G1,G2,e€) :
Instance : (P,yP,y*P,...,y*P,r) for some y € Zq, TERGH.

1
Output : yes if r = e(P, P)v € G and output no otherwise.

1.5 Security Models

In this section, we briefly review the security models for the three fundamental cryptographic prim-
itives: Encryption, Digital Signature and Key Agreement. There are several variants of public key
encryption: ID-based encryption (IBE), Searchable Public Key Encryption (SPKE), Hierarchical
ID-based Encryption (HIDE); and depending on the nature and requirement of practical applica-
tions, there are a wide variety of signature schemes: Blind signature, Multi-signature, Aggregate
signature, Verifiably encrypted signature, Ring signature, Group signature, Unique signature etc.
Apart from these three basic primitives, there are protocol designs for Signcryption, Threshold
decryption, Key sharing, Identification schemes, Chameleon hashes etc. Describing the security
notions and the security models of each of them is beyond the scope.



1.5.1 Security Model for ID-Based Encryption Schemes

The standard notion of security for public key encryption scheme is the indistinguishability of
encryptions against adaptive chosen ciphertext attack (IND-CCA) [8, 45].

Boneh and Franklin [17] strengthened the IND-CCA model to IND-ID-CCA model which is the
standard notion of security for ID-based encryption schemes. In an ID-based encryption scheme
there are four algorithms.

1. Setup : Creates system parameters and master key.

2. Extract : Uses master key to generate the private key corresponding to an arbitrary public
key string ID.

3. Encrypt : Encrypts messages using the public key ID.

4. Decrypt : Decrypts the message using the corresponding private key of ID.

The IND-ID-CCA model deals with an adversary who possesses private keys corresponding to
identities of its choice 1Dy, ..., 1D, and attacks an identity ID in an ID-based system. Consider the
following game between the challenger and an adversary A.

Setup: The challenger takes a security parameter k£ and runs the Setup algorithm. It gives the
adversary the resulting system parameters params and keeps the master key secret to itself.

Phase 1: The adversary issues queries ¢y, ..., gy Where g; is one of the following two queries.

— Extraction query (ID;). The challenger responds by running algorithm Extract to generate
the private key d; corresponding to the public key (ID;). It then sends d; to the adversary.

— Decryption query (ID;,C;). The challenger responds by running algorithm Extract to
generate the private key d; corresponding to ID;. It then runs algorithm Decrypt to
decrypt the ciphertext C; using the private key d;. It sends the resulting plaintext to
the adversary.

These queries may be asked adaptively, that is, each query ¢; may depend on the replies to
qiy---,qi—1-

Challenge: Once the adversary decides that Phase 1 is over, it outputs two equal length
plaintext My, M1, an identity ID on which it wishes to be challenged. The only constraint is
that ID did not appear in any private key extraction queries in Phase 1. The challenger picks
a random bit b € {0, 1} and sets C = Encrypt(params, ID, M;). It sends C as the challenge to
the adversary.

Phase 2: The adversary issues more queries ¢, 11, - ..,q, Where g; is one of the following two
queries.
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— Extraction query (ID;) where ID; # ID. Challenger responds as in Phase 1.
— Decryption query (ID;, C;) # (ID, C'). Challenger responds as in Phase 1.

Guess: Finally, the adversary outputs a guess b’ € {0,1} and wins the game if b = b'.

We refer to such an adversary A as an IND-ID-CCA adversary. The advantage for the adversary
A in attacking the scheme is defined as
1
Adv(A) = |Prob[b = b'] — 3
We say that an identity based scheme is semantically secure against an adaptive chosen ciphertext
attack (IND-ID-CCA) if no polynomially bounded adversary A has non-negligible advantage against
the challenger.

The IND-ID-CCA model is the strongest acceptable notion of security and the security model
for other public key encryption schemes (e.g. SPKE, HIDE etc.) are based on it. A less stronger
security notion of a public key encryption is chosen plaintext attack (IND-CPA) where the queries
are with chosen plaintexts nad the adversary is not allowed to perform Phase 2.

Boneh and Boyen [14] gave Selective ID model, which is slightly weaker than the model described
above. In this model the adversary must commit ahead of the time to the identity that it intends
to attack, whereas in the standard model described above, the adversary is allowed to choose this
identity adaptively.

The security notion for (ID-based) threshold decryption is a modified extension of the security
model described above in the threshold setting. More details can be found in [3].

1.5.2 Security Model for Digital Signature Schemes

Security against existential forgery under adaptive chosen message attack is the strongest notion
of security for digital signature schemes. This was defined by Goldwasser, Micali and Rivest [33].

A standard digital signature scheme DSig = (G, K, S, V) consists of four algorithms.
1. G : generates randomly system parameters params.
2. K : generates randomly public/secret key pair PK, SK of a signer.

3. § : signature generation algorithm that generates a signature on a given message m using
the secret key SK of a signer.

4. V : signature verification algorithm that checks the validity of a signature on a given message
using the public key of a signer.

We say that the signature scheme DSig is existentially unforgeable under an adaptive chosen
message attack if it is infeasible for a forger who only knows the public key to produce a valid
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message-signature pair after obtaining polynomially many signatures on messages of its choice
from the signer. The advantage in existentially forging a signature of a forger algorithm F, given
access of a signing oracle S, is defined to be

ADVpsig (F) := Prob[V(PK,m, o) = 1: (PK,SK) & K, (m, o) & F5(PK)].

The probability is taken over the coin tosses of the key generation algorithm and of the forger.
Here the forger F is allowed to query the signing oracle adaptively: any of its query may depend
on previous answers, but it may not emit a signature for a message on which it had previously
queried the oracle. The forger may additionally have access to a hash oracle, which can be used as
a random oracle.

Formally a signature scheme is secure against existential forgery on adaptive chosen-message
attacks if for every probabilistic polynomial-time forger algorithm F, there does not exist a non-
negligible probability € such that ADVpsig(F) > €.

We now describe the security notion of a Multi-signature scheme based on the basic digital
signature scheme DSig.

Security of Multi-signature

A multi-signature scheme consists of three algorithms MSig = (MK, MS, MV), where MK
is the key generation algorithm, MS is the multi-signature generation algorithm and MYV
is the multi-signature verification algorithm. We say that a multi-signature scheme is secure
against exzistential forgery under chosen message attack if the following task is computationally
infeasible for the adversary:

The adversary is given a public key PKy; then outputs (n — 1) pairs of public and secret keys
PKo,...,PK, and SKg, ..., SK, respectively; is allowed to run the multi-signature generation
algorithm MS with user Uy having public key PK; on messages of the adversary’s choosing;
finally has to produce a message m, a subset L of users with U; € L and a signature o such
that MV returns 1 on input (L, m, o) and U; did not participate in multi-signature generation
algorithm for message m.

The multi-signature scheme MSig is said to be secure if there is no probabilistic, polynomial-
time forger with non-negligible advantage.

1.5.3 Model for Key Agreement Schemes
Security Model for Key Agreement

A sound formalization of security model for the authenticated key agreement is introduced by
Bresson et al. [20, 21, 22]. These works are based on the initial work of Bellare and Rogaway [9]
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and Bellare, Canetti and Krawczyk [7]. We describe below the adversarial model following Bresson
et al.’s [20] formal security model which is more general in the sense that it covers authenticated
key agreement in group setting and suited for dynamic groups.

Let P = {Uy,...,U,} be a set of n (fixed) users or participants. At any point of time, any
subset of P may decide to establish a session key. Thus a user can execute the protocol for group
key agreement several times with different partners, can join or leave the group at his desire by
executing the protocols for Join or Leave. We identify the execution of protocols for key agreement,
member(s) join and member(s) leave as different sessions. The adversarial model consists of allowing
each user an unlimited number of instances with which it executes the protocol for key agreement
or inclusion or exclusion of a user or a set of users. We assume adversary never participates as
a user in the protocol. This adversarial model allows concurrent execution of the protocol. The
interaction between the adversary A and the protocol participants occur only via oracle queries,
which model the adversary’s capabilities in a real attack. Let S,S57,.52 be three sets defined as:

S = {(‘/lail)a sy (‘/lail)}a SI = {(W+1,il+1), sy (‘/l+kail+k)}7‘92 = {(‘/jlaiﬁ)a sy (ijkazjk)}

where {Vi,...,V;} is any non-empty subset of P. We will require the following notations.
HiU : i-th instance of user U.
ski; @ session key after execution of the protocol by IIf;.
sidy; : session identity for instance IIj;. We set sidy; = S = {(U1,41), ..., (Uk, ix)}
such that (U,i) € S and H%}l, . ,Hzl}fk wish to agree upon a common key.

pid}; :  partner identity for instance I1¢;, defined by pid;, = {U1,..., Ui},
such that (Uj,i;) € sidy; for all 1 < j < k.

acczi] :  0/1-valued variable which is set to be 1 by Hli, upon normal termination of
the session and 0 otherwise.

We assume that the adversary has complete control over all communications in the network.
All information that the adversary gets to see is written in a transcript. So a transcript consists of
all the public information flowing across the network. The following oracles model an adversary’s
interaction with the users in the network:

— Send(U,i,m) : This query models an active attack, in which the adversary may intercept a
message and then either modify it, create a new one or simply forward it to the intended
participant. The output of the query is the reply (if any) generated by the instance I1%; upon
receipt of message m. The adversary is allowed to prompt the unused instance Hli, to initiate
the protocol with partners Us,...,U;,l < n, by invoking Send(U, i, (Us, ..., U;)).

— Execute(S) : This query models passive attacks in which the attacker eavesdrops on honest
execution of group key agreement protocol among unused instances HZVll, . ,Hﬁ/ll and outputs
the transcript of the execution. A transcript consists of the messages that were exchanged
during the honest execution of the protocol.
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— Join(S,S1) : This query models the insertion of user instances Hi,llill, ... ,Hi,llikk in the group

{Hi/ll, . ,Hi/ll} for which Execute have already been queried. The output of this query is the
transcript generated by the invocation of algorithm Join. If Execute(S) has not taken place,
then the adversary is given no output.
— Leave(S,S3) : This query models the removal of user instances H%ll - ,H%@k
{HZVII,...HZVII}. If Execute(S) has not taken place, then the adversary is given no output.
Otherwise, algorithm Leave is invoked. The adversary is given the transcript generated by

the honest execution of procedure Leave.

from the group

— Reveal(U, ) : This unconditionally outputs session key sk%, if it has previously been accepted by
IT7;, otherwise a value NULL is returned. This query models the misuse of the session keys,
i.e known session key attack.

— Corrupt(U) : This outputs the long-term secret key (if any) of player U. The adversarial model
that we adopt is a weak-corruption model in the sense that only the long-term secret keys
are compromised, but the ephemeral keys or the internal data of the protocol participants
are not corrupted. This query models (perfect) forward secrecy.

— Test(U, 1) : This query is allowed only once, at any time during the adversary’s execution. A bit
b € {0, 1} is chosen uniformly at random. The adversary is given sk’ﬁ if b =1, and a random
session key if b = 0. This oracle computes the adversary’s ability to distinguish a real session
key from a random one.

An adversary which has access to the Execute, Join, Leave, Reveal, Corrupt and Test oracles, is
considered to be passive while an active adversary is given access to the Send oracle in addition.
(For static case, there are no Join or Leave queries as a group of fixed size is considered.)

The adversary can ask Send, Execute, Join, Leave, Reveal and Corrupt queries several times,
but Test query is asked only once and on a fresh instance. We say that an instance HiU is fresh
unless either the adversary, at some point, queried Reveal(U,i) or Reveal(U’,5) with U’ € pid};
or the adversary queried Corrupt(V) (with V € pidi;) before a query of the form Send(U,i,*) or
Send(U’, j, ¥) where U’ € pidi;.

Finally adversary outputs a guess bit . Such an adversary is said to win the game if b = ¥/
where b is the hidden bit used by the Test oracle.

Let Succ denote the event that the adversary A wins the game for a protocol XP. We define
Adv 4 xp := |2 Prob[Succ] — 1]

to be the advantage of the adversary A in attacking the protocol XP.

The protocol XP is said to be a secure unauthenticated group key agreement (KA) protocol
if there is no polynomial time passive adversary with non-negligible advantage. In other words,
for every probabilistic, polynomial-time, 0/1 valued algorithm A, Advsxp < ﬁ for every fixed
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L > 0 and sufficiently large integer M. We say that protocol XP is a secure authenticated group
key agreement (AKA) protocol if there is no polynomial time active adversary with non-negligible
advantage.

Next we define

Adv)'Eé(t, qr) := the maximum advantage of any passive adversary attacking
protocol XP, running in time ¢ and making ¢g calls to the
Execute oracle.

AdvRSA(t, qm, qs) := the maximum advantage of any active adversary attacking
protocol XP, running in time ¢ and making gz calls to the
Execute oracle and ¢g calls to the Send oracle.

AvaEA(t, qe,47,491,qs) := the maximum advantage of any active adversary attacking
protocol XP, running in time ¢ and making gz calls to the
Execute oracle, ¢y calls to Join oracle, ¢y, calls to the Leave
oracle and gg calls to the Send oracle.

Remark 1.5.1 Session identity is required to identify a session uniquely and all participants ex-
ecuting a session should hold the same session identity. Conventionally, session identity sid%, for
an instance HZ& is set to be the concatenation of all (broadcasted) messages sent and received by
HiU during its course of execution. This essentially assumes that all the partners of HiU hold the
same concatenation value of sent and received messages which may not be the case in general. Our
definition of session identity is different and can be applied for more general protocols.

Remark 1.5.2 We will make the assumption that in each session at most one instance of each user
participates. Further, an instance of a particular user participates in exactly one session. This is
not a very restrictive assumption, since a user can spawn an instance for each session it participates
in. On the other hand, there is an important consequence of this assumption. Suppose there are
several sessions which are being concurrently executed. Let the session ID’s be sidq,...,sid;. Then
for any instance HiU, there is exactly one j such that (U,i) € sid; and for any j1 # j2, we have
sidj, Nsidj, = 0. Thus at any particular point of time, if we consider the collection of all instances of
all users, then the relation of being in the same session is an equivalence relation whose equivalence
classes are the session IDs. Moreover, an instance HZ& not only knows U, but also the instance
number ¢ — this being achieved by maintaining a counter.
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Chapter 2

Overview of Pairing-Based
Cryptographic Protocols

The bilinear pairing such as Weil pairing or Tate pairing on elliptic curves have many applications
in design of cryptographic protocols. We have tried to cover different cryptographic protocols based
on bilinear pairings which possess proper security proofs in the existing security models.

2.1 Introduction

The concept of identity-based cryptosystem is due to Shamir [48]. Such a scheme has the property
that a user’s public key is an easily calculated function of his identity, while a user’s private key
can be calculated for him by a trusted authority, called private key generator (PKG). The ID-based
public key cryptosystem can be an alternative for certificate-based public key infrastructure (PKI),
especially when efficient key management and moderate security are required.

Earlier bilinear pairings, namely Weil pairing and Tate pairing of algebraic curves were used in
cryptography for the MOV attack [43] using Weil pairing and FR attack [29] using Tate pairing.
These attacks reduce the discrete logarithm problem on some elliptic curves to the discrete logarithm
problem in a finite field. In recent years, bilinear pairings have found positive application in
cryptography to construct new cryptographic primitives.

Protocols from pairings can be broadly classified into two types:

— Construction of primitives which apparently cannot be constructed using other techniques (e.g.
ID-based encryption, non-trivial aggregate signature etc).

— Construction of primitives which can be constructed using other techniques, but for which
pairings provide improved functionality (e.g. Joux’s three-party key agreement, threshold
scheme, searchable public key encryption etc).



Joux [37], in 2000, showed that the Weil pairing can be used in a protocol to construct three-
party one-round Diffie-Hellman key agreement. This was one of the breakthroughs in key agreement
protocols. After this, Boneh and Franklin [17] presented in Crypto 2001 an ID-based encryption
scheme based on properties of bilinear pairings on elliptic curves which is the first fully functional,
efficient and provably secure identity-based encryption scheme. In Asiacrypt 2001, Boneh, Lynn
and Shacham proposed a basic signature scheme using pairing, the BLS [19] scheme, that has
the shortest length among signature schemes in classical cryptography. Subsequently numerous
cryptographic schemes based on BLS signature scheme were proposed.

Apart from the three fundamental cryptographic primitives: encryption, signature and key
agreement, there are protocol designs for signcryption, threshold decryption, key sharing, identifi-
cation scheme, chameleon hashes eic.

Barreto’s pairing based crypto lounge [4] is an excellent compilation of existing work on pairing
based cryptography.

2.2 Encryption Schemes

In identity-based public key encryption, the public key distribution problem is eliminated by making
each user’s public key derivable from some known aspect of his identity, such as his email address.
When Alice wants to send a message to Bob, she simply encrypts her message using Bob’s public
key which she derives from Bob’s identifying information. Bob, after receiving the encrypted
message, obtains his private key from a third party called a Private Key Generator (PKG) after
authenticating himself to PKG and can then decrypt the message. The private key that PKG
generates on Bob’s query is a function of its master key and Bob’s identity.

Shamir [48] introduced this concept of identity-based cryptosystem. The first ID-based encryp-
tion was proposed by Boneh and Franklin [17] in 2001 that uses bilinear pairing.

Let G1,Ga,e be the same as in Definition 1.2.11 of cryptographic bilinear pairings. P is a
generator of the additive group G of order ¢ (a large prime), G9 is a multiplicative group of same
order g and e is the bilinear map from G| x G; — G2. We use these notations throughout.

2.2.1 ID-Based Encryption Scheme
(Boneh, Franklin, [17], 2001)

e Protocol Description :

Setup : Choose s€rZ; and set Py, = sP. Choose cryptographic hash functions H; :
{0,1}* — G7 and Hy : G2 — {0,1}", n is the bit length of messages. The master key is
s and the global public key is Ppy.

Ezxtract : Given a public identity ID € {0, 1}*, compute the public key Q\p = H;(ID) € G
and the private key Sip = sQp- The computation Qip = H;(ID) maps an arbitrary
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string to a point of the group G;. This operation is called Map-to-point and is more
expensive than computation of usual message digest.

Encrypt : Choose a random r € Z;, set the cipher text for the message M to be C' =

(rP, M ® H(gip)) where gip = e(Qip, Ppub)-
Decrypt : Given C = (U, V'), compute V & Hy(e(Sip,U)).

e Assumption :
BDH problem is hard.

e Security :
This is the basic scheme. Security against adaptive chosen cipher text attack in the ran-
dom oracle model under the BDH assumption is obtained after the Fujisaki-Okamoto [30]
transformation.

e Efficiency :

Setup : 1 scalar multiplication in G.
Eztract : 1 Map-to-point hash operation; 1 scalar multiplication in G.

Encrypt : 1 Map-to-point hash operation; 1 scalar multiplication in G1; 1 hash function
(H5) evaluation; 1 XOR operation; 1 pairing computation; 1 group exponent in Gs.

Decrypt : 1 hash function (Hs) evaluation; 1 XOR operation; 1 pairing computation.

2.2.2 Searchable Public Key Encryption

(Boneh, Crescenzo, Ostrovsky, Persiano, [16], 2003)

Suppose Alice wishes to read her email on a number of devices : laptop, desktop, pager, etc. Alice’s
mail gateway is supposed to route email to the appropriate device based on the keywords in the
email. Suppose Bob sends an email with keyword “urgent”. The gateway routes the email to Alice’s
pager, after testing whether the email contains this keyword “urgent” without learning anything
else about the mail. This mechanism is referred to as Searchable Public Key Encryption (SPKE).

To send a message M with keywords Wy,..., W,, Bob sends
Ea,,,(M)|SPKE(Apup, W1)l ... [SPKE(Apup, W)

where E4,, (M) is the encryption of M using Alice’s public key Ay, The point of searchable
encryption is that given SPKE(Ap,, W') and a certain trapdoor Ty (that is given to the gateway
by Alice), the gateway can test whether W = W'. If W # W' the gateway learns nothing more
about W’'.
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A SPKE scheme using bilinear map :

e Protocol Description :

KeyGen : Choose s€rZ, and set Py, = sP. The secret key is s and the public key is Ppyp.
Let K be the set of all keywords and Hy : K — G4, Hy : Gy — Z;‘ be two hash functions.

SPKE : Given a keyword W and the public key Py, choose a random r € Z; and output
(T-Pa HZ(e(Hl(W)a Ppub)r»‘

Trapdoor : Given a keyword W and the secret key s, output Ty = sHy(W).

Test : Given Trapdoor Ty, a SPKE S = (U,V) and the public key Py, test if V' =
Hy(e(Tw,U)). If true, output yes, else output no.

e Assumption :
BDH problem is hard.

e Security :

Semantically secure against a chosen keyword attack in the random oracle model assuming
BDH problem is intractable.

e Efficiency :

KeyGen : 1 scalar multiplication in G;.

SPKE : 1 Map-to-point hash operation; 1 scalar multiplication in G1; 1 hash function (Hs)
evaluation; 1 pairing computation; 1 group exponent in Gs.

Trapdoor : 1 scalar multiplication in Gj.

Test : 1 pairing computation; 1 hash function (Hj) evaluation.

2.2.3 An ID-Based Encryption Scheme Without Random Oracle

(Waters [49], 2005)

e Protocol Description :

Setup : Choose a secret € Z; at random and set P, = aP. Choose P randomly in G;.
Additionally, choose a random value ' € G and a random n-length vector U = (Q;),
whose elements are chosen at random from Gy. The published public parameters are
P,P;,P,,Q" and U and the master secret is aPs.

Extract : Let ID € {0,1}"™ be an n-bit string representing a public identity. Let v; be the
i-th bit of ID and V C {1,...,n} be the set of all ¢ for which v; = 1. Select a random
r € Z,. Output the private key

Sip = (P +7(Q + > Qi),rP).

(1%
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Encrypt : To encrypt a message M € G2 under public identity ID, pick a random ¢ € Z;
and output the cipher test

C= (€(P1,P2)tM, tPat(Ql + ZQZ))
eV

Decrypt : To decrypt a cipher text C = (Cy,Cs,C3) using the private key Sp = (A4, B),

output
e(A, Cs)
Ci———= =M.
! e(B,Cy)
e Assumption :
DBDH problem is hard.

e Security :
Secure against adaptive chosen ciphertext attacks without the random oracle model.

e Efficiency :
If the value e(Py, P,) is cached then encryption requires on average § (and at most n) group
operations in G1, 2 exponentiations in G, 1 exponentiation in G and 1 group operation in
G2. Decryption requires 2 bilinear map computation, 1 group operation in G2 and 1 inversion
in GQ.

Note : Boneh and Boyen [14] presented an identity-based encryption scheme that is provably secure
in the selective-ID model without random oracle. In [15], Boneh and Boyen describe a scheme that
is fully secure without random oracles, but is too inefficient to be of practical use. The construction
of Waters [49] presented here is a modified version of Boneh and Boyen’s scheme in [14] that makes
the identity-based scheme fully secure and is efficient as compared to the scheme in [15]. Water’s
scheme has been generalized by Chatterjee and Sarkar [23] that has shorter public parameters.

2.3 Signature Schemes

Digital signatures are one of the most important cryptographic primitives. In traditional public key
signature algorithms, the binding between the public key and the identity of the signer is obtained
via a digital certificate. Shamir [48] first noticed that it would be more efficient if there was no need
for such bindings, in that case given the user’s identity, the public key could be easily derived using
some public deterministic algorithm. This makes efficient ID-based signature schemes desirable. In
ID-based signature schemes, verification function is easily obtained from the identity, possibly the
same key and the same underlying computation primitives can be used. Boneh, Lynn, Shacham [19]
proposed a pairing based short signature scheme in 2001. This was followed by a large number of
pairing based signature schemes for different applications.
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2.3.1 BLS Short Signature Scheme

(Boneh, Lynn, Shacham, [19], 2001)

Short signatures are needed in environments with space and bandwidth constraints. For example,
when a human is asked to type in a digital signature the shortest possible signatures are desired.
Two most frequently used signature schemes are RSA and DSA. If one uses 1024 bit modulus,
RSA signatures are 1024 bit long and standard DSA or ECDSA (elliptic curve DSA) signatures are
320 bit long. These signatures are too long to be keyed. The following signature scheme provides
short signature of length approximately 160 bits with a level of security similar to 320 bit DSA
signatures.

e Protocol Description :

KeyGen : Let H : {0,1}* — G be a Map-to-point hash function. The secret key is TERZ,
and the public key is P,,; = P for a signer.

Sign : Given secret key z and a message m € {0,1}*, compute the signature o = zH (m).

Verify : Given public key P,,, = xP, a message m and a signature o, verify e(P,0) =
e(Ppuba H(m))

e Assumption :
Existence of GDH group.

e Security :
Secure against existential forgery under adaptive chosen message attack in the random oracle
model assuming CDH problem is hard in G;.

e Efficiency :

KeyGen : 1 scalar multiplication in G;.
Sign : 1 Map-to-point hash operation; 1 scalar multiplication in Gj.

Verify : 1 Map-to-point hash operation; 2 pairing computations.

2.3.2 Multi signature Scheme

(Boldyreva, [11], 2003)

A multi-signature scheme allows any subgroup of a group of users to jointly sign a document such
that a verifier is convinced that each member of the subgroup participated in signing.

e Protocol Description :
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KeyGen : Let H;{0,1}* — G be a Map-to-point hash function. Consider a set U of n users.
The secret key is z;€gZ, and the public key is Pup, = z; P, for user u; € U,1 <i < n.

Multi-signature Creation : Any user u; € U with secret key x; that wishes to participate
in signing a message m € {0,1}*, computes o; = z;H(m) and sends it to a designated
signer D (which can be implemented by any user). Let L = {u;,,...u;} C U be a subset
of users contributed to the signing. After getting all the o; for j € J = {i1,...,4}, D
computes the multi-signature o = 3", ; 0; and outputs (m, L, o).

Multi-signature Verification : Given T = (m, L,o) and the list of public keys of the users
in L: By, = zjPj € J = {i1,..., i}, the verifier computes Ppyp, = 3 ey Pyoup, =
> jes v P and verifies e(P, o) = e(Pyup, , H(m)).

e Assumption :
Existence of GDH group.

e Security :
Secure against existential forgery under chosen message attack in the random oracle model
under the assumption that the CDH problem is hard in G;.

e Efficiency :

KeyGen : n scalar multiplications in G.

Multi-signature Creation : If [ < n users are participating in signing, then 1 Map-to-point
hash operation; [ scalar multiplications in G1; (I — 1) additions in G;.

Multi-signature Verification : If number of users in the list L is [, then (I — 1) additions in
(G1; 2 pairing computations.

2.3.3 Aggregate Signature

(Boneh, Gentry, Lynn, Shacham [18], 2003)

An aggregate signature scheme is a digital signature that supports aggregation : Given n signatures
on n distinct messages m; from n distinct users 7, 1 < ¢ < n, it is possible to aggregate all
these signatures into a single short signature. This single signature and the n original messages
m;, 1 < i < n will convince the verifier that user i indeed signed message m; , 1 <1i < n.

e Protocol Description :

KeyGen : Consider the Co-GDH setup. Let U be a set of n users and H : {0,1}* — G5 be a
Map-to-point hash function. The secret key is z;€gZ; and the public key is Py, = ;P
for user u; € U,1 <1 < n.

Aggregation : User u; € U signs message m; € {0,1}* to generate BLS signature o; =
x;H(m;), 1 <i < n. The messages m; must be all distinct. The aggregate signature is
o= (01+02+"'+0n) € Go.
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Aggregate verification : Given public keys Py, distinct messages m;,1 < i < n and an
aggregate signature o, verify e(Pr, o) = [} e(Ppup,, H(m;)).

e Assumption :
Existence of Co-GDH group and a bilinear map.

e Security :

Secure against existential forgery in the aggregate chosen key model assuming that the Co-
CDH problem is hard in (G, G2).

e Efficiency :

KeyGen : n scalar multiplications in G.
Aggregation : n Map-to-point hash operations; n scalar multiplications in Go; (n — 1) addi-
tions in Go.

Aggregate verification : n Map-to-point hash operations; (n + 1) pairing computations.

2.3.4 ZSS Short Signature Scheme

(Zhang, Safavi-Naini, Susilo, [50], 2004)
e Protocol Description :

KeyGen : Let H : {0,1}* — Z7 be a hash function. The secret key is x€rZ; and the public
key is Py, = o P for a signer.

Sign : Given a secret key z and a message m € {0, 1}*, compute signature S = mP.

Verify : Given a public key P,,;, a message m and a signature S, verify e(H (m)P+Ppyp, S) =
e(P, P).

e Assumption :
(k + 1)-exponent problem is hard.

e Security :
Existentially unforgeable under an adaptive chosen message attack in the random oracle
model assuming that (k 4+ 1)-exponent problem is hard.

e Efficiency :

KeyGen : 1 scalar multiplication in G;.

Sign : 1 inversion in Z;; 1 hash function (H) evaluation; 1 scalar multiplication in G1.

Verify : 2 pairing computation (one of which, e(P, P) can be precomputed); 1 scalar multi-
plication in G; 1 hash function (H) evaluation; 1 addition in G.
This scheme is more efficient than BLS scheme as it requires less pairing computation
and no computation of the expensive special hash function Map-to-point that encodes
finite strings to elements of group G;.
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2.3.5 ID-Based Signature from Pairing

(Hess, [36], 2002)

e Protocol Description :

Setup : Choose s€rZ, and set Py, = sP. The master key is s and the global public key is
Ppup. Let Hy :{0,1}* — G be a Map-to-point hash function and H : {0, 1}* x G2 — Z;
be another hash function.

Eztract : Given a public identity ID € {0, 1}*, compute the public identity Qp = H1(ID)
and the secret key Sip = sQ\p.

Sign : Given a secret key Sip and a message m € {0, 1}*, the signer chooses an arbitrary
P, € G7 and a random k € Z; and computes
1. r = e(Py, P)*,
2. v=H(m,r),
3. u=vSp + kP;.
The signature is then the pair (u,v) € G1 x Z;.
Verify : Given a public key Qp, a message m and a signature (u,v) the verifier computes :
L. r=e(u, P)e(Qip, —Fpup)”
2. Accept the signature if and only if v = H(m,r).
Assumption :
Weak-DH problem is hard.
Security :
Secure against existential forgery under adaptive chosen message attack in the random
oracle model assuming Weak-DH problem is hard.
Efficiency :
Setup : 1 scalar multiplication in G.
Ezxtract : 1 Map-to-point hash operation; 1 scalar multiplication in G.
Sign : The signing operation can be optimized by the signer pre-computing e(P;, P)
for P; of his choice, for example P; = P, and storing this value with the signing key.
This means that the signing operation involves one exponentiation in the group Go,
one hash function (H) evaluation and one simultaneous multiplication in the group
Gi.
Verify : The verification operation requires one exponentiation in G5, one hash function
(H) evaluation and two evaluations of the pairing. One of the pairing evaluation can
be eliminated, if a large number of verifications are to be performed for the same
identity, by pre-computing e(Qrp, —Ppup)-
This scheme is very efficient in terms of communication requirements. One needs to
transmit one element of the group G and one element of Z.
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2.3.6 Short Signature Scheme Without Random Oracle

(Boneh, Boyen [13], 2004)

e Protocol Description :

KeyGen : The secret key is (7,y)€rZ,; X Z; and the public key is (P,U,V) where U = xP
and V' = yP for a signer. The messages are assumed to be elements of Z;.

Sign : Given a secret key (z,y), a message m € Zq, choose a random r € Z; and compute
o = —L_P. Here L is computed modulo ¢ and the unlikely event x+m—+yr =0

L admdyr . ThmAyr . .
is avoided by choosing a different r. The signature is (o,7).

Verify : Given a public key (P,U,V), a message m € Z; and a signature (o,r), verify
e(o,U +mP +rV)=e(P,P).

e Assumption :
g-SDH problem is hard.

e Security :
Secure against existential forgery under chosen message attack under SDH assumption and
without using the random oracle model.

e Efficiency :

KeyGen : 2 scalar multiplications in G.
Sign : 1 inversion in Z; 1 scalar multiplication in Gy.

Verify : 2 scalar multiplication in G1; 2 additions in G; 2 pairing computations one of
which, e(P, P) can be precomputed.

Note : Recently, Waters [49] proposed an efficient signature scheme that depends only upon the
CDH assumption in the standard model (i.e. without using any random oracle).

2.4 Key Agreement Schemes

Key agreement is one of the fundamental cryptographic primitives. This is required when two
or more parties want to communicate securely. In one of the breakthroughs in key agreement,
Joux [37] proposed a three party single round key agreement protocol using pairing. This was the
first positive application of bilinear pairing in cryptography. Afterwords, pairings were used widely
to get a large number of cryptographic protocols some of which have been previously mentioned.
Several key agreement protocols were proposed that prevents man-in-the-middle attack against a
passive adversary. These protocols are called unauthenticated. The protocols for authenticated
key agreement enables a group of parties within a large and completely insecure public network
to establish a common secret key and furthermore ensures that they are indeed sharing this key
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with each other. Achieving authenticated key agreement are crucial for allowing symmetric-key
encryption/authentication of data among the parties. Authenticated key agreement protocols are
the basic tools for group-oriented and collaborative applications such as, distributed simulation,
multi-user games, audio or video-conferencing, and also peer-to-peer application that are likely to
involve a large number of users. These are used to construct secure channels which are the base
for designing, analyzing and implementing higher-level protocols in a modular approach. A formal
model of security for group authenticated key agreement can be found in [20].

2.5 Threshold Schemes

The idea behind the (¢, n)-threshold cryptosystem approach is to distribute secret information (i.e.
the secret key) and computation (i.e. signature generation or decryption) among n parties in order
to remove single point failure. The goal is to allow a subset of more than ¢ players to jointly
reconstruct a secret and perform the computation while preserving security even in the presence of
an active adversary which can corrupt up to ¢ (a threshold) parties. The secret key is distributed
among n parties with the help of a trusted dealer or without it by running an interactive protocol
among all parties.

2.5.1 Threshold Signature Scheme

(Boldyreva, [11], 2003)

e Protocol Description :

KeyGen : Let H : {0,1}* — G; be a Map-to-point hash function. Suppose there are
n servers u;,1 < ¢ < n. The private key z € Z; is shared among these users using
Shamir’s secret sharing scheme such that any subset S of £+ 1 servers can reconstruct x

using Lagrange interpolation : © = 3-,c ¢ L;jw;, where L; = [[,cg ﬁ is the Lagrange
co-efficient, z; is the private key share and Py, = ;P is the public key share of user
(78

Signature Share Generation : To sign a message m € {0, 1}*, user u; outputs o; = z; H(m).

Signature Share Verification : Given m, 0;, Pyyp,, anyone can check whether user u; is hon-
estly behaving in giving it’s share o; of signature by checking e(P, 0;) = e(Ppys,, H(m)).
If o; passes through this test, call it an acceptable share.

Signature Reconstruction : Suppose a set S of (+1) honest servers are found and accordingly

(t + 1) acceptable shares 0,7 € S. The resulting signature on m is 0 = Y ;. L;io;. The
correctness of the scheme is easy to verify since e(P, o) = e(H(m),zP).

e Assumption :
Existence of GDH group.

26



e Security :
Secure in the random oracle model against an adversary which is allowed to corrupt any
t < n/2 players under the assumption that the underlying group is GDH.

e Efficiency :

KeyGen : n scalar multiplications in G.

Signature Share Generation : For each user, 1 Map-to-point hash operation; 1 scalar multi-
plication in G}.

Signature Share Verification : 2 pairing computations; 1 Map-to-point hash operation.

Signature Reconstruction : (t + 1) scalar multiplications in G1; ¢ additions in Gy; (¢t + 1)
Lagrange co-efficient (L;) computations.

2.5.2 Signcryption Schemes

The idea of this primitive is to perform encryption and signature in a single logical step in order
to obtain confidentiality, integrity, authentication and non-repudiation more efficiently than the
sign-then-encrypt approach. The drawback of this latter situation is to expand the final cipher
text size and increase the sender’s and receiver’s computing time which may be impractical for low
bandwidth network. Malone-Lee [40] defines extended security notions for ID-based signcryption
schemes.

(a) Identity-Based Signcryption
(Malone-Lee [40], 2003)

e Protocol Description

Setup : Choose s «+F Z, and set Ppy, = sP. The master key generated by the trusted
party is s and the public key is Pp,;. Consider three hash functions : H; : {0,1}* —
Gl, H,: {0, 1}* — Z; and Hs : Gy — {0, l}l.

Eztract(ID) : Compute Qip = Hy(ID), Sip = sQp. The secret key corresponding to
identity ID € {0,1}* is Sip and the public key is Q|p.

Signerypt(Sip,, , 1Dy, m) : For a message m € {0,1, }!, compute Qp, = H;(IDp). Choose
z <% Zr and set U = zP. Compute r = Hy(U||m), W = xPpy, V = rSpp, + W,
y=¢e(W,Qip,), k = H3(y), c =k @®m. Send 0 = (¢,U,V)

Unsignerypt (IDg, Sip,,0) : Compute Qip, = H(ID,). Parse o as (¢,U,V). Compute
y = e(Sip,,U), & = H3(y), m = kK ® ¢, r = Hy(U||m). Return m if and only if
e(V, P) = e(Qip,, Ppup)” (U, Ppup)-

Consistency constraint :

if o = Signcrypt(Sip,, 1Dy, m), then m = Unsigncrypt(ID,, Sip,, ). This scheme is
the result of a combination of the simplified version of Boneh and Franklin’s IBE
cryptosystem with a variant of Hess’s identity based signature.
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e Assumption :
BDH problem is hard.

e Security :
This protocol achieves the security IND-ISC-CCA (indistinguishability of identity-based
signcryptions under chosen cipher text attack) and also the security EF-ISC-ACMA (ex-
istentially unforgeability of identity-based signcryptions under adaptive chosen message
attack) in the random oracle model assuming BDH problem is hard.
e Efficiency :
Setup : 1 scalar multiplication in G.
Eztract : 1 Map-to-point hash operation; 1 scalar multiplication in Gj.

Signerypt © 1 Map-to-point hash operation; 3 scalar multiplications in G1; 1 hash
function Hy evaluation; 1 pairing computation; 1 hash function Hj evaluation; 1
XOR operation, 1 addition in Gj.

Unsigncerypt : 1 Map-to-point hash operation; 4 pairing computations; 1 hash function
Hj evaluation; 1 XOR operation; 1 hash function Hs evaluation; 1 exponentiation
in Go. The size of the cryptogram is n + 2|G1| when a message of n-bit is sent.

2.5.3 Identification Scheme based on GDH

(Kim, Kim [38], 2002 )

Identification scheme is a very important and useful cryptographic tool. It is an interactive
protocol where a prover P tries to convince a verifier V of his identity. Only P knows the
secret value corresponding to his public one and the secret value allows to convince V of his
identity.

e Protocol Description :
KeyGen : Choose randomly a,b, c € Z; and compute aP, bP, cP, v = e(P, P)ec. The
secret key is (a, b, ¢) and make aP, bP, cP, v public.
Protocol actions between P and V : This scheme consists of several rounds, each of
which is performed as follows :
1. P chooses randomly r1,79,73 € Z; and computes z = e(P, P)"""3, Q1 = r P,
Q2 = ’)"2P and Q3 = T3P and sends (J?, Ql, QQ, Q3> to V.
2. V picked w € Z; at random and sends w to P.
3. P computes y = e(wP, P)*¢ ¢(P, P)""2"3 and sends to V; V accepts if y = v =
and rejects otherwise.
e Assumption : Existence of GDH group.

e Security :

Secure against active attacks assuming that the underlying group is a GDH group.
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e Efficiency :
KeyGen : 3 scalar multiplications in G1; 1 pairing computations.

Protocol actions between P and V : 3 pairing computations and 4 scalar multiplications
in GG1 for P; 1 exponentiation in G and 1 multiplication in G for V.

2.5.4 Other Signature Schemes

There are a large number of cryptographic protocols that uses pairings. Discussing every
protocol is beyond the scope of the paper. This subsection includes a list of few other
interesting signature schemes that have various cryptographic applications in digital world.
Optimistic Fair Exchange [26].

A New Varifiably Encrypted Signature Scheme [51].

Partially Blind Signature Scheme [51].

ID-Based Group Signature Scheme [25].

Delegation-By-Certificate Proxy Signature Scheme [12].

Hierarchical ID-Based Signatures (HIDS) Scheme [32].

NS ot W=

We refer Barreto’s Pairing-Based Crypto Lounge [4] for an overview (references) of recent
developments in cryptosystems based on pairings.

2.6 Conclusion

Several cryptographic primitives using pairings have been described and many have been left
out. This is a very active area and almost every conference includes some new proposals
involving pairing.
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Chapter 3

Efficient Computation of Tate
Pairing

3.1 Introduction

The first major breakthrough in key agreement was obtained by Joux [37]who used Weil
pairing on elliptic curves to obtain a one-round three party key agreement protocol general-
ising the Diffie-Hellman two-party key agreement protocol. In 2003, Boneh and Franklin [17]
used Weil pairing to obtain the first feasible identity-based encryption scheme—thus settling
a long standing problem of Shamir. This has led to a spurt of activities in pairing-based
cryptography. For a recent survey of such activities see the survey of Dutta et al [27]. Thus
pairing-based crytographic schemes are recognised as a major area of research in recent times.
The only two known (bilinear) pairing functions are the Weil and Tate pairings. The Tate
pairing is believed to be more efficient than Weil pairing and in this note we shall exclusively
deal with Tate pairing. A major impediment in the implementation of pairing-based cry-
tosystems seems to be the computation of the pairing map which is quite expensive. Here we
will survey some of the most recent works in the efficient computation of Tate pairing

3.2 Tate Pairing and Miller’s Algorithm

Let m to be an odd positive integer, IFy the finite field with ¢ elements, where ¢ = p™, E
is an elliptic curve over IF, and E(IF,) is the set of all IF;-rational points of E. Let r be
a large prime divisor of the curve order #E(IF,), such that r is coprime to ¢,q — 1 and for
some k > 0, r|¢" — 1 but r f¢° — 1 for any 1 < s < k; k is called the security multiplier (or
MOV/FR degree). Suppose P is a point of order r on the elliptic curve E(IF;) and @ is a
point of same order on the elliptic curve E(]Fqk), linearly independent of P. We denote the
(modified) Tate pairing of order r as e, (P, Q) € I », which we shall define below.
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Recall that a divisor is a formal sum of the form D = Y p.pap(P), where ap € IZ. The
degree of a divisor D is deg(D) = Y pcpap. The set of divisors forms an abelian group
by the addition of their coefficients in the formal sum. Let f be a rational function on
Ei.e. a rational function modulo the defining equation for the curve. Then the divisor of f,
(fy = > pordp(f)(P), where ordp(f) is the order of the zero or pole of f( i.e. zero of 1/f)
at P. Recall also that a divisor D = }_pcp ap(P) is a principal divisor if and only if it is a
divisor of degree 0 (zero divisor) and 3 pcpapP = O (Theorem 1.2.6). If D is principal then
there is some rational function f such that D = (f). Two divisors D; and D, are said to be
equivalent if Dy — D» is a principal divisor.

Let P € E(IF;) and Q@ € E(IF. ), which are linearly independent. Let Ap be a divisor
equivalent to (P) — (O) (similarly define Ag). Then it is easy to see that rAp is principal.
Thus there is a rational function fp with (fp) = rAp = r(P) — r(O).

The (modified) Tate pairing of order r is defined as
er(P,Q) = fr(AQ) /",

To compute fp(Ag), @ # O one uses Miller’s algorithm [44]. Let f, be a rational function
with divisor ( (aP) — (a — 1)(O0),a € Z. It can be shown that fo,(Q) =

fa) a(P) —
£a(Q)?.9aP,ar(Q)/924r(Q) and
farb(Q) = fa(Q) [6(Q)-9arpp(Q)/9(arb)P(Q) (3.1)

where, g,ppp(resp. gopqp) is the line joining aP,bP (resp. tangent to E(IF,) at aP)— it
intersects E(IF;) at the point —(a + b)P ( resp. —2aP ), and g.p is the (vertical) line that
intersects E(IF,) at cP and —cP. Equation (3.1) is known as Miller’s Formula. Now,

(fr) =r(P) = (rP) = (r = 1)(0) = {fp),

since 7P = O. Given P and the binary representation of r, Miller’s algorithm computes
fr(Q) = fr(Q) in lg r steps by the standard double-and-add through line-and-tangent method
for elliptic curve scalar multiplication. Under the condition, r f(q¢ — 1) we can further have

er(P,Q) = fp(Q)4" ~V/" for Q # O, as long as k > 1 (See Theorem 1 of [5]).

Thus for an efficient computation of the Tate pairing, it is enough to have an efficient algorithm
for computing f,(Q). Several optimizations for Miller’s algorithm have been suggested. The
first of these were given by Baretto at al [5].

They observed that for the supersingular curve
Ey:y? =23+ (1 —b)z +b,be {0,1};

where the underlying field is IF),, p > 3, one choses the point @ € E(IF)) and then obtain the
point Q' = ¢(Q) € IF 2, linearly independent of P, where ¢ is the distortion map

¢(m,y) = (—:E, iy)a
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Table 3.1: Algorithm 1

Algorithm: BKLS (Modified Miller) algorithm

input : P,Qe E(IF,), and r=mrmriq...ro;re =11 €{0,1}.
output : fr(#(Q)) = fr(#(Q))
Set f<«—1land V +— P
for j «¢t—1 down to 0 do{
set [+ f2gvv(4(Q)) and V « 2V
if r; =1 then set f «— f.gyp(¢(Q)) and V «—V + P

}

return f

with i2 = —1 . In such a situation, they have shown that the denominator in Miller’s Formula
is irrelevant in the final computation of the Tate pairing and hence can be ignored while
computing f,. For the curve E; note that #E(IF,) = p+ 1 and the MOV degree is k = 2.
Thus the modified Miller’s algorithm for F; is given by Table 3.1.

Recently, in Chaterjee et al[24], this has been extended to other supersingular curves as well.
There it was shown that the best optimization is obtained by encapsulating iterated point
doubling and line computation as well as point addition and line computation in Jacobian
coordinates.

3.3 Optimizations in characteristic 3

In this section we consider fields of characteristic 3 and take p = 3.

For supersingular curves over fields of characteristic 3 , one can obtain even better optimiza-
tions. Several optimizations in the computation of Tate pairing are possible [5], [31]. For the
supersingular elliptic curve

Ey:y*=2*—x+b,  be{-11} (3.2)

one can achieve the highest possible MOV degree, k = 6 [42]. If P = (z,y) is a point on Ey(IF,)
then 3P = (z° — b, —y"). Since, cubing is almost free (linear time) in characteristic three,
point tripling is very efficient here. So, the double-and-add method of Miller’s algorithm can
be replaced by the more efficient triple-and-add/subtract method [5] with the signed ternary
representation of r.

In the implementation of Tate pairing over Fs, as noted above, the usual practice is to take
Q € E(IF,) of order r and then use a distortion map ¢, to get a point ¢(Q) € E(IF ) of order
r which is linearly independent of P. A distortion map for Fs is given as ¢o(z,y) = (p— x,iy)
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Table 3.2: Algorithm 2

Algorithm:  Algorithm of Duursma-Lee to compute

fr(#(Q))[28]
input : P=(a,p) and Q= (z,y)
output : fr(9(Q))

f+—1

for j + 1 to m do
a+—ad B« p3
pi—a+z+b
A Byi — p?
g—X—pp—p°, f<— fg
z '3y —y'/3

end for

return f

where p,i € Fyo and p* —p—b =10, i* =—1 [5],[31]. Another major finding in [5] is that,
for E, also under the distortion map ¢, we can completely ignore the denominator part in
the computation of Tate pairing. All these optimizations make Fo an attractive choice for
Tate pairing implementation in characteristic three.

3.3.1 BKLS algorithm and its modifications

Note that (Section 5.1, [5]), discarding the denominators, the recursive formula for f3,(Q) is
obtained as —

f3a(Q) = fg’(Q)-gaP,aP(Q)-QQaP,aP(Q)-

It was further noted in [5] that it is not necessary to actually compute 2aP, because the
coefficients of goqp,p can be obtained from aP and 3aP.

This method has been further improved upon by Duursma and Lee. They showed (]28],
Theorem 5) that the Tate pairing for points P = (a,3) and ¢2(Q) = (p — z,iy) can be
written as a product of factors of form g = Byi — (a + z — p + b)2.

The Duursma-Lee algorithm is given in Table 3.2.

The Duursma-Lee algorithm (Algorithm 4, [28]) has been modified by Scott-Barreto [47] to
compute tr(f), where the I »-trace of an element f € s is tr(f) = f+ F7 + f1* (Definition
2, [47]). They maintain a ladder of three values [tr(f),tr(fp),tr(fp?)]. As f is initialised to 1,
one can compute the initial ladder from p alone, which is [0, 0, (2m?) mod 3] (Theorem 1, [47]).
Then at each iteration of the for loop, one can compute [tr(fg),tr(fgp),tr(fgp?)] using the
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Table 3.3: Algorithm 3

Algorithm: Laddering algorithm of Scott-Barreto(SB)
[47] for computation of tr(fp(4(Q)))

input : P=(a,f) and Q= (z,y)
output : tr(fr(¢(Q)))
L +[0,0, (2m?)mod3]
for j + 1 tom do
a+ad, B B3

pi—a+z+b
A Byi — p?
L+ AL
z '3y —y'/3
end for
return L

following relationship (see Theorem 2, [47]), where 4 = a+z+b € F,and A = Byi—u? € IF .

tr(fg) tr(f) A —p -1
tr(fgp) | =A. | tr(fp) , where A= | —b (A—1) —
tr(fgp?) tr(fp?) —bp = (u+d)  (A-1)

and g is as in Algorithm 2.

Define L = [tr(f),tr(fp),tr(fp*)]", then the implicit pairing is computed using the matrix
A as shown in Table 3.3.

The Duursma-Lee algorithm is the most efficient algorithm to compute fp(¢2(Q)), while the
Scott-Barreto algorithm is the most efficient if one computes tr(fp(¢2(Q))). The Duursma-
Lee algorithm in each step takes 20 base field multiplications, the laddering algorithm of
Scott-Barreto takes 17 base field multiplications. However, in each of these two algorithms
one has to take two cube roots in each iteration. This cube root computation for polynomial
basis in characteristic three can be efficiently done by just two base field multiplication using
two precomputed values — for details see [34].

3.4 Other super-singular curves over characteristic 3 fields

In what follows we shall show that the Duursma-Lee and the Scott-Baretto algorithms can
be extended to the whole set of supersingular curves and further optimizations obtained.
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3.4.1 Definition and important properties

From the set of all possible non-singular EC over IF3, observe that the equation of a super-
singular elliptic curve over fields of characteristic three can be expressed as —

Eup:y? =234+ ax+b where ac{-1,1}, bec{-1,0,1} (3.3)

This gives six candidate elliptic curves of which only two (i.e. Es) — probably because of
their highest possible £ — have so far got the attention for Tate-pairing implementation. The
relevant properties of the other four curves FE3(IF,) are given in Table 3.4 (see Section 5.2.2
[41]). Note that, E3(IF,) is either cyclic or contains a cyclic subgroup of order (q+ 1)/2. Let,

Table 3.4: Important properties of F3

Curve equation | F3:y? =23 +azx +b
ifa=1,be{-1,0,1};
ifa=-1,6=0

trace 0
curve order g+1
distortion map | ¢3(z,y) = (—x — b,iy)
condition i €Fp; i’ =—1

n be a multiple of r i.e n = Ir, then from definition

(fn> = n

So, (fu) = Ufr) and fr(Q) = (fa(@)/'. Thus, f-(Q)\" D/ = f(Q) V/". In case of
Es,n is taken to be #E,(IF,;) and one computes fn(Q)(qk_l)/”. But it suffices to take any n
that is a multiple of r and divides the curve order.

One can now extend the result of Baretto at al to the curves F3 to show that one can
completely ignore the denominator part in Miller’s Formula for the computation of Tate
pairing.

Lemma 3.4.1 For all the supersingular curves in characteristic three, the denominators in
Miller’s formula can be discarded altogether without affecting the final pairing value.

In [28], it has been observed (Remark 2.3) for E, that,

(gaPaPYapP,—3aP/924P) = 3(aP) + (=3aP) — 4(O)
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For aP = (a, ) the function G,p(7,y) = B3y — (a® — = + b)? has the same divisor. However
this result can be easily generalised as shown in Lemma 3.4.2.

Lemma 3.4.2 For the generic supersingular elliptic curve Eqp over characteristic three we
can replace gep,cp-gep,—3cp/g2cp by the equation of a parabola which is of the form G.p(z,y) =
B3y — (& + az + b)?, where cP = (a, ).

Proof: We write,

<w> = 2cP) + (—2cP) — 3{(0) + (cP) + (2cP) + (—3cP) — 3(0)
g2cpP

—{(2¢P) + (—2¢P) — 2(0)}
= 3(cP)+ (—3cP) —4(0)}

The rational function G.p(z,y) = B3y — (&® + az + b)? has the same divisor.

To prove this, we solve the two equations : y? = 2% + az + b and By = (o + az + b)?
simultaneously to get a zero of order three at (o, ) and another zero of order one at (a® +
b — ab, 8%), but the later is nothing but —3cP.

3.5 Representation of extension field element

We now describe how to represent the extension field IF «» elements in terms of IF; elements,
for kK = 2 as well as k = 6. This has great bearing on efficient computation of fp(¢(Q)), since
#(Q) is an element of IF x. A similar kind of analysis can also be found in [31].

3.5.1 Caseofk=2:

Here the extension field is IF s, q> = 33 where m is odd. So, —1 is a quadratic non-residue
in IF 3 and hence 7% + 1 is irreducible over IF 5. Thus By = {i,1} forms a basis of IF s over
IF,s. A generic multiplication of two elements (a + ib), (c + id) € IFj;s with a,b,c,d € IFs
should take four multiplications. As (a+1ib) X (c+1id) = (ac—bd) +i(ad+ bc), we compute ac,
bd, (a+b)(c+d), then (ad+bc) = (a+b)(c+d) —ac—bd. This requires three multiplications

over ]Fq3 .

3.5.2 Caseofk=6":

This is the case for Fy. Given the distortion map and the corresponding conditions for Es
a field element of IF s can be represented using the basis By = {ip?, p?, ip, p, i, 1 }. The
generic multiplication of two elements in IF 6 should thus take 36 base field multiplications,
but can be accomplished in 18 multiplications (see A.l in [5]). In our case we will need
(see Section 3.6.1) to multiply v, § € IF e, where v = bsip? + bap?® + bsip + bap + bri + by
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and 6 = —p% + agp + a1i + ag. In the naive method it takes 18 multiplications([M]), but
can be accomplished in only 13[M], as shown below (see also the distortion map and the
corresponding conditions of Fs in Section).

Suppose 7 x § is byip? + b p? + byip + bhp + bli + bf. Then

by = —bs — by + asbs + a1bs + agbs
by = —by—by+ asby —aibs + agby
by = —bbs — b3+ asby + a1bs + aghs + azbs
bIQ = —bbg — by 4+ aobg + agbs + asby — aqbs
bll = a1bg + agbi + basbs — bbs
b6 = —bb2 + agbg + ba2b4 - albl
We use the following explicit multiplications —
to = aoby t1 = aib; to = azbo t3 = apbs ty = agby
t5 = a1b3 t6 = a1b5 t7 = a2b4 tg = a2b5

tg = (ag + a1 + ag)(bg + b4 + b5)

So, agbs + a1by + asbs = tg — (t3 +t4 + t5 + tg + t7 + t3)
t()l = (ao + al)(bo + bl)

apb1 + a1bg = to1 — (to + t1)

tlg = (a1 + ag)(bl + b2)

a1b2 + CLle = tlg — (tl + tg)

toz = (ag + az)(by + ba)

a0b2 + CLQbO = tog — (to + tg)

by = —bs—by+tog— (t3+ts+1t5+ts+1tr+1s)
by = —by—Dbo+ty—ts+ts

by = —bbs —bs+ti2 — (t1 +t2) +t3+ts

by = —bby—by+to2 — (to+t2) +t7 —ts

b, = to1 — (to +t1) + btg — bbs

by = —bby+ty+bty —1ty

3.6 Pairing Computation

Here we discuss in details how to compute fp(¢;(Q)) for E; (i € {2,3}) i.e., all six supersin-
gular curves in characteristic three.

3.6.1 Efficient Algorithm for F; and Fj;

As already noted above, the existence of irrelevant denominators, efficient point tripling, cou-
pled with the triple and add/subtract method and highest possible k¥ make Fy an attractive
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choice for Tate pairing implementation. The above optimizations combined with the im-
provement suggested in [28] produce the most efficient algorithm in Tate pairing computation
on Fs. All these optimizations are also valid for Ej3, as is evident from our discussion in
Section 3.4.1.

Case E» :
From Lemma 3.4.2, for F» we can write —

Gep(01(Q) = B*(iy) — (@ +alp —z) +b)?
= —p’+a(a® —azx+b)p+ Byi — (® — ax + b)?
—p* +agp+ari+ay (say)
Note that, for Fs, a = —1 and b € {~1,1}, so b—az = 2 + 1 and ap = a2. So, a;, 0 <i <2

can be computed using just one base field multiplication and one squaring.

Case Fj :
Similarly, for F5 we have,

Gep(#3(Q)) B (iy) — (& +a(=b —x) +b)°

= aii+ay (say)

Hence, G.p(¢3(Q)) can be computed using just one multiplication and one squaring in the
base field. The modified algorithm is given in Table 3.5.

Correctness of Algorithm 4 :

First note that Algorithm 4 uses the same left-to-right triple-and-add/subtract method as
was proposed in [5]. The only difference being that the evaluation of g.p.p() and gep2.p at
#j(Q) in each iteration is replaced by the evaluation of the parabola G.p() at ¢;(Q). This one
can do as long as the denominators are irrelevant, as is the case for both Fy and Fy. In our
algorithm we use three subroutines CompG;(Z), Update;() and CombAl;(). Given the EC
point Z, CompG;(Z) computes Gz(¢;(Q)) together with 37 and and assigns them to G and
Z' respectively. In the subroutine Update;(f, @) we first cube f and then multiply f3 with
G(¢;(Q)) and store the result in f. The CombAl;() is invoked whenever there is 1 or —1 in
the signed ternary expansion of n. There are precisely two such instances at £ = m and & = 0.
In the first call of the CombAl;() we compute the coefficients of the line passingthrough +P
and Z and evaluate it at ¢;(Q), together with the coordinates of the point (Z 4 P), which is
then assigned to Z. In the second call of CombAl;() we compute the coefficients of the line
passing through P and Z and evaluate it at ¢;(Q), this call in addition also computes the
point 3?7~ P 4+ 3™ P + P which should be equal to O.
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Table 3.5: Algorithm 4

Algorithm: Computation of fp(¢;(Q)), j € {2,3}

input: P =(z,y), Q= (zg,yg) and n=3*""1L£3m 41

output: fr(5(Q)) = fu(d;(Q)) where oz, ) = (p— o, iy) and gs(z,y) = (~b— o, iy)
set f+ 1, Z+ Pand h+1
for k < 2m — 2 down to 0 do
(G, Z") « CompG;(Z)
f < Update;(f,G)

AR
if (I, =£1) {
(Z',h) < CombAl;(Z,+P)
f < f.h
AR
}
end for

return f

3.6.2 Computing the trace

To increase security, it has been suggested in [31] to take the trace of the pairing value. Scott-
Barreto in [47] propose a method of implicit exponentiation for trace computation. Here we
show how to compute the trace of the ultimate pairing value. In our comparison with the
Scot-Barreto method in the next section we will show our method of first computing the
pairing and then taking the trace is more efficient.

Case of Fs :

The IF p-trace of fp € IF s is the value tr(fp) = fp + f;f + f]q)4 € IF > [Definition 2, SB04].
Now, fp will be of the form Aip? + Bp? + Cip+ Di+ Ep + F. So,

tr(fp) = tr(Aip*+ Bp?+ Cip+ Di+ Ep+ F)
= tr(Aip?) + tr(Bp?) + tr(Cip) + tr(Di) + tr(Ep) + tr(F)
= A@ip* + (ip")" + (ip*)") + B(o* + (01T + (0)7)
+C(ip+ (ip)” +(ip)") + D(p+ (p)” + (p)")
EGi+ @) + @)+ (F+F” +F")

+
+
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Now, g = 3™, where m is odd. So, i4° =i =i and, i +i% +i4 =0

From Theorem 1 of [47] tr(p) = p+ p? + p¢" = 0 and, tr(p?) = p? + (p)7" + (p?)7 = —1
Using these results we get, tr(fp) = —(B + iA) € IFp2. This can be obtained without any
extra computation.

Case of Fj :

The TFys trace of f € IF 6 is defined as f + fqg. Now, f is represented as o + i3, a, B € Fys.
Since i = (i2)(¢D/2) = —, we get i = —i and tr(f) = —a € IF,s. Note that, the size of
trace for Fs3 is more than that for Es.
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