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In the modern world, auctions are used to
conduct a huge volume of economic
transactions.

Government contracts are typically awarded
by procurement auctions, which are also
often used by firms subcontracting work or
buying services and raw materials.

In OECD (2013) it is reported that the
procurement of public services accounts for
approximately 17% of GDP of EU countries.

The theory of auctions provides the
necessary analytical framework to study
such procurements.
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Benchmark model: there is one indivisible
object up for sale and there are some
potential bidders.

Standard auction: the object is sold to the
highest bidder.

Procurement auction: the auctioneer is
the buyer and the object is sold to the
lowest bidder.

The payment by each bidder depends on
the type of auction used by the seller.

Huge literature around this model (see
Krishna, 2010).
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It may be noted that the benchmark model
is really a price-only auction.

For example, in the traditional theory of
standard procurement auctions, the
auctioneer cares only about the price of the
object, but not the other attributes.

However, in many procurement situations,
the buyer cares about attributes other than
price when evaluating the offers submitted
by suppliers.

Non-monetary attributes that buyers care
about include quality, time to completion
etc.
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Example- in the contract for the construction
of a new aircraft, the specification of its
characteristics is probably as important as
its price.

Under these circumstances, procurement
auctions are usually multidimensional:
bidders submit bids with the relevant
characteristics of the project (among which
is price).

The procurement agency gives a score to
each bid and makes its decisions based on
these scores (scoring auction).
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Examples of scoring auctions

The Department of Defence in USA often
relies on competitive source selection to
procure weapon systems.

Each individual component of a bid of the
weapon system is evaluated and assigned
a score, these scores are summed to yield
a total score, and the firm achieving the
highest score wins the contract.
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Bidding for highway construction work in the
United States: procurement authorities
evaluate offers on the basis of price and
non-price attributes.

The rule of “weighted criteria” (used in
states like Delaware, Idaho, Massachusetts,
Oregon, Utah, Virginia, etc.) puts a weight
on each of price and quality attributes (e.g.
delivery date, safety level) and evaluates
each attribute individually, so that a total
score of each offer is a weighted sum of
sub-scores and a supplier with the highest
total score wins a contract.
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In a country like India where fuel costs are
very high, airlines greatly value the fuel cost
savings.

Airline companies in India typically
purchase new aircraft after evaluating
competing offers (that include price as well
as various quality parameters) from big
aircraft suppliers like Boeing and Airbus.

For example in 2011, after evaluating
competing offers, IndiGo (a low-cost Indian
airline) ordered 180 Airbus A320s from
Airbus for a valuation of $15.6 billion.
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The Baseline Model (Che, RAND,
1993)

A buyer solicits bids from n firms.

Each bid specifies an offer of promised
quality, q and price, p, at which a fixed
quantity of products with the offered level of
quality q is delivered. The quantity is
normalised to one.

For simplicity quality is modelled as a
one-dimensional attribute.
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The buyer derives utility from the contract
p,q ∈ ℝ+

2

Up,p = Vq − p

where V ′ > and V ′′ < 0.

A firm i upon winning, earns from a contract
q,p profits:

π ip,q = p − cq,θ i 

where firm i’s cost cq,θ i  is increasing in
both quality q and cost parameter θ i.
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We assume cqq ≥ 0, cqθ ≥ 0 and cqqθ ≥ 0.

We also assume that the buyer never
wishes to split the contract to more than one
firm (i.e. the cost is not too convex in q).

These assumptions are satisfied by
cq,θ = qθ.

Losing firms earn zero.
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Prior to bidding each firm i learns its cost
parameter θ i as private information. The
buyer and other firms (i.e. other than firm i)
do not observe θ i but only knows the
distribution function of the cost parameter.

It is assumed that θ i is identically and
independently distributed over θ, θ̄ where
0 < θ < θ̄.

Additional assumptions:

1. cq +
F
f
cqθ is non-decreasing in θ.

2. The trade always takes place (even
with the highest type θ̄).
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Let Sp,q denote a scoring rule for an offer
p,q. The rule is assumed to be publicly
known to the firms at the start of bidding.

We restrict attention to quasi-linear scoring
rules with the following properties:

Sp,q = sq − p where sq − cq,θ has a
unique maximum in q for all θ ∈ θ, θ̄ and
s.  is increasing in q.
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The buyer awards the contract to a firm
whose offer achieves the highest score.
This is similar to a standard auction.

First-score auction: The winning firm’s
offer is finalised as the contract. This
auction rule is a two-dimensional analogue
of the first price auction.

In a second-score auction, the winning firm
is required to (in the contract) to match the
highest rejected score. In meeting this
score, the firm is free to choose any
quality-price combination. This auction rule
is a two-dimensional analogue of the
second-price auction.
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An example: Let the scoring rule be
Sp,q = 10 q − p.

Suppose two firms A and B offer 5,16 and
3,9.

Note S5,16 = 35 and S3,9 = 27.

Under both auction rules firm A is declared
the winner. However, the final contract
awarded to firm A is the following:

1. 5,16 under the first-score auction.

2. Any p,q satisfying Sp,q = 27 under
the second-score auction.
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Equilibria under various auction
rules

Each auction rule can be viewed as a
Bayesian game where each firm picks a
quality-price combination p,q as a function
of its cost parameter.

Without any loss of generality, the strategy
of each firm can be equivalently described
as picking a score and quality S,q.

We now provide our first main result.
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Lemma:

With first-score and second-score auctions,
quality is chosen at qsθ for all θ ∈ θ, θ̄
where

qsθ = arg max
q

sq − cq,θ.

A simple intuition behind the result is that in
equilibrium the firm tries to maximise
p − cq,θ given a score level s̄.
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Essentially, the previous lemma reduces the
two dimensional auction to a single
dimensional problem.

Let in equilibrium each firm choose p,q as
a function of its type θ. That is a firm
chooses pθ,qθ. In equilibrium
qθ = qsθ.

It can be shown that there is a
Bayesian-Nash equilibrium where the score
Spθ,qsθ chosen is strictly decreasing in
θ.
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Let

S0θ = maxsq − cq,θ

= sqsθ − cqsθ,θ.

From the envelope theorem S0.  is strictly
decreasing.

Consider the following change of variables:

v ≡ S0θ ≡ sqsθ − cqsθ,θ

Hv ≡ 1 − FS0
−1v

bθ ≡ Sqsθ,pθ ≡ sqsθ − pθ
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Note that the objective function facing each
firm in the first-score auction is the
following:

πqsθ,p ∣ θ = p − cqsθ,θ prob. win

Firm 1 (say) will win the contract iff it has
the highest score. That is, if

bθ1  > max
j≠1

bθ j 

 θ1 < min
j≠1

θ j

(since b.  is strictly decreasing)

prob. win = prob. θ1 < min
j≠1

θ j

= 1 − Fθ1 n−1

Note p − cqsθ,θ = v − bθ
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Hence we have

πqsθ,p ∣ θ = v − bθ1 − Fθn−1

= v − bθHv

Symmetric equilibrium of a first-score
auction:

qsθ = arg max
q

sq − cq,θ

psθ = cqsθ,θ + ∫
θ

θ̄
cθqt, t

1 − Ft
1 − Fθ

n−1

The second-score auction has a dominant
strategy equilibrium:

qsθ = arg max
q

sq − cq,θ

psθ = cqsθ,θ.
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Score equivalence:

With the scoring rule Sq,p = Vq − p
first-score and second-score auctions yield
the same expected utility to the buyer, equal
to

E
Vq∗θ1  − cq∗θ1 ,θ1 

− Fθ1
fθ1

cθq∗θ1 ,θ1 

where

q∗θ1  = arg max
q

Vq − cq,θ1 

● Two-dimensional analogue of the Revenue

Equivalence Theorem in the benchmark
model.

22



What happens when quality and types are
multidimensional?

Can we reduce the strategic environment to
one dimensional private information?

If so, under what conditions can this be
achieved?

To answer the above questions, we need a
slightly modified model (following Asker and
Cantillon, RAND, 2008).
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Consider a buyer seeking to procure an
indivisible good for which there are n
potential suppliers. The good is
characterized by its price, p, and m > 1
non-monetary attributes, Q ∈ ℝ+

m.

The buyer values the good p,Q at
vQ − p.

Supplier i’s profit from selling good p,Q is
given by p − cQ,θ i , where θ i ∈ ℝk, k > 1, is
supplier i’s type. We allow suppliers to be
flexible with respect to the level of
non-monetary attributes they can supply.
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Preferences are common knowledge
among suppliers and the buyer, with the
exception of suppliers’ types, θ i, i = 1, . . .n,
which are privately observed.

Types are independently distributed
according to the continuous joint density
function fi with support on a bounded and
convex subset of ℝk with a non-empty
interior Θi.

A scoring rule is a function S : ℝ+
m+1  ℝ

: p,Q  Sp,Q that associates a score to
any potential contract and represents a
continuous preference relation over contract
characteristics p,Q.

25



The outcome of the scoring auction is a
probability of winning the contract, x i, a
score to fulfill when the supplier wins the
contract, ti

w, and a payment to the buyer in
case he does not, ti

l.

In a first-score auction, the winner must
deliver a contract that generates the value
of his winning score, that is, ti

w = Sp,Qi 
and ti

l = 0.

In a second-score auction, the winner must
deliver a contract that generates a score
equal to the score of the second-best offer
received and ti

l = 0.
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Consider supplier i with type θ i, who has
won the contract with a score to fulfill ti

w.

Supplier i will choose characteristics p,Q
that maximize his profit, that is,

max
p,Q

p − cQ,θ i  s.t. sQ − p = ti
w

Substituting for p into the objective function
yields

max
Q

sQ − cQ,θ i  − ti
w
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An important feature of the above is that the
optimal Q is independent of ti

w.

Now define

kθ i  = max
Q

sQ − cQ,θ i 

We shall call kθ i  supplier i ′s pseudotype.
Bidders’ pseudotypes are well defined as
soon as the scoring rule is given.

The set of supplier i’s possible pseudotypes
is an interval in ℝ. The density of
pseudotypes inherits the smooth properties
of fi.
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With this definition, supplier i’s expected
profit is given by

x ikθ i  − ti
w − 1 − x i til

In the above supplier i’s preference over
contracts of the type x i, ti

w, ti
l  is entirely

captured by his pseudotype.

Note: Only quasi-linear scoring rules have
the above property when private information
is multidimensional.
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Let

s i = x iti
w + 1 − x i til.

Given suppliers’ risk neutrality and the
linearity of the scoring rule, there is no loss
in defining the outcome of a scoring auction
as the pair x i, s i , rather than x i, ti

w, ti
l .

Suppliers’ expected payoff is thus given by

x ikθ i  − s i.
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The outcome function of a scoring auction is
a vector of probabilities of winning
x1,x2. . . ,xn  and scores to fulfill by each
supplier, s1, s2. . . , sn .

The arguments in these functions are the
bids submitted by all suppliers, p i,Qi i=1

n .

Define two equilibria as typewise
outcome equivalent if they generate the
same distribution of outcomes x1,x2. . . ,xn 
and s1, s2. . . , sn , conditional on types in
Θ1 × Θ2. . .Θn.
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Proposition:

Every equilibrium in the scoring auction is
typewise outcome equivalent to an
equilibrium in the scoring auction where
suppliers are constrained to bid only on the
basis of their pseudotypes, and vice versa.

● The above Proposition ensures that there is
no loss of generality in concentrating on
pseudotypes when deriving the equilibrium
in the scoring auction, even if the scoring
rule does not correspond to the buyer’s true
preference.
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● Note that the above Proposition does not
rule out equilibria where different types
submit different p,Q bids- but given that
they yield the same score and the same
probability of winning at equilibrium, they
are payoff irrelevant.

While the above comments might not be
totally surprising when types are
one-dimensional, this result is not trivial for
environments where types are
multidimensional.

33



This property (that there is no loss of
generality in concentrating on pseudotypes
when deriving the equilibrium in the scoring
auction) is a consequence of the
combination of the following:

1. quasi-linear scoring rule

2. the single dimensionality of the
allocation decision

3. the independence of types across
bidders.

● We cannot reduce the strategic environment
to one dimensional private information if
any of the above conditions does not hold.
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The equilibrium in quasi-linear scoring
auctions with independent types inherits the
properties of the equilibrium in the related
single-object auction where

1. bidders are risk neutral

2. their (private) valuations for the object
correspond to the pseudotype k in the
original scoring auction and are
distributed accordingly

3. the highest bidder wins

4. the payment rule is determined as in
the scoring auction, with bidders’
scores being replaced by bidders’ bids.
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The above suggests the following simple
algorithm for deriving equilibria in scoring
auctions:

1. Given the scoring rule, derive the
distribution of pseudotypes, G ik.

2. Solve for the equilibrium in the related
SIPV (benchmark) auction where
valuations are distributed according to
G ik.

3. The equilibrium bid in the scoring
auction is any p,Q such that
Sp,Q = b ik.

4. The actual p,Q delivered are easy to
derive given b ik and the solution to

max
Q

sQ − cQ,θ i  − ti
w.
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Non-quasilinear scoring rules

Most papers on scoring auctions, except a
very few recent ones, have used quasilinear
scoring rules. That is, Sp,q = φq − p.

What about the case where the scoring
rules are non-quasilinear? Why should we
care for such scoring rules?

1. equilibrium properties of scoring
auctions with general non-quasilinear
scoring rules have not been fully
worked out

2. non-quasilinear scoring rules are often
used in real life.
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Examples

For highway construction projects, states
like Alaska, Colorado, Florida, Michigan,
North Carolina, and South Dakota use
quality-over-price ratio rules, in which the
score is computed based on the quality
divided by price (i.e. Sp,q =

q
p ).

The above scoring rule is extensively used
in Japan and also in Australia.

Ministry of Land, Infrastructure and
Transportation in Japan allocates most of
the public construction project contracts
through scoring auctions based on
quality-over-price ratio rules
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In its Guide to Greener Purchasing, the
OECD (2000, p.12) writes that the objective
of procurement rules in member countries is
“to achieve a transparent and verifiable best
price/quality ratio for any given product or
service.” Quality-price ratios are thus used
explicitly for assessing bids for procurement
purposes by many governments.

Some governments in EU countries use the
scoring auction in which the score is the
sum of the price and quality measurements
but the score is nonlinear in the price bid
(see Nakabayashi et al, 2014).

However, very few papers in the literature
have dealt with general non-quasilinear
scoring rules.
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1. Hanazono, Nakabayashi and Tsuruoka
(2015) is the only paper till date that
deals with general non-quasilinear
scoring rules.

2. Hanazono (2010, Economic Science, in
Japanese) provides an example with a
specific non-quasilinear scoring rule
and a specific cost function.

3. Wang and Liu (2014, Economics
Letters) analyses equilibrium properties
of first-score auctions with another
specific non-quasilinear scoring rule.
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Note the following for all the above papers.

1. The explicit solutions for the
equilibrium strategies are not
generally obtained.

2. The choice of ‘quality’ is endogenous
in the ‘score’ under the general scoring
function.

3. Moreover, the comparison of expected
scores (in Hanazono el at, 2015) is
based on properties of induced utility
whose arguments are implicitly defined.
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Questions (Dastidar, 2015)

1. Can we get explicit solutions for
equilibrium strategies with general
non-quasilinear scoring rules?

2. Can we provide a complete
characterisation (price, quality, score)
of such equilibria?

3. Also, can we get ranking of the two
auction formats (first-score and
second-score) in terms of expected
scores by directly using curvature
properties of the scoring rule and the
distribution function of types?

4. If so, under what conditions can the
above be achieved?
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Answer:

We show that all the above can be done if
the cost function is additively separable
in quality and type.

1. Our computations provide a much
simpler way to derive equilibria in
scoring auctions without any
endogeneity problems. We get explicit
solutions.

2. We provide a complete
characterisation of such equilibria
and ranking of quality, price and the
expected scores.

3. This stands in contrast to the results
derived in Hanazono et al (2015) and
Wang and Liu (Economics Letters,
2014).
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The Model

A buyer solicits bids from n firms.

Each bid, p,q ∈ ℝ++
2 , specifies an offer of

promised quality, q and price, p, at which a
fixed quantity of products with the offered
level of quality q is delivered.

The quantity is normalized to one. For
simplicity quality is modelled as a
one-dimensional attribute.

The buyer awards the contract to a firm
whose offer achieves the highest score.
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Scoring rule : Sp,q : ℝ++
2 → ℝ

Assumption 1

S.  is strictly decreasing in p and strictly
increasing in q. That is, Sp < 0 and Sq > 0.
We assume that the partial derivatives Sp,

Sq, Spp, Spq,Sqq exist and they are
continuous in all p,q ∈ ℝ++

2 .

A scoring rule is quasilinear if it can be
expressed as φq −p or any monotonic
increasing function thereof. For quasilinear
rules we have Spp = 0 and Spq = 0.

For non-quasi-linear rules we must have at
least one of the following: Spp ≠ 0 or Spq ≠ 0.
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The cost to the supplier is Cq,x where x is
the type.

Assumption 2

We assume Cq > 0, Cqq ≥ 0 and Cx > 0.

Prior to bidding each firm i learns its cost
parameter x i as private information.
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The buyer and other firms (i.e. other than
firm i) do not observe x i but only knows the
distribution function of the cost parameter.

It is assumed that x is are identically and
independently distributed over x, x̄ where
0 ≤ x < x̄.

If supplier i wins the contract, its payoff is
p − Cq,x i .
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Assumption 3

Cost is additively separable in quality and
type.

That is, Cq,x = cq + αx where c ′.  > 0,
c ′′.  ≥ 0, αx > 0 and α ′.  > 0.

Define θ i = αx i .

Let θ = αx and let θ̄ = αx̄. Clearly, 0 ≤
θ < θ̄.

Since x is are identically and independently
distributed over x, x̄, so are the θ is over
θ, θ̄.
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Let the distribution function of θ i be F.  and
the density function be f. .

Note that fθ ≥ 0 ∀θ ∈ θ, θ̄.

We can now write the cost for supplier as
Cq,θ i  = cq + θ i, where θ i is the type of
supplier i.
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Assumption 4

For all p,q ∈ ℝ++
2

−
Sq 

2

Sp
Spp + 2SqSpq − SpSqq − Sp 

2
c ′′.  < 0

● It may also be noted that when c ′′q > 0
then both for the quasilinear rule

Sp,q = q − p

and for the non-quasilinear rule

Sp,q =
q
p

the above assumption is always satisfied.
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The following may be noted:

1. Our cost, Cq,θ i  = cq + θ i, can be
interpreted in the following way. cq is
the variable cost and θ i is the fixed cost
of firm i. This means, the variable costs
are same across firms but the fixed
costs are private information.

2. θ i can be interpreted to be the inverse
of managerial/engineering efficiency
which is private information to the firm.

3. Higher is θ i, lower is the
managerial/engineering efficiency, and
consequently, higher will be the cost.
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4. The assumption (cost is additively
separable in quality and type) is
consistent with the set of assumptions
in Hanazono et al (2015) and Asker and
Cantillon (Rand, 2008).

5. Additive separability implies Cqθ.  = 0.
This is different from Che (Rand, 1993),
Branco (Rand, 1997) and Nishimura
(2015).
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Proposition 1

In a first-score auction there is a symmetric
equilibrium where a supplier with type θ
chooses pIθ,qIθ. Such pI.  and qI. 
are obtained by solving the following
equations:

−
Sq. 
Sp. 

= c ′. 

p − cq = θ + γθ

where

γθ = 1

1 − Fθn−1
∫
θ

θ̄
1 − Ftn−1dt
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Proposition 2

In a second-score auction there is a weakly
dominant strategy equilibrium where a
supplier with type θ chooses pIIθ,qIIθ.
Such pII.  and qII.  are obtained by
solving the following equations:

−
Sq. 
Sp. 

= c ′. 

p − cq = θ
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● Our equilibrium is similar to Che (Rand,
1993).

● In Hanazono et al (2015) the scoring rule is
non-quasilinear but the equilibrium
strategies are only derived implicitly. Same
is true for Wang and Liu (Eco. Let., 2014),
where a specific scoring rule is considered.

● In our case, the cost function is additively
separable in quality and type and we get
explicit solutions for equilibrium strategies
for both kinds of scoring rules: quasilinear
and non-quasilinear.

● Additive separability of the cost function
makes equilibrium computations very
simple. This stands in contrast to Hanazono
et al (2015) and Wang and Liu (Eco. Let.,
2014).
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● Moreover, our assumptions are also milder
and are satisfied a by a large class of
scoring rules.

● When the scoring rule is quasilinear Sp. 
is a constant and Sq is independent of p

(since Spp = Sqp = 0). Note that in any

auction the equation − Sq.

Sp.
= c ′.  is

satisfied. This means the quality, q, is
constant and same for the two auctions.

We illustrate the above two propositions in
two examples given below.
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Example 1 (non-quasilinear scoring rule)

Let Sp,q =
q
p and Cq,θ = 1

2
q2 + θ. Let θ

be uniformly distributed over 1,2. Let
n = 2.

Equilibrium

First-score auction:

pIθ = 2 + θ, qIθ = 2 + θ ∀θ ∈ 1,2.

Second-score auction:

pIIθ = 2θ, qIIθ = 2θ ∀θ ∈ 1,2.
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Example 2 (quasilinear scoring rule)

Let Sp,q = q − p and Cq,θ = 1
2
q2 + θ. Let

θ be uniformly distributed over 1,2 and
n = 2.

Equilibrium

First-score auction

pIθ = 3
2

+ 1
2
θ, qIθ = 1 ∀θ ∈ 1,2.

Second-score auction

pIIθ = 1
2

+ θ, qIIθ = 1 ∀θ ∈ 1,2.
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We define the following:

Ap,q = −
Sqp,q
Spp,q

Sppp,q + Sqpp,q

Bp,q = −
Sqp,q
Spp,q

Spqp,q + Spp,qc ′′q

+ Sqqp,q
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Equilibrium Characterisation

Lemma 1

pIθ̄ = pIIθ̄ and qIθ̄ = qIIθ̄.

● A firm with the highest type θ̄ quotes the
same price and quality across first-score
and second-score auctions (lemma 1).

● Consequently, a firm with type θ̄ also

quotes the same score in both auctions.
This is true regardless of the fact whether
the scoring rule is quasilinear or not.
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The following lemma links the sign of Ap,q
and Bp,q.

Lemma 2

Suppose Ap,q ≠ 0 ∀p,q ∈ ℝ++
2 .

Bp,q ≥ 0  Ap,q < 0.

We now proceed to consider scoring rules
that are non-quasilinear.

For such rules we must have at least one of
the following: Spp ≠ 0, Spq ≠ 0.
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Let SIθ = SpIθ,qIθ

and SIIθ = SIIpIIθ,qIIθ.

In the first-score and second-score auctions
the equilibrium scores quoted by a firm with
type θ is SIθ and SIIθ respectively.

Proposition 3

If Ap,q ≠ 0 ∀p,q ∈ ℝ++
2 then

SIθ < SIIθ ∀θ ∈ θ, θ̄.

Also, d
dθ S

Iθ, d
dθ S

IIθ < 0 ∀θ ∈ θ, θ̄.
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● The equilibrium score quoted by any type
θ ∈ θ, θ̄ is strictly higher in the

second-score auction as compared to the
equilibrium score in first score-auction.

● This is analogous to the standard
benchmark model where for any particular
type, the bid in the second-price auction is
always higher than the bid in the first-price
auction.

● Proposition 3 also shows that equilibrium
scores are decreasing in type, θ. This means
the winner in any auction is the firm with
the lowest type (least cost).

● That is, the symmetric equilibria are always
efficient.
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Proposition 4

(i) If Ap,q > 0 ∀p,q ∈ ℝ++
2 then

qIθ > qIIθ ∀θ ∈ θ, θ̄. Also,
dqIθ
dθ ,

dqIIθ
dθ > 0 ∀θ ∈ θ, θ̄.

(ii) If Ap,q < 0 ∀p,q ∈ ℝ++
2 then

qIθ < qIIθ ∀θ ∈ θ, θ̄. Also,
dqIθ
dθ ,

dqIIθ
dθ < 0 ∀θ ∈ θ, θ̄.

(iii) If Ap,q = 0 ∀p,q ∈ ℝ++
2 then

qIθ = qIIθ ∀θ ∈ θ, θ̄. Also,
dqIθ
dθ ,

dqIIθ
dθ = 0 ∀θ ∈ θ, θ̄.
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Proposition 5

Suppose Ap,q ≠ 0 ∀p,q ∈ ℝ++
2 .

(i) If Bp,q < 0 ∀p,q ∈ ℝ++
2 then

pIθ > pIIθ ∀θ ∈ θ, θ̄. Also,
dpIθ
dθ ,

dpIIθ
dθ > 0 ∀θ ∈ θ, θ̄.

(ii) If Bp,q > 0 ∀p,q ∈ ℝ++
2 then

pIθ < pIIθ ∀θ ∈ θ, θ̄. Also,
dpIθ
dθ ,

dpIIθ
dθ < 0 ∀θ ∈ θ, θ̄.

(iii) If Bp,q = 0 ∀p,q ∈ ℝ++
2 then

pIθ = pIIθ ∀θ ∈ θ, θ̄. Also,
dpIθ
dθ ,

dpIIθ
dθ = 0 ∀θ ∈ θ, θ̄.
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From propositions 4 and 5 the following
emerge:

● Sign of the term Ap,q plays a crucial role
in determining for characterisation of
equilibrium quality quoted in any auction.

● Sign of the term Bp,q plays a crucial role
in determining for characterisation of
equilibrium price quoted in any auction.

● Note that lemma 2 links the sign of Ap,q
and Bp,q.
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From lemma 2 we get

Ap,q > 0  Bp,q < 0.

The above in combination with propositions
4 and 5 means that Ap,q > 0 implies
qIθ > qIIθ and pIθ > pIIθ. Also
dqIθ
dθ ,

dqIIθ
dθ > 0 and

dpIθ
dθ ,

dpIIθ
dθ > 0.

Similarly, Bp,q ≥ 0  Ap,q < 0 and we
have qIθ < qIIθ and pIθ < pIIθ. Also
dqIθ
dθ ,

dqIIθ
dθ < 0 and

dpIθ
dθ ,

dpIIθ
dθ < 0.
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We now provide a few examples to illustrate
propositions 4 and 5.

The point is to show that scoring rules and
cost functions exist that satisfy all our
assumptions and the conditions of
propositions 4 and 5.
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We first consider conditions mentioned in
proposition 4.

1. Sp,q =
q
p and Cq,θ = 1

2
q2 + θ. In

this example A.  > 0 ∀p,q ∈ ℝ++
2 .

2. Sp,q = 10q − p2 and Cq,θ = q + θ. In
this example A.  < 0 ∀p,q ∈ ℝ++

2 .

3. Sp,q = eq−p and Cq,θ = 1
2
q2 + θ. In

this example A.  = 0 ∀p,q ∈ ℝ++
2 .
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We now consider conditions mentioned in
proposition 5.

1. Sp,q =
q
p and Cq,θ = 1

2
q2 + θ. In

this example B.  < 0 ∀p,q ∈ ℝ++
2 .

2. Sp,q = eq−p − p and Cq,θ = 1
2
q + θ.

In this example B.  > 0 ∀p,q ∈ ℝ++
2 .

3. Sp,q = 10q − p2 and Cq,θ = q + θ. In
this example B.  = 0 ∀p,q ∈ ℝ++

2 .
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We now proceed to discuss the impact of
increase in n (the number of bidders) on
equilibrium quality and price in both
auctions.

For any given θ, let qIn;θ and qIIn;θ be
the quality quoted in first-score and
second-score auctions respectively when
the number of bidders is n.

Similarly, for any given θ, let pIn;θ and
pIIn;θ be the price quoted in first-score
and second-score auctions respectively
when the number of bidders is n.
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Proposition 6

For all n > m

(i) qIIn;θ = qIIm;θ.

(ii) If Ap,q > 0 ∀p,q ∈ ℝ++
2 then qIn;θ <

qIm;θ.

(iii) If Ap,q < 0 ∀p,q ∈ ℝ++
2 then

qIn;θ > qIm;θ.
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Proposition 7

Suppose Ap,q ≠ 0 ∀p,q ∈ ℝ++
2 . Then for

all n > m

(i) pIIn;θ = pIIm;θ.

(ii) If Bp,q = 0 ∀p,q ∈ ℝ++
2 then pIn;θ =

pIm;θ.

(iii) If Bp,q > 0 ∀p,q ∈ ℝ++
2 then pIn;θ >

pIm;θ.

(iv) If Bp,q < 0 ∀p,q ∈ ℝ++
2 then pIn;θ <

pIm;θ.
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The next proposition explores how the
equilibrium score quoted changes with an
increase in the number of bidders.

Let SIn;θ = SpIn;θ,qIn;θ

and SIIn;θ = SpIIn;θ,qIIn;θ.

Proposition 8

(i) For all n > m, SIIn;θ = SIIm;θ.

(ii) For all n > m, SIn;θ > SIm;θ.
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● In the second-score auction the quality and
price quoted in equilibrium are independent
of the number of bidders. Consequently, the
score quoted in equilibrium is invariant
with respect to the number of bidders.

● This is similar to the second-price auction
in the benchmark model, where, regardless
of the number of bidders, all bidders bid
their valuations.

● In the first-score auction as the competition
intensifies (n increases) the score quoted by
any type increases. This is in line with the
conventional wisdom which suggests that
any increase in competition should induce a
bidder with type θ to quote a higher score.

● This is also similar to the first-price auction
in the benchmark model where bids
increase with the number of bidders.
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Expected Scores:

Let F1.  and f1.  be the distribution and
density function of the lowest order statistic.

Let F2.  and f2.  be the distribution and
density function of the second lowest order
statistic.

F1x = 1 − 1 − Fxn

F2x = 1 − 1 − Fxn − nFx1 − Fxn−1

f1x = n1 − Fxn−1fx

f2x = nn − 1Fx1 − Fxn−2fx
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Lemma 3

(i) In a first-score auction the expected
score is as follows:

ΣI = ∫
θ

θ̄
SIθf1θdθ = ∫

θ

θ̄
SpIθ̄,qIθ̄f1θdθ

= SpIθ̄,qIθ̄

− ∫
θ

θ̄
F1θ1 + γ′θSppIθ,qIθdθ

where

γθ = 1

1 − Fθn−1
∫
θ

θ̄
1 − Ftn−1dt
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(ii) In a second-score auction the expected
score is as follows:

ΣII = ∫
θ

θ̄
SIIθf2θdθ = ∫

θ

θ̄
SpIIθ̄,qIIθ̄f2θdθ

= SpIIθ̄,qIIθ̄

− ∫
θ

θ̄
F2θSppIIθ,qIIθdθ
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Lemma 4

∫
θ

θ̄
F1θ1 + γ′θdθ

= ∫
θ

θ̄
F2θdθ

where

γθ = 1

1 − Fθn−1
∫
θ

θ̄
1 − Ftn−1dt
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From lemma 1 we know pIθ̄ = pIIθ̄ and
qIθ̄ = qIIθ̄.

This means

SpIθ̄,qIθ̄ = SpIIθ̄,qIIθ̄.

Using this and lemma 3 one clearly gets
that to compare ΣI and ΣII we need to
compare the following terms:

∫
θ

θ̄
F1θ1 + γ′θ−SppIθ,qIθdθ

and ∫
θ

θ̄
F2θ−SppIIθ,qIIθdθ.
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Note that if the scoring rule is quasilinear
i.e. Sp,q = φq − p then Sp = −1.

Hence, from lemmas 3 and 4 the next result
follows.

Proposition 9

If the scoring rule is quasilinear then
ΣI = ΣII.

● The above result is well known. For scoring
auctions this is the analogue of revenue
equivalence theorem of the canonical
model.
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We now proceed to provide our main results
on expected scores when the scoring rules
are non-quasilinear.

We show that such results will depend on
the curvature properties of the scoring rule
and the properties of the distribution
function of types.
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We first show the possibility of equivalence
of expected scores even with
non-quasilinear scoring rules.

Proposition 10

If ∀p,q ∈ ℝ++
2 , A.  ≠ 0 and

Spp
B.
A.

− Spq = 0 then ΣI = ΣII.

We illustrate proposition 10 with a couple of
examples.
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In one example Spq = 0 and in the other
example Spq ≠ 0.

Example 3:

Let Sp,q = 10q − p2, Cq,θ = q + θ and θ
is uniformly distributed over 1,2. The
scoring rule is non-quasilinear and satisfies
all our assumptions. Here it can be easily
shown that ΣI = ΣII = 25

3
.

Example 4:

Let Sp,q = eq−p − p, Cq,θ = 1
2
q + θ and θ

is uniformly distributed over  1
4
, 1

2
. The

scoring rule is non-quasilinear and satisfies
all our assumptions. Here we have
ΣI = ΣII = 1

6
.
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From proposition 10 we get that

ΣI ≠ ΣII  Spp
B. 
A. 

− Spq ≠ 0 for some p,q ∈ ℝ++
2

Now suppose the scoring rule is such that
Spp

B.
A.

− Spq ≠ 0 for some p,q ∈ ℝ++
2 .

We now show that a restriction on the
distribution function of types ensures
ΣI < ΣII.
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Proposition 11

Suppose the scoring rule, S. , is
non-quasilinear and Spp

B.
A.

− Spq ≠ 0 for

some p,q ∈ ℝ++
2 . If f ′θ ≤ 0 for all

θ ∈ θ, θ̄ and fθ̄ is large enough then
ΣI < ΣII.

● Proposition 11 is interesting as it
demonstrates the need to put restrictions on
the distribution function of types to get a
ranking of expected scores. This stands in
sharp contrast to the other papers in the
literature.
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● It may be noted that most non-quasilinear
scoring rules, including the quality over
price ratio, satisfy the restriction

Spp
B.
A.

− Spq ≠ 0. Also, the restriction,

f ′θ ≤ 0, is satisfied by many distribution
functions (including the uniform
distribution).

● As such, the expected scores will be strictly
higher with second-score auctions for most
scoring rules and many distribution
functions.

● This has interesting policy implications as
well. In real life second-score auctions are
never used. Our result suggests that in a
large number of cases an auctioneer will be
better off using second-score auctions than
using first-score auctions.
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We now illustrate this result with two
examples. We take the ‘quality over price’
scoring rule and the same quadratic cost
function in both examples.

Note that the restriction Spp
B.
A.

− Spq ≠ 0 is

satisfied for this scoring rule and cost
function.

The distribution function of types are
different in the two examples.
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Proposition 11 demonstrates that when
Spp

B.
A.

− Spq ≠ 0 for some p,q ∈ ℝ++
2 then

ΣI ≥ ΣII implies that at least one of the
following is true: (i) f ′θ > 0 or (ii) fθ̄ is not
large enough.

In example 5 we take a uniform distribution,
where f ′θ = 0 and show that ΣI < ΣII.

In example 6, we take a different distribution
function where f ′.  > 0 and we get ΣI > ΣII.
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Example 5

Let Sp,q =
q
p and Cq,θ = 1

2
q2 + θ.

Suppose θ be uniformly distributed over
1,2 and n = 2.

For this distribution we have

f1θ = 22 − θ and f2θ = 2θ − 1
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First-score auction:

price: pIθ = 2 + θ

quality: qIθ = 2 + θ

score: sIθ =
qIθ

pIθ
= 1

2+θ

Expected score:

ΣI = ∫
1

2
sIθf1θdθ = 0.54872

Second-score auction:

price: pIIθ = 2θ

quality: qIIθ = 2θ

score: sIIθ =
qIIθ

pIIθ
= 1

2θ

Expected score:

ΣII = ∫
1

2
sIIθf2θdθ = 0.55228
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Example 6

Let Sp,q =
q
p and Cq,θ = 1

2
q2 + θ.

Now suppose n = 2 and θ is distributed over
1.2, 1.203731 with density fx =

500x3 − 600 and distribution function
Fx = 125x4 − 600x + 2304

5
.

For this distribution we have

f1 = 2 −125x4 + 600x − 2299
5

500x3 − 600 and

f2 = 2 125x4 − 600x + 2304
5

500x3 − 600
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First-score auction:

price: pIθ = 2 θ +
25θ5−300θ2+ 4598θ

10
− 18197

100

−125θ4+600θ− 2299
5

quality: qIθ = 2 θ +
25θ5−300θ2+ 4598θ

10
− 18197

100

−125θ4+600θ− 2299
5

score:

sIθ =
qIθ

pIθ
= 1

2 θ+
25θ5−300θ2+ 4598θ

10
− 18197

100

−125θ4+600θ− 2299
5

Expected score:

ΣI = ∫
1.2

1.203731
sIθf1θdθ = 0.6469

Second-score auction:

price: pIIθ = 2θ

quality: qIIθ = 2θ

score: sIIθ =
qIIθ

pIIθ
= 1

2θ

Expected score:

ΣII = ∫
1.2

1.203731
sIIθf2θdθ = 0.6449
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The above examples clearly demonstrate
that the distribution of types plays a major
role in the ranking of expected scores.

Even if the scoring rule and cost functions
are the same, the ranking of expected
revenues can get reversed if the distribution
of types are different.

Hence, we need to put restrictions on both
the scoring rule and the distribution function
to get a ranking of expected scores.
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Optimal Scoring auctions
(Che, Rand, 1993)

By the revelation principle any optimal
outcome can be seen as a direct revelation
mechanism.

Proposition:

In the optimal revelation mechanism, the
firm with the lowest θ is selected; the
winning firm is induced to choose quality q0,
which for each θ maximises

Vq − cq,θ − Fθ
fθ

cθq,θ.
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● In the optimal mechanism quality is
distorted downwards to limit the
information rents accruing to relatively
efficient firms, while competition curtails
the absolute magnitude of these rents.

● Compared to the optimal mechanism, the

naive scoring rule (where
Sq,p = Vq − p) entails excessive
quality under first and second scoring
auctions. It does so because it fails to take
account of the information costs (the costs
the buyer bears due to his inferior
informational position) associated with
increased quality and thus over-rewards
quality.

● The above suggests that there is an
incentive for the buyer to deviate from the
naive scoring rule.
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Consider the following scoring rule:

S̃q,p = Vq − p − Δq

where

Δq = ∫
q0θ̄

q Fq0
−1t

fq0
−1t

cqθt,q0
−1tdt

for q ∈ q0θ̄,q0θ

and

Δq = ∞ for q ∉ q0θ̄,q0θ.

1. The rule differs from the true utility
function (naive scoring rule) by the term
Δq.
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2. Roughly speaking, the rule subtracts
additional points from a firm for an
incremental increase in quality
according to the function Δq.

Proposition:

(i) Under the scoring rule S̃q,p, the
first-score and second-score auctions
implement the optimal mechanism.
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● With an appropriate scoring rule, the
first-score and second-score auctions can
implement the optimal outcome.

● As proposition 1 shows, an optimal
mechanism induces a downward distortion
of quality from the first best level to
internalise the information costs of the
buyer.

● This optimal downward distortion can be
implemented by a scoring rule that
penalises quality relative to the buyer’s
actual valuation of quality.
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1. Branco (RAND, 1997): Optimal
mechanisms with one-dimensional
quality and types (that are correlated).

2. Asker and Cantillon (RAND, 2010):
Optimal mechanisms with
one-dimensional quality and
two-dimensional discrete types.

3. Nishimura (2015): Optimal mechanisms
with multi-dimensional quality and
single-dimensional types. Types are
I.I.D.
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Further research questions

1. For non-quasilinear scoring rules we
concentrated mainly on single
dimensional quality. Characterisation of
equilibrium and ranking of expected
scores when quality and types are
multidimensional have not been
analysed and is left for future research.

2. Optimal mechanisms (that maximise
expected scores) have been derived in
the literature for quasi-linear scoring
rules (See Che, 1993, Asker Cantillon,
2010 and Nishimura, 2015).

3. However, such optimal mechanisms for
general non-quasilinear scoring rules
have not been analysed. This is an
open question and is left for future
research.
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