Credit Scoring and Applications

Srikanth K. Iyer Department of Mathematics Indian Institute of Science, Bangalore, India. skiyer@math.iisc.ernet.in

Ref.: Thomas, Edelman and Crook, SIAM, 2002

To Lend or Not to Lend

Discriminant Analysis: Decision Theory Approach

Application: $X = (X_1, X_2, \dots, X_p) \in A$, finite

$$A = A_G + A_B$$
 L : Profit D : Loss

 p_G : Proportion of Goods p_B : Proportion of Bads

Expected Cost per Application

$$L\sum_{x \in A_B} p(x|G)p_G + D\sum_{x \in A_G} p(x|B)p_B = L\sum_{x \in A_B} q(G|x)p(x) + D\sum_{x \in A_G} q(B|x)p(x)$$

Minimum Expected Cost

$$A_G = \{x : Dp(x|B)p_B \le Lp(x|G)p_G\}$$
$$= \left\{x : \frac{D}{L} \le \frac{q(G|x)}{q(B|x)}\right\}$$

Minimize

$$\sum_{x \in A_G} p(x|B)p_B = \sum_{x \in A_G} \left(\frac{p(x|B)p_B}{p(x)} p(x) \right)$$

Subject to

$$\sum_{x \in A_G} p(x) = a$$

$$A_G = \{x : \frac{p(x|B)p_B}{p(x)} \le c\}$$
$$= \left\{x : \frac{1-c}{c} \le \frac{p(x|G)p_G}{p(x|B)p_B}\right\}$$

X: Continuous Variables

 $\frac{p(x|G)}{p(x|B)}$

$$A_G = \left\{ x : \frac{Dp_B}{Lp_G} \le \frac{f(x|G)}{f(x|B)} \right\}$$

Score

 $\frac{f(x|G)}{f(x|B)}$

$X \sim \mathbf{Multivariate Normal}$

$$A_G = \left\{ x : \frac{Dp_B}{Lp_G} \le \frac{f(x|G)}{f(x|B)} \right\}$$

$$f_X(x|G) = \frac{1}{(2\pi)^{d/2} |\Sigma|^{1/2}} \exp\left(-\frac{1}{2}(x-\mu_G)\Sigma^{-1}(x-\mu_G)^T\right)$$

$$(x - \mu_B)\Sigma^{-1}(x - \mu_B)^T - (x - \mu_G)\Sigma^{-1}(x - \mu_G)^T \ge \log\left(\frac{Dp_B}{Lp_G}\right)$$

$$x\Sigma^{-1}(\mu_G - \mu_B)^T \ge \frac{\mu_G \Sigma^{-1} \mu_G^T + \mu_B \Sigma^{-1} \mu_B^T}{2} + \log\left(\frac{Dp_B}{Lp_G}\right)$$

Score $x \Sigma^{-1} (\mu_G - \mu_B)^T$ **Equivalent to Linear Regression**

More than two groups

$$\sum_{j} c(i,j) p_j p(x|j) < \sum_{j} c(k,j) p_j p(x|j) \qquad \forall \ k \neq i$$

Logistic Regression

$$\log\left(\frac{p_i}{1-p_i}\right) = w_0 + \sum_{j=1}^p w_j x_j = w \cdot x'_i$$
$$e^{w \cdot x'_i}$$

$$p_i = \frac{e^{w \cdot x'_i}}{1 + e^{w \cdot x'_i}}$$

Estimate w

Score $w \cdot x'$

Advantages: Can handle discrete, continuous, categorical (non-numeric) variables

Dummy Variables

- X_i : Categorical Variable with k attributes
- $X_{i1}, \ldots X_{ik}$ binary variables
- $X_{ij} = 1$ if individual i has attribute j

Estimation

•
$$P(Y_i = 1) = p_i = \frac{e^{w \cdot x'_i}}{1 + e^{w \cdot x'_i}}$$

•
$$f(y_1, \dots, y_n) = \prod_{i=1}^n p_i^{y_i} (1-p_i)^{1-y_i}$$

- $\log\left(\frac{p_i}{1-p_i}\right) = w \cdot x'_i$
- Maximize

$$\log f(y_1, \dots, y_n) = \sum_{i=1}^n \left[y_i \log \left(\frac{p_i}{1 - p_i} \right) + \log(1 - p_i) \right]$$
$$= \sum_{i=1}^n \left[y_i \ w \cdot x'_i - \log \left(1 + e^{w \cdot x'_i} \right) \right]$$

Classification Trees

- 1. Recursive Partition Algorithm
- 2. Splitting Rule: KS, BII, GI, EI

$$KS = \max_{s \in R} |F(s|B) - F(s|G)| = max_{\ell} |p(\ell|B) - p(\ell|G)|$$

- 3. Stopping-Pruning Rule
 - Stop when number of samples falling in a node is small
 - Holdout sample

$$r(T) = \sum_{t \in T_G} Dr(t, B) + \sum_{t \in T_B} Lr(t, G)$$

- c(T) = r(T) + d n(T)
- Choose T^* that minimizes c(T).
- 4. Good-Bad Nodes
 - Good Majority of Sample Cases are Good
 - Minimize Cost of Misclassification: $G/B \ge D/L$

Behavior Scoring Models of Repayment and Usage Behavior

Objectives:

- Detect danger of default in near/medium term
- Adjust credit limits, decide on marketing and operational policies

Two Methods:

- Classification Approach: Lot more variables
- Credit Scoring: Markov Chain Models

Behavior Scoring: Classification Approach

- Obtain sample history for each customer
 - Observation point
 - Performance period: 12–18 months preceding OP; Add performance characteristics to application and credit bureau information
 - Outcome point: 6–12 months after OP; Classify as good or bad (more than 3 consecutive months of missed payments).
- For any current customer carry out a classification based on past performance.
- Segment population (classification trees) and develop separate scorecards for each segment
- Ensure continuity in scores when customer moves from one segment to another

Markov Chain Approach

Problem with previous method: Using the score to alter credit limit policy invalidates the effectiveness of the score.

Simple Model

• $S = \{NC, 0, 1, \dots, M\}$, NC- No credit, 0- Credit but payments up-to-date, M- Default

$$P = \begin{bmatrix} .79 & .21 & \cdot & 0 \\ .09 & .73 & \cdot & 0 \\ \cdot & \cdot & \cdot & \cdot \\ 0.06 & .32 & \cdot & 0.02 \end{bmatrix}$$

• $\alpha_0 = (1, 0, \dots, 0) \to \alpha_1 = (.64, .32, \dots, 0) \to \dots \to \alpha_{10} = (.315, .512, \dots, .046)$

• $\pi = P\pi$: limiting probabilities.

Markov Chain Approach

- State s = (b, n, i), where b =balance outstanding, n =number of periods of non-payment, i =other charcteristics
- t(s, a) = probability an account in s repays a next period
- w(s,i') = probability an account in s changes its other characteristics to i'
- r(s) = expected value of orders placed per period in state s

Objective: Find credit limit policy to

- maximize expected one period reward subject to a given level of bad debt

– minimize expected bad debt in one period subject to a given level of reward D(s) = probability of default in state s

 $D(b,N,i)=1, \qquad \forall \ i,b>0, \qquad D(0,n,i)=0, \qquad \forall \ i,n\leq N$

$$D(b,n,i) = \sum_{i',a\neq 0} t(s,a)w(s,i')D(b-a,0,i') + \sum_{i'} t(s,0)w(s,i')D(b,n+1,i')$$

• Solve for D(b, n, i) for each state

	State	s_7	s_1	s_3	s_2	s_9	s_8	s_4	s_6	s_5
•	Default probability	.001	.004	.008	.02	.06	.09	.12	.15	.2
	Value of orders	50	150	250	200	120	80	60	40	50

- Total expected value of orders $1000\,$
- Acceptable level of default = 0.1 \Rightarrow 15% orders lost
- Choose acceptable level D^* of default. Determine credit limit L(n,i) using

$$D(L(n,i),n,i) = D^*$$

Markov Decision Process Approach

- Previous Model
 - States Repayment performance
 - Transition Matrix Dynamics of repayment behavior
 - Reward function value to the organization
- Decisions lenders can make that impact on the rewards and the transition between states

Definition

- $X_t, t = 1, 2, \ldots \in S$
- K_i = set of actions of which one is chosen each time the process enters state i
- $r_k(i)$ = reward for choosing action k in state i
- $p^k(i,j) =$ probability system moves from i to j when action k is chosen

 $v_n(i)$ Optimal reward over n periods starting with state iObjective: Choose $k \in K_i$ so as to maximize some function of the reward Finite Horizon:

$$v_n(i) = \max_{k \in K_i} \left\{ r^k(i) + \sum_j \beta \ p^k(i,j) v_{n-1}(j) \right\}, \quad \forall i \in S, \quad n = 1, 2, \dots$$

$$0 \equiv v_0(\cdot) \to v_1(\cdot) \to v_2(\cdot) \to \cdots \to v_n(\cdot)$$

Infinite Horizon:

$$v(i) = \max_{k \in K_i} \left\{ r^k(i) + \sum_j \beta \ p^k(i,j)v(j) \right\}, \qquad \forall \ i \in S$$

For some $n \ge n^*$, $v_n(i) = v(i)$ for all $i \in S$.

Markov Decision Process Behavioral Scoring System

- Actions Credit Limit L
- Specify $p^L(s,s^\prime)$ and $r^L(s)$
- $t^L(s,a), q^L(s,e), w^L(s,i')$ probabilities of repayment, order and transition
- Define $p^L(\boldsymbol{s},\boldsymbol{s}')$ by estimating

$$\begin{split} p^{L}(b,n,i;b+e-a,0,i') &= t^{L}(s,a)q^{L}(s,e)w^{L}(s,i'), \qquad b+e-a \leq L \\ p^{L}(b,n,i;b-a,0,i') &= t^{L}(s,a)\left(q^{L}(s,0) + \sum_{e \geq L-b+a} q^{L}(s,e)\right)w^{L}(s,i') \\ p^{L}(b,n,i;b+e,n+1,i') &= t^{L}(s,0)q^{L}(s,e)w^{L}(s,i'), \qquad b+e \leq L \\ p^{L}(b,n,i;b,n+1,i') &= t^{L}(s,0)\left(q^{L}(s,0) + \sum_{e \geq L-b} q^{L}(s,e)\right)w^{L}(s,i') \end{split}$$

$$r^{L}(b,n,i) = f \sum_{e} e \ q^{L}(s,e) - b \ t^{L}(s,0) \ \delta(n - (N-1))$$

Optimal Total Discounted Expected Profit

$$v_n(s) = \max_L \left\{ r^L(s) + \sum_{s' \in S} p^L(s, s') \ \beta \ v_{n-1}(s') \right\}, \qquad \forall \ s \in S, \qquad n = 1, 2, \dots$$

$$v(s) = \max_{L} \left\{ r^{L}(s) + \sum_{s' \in S} p^{L}(s, s') \beta v(s') \right\}, \qquad \forall s \in S$$

Optimal Credit Limits: Actions that maximize the above equations

Validation of Markov Chain Models

Estimation

• Stationary Markov Chain: R customer histories $s_0^r, s_1^r, \ldots, s_T^r$. $n^r(i), n^r(i, j)$ number of times state $i, i \rightarrow j$ appears in the history of customer r. $n(i) = \sum_r n^r(i), n(i, j) = \sum_r n^r(i, j).$

$$\hat{p}(i,j) = \frac{n(i,j)}{n(i)}$$

• Non-Stationary Markov Chain: Seasonal Effect, Trend

$$\hat{p}_t(i,j) = \frac{n_t(i,j)}{n_t(i)}$$

Testing for Stationarity

$$\sum_{i \in S} \sum_{t=1}^{T-1} \sum_{j \in S} \frac{n_t(i) [\hat{p}_t(i,j) - \hat{p}(i,j)]^2}{\hat{p}(i,j)} \sim \chi^2_{m(m-1)(T-1)}$$

Testing for Markovity

$$\sum_{i,j,k} \frac{n(i,j)[\hat{p}(i,j,k) - \hat{p}(j,k)]}{\hat{p}(j,k)} \sim \chi^2_{m(m-1)^2}$$

Non-Markov

- Enlarge state space
- Segment population on basis of age, product, time of year etc.
- Mover-Stayer Model \rightarrow Mixture Markov Models

Mixture Markov Models Moving at Different Speeds

Ref. Halina Frydman

- Labor Mobility
- Income dynamics
- Consumer Brand Preferences
- Rating Migration
- Credit behavior
- Tumor progression

Assumption Individual transitions are Markovian, but population is heterogeneous with respect to speed of transitions

Definition

- $\{X(t), t \ge 0\}$ stochastic process with state space $S = \{1, 2, \dots, w\}$
- Conditional on the initial state, X_t is a mixture of homogenous Markov chains $X_m,\, 1\leq m\leq N$
- Mixture Probabilities $s_{i,m} = P[X = X_m | X(0) = i]$
- The generator of X_m is $A_m = \Gamma_m Q$

$$a_{ij,m} \ge 0, \qquad i \ne j, \qquad \sum_{j \ne i} a_{ij,m} = -a_{ii,m} = a_{i,m} \le 0$$

•
$$\Gamma_m = \operatorname{diag}(\gamma_{1,m}, \gamma_{2,m}, \dots, \gamma_{w,m}), \ 1 \le m \le N-1, \ \Gamma_N = I$$

• $S_m = \operatorname{diag}(s_{1,m}, \dots, s_{w,m}), \qquad P_m(t) = \exp(tA_m)$

$$P(t) = \sum_{m=1}^{N} S_m P_m(t), \qquad t \ge 0$$

• $\gamma_{i,m} = 0$: No movement, $0 < \gamma_{i,m} < 1$: Faster, $\gamma_{i,m} > 1$: Slower

Possible generalization: Introduce two gamma parameters for each row, one for upward transitions (above diagonal) and the other for downward transitions. **Estimation:** Maximum Likelihood Estmation via EM Algorithm **Key:** Estimation of the probability that a particular **history** follows X_m

Estimation

- X is a mixture of N Markov processes
- *n* realizations from X: X^1, \ldots, X^n , with X^k observed on $[0, T^k]$.
- **Complete Information:** We know which Markov chain generated each realization

• Data for
$$X^k$$
: $(n_{ij}^k, \tau_i^k, Y_m^k, i, j \in S, j \neq i)$
 $n_{ij}^k =$ number of times X^k makes an $i \rightarrow j$ transition, $i \neq j$
 $\tau_i^k =$ total time X^k spends in state i
 $Y_m^k = 1$ if X^k is generated by X_m and 0 otherwise

$$s_{i,m} = P[X = X_m | X(0) = i]$$

• Likelihood of X^k conditional on knowing the initial state $X^k(0) = i_k$

$$L^{k} = s_{i_{k},m} \prod_{i \neq j} (\gamma_{i,m} q_{ij})^{n_{ij}^{k}} \prod_{i} \exp(-\gamma_{i,m} q_{i} \tau_{i}^{k})$$

 \bullet ... and knowing the $Y_m^k\mbox{'s}$

$$\log L^k = \sum_{m=1}^N Y_m^k \left\{ \log(s_{i_k,m}) + \sum_{i \neq j} n_{ij}^k [\log(\gamma_{i,m}) + \log(q_{ij})] - \sum_i \gamma_{i,m} q_i \tau_i^k \right\}$$

Full log-likelihood:

$$\log L = \sum_{m=1}^{N} \sum_{i} b_{i,m} \{ \log(s_{i,m}) + n_{i,m} \log(\gamma_{i,m}) \}$$
$$+ \sum_{i \neq j} n_{ij} \log(q_{ij}) - \sum_{i} q_{i} \sum_{m=1}^{N} \gamma_{i,m} \tau_{i,m}$$

$$b_{i,m} = \# X_m \text{ realizations starting in } i$$

$$n_{ij} = \sum_{k=1}^n n_{ij}^k = \# i \to j \text{ transitions}$$

$$n_i = \sum_{j \neq i} n_{ij} = \# \text{ transitions from } i$$

$$n_{i,m} = \sum_{k=1}^n Y_m^k n_i^k = \# \text{ transitions from } i \text{ by } X_m \text{ realizations}$$

$$\tau_{i,m} = \sum_{k=1}^n Y_m^k \tau_i^k = \text{ time in } i \text{ for } X_m \text{ realizations}$$

ML Estimates under complete information:

$$\hat{s}_{i,m} = \frac{b_{i,m}}{b_i}, \qquad b_i = \sum_{m=1}^N b_{i,m}, \qquad i \in S$$

$$\hat{q}_i = \frac{n_{i,N}}{\tau_{i,N}}$$

$$\hat{q}_{ij} = \frac{n_{ij}}{n_i} \hat{q}_i$$

$$\hat{\gamma}_{i,m} = \frac{n_{i,m}}{\hat{q}_i \tau_{i,m}}$$

EM Algorithm

- Algorithm will estimate $(s_{i,m}, \gamma_{i,m}, q_i)$
- After algorithm converges compute q_{ij}
- Step 1 Choose initial values $(s^0_{i,m},\gamma^0_{i,m},q^0_i)$
- **Expectation Step:** Estimate probability that X^k follows X_m

$$E^{0}[Y_{m}^{k}] = \frac{L_{0,m}^{k}}{\sum_{p=1}^{N} L_{0,p}^{k}}$$

$$E^{0}[n_{i,m}] = \sum_{k=1}^{n} n_{i}^{k} E^{0}[Y_{m}^{k}]$$

$$E^{0}[\tau_{i,m}] = \sum_{k=1}^{n} \tau_{i}^{k} E^{0}[Y_{m}^{k}]$$

$$E^{0}[b_{i,m}] = \sum_{k=1}^{n} I(X^{k}(0) = i)E^{0}[Y_{m}^{k}]$$

- Maximization Step: Compute new values $(s_{i,m}^1, \gamma_{i,m}^1, q_i^1)$ using ML Estimates
- Repeat until convergence

- Empirical Study: 848 bond issuers from Moody's data base observed continuously for different periods of time from January 1985 to December 1995.
- Seven coarser rating categories: Aaa, Aa, A, Baa, Ba, B, C and two additional states, D and WR.
- WR could be due to debt expiration or due to non-rating for failure to pay fee
- Likelihood ratio test strongly rejects the Markov chain model
- Fitted a mixture of two Markov chains with generators Q and $A=\Gamma Q$
- A is dominant with 78.31% histories evolving from A.
- Q moves out faster from lower ratings; Those in A stay in C for an average of 3.5 yrs. (includes all original bonds (1%) rated C) whereas those from Q move out of C after an average of 1/3 of a year (most were downgraded to C).
- Default probabilities are higher under Q (almost four times higher)
- In A, WR acts as an absorbing state, whereas in Q it represents a temporary withdrawal of ratings
- Three year default probability from C is 0.36 for the mixture model, while it is 0.45 for a Markov chain

Bayesian Markov Chain Approach

Previous Model: Estimate customer behavior from other customers with similar scores

Bayesian Approach: Modify based on individual customer's behavior

Example: $X \sim B(1, p), X = 0$ no repayment

Beta Prior on \boldsymbol{p}

$$f_{r,m}(p) = \frac{\Gamma(m)}{\Gamma(r)\Gamma(m-r)} p^{r-1} (1-p)^{m-r-1}, \qquad 0 \le p \le 1$$

Suppose initial prior belief $f_0(p) = f_{r_0,m_0}(p)$. $r_0/m_0 = P[X = 1]$.

If $X_1 = 1$ then

$$f_1(p) = \frac{P[X_1 = 1|p]f_0(p)}{P[X_1 = 1]} = f_{r_0+1,m_0+1}$$

Similarly, if $X_1 = 0$, then $f_1(p) = f_{r_0,m_0+1}$.

Let m be the number of periods for which there is history, of which payments have been made in r periods. Then, $f_m(p) = f_{r_0+r,m_0+m}(p)$. For large m, (r,m)dominates (r_0, m_0) .

Fixed amount repayment loan

State of customer:
$$s = (b, n, r, m)$$

$$D(b, n, r, m) = \frac{r}{m} D(b - a, 0, r + 1, m + 1) + \left(1 - \frac{r}{m}\right) D(b, n + 1, r, m + 1),$$

 $n = 0, 1, \dots, N$, with D(0, n, r, m) = 0 and D(b, N, r, m) = 1.

Credit Card Repayment Model

- R = required repayment level (some percentage of b)
- Two parameters described by Bayesian beliefs: p, M.
- p = probability of repayment, M = maximum affordable repayment amount
- If M < R customer will pay M. If $M \ge R$, customer will pay between R and M.
- Belief about p is given by $f_{r,m}(p)$.
- Split repayment into K possible levels, 1, 2, ..., K. Define independent Bernoulli variables M_i ,

$$p_i = P[M_i = 1] = P[M \ge i | M \ge i - 1], \quad i = 1, 2, \dots, K.$$

• $p_i = \text{probability of payment at level } i \sim f_{r_i,m_i}$

• State Transitions: $(b, n, r, m, r_1, m_1, \dots, r_K, m_K) \rightarrow$

- If no payment

$$(b, n+1, r, m+1, r_1, m_1, \dots, r_K, m_K)$$

– If payment a < R

$$(b-a, 0, r+1, m+1, r_1+1, m_1+1, \dots, r_a+1, m_a+1, r_{a+1}, m_{a+1}+1, \dots, r_K, m_K)$$

- If payment $a \ge R$

 $(b-a, 0, r+1, m+1, r_1+1, m_1+1, \dots, r_a+1, m_a+1, r_{a+1}, m_{a+1}, \dots, r_K, m_K)$

- Probability of repayment in next period = $\frac{r}{m}$
- Expected affordable repayment amount

$$E[M] = \sum_{k=1}^{K} P[M \ge k] = \frac{r_1}{m_1} \left(1 + \frac{r_2}{m_2} \left(1 + \dots \left(\frac{r_K}{m_K} \right) \right) \cdots \right)$$

• Add probability q(e), of taking new credit e to develop a Markov decision process model